JP2005084395A - 画質検出装置、画像形成装置、画質検出方法、コンピュータプログラム及び記録媒体 - Google Patents

画質検出装置、画像形成装置、画質検出方法、コンピュータプログラム及び記録媒体 Download PDF

Info

Publication number
JP2005084395A
JP2005084395A JP2003316802A JP2003316802A JP2005084395A JP 2005084395 A JP2005084395 A JP 2005084395A JP 2003316802 A JP2003316802 A JP 2003316802A JP 2003316802 A JP2003316802 A JP 2003316802A JP 2005084395 A JP2005084395 A JP 2005084395A
Authority
JP
Japan
Prior art keywords
image quality
image
image forming
unit
quality detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003316802A
Other languages
English (en)
Other versions
JP4523253B2 (ja
Inventor
Hideji Hirai
秀二 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003316802A priority Critical patent/JP4523253B2/ja
Publication of JP2005084395A publication Critical patent/JP2005084395A/ja
Application granted granted Critical
Publication of JP4523253B2 publication Critical patent/JP4523253B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Developing For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

【課題】 画質の劣化が発生した個所を特定することができるようにする。
【解決手段】 第1の画質センサ10aは現像工程後の感光体61上、第2の画質センサ10bは画像転写位置以後の中間転写ベルト(中間転写体)5上、第3の画質センサ10cは紙転写位置以後及び定着工程以前の紙搬送経路28上、第4の画質センサ10dは定着工程以後の紙搬送経路28上の画質をそれぞれ検出できるように設置されている。第1及び第2の画質センサ10a,10bの間、第2及び第3画質センサ10b,10cの間、第3及び第4の画質センサ10c,10dとの間には各々一種類の作像工程、すなわち、一次転写工程、二次転写工程及び定着工程が含まれており、その作像工程の前後の画質センサ10a−10dの出力を比較することにより、その作像工程で画質劣化が生じているか否かを判断する。
【選択図】 図12

