JP2007118112A - Method for preparing nano-tree/nano-particle composite structure, and nano-tree/nano-particle composite structure - Google Patents

Method for preparing nano-tree/nano-particle composite structure, and nano-tree/nano-particle composite structure Download PDF

Info

Publication number
JP2007118112A
JP2007118112A JP2005311479A JP2005311479A JP2007118112A JP 2007118112 A JP2007118112 A JP 2007118112A JP 2005311479 A JP2005311479 A JP 2005311479A JP 2005311479 A JP2005311479 A JP 2005311479A JP 2007118112 A JP2007118112 A JP 2007118112A
Authority
JP
Japan
Prior art keywords
nano
tree
composite structure
nanometer
particle composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005311479A
Other languages
Japanese (ja)
Inventor
Kokukyo Sha
国強 謝
Akira Hasegawa
明 長谷川
Kazuki Mitsuishi
和貴 三石
Kazuo Furuya
一夫 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005311479A priority Critical patent/JP2007118112A/en
Publication of JP2007118112A publication Critical patent/JP2007118112A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To create a new nano-structure, and to provide a more functional catalyst of a nanometer size. <P>SOLUTION: In this method, particles of the nanometer sizes are adhered to the surface of a tree-like structure of a nanometer size. The particles of the nanometer sizes are adhered by an ion sputtering method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、ナノ樹木状構造物とナノ微粒子の複合構造物の作製方法と作製されるナノ樹木状構造物とナノ微粒子の複合構造物に関する。   The present invention relates to a method for producing a composite structure of nano-dendritic structures and nano-fine particles and a composite structure of nano-dendritic structures and nano-particles to be produced.

これまでに数多くのナノメートルサイズの構造物(ナノ構造物)が創生され、実用化が展望されている。本発明者らも新しい形態を有するナノ構造物を実現している(特許文献1)。   Many nanometer-sized structures (nanostructures) have been created so far, and their practical application is expected. The present inventors have also realized a nanostructure having a new form (Patent Document 1).

本発明者らが提案しているナノ構造物は、ナノメートルサイズの樹木状構造物(ナノ樹木状構造物)であり、このナノ樹木状構造物は、真空中かつ電磁場中に配置された絶縁体基板の表面付近に原料ガスを導入し、収束かつ走査可能な電子ビームを絶縁体基板の表面に照射することにより絶縁体基板の表面に形成するものである。電子ビームの走査によりナノメートルの精度で絶縁体基板上に描かれるパターンに形成する。ナノ樹木状構造物は、他のナノ構造物に比べ表面積が大きく、したがって、触媒、センサー、量子素子などへの応用が期待されている。
特開2005−111645号公報
The nanostructure proposed by the present inventors is a nanometer-sized tree-like structure (nano-tree-like structure), and this nano-tree-like structure is insulated in a vacuum and in an electromagnetic field. A source gas is introduced in the vicinity of the surface of the body substrate, and the surface of the insulator substrate is formed by irradiating the surface of the insulator substrate with a convergent and scannable electron beam. A pattern drawn on an insulator substrate is formed with an accuracy of nanometers by scanning an electron beam. Nano-dendritic structures have a larger surface area than other nanostructures, and thus are expected to be applied to catalysts, sensors, quantum devices, and the like.
JP 2005-111645 A

本願発明は、先に提案したナノ樹木状構造物を発展させ、機能性材料としての応用に新たな展望を切り拓く新しいナノ構造物を創生することを課題としている。   This invention makes it a subject to develop the nano tree-like structure proposed previously and to create a new nano structure that opens up a new perspective for application as a functional material.

本願発明は、上記の課題を解決するものとして、第1に、ナノメートルサイズの樹木状構造物の表面にナノメートルサイズの微粒子を付着させることを特徴としている。   In order to solve the above problems, the present invention is characterized in that, firstly, nanometer-sized fine particles are adhered to the surface of a nanometer-sized tree-like structure.

本願発明は、第2に、イオンスパッタリング法によりナノメートルサイズの微粒子を付着させることを特徴としている。   Second, the present invention is characterized in that nanometer-sized fine particles are deposited by ion sputtering.

