JP2005086233A - 弾性表面波装置の周波数温度特性調整方法および弾性表面波装置 - Google Patents

弾性表面波装置の周波数温度特性調整方法および弾性表面波装置 Download PDF

Info

Publication number
JP2005086233A
JP2005086233A JP2003312570A JP2003312570A JP2005086233A JP 2005086233 A JP2005086233 A JP 2005086233A JP 2003312570 A JP2003312570 A JP 2003312570A JP 2003312570 A JP2003312570 A JP 2003312570A JP 2005086233 A JP2005086233 A JP 2005086233A
Authority
JP
Japan
Prior art keywords
quartz substrate
frequency
temperature
frequency temperature
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003312570A
Other languages
English (en)
Inventor
Takashi Yamazaki
隆 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003312570A priority Critical patent/JP2005086233A/ja
Publication of JP2005086233A publication Critical patent/JP2005086233A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】 水晶基板上に薄膜を形成した弾性表面波装置の周波数温度特性調整方法を提供する。
【解決手段】 弾性表面波装置の温度調整方法は、水晶基板12と、前記水晶基板上12に形成した薄膜20と、前記水晶基板12と前記薄膜20との間に形成したすだれ状電極14とを備えた弾性表面波装置10の周波数温度特性調整方法であって、前記水晶基板12のカット角、前記すだれ状電極14の膜厚、すだれ状電極14の電極幅Lと電極ピッチPとの比のいずれかまたは任意の組み合わせた値を変化させて周波数温度特性を調整する構成とした。
【選択図】 図2