Description

本発明は、像担持体上に形成される画像の画質、特に画質の劣化を検出する画質検出装置、この画質検出装置を備えた複写機、プリンタ、ファクシミリなどの画像形成装置、画質検出方法、この画質検出方法を実現するためのコンピュータプログラム及びこのコンピュータプログラムを記録した記録媒体に関する。
近年、画像品質を客観的に評価するパラメータとして粒状度(性)が注目されてきている。一言で言うと“画像のざらつき”であるが、普通の濃度センサではこのような特性は検知できない。“画像のざらつき”における画像の濃度ムラピッチが非常に狭いためである。このような画像濃度ムラを検知するためには、微小な画像濃度ムラに合わせた微小スポット濃度を測定できる濃度センサが必要となってくる。スポット径を絞った微小領域濃度検知に関する発明は、これまでに特許文献1および2を含めいくつか知られている。
すなわち、像担持体上に形成されたパッチパターンに対して比較的大きなスポット光(スポット径は数ミリメートル以上)を照射した時の反射光量を検知することによって、そのパッチパターンに付着しているトナー量を検知することができる。そして、前記トナー量の検知結果に応じて静電潜像条件や現像条件などの画像形成条件を制御する方法も広く知られており、実際の商品においても適用されている。この検知方法を用いる場合には、階調パターンの各濃度パッチにおけるトナー付着量を検知することにより、そのときの画像形成条件における階調性並びにベタ濃度を知ることができる。そのため、もしこれらの値が規定範囲から外れている場合には、その結果に応じて適切な階調性を得るように、また、適切なベタ濃度になるように画像形成条件の制御を行って、前記階調性およびベタ濃度を修正することができる。
一方、画質を構成するものには、前記階調性およびベタ濃度だけでなくその他の多くの要素があることが知られている。その中でも特に画質を大きく左右してしまう要素として「粒状性(人間の視覚に訴える画像ざらつき感)」が挙げられる。電子写真プロセスにおける高画質化実現のためには、この粒状性を低い状態で維持する技術が必須となっている。この粒状性は初期的な画像形成条件によって決定されるところも大きいが、それに加えて経持的に変化(悪化)してしまうことが知られている。この経時変化の原因としては、温湿度などの環境変動に起因するものもあれば、現像剤や感光体などの劣化に起因するものもある。したがって、経持に渡って高画質の画像を維持し続けるためには、何らかの手段により粒状性もしくは粒状性と強い相関のある画質を検知し、その検知結果に基づいて画像形成条件を変更することが必要である。
しかし、粒状性に注目して画質検知を行えるような手段に関してはこれまでに報告がなされていない。粒状性は画像の形成されている平面空間における濃度ムラであり、人間の視覚特性を考慮した場合には
約1[cycle/mm]
をピークとして
0[cycle/mm]〜約10[cycle/mm]
の範囲の空間周波数を有する濃度ムラにより粒状性が決定され、特に、
約1[cycle/mm]
をピークとして
約0.2[cycle/mm]〜約4[cycle/mm]
の範囲の空間周波数を有する濃度ムラが、特に問題となる。
したがって、このような人間の視覚特性に関連のある粒状性情報を得るには、前述の空間周波数で存在する濃度ムラを検出する手段と、この手段によって検出された濃度ムラ信号を空間周波数特性に変換する手段とが必要となる。
一方、パッチパターン内の微細な濃度ムラを検出する手段として、特許文献1に開示された発明が公知である。この発明は、パッチパターンの広い領域に照明光を照射し、そこからの反射光を高解像度のCCDによって読み取り、読み取ったパッチパターンからの反射光に基づいて微細な画像欠陥に関わる信号を得ようとしている。また、この特許文献1の発明においては、演算処理過程で空間伝達関数(MTF)を演算する工程を備えてはいるが、この演算においては画像ムラの空間周波数特性に関わる情報を得ることができないために粒状性もしくは粒状性と大きな相関のある情報を得ることができない。さらに、この公知例では、「転写中抜け」といった微細な異常画像の検出あるいは鮮鋭性の検出に基づいて画像形成条件を制御するようにはしているが、粒状性を考慮して画像形成条件を制御しているわけでない。
粒状性は、微小領域の濃度を連続して測定していくことにより濃度ムラ情報を得て、それを演算することにより所望の画質情報(粒状性、鮮鋭性)を算出することにより求めている。また、画質情報を得るための画像パターンはハーフトーン程度の画像であることが多く、その画像パターンの隙間から見える下地の影響をかなり受けることになる。下地の光学的反射特性(濃度情報も含む)が均一であれば問題ないのであるが、下地となる中間転写ベルトや紙搬送ベルト等の表面特性は、摺擦痕に代表されるキズやトナー粒子固着の色ムラ等により経時的かつ位置的に変化していってしまう。
また、特許文献2には、スリット状のパターンを像担持体上に形成するパターン形成手段と、このパターン形成手段により形成されたパターンを現像器内の現像剤で現像したパターン画像の反射光量を前記像担持体の微小領域上で検出する検出手段と、この検出手段から出力される前記パターン画像の反射光量変動パターン情報に基づいて画像形成状態を判定する判定手段と、この判定手段の判定結果に基づいて前記画像形成状態を補正する補正手段とを備え、フィードバック制御を行うようにしたものである。
特開平06−027776号公報 特開平07−020670号公報