本願発明は、第3に、第1または第2の発明により作製される、ナノメートルサイズの樹木状構造物の表面にナノメートルサイズの微粒子が付着しているナノ樹木状構造物とナノ微粒子の複合構造物であることを特徴としている。   Thirdly, the present invention relates to a nano dendritic structure and a nano fine particle in which nanometer size fine particles are attached to the surface of a nanometer size dendritic structure produced according to the first or second invention. It is a composite structure.

本願の第1の発明によれば、ナノ樹木状構造物の表面にナノ微粒子が付着した全く新しい形態のナノ構造物が提供される。   According to 1st invention of this application, the nanostructure of the completely new form with which nanoparticle adhered to the surface of a nano dendritic structure is provided.

本願の第2の発明によれば、ナノ微粒子が効率的に発生し、ナノ樹木状構造物の表面に高い密度で付着する。   According to the second invention of the present application, nanoparticles are efficiently generated and adhere to the surface of the nano-dendritic structure at a high density.

本願の第3の発明によれば、より機能的なナノメートルサイズの触媒として、また、センサーや量子素子などとしての適用が考えられ、また、化学、生物、製薬などの分野での利用も考えられる新しいナノ構造物が提供される。   According to the third invention of the present application, it can be applied as a more functional nanometer-sized catalyst, as a sensor, a quantum device, or the like. New nanostructures are provided.

ナノ樹木状構造物は、たとえば、前記特許文献1に記載された方法で作製することができる。すなわち、セラミックス、ガラス、樹脂またはこれらの複合物から形成された絶縁体基板を真空中かつ電磁場中に置き、図1aに示したように、真空を保ったまま、原料ガスを絶縁体基板の表面に導入する。たとえば、絶縁体基板の表面に向けて配置されたノズルなどを通じて原料ガスを導入することができる。原料ガス導入時の真空度は1×10−2Pa程度を目安にすることができる。電磁場の強度は、通常、1T〜10Tの範囲にすることができる。原料ガスには、W、Mo、Ti、Ta、Ga、Cu、Zn、In、Al、Fe、Ni、Coなどの金属元素やSi、Bなどの半導体元素もしくは半金属元素を含む化合物のガスが例示される。原料ガスは単一のガスまたは複数種の混合ガスとすることができる。 The nano-dendritic structure can be produced, for example, by the method described in Patent Document 1. That is, an insulator substrate formed of ceramics, glass, resin, or a composite thereof is placed in a vacuum and an electromagnetic field, and the source gas is supplied to the surface of the insulator substrate while maintaining the vacuum as shown in FIG. 1a. To introduce. For example, the source gas can be introduced through a nozzle or the like arranged toward the surface of the insulator substrate. The degree of vacuum when introducing the raw material gas can be about 1 × 10 −2 Pa. The intensity of the electromagnetic field can usually be in the range of 1T to 10T. The source gas includes a compound gas containing a metal element such as W, Mo, Ti, Ta, Ga, Cu, Zn, In, Al, Fe, Ni, Co, or a semiconductor element or a semimetal element such as Si or B. Illustrated. The source gas can be a single gas or a mixed gas of a plurality of types.

そして、原料ガスを絶縁体基板の表面付近に導入しながら、収束電子ビームを絶縁体基板の表面に照射する。収束電子ビームが照射された絶縁体基板の表面にナノ樹木状構造物が形成する。収束電子ビームについては、加速電圧200kV、エネルギー200keVを標準的な条件として例示することができる。照射時間は数秒〜数十分程度とすることができる。絶縁体基板の温度は、通常、室温(5℃〜22℃)とすることができる。ナノ樹木状構造物は、走査される収束電子イオンビームが照射された絶縁体基板の表面に形成する。したがって、ナノ樹木状構造物の形成はナノメートルの精度で可能である。   Then, the surface of the insulator substrate is irradiated with a focused electron beam while introducing the source gas near the surface of the insulator substrate. A nano dendritic structure is formed on the surface of the insulator substrate irradiated with the focused electron beam. As for the focused electron beam, an acceleration voltage of 200 kV and an energy of 200 keV can be exemplified as standard conditions. The irradiation time can be about several seconds to several tens of minutes. The temperature of the insulator substrate can usually be room temperature (5 ° C. to 22 ° C.). The nano dendritic structure is formed on the surface of the insulator substrate irradiated with the focused focused electron ion beam. Therefore, the formation of nano dendritic structures is possible with nanometer accuracy.