Description

本発明は、水晶基板上に圧電薄膜を形成した弾性表面波装置の周波数温度特性調整方法および弾性表面波装置に関するものである。
弾性表面波(Surface Acoustic Wave:以下、SAWという)を利用したSAWデバイスとして、例えばSAW共振子、SAW発振器およびSAWフィルタ等が挙げられる。これらのSAWデバイスは電子機器の基準周波数源や、伝送回路における周波数選択機等として応用されている。このSAWデバイスを構成するSAW装置は、圧電効果を生じる材料からなる圧電基板の表面上にすだれ状電極(Interdigital Transducer:以下、IDTという)を形成するとともに、このIDTの両端に反射器を設けたものが主な構成である。そしてSAW装置には、IDTおよび反射器上に保護膜を形成したもの、または圧電基板の温度補償を目的として薄膜を形成したものがある。
前記保護膜について記載された発明として特許文献1が挙げられる。この特許文献1の発明は、タンタル酸リチウム(LiTaO3)基板上にIDTおよび反射器が形成されたSAW装置であって、保護膜となる酸化シリコン(SiO2)膜を、IDTと反射器の上面および側面に形成するとともに、IDTと反射器が形成されていないLiTaO3基板上に形成した構成である。この構成により、IDT上に落下した導電材によりIDTが短絡するのを防止し、汚染物からIDTや反射器を保護することが記載されている。
また圧電基板の温度補償を目的として薄膜を形成した発明として特許文献2の発明が挙げられる。この特許文献2の発明は、ニオブ酸リチウム(LiNbO3)基板やLiTaO3基板上に、これらの圧電基板と逆の周波数温度特性をもつSiO2膜を形成し、圧電基板とSiO2膜の間にIDTや反射器等を形成した構成である。この構成により、広帯域、低挿入損失、かつ温度安定性に優れたSAWデバイスが得られると記載されている。
特開平9−186542号公報 特開平7−15274号公報
ところで、LiNbO3やLiTaO3は一次温度係数にマイナスの値を持つので周波数温度特性が悪い。このため、これらの圧電基板上に一次温度係数がプラスの値を持つ薄膜を形成して、圧電基板の温度補償を行っているのである。これに対して、水晶が持つ元々の一次温度係数の値は零なので周波数温度特性が良い。
図7に周波数偏差と温度の関係を示す。同図(a)は水晶基板上にIDTと反射器をアルミニウム(Al)で形成したSAW装置の周波数温度特性であり、同図(b)は圧電薄膜となるSiO2膜の周波数温度特性であり、同図(c)はAlによりIDTと反射器を形成した水晶基板の上に、SiO2膜を形成したときの周波数温度特性である。ここで、水晶基板はオイラー角表示で(0°、123°、43.1°)であり、Alの膜厚と波長の比は0.0368であり、SiO2の膜厚と波長の比は0.0016である。またSiO2膜の周波数温度特性は一次関数で表され、SiO2の膜厚によって周波数温度特性の傾きが変化する。図7(a)では、温度が−40℃から+85℃の範囲において周波数偏差が0ppmから−55ppmの範囲であるのに対して、同図(c)では、周波数偏差が0ppmから−80ppmの範囲となっている。この結果より、水晶基板上に圧電薄膜であるSiO2膜を形成すると、前記SiO2の一次温度係数によって水晶基板の周波数温度特性がずれてしまう問題点がある。すなわち、周波数温度特性の良い水晶基板上にSiO2膜を形成すると周波数温度特性が悪くなる。なお水晶基板上に圧電薄膜(SiO2膜)を形成した際の温度特性の補正に関する報告はない。
またSAW共振子やSAW発振器には様々な要因を合わせて±数10ppm以下の精度が要求されるため、これらのSAWデバイスに用いられるSAW装置には極めて一定の周波数で共振することが要求される。このため、圧電基板上にSiO2膜を形成すると、このSiO2膜の周波数温度特性よって所望の共振周波数を得ることができず、前記精度を達成できない問題点が生じる。
本発明は上記問題点を解決するためになされたもので、すだれ状電極を設けた水晶基板上に圧電薄膜を形成しても、所望の周波数温度特性が得られる弾性表面波装置の周波数温度特性調整方法および弾性表面波装置を提供することを目的とする。
上記目的を達成するために、本発明に係る弾性表面波装置の周波数温度特性調整方法は、水晶基板と、前記水晶基板上に形成した圧電薄膜と、前記水晶基板と前記圧電薄膜との間に形成したすだれ状電極とを備えた弾性表面波装置の温度特性調整方法であって、前記水晶基板のカット角、前記すだれ状電極の膜厚、すだれ状電極の電極幅と電極ピッチとの比のいずれかまたは任意の組み合わせの値を変化させて温度特性を調整することを特徴としている。この場合、前記水晶基板は、オイラー角が(0°、113°〜135°、±(40°〜49°))または(0°、113°〜135°、0°)とできる。また前記圧電薄膜は酸化シリコン膜とできる。