この他、ナノ樹木状構造物の作製は、化学合成方法、電気化学蒸着方法などによって行うこともできる。   In addition, the production of the nano-dendritic structure can also be performed by a chemical synthesis method, an electrochemical deposition method, or the like.

ナノ樹木構造物の表面にナノ微粒子を付着させる際には、ナノ微粒子の原料となるターゲット材を用い、ターゲット材に対してイオンスパッタリング、真空蒸着などを行うことができる。ナノ微粒子は単一の元素よりなるものの他、複数の元素を含むものなどとすることができる。生成するナノ微粒子は、図1bに示したように、ナノ樹木状構造物の表面に分布して付着する。ナノ樹木状構造物とナノ微粒子との複合構造物(ナノ樹木/ナノ微
粒子複合構造物)が得られる。ナノ樹木/ナノ微粒子複合構造物は、より機能的なナノメ
ートルサイズの触媒として、また、センサーや量子素子などとして有効であると考えられ、応用が期待される。また、化学、生物、製薬などの分野での利用も考えられる。
When the nano fine particles are attached to the surface of the nano tree structure, a target material that is a raw material of the nano fine particles is used, and ion sputtering, vacuum deposition, or the like can be performed on the target material. The nano fine particles may be composed of a single element or may include a plurality of elements. As shown in FIG. 1b, the generated nano fine particles are distributed and attached to the surface of the nano dendritic structure. A composite structure of nano-dendritic structures and nano-particles (nano-tree / nano-particle composite structure) is obtained. The nano-tree / nano-particle composite structure is considered to be effective as a more functional nanometer-sized catalyst, and as a sensor or quantum device, and is expected to be applied. It can also be used in fields such as chemistry, biology, and pharmaceuticals.

なお、ナノ微粒子の付着をイオンスパッタリング法により行うと、ナノ微粒子の生成が効率よく行われ、高い密度でナノ樹木状構造物の表面にナノ微粒子が付着する。   In addition, when nanoparticle adhesion is performed by ion sputtering, nanoparticle generation is efficiently performed, and the nanoparticle adheres to the surface of the nano-dendritic structure at a high density.

アルミナ(Al)から形成された絶縁体基板を密閉容器内に配置し、室温に保った。密閉容器内を排気した後、密閉容器内にW(CO)ガスを導入し、絶縁体基板の表面にW(CO)ガスを流した。密閉容器内の圧力は1×10−2Pa以下であった。約1.5Tの磁場をかけ、広がりを抑えた電子ビームを絶縁体基板の表面に照射した。電子ビームは、加速電圧200kV、エネルギー200keVとして発生させた。照射時間は150秒とした。図2の透過電子顕微鏡写真に示されるようなナノメートルサイズの樹木状構造物(ナノ樹木状構造物)が絶縁体基板の表面に形成した。細い枝の直径は3nm以下であった。形成したナノ樹木状構造物をエネルギー分散型分析装置(EDS)を用いて分析した。その結果は図3に示した通りである。原料ガス中に含まれていたWのピークが主に現れている。このことから、ナノ樹木状構造物はWから形成されていると判定される。 An insulator substrate formed of alumina (Al 2 O 3 ) was placed in a sealed container and kept at room temperature. After evacuating the sealed container, introducing the W (CO) 6 gas into the sealed vessel was flushed the W (CO) 6 gas to the surface of the insulating substrate. The pressure in the sealed container was 1 × 10 −2 Pa or less. An approximately 1.5 T magnetic field was applied to irradiate the surface of the insulator substrate with an electron beam with reduced spread. The electron beam was generated with an acceleration voltage of 200 kV and an energy of 200 keV. The irradiation time was 150 seconds. A nanometer-sized tree-like structure (nano-dendritic structure) as shown in the transmission electron micrograph of FIG. 2 was formed on the surface of the insulator substrate. The diameter of the thin branch was 3 nm or less. The formed nano-dendritic structure was analyzed using an energy dispersive analyzer (EDS). The result is as shown in FIG. The peak of W contained in the source gas mainly appears. From this, it is determined that the nano-dendritic structure is formed of W.