弾性表面波装置の周波数温度特性は、圧電薄膜自体の周波数温度特性とすだれ状電極が設けられた水晶基板の周波数温度特性の合成である。すなわち、すだれ状電極が設けられた水晶基板に圧電薄膜を形成すると、周波数温度特性が変化する。このため、圧電薄膜を形成することにより変化する周波数温度特性の変化量分を予め調整してすだれ状電極と水晶基板を形成すれば、圧電薄膜が形成された後の周波数温度特性を所望の周波数温度特性にすることができる。そして、すだれ状電極と水晶基板を形成して周波数温度特性を調整するには、水晶基板のカット角や、すだれ状電極の膜厚、すなわちすだれ状電極の膜厚Hと波長λの比(H/λ)や、すだれ状電極の電極幅Lと電極ピッチPの比(L/P)のいずれかまたは任意の組み合わせにおけるそれぞれの値を変化させて行えばよい。そして、オイラー角が(0°、113°〜135°、±(40°〜49°))で表される面内回転STカット水晶基板、(0°、113°〜135°、0°)で表されるSTカット水晶基板を用いる弾性表面波装置において、上述した調整を行うことができる。また圧電薄膜として酸化シリコン膜を用いる場合にも、上述した調整を行うことができる。
また水晶基板のカット角を変化させて周波数温度特性を調整するには、オイラー角(φ、θ、ψ)のうちψを変化させて周波数温度特性を調整することを特徴としている。面内回転角ψを変化させることにより、容易に周波数温度特性を調整することができる。この調整は、オイラー角が(0°、113°〜135°、±(40°〜49°))の水晶基板を調整するときに特に有効である。
また本発明に係る弾性表面波装置は、上述した弾性表面波の温度調整方法を用いて製造したことを特徴としている。すだれ状電極が設けられた水晶基板上に圧電薄膜を形成しても、所望の周波数温度特性を有する弾性表面波装置を得ることができる。
以下に、本発明に係る弾性表面波装置の周波数温度特性調整方法および弾性表面波装置ついて説明する。なお、以下に記載するものは本発明の実施の一形態にすぎず、本発明はこれに限定されるものでない。図1に水晶基板のカット角の説明図を示す。水晶の結晶軸はX軸(電気軸)、Y軸(機械軸)およびZ軸(光軸)で定義される。そして弾性表面波(SAW)装置10には、オイラー角(φ、θ、ψ)が(0°、113°〜135°、0°)で表されるSTカット水晶基板と、(0°、113°〜135°、±(40〜49°))で表される面内回転STカット水晶基板が主に用いられている。STカット水晶基板は、オイラー角(φ、θ、ψ)が(0°、0°、0°)で表される水晶Z板2をX軸まわりにθ=113°〜135°回転させて得られる面に沿って切り出される水晶基板3である。なおY軸およびZ軸もX軸周りにθ回転させて得られる軸を、それぞれY’軸およびZ’軸と定義する。また面内回転STカット基板は、前記STカット水晶基板をXY’面内で回転させて、すなわちZ’軸周りにψ=±(40°〜49°)回転させて得られる水晶基板である。
これらの水晶基板の周波数温度特性は、STカット水晶基板が二次関数で表され、面内回転STカット水晶基板が三次関数で表される。ところで、面内回転STカット水晶基板の変曲点温度は通常の使用温度範囲(例えば−40℃〜+85℃)よりも高い110℃近辺に位置している。このため使用温度範囲内では周波数温度特性曲線に極大値を有し、この極大値が頂点温度となる。
図2にSAW装置の説明図を示す。図2(a)はSAW装置の平面図であり、図2(b)はSAW装置の断面を拡大した図である。SAW装置10は、上述した水晶基板12上に一対のすだれ状電極14(IDT14)が形成され、弾性表面波の伝搬方向に沿うIDT14の両端に反射器16が形成された構成である。また水晶基板12上にはボンディングパッド19が形成され、このボンディングパッド19とIDT14が引出し電極18を介して導通する構成である。さらに、前記水晶基板12、IDT14および反射器16上に圧電薄膜20となる酸化シリコン(SiO2)膜20が形成された構成である。なお圧電薄膜20はSiO2膜20に限定されることはない。
次に、このSAW装置10が所望の周波数温度特性を得るための調整方法について説明する。この調整方法では、まずSiO2膜20の膜厚が決定される。このSiO2膜20は、IDT14等の保護に必要な厚さまたは周波数温度特性の補正に必要な厚さが適宜設計された後に、化学気相成長法、スパッタ法または蒸着法等により形成される。このSiO2膜20の膜厚によって、SiO2膜20の一次関数で表される周波数温度特性が決定される。そしてSAW装置10の所望の周波数温度特性を得るために、SiO2膜20の周波数温度特性によって、IDT14等が設けられた水晶基板12の周波数温度特性は一意的に決定される。すなわち、SAW装置10の所望の周波数温度特性は、IDT14等が設けられた水晶基板12の周波数温度特性とSiO2膜20の周波数温度特性の合成であるので、IDT14等が設けられた水晶基板12の周波数温度特性はSiO2膜20を形成することによる周波数温度特性変化量分を調整した値とすればよい。
IDT14等が設けられた水晶基板12上にSiO2膜20を形成しないSAW装置10では、周波数温度特性の頂点温度が使用温度範囲(例えば−40℃〜+85℃)のほぼ中央の温度(25℃)に位置するよう調整されている。しかし本実施の形態では、IDT14等が設けられた水晶基板12上にSiO2膜20を形成するので、SiO2膜20の周波数温度特性に応じて前記頂点温度を低温側または高温側に移動させる必要がある。
面内回転STカット水晶基板は三次関数の周波数温度特性であるから、周波数温度特性曲線を変曲点まわりに回転させることにより、頂点温度を移動させたときと同様の結果を得ることができる。このため頂点温度を移動させるには、第1にZ’軸まわりの面内回転量を調整することによって行われる。すなわち、面内回転角ψを調整することにより行われる。図3に面内回転角ψを変化させたときの周波数偏差と温度の関係を示す。図3において、IDT14の膜厚Hと波長λの比(H/λ)を0.0368とし、IDT14の電極幅Lと電極ピッチPの比(η)を0.5とし、水晶基板12のカット角(φ、θ、ψ)を(0°、123°、ψ)としている。図3より、面内回転角ψを42.4°から43.2°までの範囲で変化させると、面内回転角ψが大きい場合には頂点温度が低温側へ移動し、面内回転角ψが小さい場合には頂点温度が高温側へ移動しているのがわかる。これにより、面内回転角度ψを変化させれば頂点温度が移動するので、SiO2膜20の周波数温度特性に応じて水晶基板12の面内回転角ψを適宜調整すれば、所望の周波数温度特性のSAW装置10を作製できる。
このカット角の調整について次に説明する。まずSTカット水晶ウエハを作製し、前記水晶ウエハに設けられたオリエンテーションフラットを利用して面内回転角ψを与える。そして、この面内回転角ψに沿う方向(図1のX’軸に沿う方向)に弾性表面波が伝搬するよう各SAW装置10領域にIDT14や反射器16等を形成するのである。これにより面内回転角ψを有するIDT14等を形成した水晶基板12、すなわち面内回転STカット水晶基板を形成することができる。
また第2に、H/λの値を調整することにより頂点温度の移動が行われる。すなわち、IDT14の膜厚を変化させて頂点温度を移動させる。図4にH/λの値を変化させたときの周波数偏差と温度の関係を示す。図4において、ηを0.5とし、水晶基板12のカット角(φ、θ、ψ)を(0°、123°、43°)としている。図4より、H/λの値を0.25から0.45までの範囲で変化させると、H/λの値が大きい場合に頂点温度が低温側へ移動し、H/λの値が小さい場合に頂点温度が高温側へ移動しているのがわかる。これにより、H/λの値を変化させれば頂点温度が移動するので、SiO2膜20の周波数温度特性に応じてH/λの値、すなわちIDT14の膜厚を適宜調整すれば、所望の周波数温度特性のSAW装置10を作製できる。
また第3に、ηの値を調整することにより頂点温度の移動が行われる。図5にηの値を変化させたときの周波数偏差と温度の関係を示す。図5において、H/λを0.0368とし、水晶基板12のカット角(φ、θ、ψ)を(0°、123°、43°)としている。図5よりηの値を0.3から0.7までの範囲で変化させると、ηの値が大きい場合には頂点温度が低温側へ移動し、ηの値が小さい場合には頂点温度が高温側へ移動しているのがわかる。これにより、ηの値を変化させれば頂点温度が移動するので、SiO2膜20の周波数温度特性に応じてηの値、すなわちIDT14の電極幅Lと電極ピッチPの比を適宜調整すれば、所望の周波数温度特性のSAW装置10を作製できる。
また上述した第1から第3の調整方法を任意に組み合わせ、周波数温度特性を調整するそれぞれの値を変化させて、頂点温度を移動させることもできる。