次いで、密閉容器内にAuから形成されたターゲット材を配置し、イオンスパッタリングを行った。イオンスパッタリング装置として日本電子製QUICK Auto Coater JFC 1500を用い、真空度1×10−1Pa、陽極電圧1kV、陽極電流7mA、スパッタリング時間
7秒の条件で行った。
Subsequently, the target material formed from Au was arrange | positioned in the airtight container, and ion sputtering was performed. A QUICK Auto Coater JFC 1500 manufactured by JEOL Ltd. was used as the ion sputtering apparatus, and the conditions were such that the degree of vacuum was 1 × 10 −1 Pa, the anode voltage was 1 kV, the anode current was 7 mA, and the sputtering time was 7 seconds.

図4の透過電子顕微鏡写真に示されているように、ナノ樹木状構造物の表面に直径約2.1nmのナノ微粒子が分布して付着していることが確認された。付着密度は2.7×1012/cmであった。得られたナノ樹木状構造物とナノ微粒子との複合構造物をエネ
ルギー分散型分析装置(EDS)により分析した。図5はその結果であり、ナノ樹木状構造物を形成するWに加え、Auのピークが現れている。ナノ樹木状構造物の表面に付着したナノ微粒子はAuのナノ微粒子であると判定される。
As shown in the transmission electron micrograph of FIG. 4, it was confirmed that nanoparticles having a diameter of about 2.1 nm were distributed and adhered to the surface of the nano-dendritic structure. The adhesion density was 2.7 × 10 12 / cm 2 . The obtained composite structure of nano dendritic structure and nano fine particles was analyzed by an energy dispersive analyzer (EDS). FIG. 5 shows the result, and an Au peak appears in addition to W forming the nano-dendritic structure. The nano fine particles attached to the surface of the nano dendritic structure are determined to be Au nano fine particles.

以上詳しく説明した通り、本願発明によって、全く新しい形態のナノ構造物が提供される。   As explained in detail above, the present invention provides a completely new form of nanostructure.

aは、ナノ樹木状構造物の作製について示した模式図であり、bは、ナノ樹木状構造物の表面にナノ微粒子が付着して形成したナノ樹木/ナノ微粒子複合構造物を示した模式図である。a is a schematic diagram illustrating the production of a nano-dendritic structure, and b is a schematic diagram illustrating a nano-tree / nano-particle composite structure formed by attaching nanoparticles to the surface of the nano-dendritic structure. It is. 実施例で形成したナノ樹木状構造物を示した透過電子顕微鏡写真である。It is the transmission electron micrograph which showed the nano dendritic structure formed in the Example. 実施例で形成したナノ樹木状構造物を、エネルギー分散型分析装置(EDS)を用いて分析した結果を示した図である。It is the figure which showed the result of having analyzed the nano dendritic structure formed in the Example using the energy dispersion | distribution type analyzer (EDS). 実施例で形成したナノ樹木/ナノ微粒子複合構造物を示した透過電子顕微鏡写真である。2 is a transmission electron micrograph showing a nano-tree / nanoparticle composite structure formed in an example. 実施例で形成したナノ樹木/ナノ微粒子複合構造物を、エネルギー分散型分析装置(EDS)を用いて分析した結果を示した図である。It is the figure which showed the result of having analyzed the nano-tree / nanoparticulate composite structure formed in the Example using the energy dispersive analyzer (EDS).

Claims (3)