次に、STカット水晶基板を用いる場合、オイラー角(φ、θ、ψ)のいずれかの角を調整して頂点温度を移動させ、周波数温度特性の調整を行うことができる。しかしSTカット水晶基板はオイラー角(0°、113°〜135°、0°)であり、作製し易い水晶基板であるので、オイラー角(φ、θ、ψ)のいずれかの角を調整する方法は好ましくない。このため、STカット水晶基板を用いる場合は、H/λの値を調整して頂点温度を移動させ、周波数温度特性を調整する方法が好ましい。この場合、H/λの値が大きい場合に頂点温度が低温側へ移動し、H/λの値が小さい場合に頂点温度が高温側へ移動する。これは面内回転STカットの場合と同じ傾向を示す。これにより、H/λの値を変化させれば頂点温度が移動するので、SiO2膜20の周波数温度特性に応じてH/λの値、すなわちIDTの膜厚を適宜調整すれば、所望の周波数温度特性のSAW装置10を作製できる。またSTカット水晶基板上に形成されるIDT14の電極幅Lと電極ピッチPの比を調整して頂点温度を移動させ、周波数温度特性の調整を行うこともできる。
このように、面内回転STカット水晶基板やSTカット水晶基板上にIDT14等を形成し、これらの上にSiO2膜20を形成したので、導電材がIDT14や反射器16上に落下しても短絡を防止することができる。また汚染物がIDT14や反射器16上に落下しても、SiO2膜20によりIDT14や反射器16を保護することができる。
またIDT14等が設けられた水晶基板12上にSiO2膜20を形成したので、SAW装置10の周波数温度特性が悪くなる。しかしSiO2膜20の周波数温度特性に応じて水晶基板12の周波数温度特性を調整できるので、SAW装置10の所望の周波数温度特性を得ることができる。そして、水晶基板12の周波数温度特性の調整を、水晶基板12のオイラー角(φ、θ、ψ)のうち面内回転角ψを変化させて行うことができる。またIDT14の膜厚と波長の比を変化させても行うことができ、さらにIDT14の電極幅Lと電極ピッチPの比を変化させても行うことができる。
また周波数温度特性の補正の目的で面内回転STカット水晶基板やSTカット水晶基板上にSiO2膜20を形成しても、水晶基板12を上述したように調整すると、所望の周波数温度特性を持つSAW装置10を得ることができる。
次に、実施例について説明する。本実施例では、面内回転角ψを変化させてIDT等が設けられた水晶基板の周波数温度特性を調整したときの例を示す。まず水晶基板上に形成されるSiO2膜のH/λは0.0016であり、このSiO2膜の周波数温度特性は図7(b)に示されている。このSiO2膜の周波数温度特性により、IDT等が設けられた水晶基板の周波数温度特性は一意的に決まる。すなわち、SAW装置の周波数温度特性は通常使用温度である25℃を中心として、使用温度範囲(−40℃〜+85℃)において周波数の変動量が最小になるように調整している。このためIDT等が設けられた水晶基板の周波数温度特性は、SiO2膜を形成した後に変化する周波数温度特性の変化量分を調整した値となる。この値は計算によって算出されるとともに、この値を満たすように水晶基板上にIDT等が形成される。
図6に本実施例に係る周波数偏差と温度の関係を示す。図6(a)はIDT等が設けられた水晶基板の周波数温度特性の変化量分を調整した周波数温度特性であり、図6(b)はIDT等が設けられた水晶基板上にSiO2膜を形成したSAW装置の周波数温度特性である。周波数温度特性の変化量分を算出した値は、水晶基板のオイラー角が(0°、123°、43.27°)となり、この値を満たすように水晶基板上にIDT等が形成される。なおIDTの膜厚はH/λ=0.0368である。このIDT等が設けられた水晶基板の周波数温度特性は、頂点温度が低温側に移動した状態となる(図6(a)参照)。そしてこの水晶基板上に前述したSiO2膜を形成すると、使用温度範囲で周波数の変動量が最小になるSAW装置が形成される(図6(b)参照)。これにより、SiO2膜の周波数温度特性に応じて水晶基板の周波数温度特性を調整し、SAW装置の所望の周波数温度特性を得ることができることがわかる。
水晶基板のカット角の説明図である。 本実施の形態に係る弾性表面波装置の説明図である。 面内回転角ψを変化させたときの周波数偏差と温度の関係を示す図である。 すだれ状電極の膜厚を変化させたときの周波数偏差と温度の関係を示す図である。 すだれ状電極の電極幅と電極ピッチの比を変化させたときの周波数偏差と温度の関係を示す図である。 本実施例に係る周波数偏差と温度の関係を示す周波数温度特性である。 周波数偏差と温度の関係を示す周波数温度特性である。
符号の説明
10………弾性表面波(SAW)装置、12………水晶基板、14………IDT(すだれ状電極)、16………反射器、18………引出し電極、20………酸化シリコン膜(圧電薄膜)。

Claims (5)

  1. 水晶基板と、前記水晶基板上に形成した圧電薄膜と、前記水晶基板と前記圧電薄膜との間に形成したすだれ状電極とを備えた弾性表面波装置の周波数温度特性調整方法であって、前記水晶基板のカット角、前記すだれ状電極の膜厚、すだれ状電極の電極幅と電極ピッチとの比のいずれかまたは任意の組み合わせの値を変化させて温度特性を調整することを特徴とした弾性表面波装置の周波数温度特性調整方法。
  2. 前記水晶基板は、オイラー角が(0°、113°〜135°、±(40°〜49°))または(0°、113°〜135°、0°)であることを特徴とした請求項1に記載の弾性表面波装置の周波数温度調整方法。
  3. 前記水晶基板のカット角を変化させて温度特性を調整するには、オイラー角(φ、θ、ψ)のうちψを変化させて温度特性を調整することを特徴とした請求項1または2に記載の弾性表面波装置の周波数温度調整方法。
  4. 前記圧電薄膜は酸化シリコン膜であることを特徴とした請求項1ないし3のいずれかに記載の弾性表面波装置の周波数温度調整方法。
  5. 請求項1ないし4のいずれかに記載の弾性表面波の周波数温度調整方法を用いて製造したことを特徴とした弾性表面波装置。