ナノメートルサイズの樹木状構造物の表面にナノメートルサイズの微粒子を付着させることを特徴とするナノ樹木/ナノ微粒子複合構造物の作製方法。   A method for producing a nano-tree / nano-particle composite structure, comprising attaching nanometer-size fine particles to the surface of a nanometer-size tree-like structure. イオンスパッタリング法によりナノメートルサイズの微粒子を付着させる請求項1記載のナノ樹木/ナノ微粒子複合構造物の作製方法。   The method for producing a nanotree / nanoparticle composite structure according to claim 1, wherein nanometer-sized fine particles are adhered by ion sputtering. 請求項1または2記載のナノ樹木/ナノ微粒子複合構造物の作製方法により作製された
、ナノメートルサイズの樹木状構造物の表面にナノメートルサイズの微粒子が付着しているナノ樹木/ナノ微粒子複合構造物。
A nano-tree / nanoparticle composite comprising nanometer-size fine particles attached to the surface of a nanometer-size dendritic structure produced by the method for producing a nano-tree / nanoparticle composite structure according to claim 1 or 2. Structure.
JP2005311479A 2005-10-26 2005-10-26 Method for preparing nano-tree/nano-particle composite structure, and nano-tree/nano-particle composite structure Pending JP2007118112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311479A JP2007118112A (en) 2005-10-26 2005-10-26 Method for preparing nano-tree/nano-particle composite structure, and nano-tree/nano-particle composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311479A JP2007118112A (en) 2005-10-26 2005-10-26 Method for preparing nano-tree/nano-particle composite structure, and nano-tree/nano-particle composite structure

Publications (1)

Publication Number Publication Date
JP2007118112A true JP2007118112A (en) 2007-05-17

Family

ID=38142503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311479A Pending JP2007118112A (en) 2005-10-26 2005-10-26 Method for preparing nano-tree/nano-particle composite structure, and nano-tree/nano-particle composite structure

Country Status (1)

Country Link
JP (1) JP2007118112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089249A (en) * 2008-10-07 2010-04-22 Samsung Electronics Co Ltd Branched nanowire and method for fabricatiing the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044216A (en) * 1998-04-09 2000-02-15 Horcom Ltd Purifying method of nanotube soot, nanotube composite material suspension and composition
JP2003299965A (en) * 2002-04-09 2003-10-21 Andes Denki Kk Photocatalyst material and production method of the same
JP2004059428A (en) * 2002-07-29 2004-02-26 Samsung Sdi Co Ltd Carbon nanotube for fuel cell, method of manufacturing the same and fuel cell using the same
JP2004074116A (en) * 2002-08-22 2004-03-11 Denso Corp Catalyst body
JP2004209578A (en) * 2002-12-27 2004-07-29 National Institute For Materials Science BORON NITRIDE nano-SCALE COMPOSITE STRUCTURE AND ITS MANUFACTURING METHOD
JP2005111645A (en) * 2003-10-10 2005-04-28 National Institute For Materials Science Nano-arborescent structure and method of preparing the same
JP2005116986A (en) * 2003-10-10 2005-04-28 National Institute For Materials Science Device for fabricating nano-dendritic structure
JP2005113363A (en) * 2003-09-16 2005-04-28 Showa Denko Kk Composite of vapor grown carbon fiber and inorganic fine particle and use thereof
WO2005044723A2 (en) * 2003-10-16 2005-05-19 The University Of Akron Carbon nanotubes on carbon nanofiber substrate
JP2006501484A (en) * 2002-09-20 2006-01-12 ザ トラスティーズ オブ ボストン カレッジ Nanotube cantilever probes for nanoscale magnetic microscopy
JP2006140134A (en) * 2004-10-14 2006-06-01 Canon Inc Membrane electrode assembly for fuel cell, its manufacturing method, and fuel cell
JP2006294493A (en) * 2005-04-13 2006-10-26 Dialight Japan Co Ltd Fuel cell
JP2007523028A (en) * 2003-11-26 2007-08-16 クナノ アーベー Nanostructure in which nanowhiskers with expanded branches are formed and manufacturing method thereof
JP2008521623A (en) * 2004-11-10 2008-06-26 ザ レジェンツ オブ ザ ユニバーシティー オブ カリフォルニア How to make functionalized nanorods