JP2003312570A 2003-09-04 2003-09-04 弾性表面波装置の周波数温度特性調整方法および弾性表面波装置 Withdrawn JP2005086233A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312570A JP2005086233A (ja) 2003-09-04 2003-09-04 弾性表面波装置の周波数温度特性調整方法および弾性表面波装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312570A JP2005086233A (ja) 2003-09-04 2003-09-04 弾性表面波装置の周波数温度特性調整方法および弾性表面波装置

Publications (1)

Publication Number Publication Date
JP2005086233A true JP2005086233A (ja) 2005-03-31

Family

ID=34413786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312570A Withdrawn JP2005086233A (ja) 2003-09-04 2003-09-04 弾性表面波装置の周波数温度特性調整方法および弾性表面波装置

Country Status (1)

Country Link
JP (1) JP2005086233A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816744A1 (en) * 2006-02-06 2007-08-08 Seiko Epson Corporation Surface acoustic wave device and electronic apparatus
JP2007281701A (ja) * 2006-04-04 2007-10-25 Epson Toyocom Corp 弾性表面波装置の製造方法、及び弾性表面波装置
JP2007300174A (ja) * 2006-04-27 2007-11-15 Epson Toyocom Corp 弾性表面波素子片の周波数温度特性調整方法、及び弾性表面波素子片、並びに弾性表面波デバイス
JP2009540640A (ja) * 2006-06-08 2009-11-19 ヴェクトロン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 音響表面波シングルゲートレゾネータを備えた発振器回路
WO2010047114A1 (ja) * 2008-10-24 2010-04-29 エプソントヨコム株式会社 弾性表面波共振子、弾性表面波発振器および弾性表面波モジュール装置
JP2015029358A (ja) * 2014-10-29 2015-02-12 セイコーエプソン株式会社 弾性表面波共振子、弾性表面波発振器および電子機器
US9537464B2 (en) 2010-06-17 2017-01-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9762207B2 (en) 2009-02-27 2017-09-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816744A1 (en) * 2006-02-06 2007-08-08 Seiko Epson Corporation Surface acoustic wave device and electronic apparatus
US7696675B2 (en) 2006-02-06 2010-04-13 Seiko Epson Corporation Surface acoustic wave device and electronic apparatus
JP2007281701A (ja) * 2006-04-04 2007-10-25 Epson Toyocom Corp 弾性表面波装置の製造方法、及び弾性表面波装置
JP2007300174A (ja) * 2006-04-27 2007-11-15 Epson Toyocom Corp 弾性表面波素子片の周波数温度特性調整方法、及び弾性表面波素子片、並びに弾性表面波デバイス
JP2009540640A (ja) * 2006-06-08 2009-11-19 ヴェクトロン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 音響表面波シングルゲートレゾネータを備えた発振器回路
WO2010047114A1 (ja) * 2008-10-24 2010-04-29 エプソントヨコム株式会社 弾性表面波共振子、弾性表面波発振器および弾性表面波モジュール装置
JP5177230B2 (ja) * 2008-10-24 2013-04-03 セイコーエプソン株式会社 弾性表面波共振子、弾性表面波発振器および弾性表面波モジュール装置
US9762207B2 (en) 2009-02-27 2017-09-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9537464B2 (en) 2010-06-17 2017-01-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
JP2015029358A (ja) * 2014-10-29 2015-02-12 セイコーエプソン株式会社 弾性表面波共振子、弾性表面波発振器および電子機器

Similar Documents

Publication Publication Date Title
US10938371B2 (en) Acoustic wave resonator, filter, and multiplexer
US10270424B2 (en) Acoustic wave resonator, filter, multiplexer, and method of fabricating acoustic wave resonator
US20210099158A1 (en) Guided acoustic wave device
US11611324B2 (en) Acoustic wave device, high frequency front end circuit, and communication apparatus
JP3622202B2 (ja) 弾性表面波装置の温度特性調整方法
CN109075770B (zh) 复合基板以及使用其的弹性波元件
US20220014175A1 (en) Acoustic wave device
JP2006203408A (ja) 弾性表面波デバイス
KR20040031633A (ko) 탄성 표면파 장치 및 탄성 표면파 장치의 온도 특성 조정방법
JPWO2006137464A1 (ja) 弾性表面波デバイス、モジュール、及び発振器
US11463068B2 (en) Acoustic wave device, high frequency front end circuit, and communication apparatus
JP2007028664A (ja) 弾性表面波素子片および弾性表面波装置
US20210408999A1 (en) Elastic wave device, splitter, and communication apparatus
TW202044757A (zh) 高次模式彈性表面波裝置
JP2006295311A (ja) 弾性表面波素子片および弾性表面波装置
JP2005065160A (ja) 弾性表面波デバイス及びその製造方法
JPWO2020209190A1 (ja) 弾性波装置及びマルチプレクサ
JPWO2017111170A1 (ja) 弾性波素子および通信装置
JP7433873B2 (ja) 弾性波共振器、フィルタ、及びマルチプレクサ
EP0810725A2 (en) Wafer and surface acoustic wave device
JP2005086233A (ja) 弾性表面波装置の周波数温度特性調整方法および弾性表面波装置
JP2020182130A (ja) フィルタおよびマルチプレクサ
JP2000188521A (ja) 弾性表面波装置及び2ポ―ト弾性表面波共振子
JP4148220B2 (ja) 弾性表面波デバイス、複合デバイス、発振回路およびモジュール
JP2010177819A (ja) 弾性表面波素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A761 Written withdrawal of application

Effective date: 20061205

Free format text: JAPANESE INTERMEDIATE CODE: A761