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044216A (en) * 1998-04-09 2000-02-15 Horcom Ltd Purifying method of nanotube soot, nanotube composite material suspension and composition
JP2003299965A (en) * 2002-04-09 2003-10-21 Andes Denki Kk Photocatalyst material and production method of the same
JP2004059428A (en) * 2002-07-29 2004-02-26 Samsung Sdi Co Ltd Carbon nanotube for fuel cell, method of manufacturing the same and fuel cell using the same
JP2004074116A (en) * 2002-08-22 2004-03-11 Denso Corp Catalyst body
JP2006501484A (en) * 2002-09-20 2006-01-12 ザ トラスティーズ オブ ボストン カレッジ Nanotube cantilever probes for nanoscale magnetic microscopy
JP2004209578A (en) * 2002-12-27 2004-07-29 National Institute For Materials Science BORON NITRIDE nano-SCALE COMPOSITE STRUCTURE AND ITS MANUFACTURING METHOD
JP2005113363A (en) * 2003-09-16 2005-04-28 Showa Denko Kk Composite of vapor grown carbon fiber and inorganic fine particle and use thereof
JP2005111645A (en) * 2003-10-10 2005-04-28 National Institute For Materials Science Nano-arborescent structure and method of preparing the same
JP2005116986A (en) * 2003-10-10 2005-04-28 National Institute For Materials Science Device for fabricating nano-dendritic structure
WO2005044723A2 (en) * 2003-10-16 2005-05-19 The University Of Akron Carbon nanotubes on carbon nanofiber substrate
JP2007515364A (en) * 2003-10-16 2007-06-14 ザ ユニバーシティ オブ アクロン Carbon nanotubes on carbon nanofiber substrate
JP2007523028A (en) * 2003-11-26 2007-08-16 クナノ アーベー Nanostructure in which nanowhiskers with expanded branches are formed and manufacturing method thereof
JP2006140134A (en) * 2004-10-14 2006-06-01 Canon Inc Membrane electrode assembly for fuel cell, its manufacturing method, and fuel cell
JP2008521623A (en) * 2004-11-10 2008-06-26 ザ レジェンツ オブ ザ ユニバーシティー オブ カリフォルニア How to make functionalized nanorods
JP2006294493A (en) * 2005-04-13 2006-10-26 Dialight Japan Co Ltd Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089249A (en) * 2008-10-07 2010-04-22 Samsung Electronics Co Ltd Branched nanowire and method for fabricatiing the same

Similar Documents

Publication Publication Date Title
Yi et al. Crack-assisted field emission enhancement of carbon nanotube films for vacuum electronics
JP2004202602A (en) Method for manufacturing minute structural element, and method for manufacturing shape material
JP2007270184A (en) Electrode, and apparatus and method for manufacturing metallic fine particle
JP5028606B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
JP7206337B2 (en) Needle tip functionalized with carbon nanomaterial modified with low work function material, and method for manufacturing same
JPWO2014175432A1 (en) Structure having DLC layer and method for generating DLC layer
Koshida et al. Emerging functions of nanostructured porous silicon—With a focus on the emissive properties of photons, electrons, and ultrasound
WO2003006361A1 (en) Carbon nano-horn and method for preparation thereof
KR20100116399A (en) Graphene coating method and graphen nano-structure
JP2007118112A (en) Method for preparing nano-tree/nano-particle composite structure, and nano-tree/nano-particle composite structure
JP4340433B2 (en) Nozzle for ultrafine ink jet printing and method for producing the same
Bouravleuv et al. New method for MBE growth of GaAs nanowires on silicon using colloidal Au nanoparticles
KR100397396B1 (en) Method for producing tungsten super fine particle and nano-crystal membrane
KR100948193B1 (en) Method for growing indium nanowire
KR101689276B1 (en) Preparation method of hetero-junction metal nanowire and the hetero-junction metal nanowire thereby
JP2017137550A (en) Method of oxide thin film formation and apparatus of oxide thin film formation
JP4250760B2 (en) Nano-dendritic structure and fabrication method thereof
JP4631095B2 (en) Method for producing metal nanoparticles
Burbridge et al. Strategies for the immobilization of nanoparticles using electron beam induced deposition
JP3861156B2 (en) Fabrication method of nanostructures in porous membrane pores
Elbadawi et al. Charged Particle Induced Etching and Functionalization of Two-Dimensional Materials
US20240124314A1 (en) Particle-immobilized substrate, method for producing particle-immobilized substrate, method for producing diamond-film-immobilized substrate, and method for producing diamond
JP2005116986A (en) Device for fabricating nano-dendritic structure
JP3532412B2 (en) Method for producing ultrafine Nb particles
CN112978710A (en) Controllable preparation method of carbon-based composite nanostructure coated by nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081023

A131 Notification of reasons for refusal

Effective date: 20120508

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002