このように特許文献1記載の発明では、像担持体上に所定パターンを形成し、微小領域の反射光量検出手段によって、このパターンの微小領域反射光量変動パターン情報を得、これを演算解析することによりフィードバック制御している。しかし、検出しているのは微小領域の濃度であって、その微小領域の画像の粒状性(トナーの付着した状態)については検出することはできない。また、設置個所に関しては感光体上、中間転写体上、転写搬送ベルト上、等の例を示しているが、いずれにおいてもセンサ設置の概念は装置内に1個のみである。したがって、その設置場所における経時的な微小領域の濃度変動は検知できるが、どの作像工程が濃度変動の主要因になっているかは特定できない。それゆえ、フィードバック制御の精度に欠けることは否めない。
特許文献2記載の発明ではスリット状のパターンを形成した上で、このパターンの微小領域濃度を検知し、画像形成条件へフィードバックするというもので、パターンに特徴を持たせている以外は、基本的に特許文献1に開示された発明と同一である。センサは装置内に1個のみ設置されている。したがって、特許文献1記載の発明と同様に粒状性を検知することができず、また、フィードバック制御の精度に欠けるということになる。
本発明は、このような背景に鑑みてなされたもので、その目的は、画質(画像の粒状性)の劣化が発生した個所を特定することができるようにすることにある。
また、他の目的は、画質(画像の粒状性)の劣化が発生した個所が特定できたときに、その劣化を最小限に抑えることができるようにすることにある。
前記目的を達成するため、第1の手段は、像担持体上に形成された画像パターンの濃度ムラを複数位置で検出し、この検出された濃度ムラに基づいて画質を検出する画質検出手段と、前記画質検出手段によって検出された画質を比較し、その比較結果に基づいて画質劣化の生じている作像工程を判断する判断手段とを備えていることを特徴とする。
第2の手段は、第1の手段において、前記判断手段は、前記複数位置の2つを選択し、当該2つの位置における画質を比較することを特徴とする。
第3の手段は、第1の手段において、前記複数の画質検出手段が、画像パターンの濃度ムラを光学的に検出するための光学的検出部と、この光学的検出部を制御するとともに、前記光学的検出部の検出出力に基づいて画質を評価する制御演算部とからなることを特徴とする。
第4の手段は、第3の手段において、前記光学的検出部が作像工程の複数位置に設けられていることを特徴とする。
第5の手段は、第4の手段において、前記複数位置の1つが、現像工程後の感光体に対向する位置であることを特徴とする。
第6の手段は、第4の手段において、前記複数位置の1つが、画像転写位置以後の中間転写体に対向する位置であることを特徴とする。
第7の手段は、第4の手段において、前記複数位置の1つが、紙上に画像を転写する紙転写位置以降及び定着工程以前の紙搬送経路に対向する位置であることを特徴とする。
第8の手段は、第4の手段において、前記複数位置の1つが定着工程以後の紙搬送経路に対向する位置であることを特徴とする。
第9の手段は、第1の手段において、前記判断手段により前記画質劣化が生じていると判断された作像工程の画質が入力され、画質の劣化の度合が所定範囲内に納まるように前記作像工程における作像条件を変更する制御手段をさらに備えていることを特徴とする。
第10の手段は、第9の手段において、前記画質劣化が生じていると判断された作像工程が静電潜像形成工程及び現像工程である場合、前記変更する作像条件が現像剤担持体の線速、現像ポテンシャル、及び地肌ポテンシャルのいずれかであることを特徴とする。
第11の手段は、第9の手段において、前記画質劣化が生じていると判断された作像工程が中間転写工程、紙転写工程のいずれかを含む転写工程である場合、前記変更する作像条件が転写バイアス、転写部の加圧力のいずれかであることを特徴とする。
第12の手段は、第9の手段において、前記画質劣化が生じていると判断された作像工程が定着工程である場合、前記変更する作像条件が定着温度、定着部の加圧力、及び定着部の紙搬送線速のいずれかであることを特徴とする。
第13の手段は、第9の手段において、前記画質劣化が生じていると判断された作像工程が静電潜像形成工程、現像工程、中間転写工程、紙転写工程のいずれかを含む場合、前記制御手段により作像条件を画質が向上するように所定回数変更しても前記画質劣化の度合が所定範囲に納まらないときには、前記制御手段は現像剤を入れ替えることを特徴とする。
第14の手段は、第3の手段において、前記制御演算部は複数の前記光学的検出部に対してそれぞれ制御信号を出力し、前記光学的検出部からそれぞれ検出信号を受け取ることを特徴とする。
第15の手段は、第1ないし第14の手段に係る画質検出装置を画像形成装置が備えていることを特徴とする。
第16の手段は、第15の手段において、前記画質検出手段は、検出した画質情報を画像形成装置本体の制御部に出力し、前記制御部は画質の状態を画像形成装置本体の表示部に表示することを特徴とする。
第17の手段は、像担持体上に画質測定用パターンを形成する第1の工程と、複数の作像工程の少なくとも1つを挟んで複数位置に配置された画質検出手段により第1の工程で形成した画質測定用パターンの画質を測定する第2の工程と、第2の工程において前記作像工程を挟んだ2つの位置で測定された画質の劣化の度合が許容範囲内にあるかどうかを判定する第3の工程と、第3の工程で許容範囲にないと判定されたときに、作像条件を変更したフィードバック制御が所定回行われてたかどうかを判定する第4の工程と、第4の工程で所定回行われていない場合に、前記作像工程において画質の劣化の度合が前記許容範囲に入るように作像条件を変更する第5の工程とを備えていることを特徴とする。
第18の手段は、第17の手段において、前記第4の工程で所定回行われていた場合に、現像剤またはトナーの入れ替え動作を行わせる第6の工程を更に備えていることを特徴とする。
第19の手段は、第17の手段において、前記第4の工程で所定回を越えて行われていた場合に、異常と判断して処理を終える第7の工程を更に備えていることを特徴とする。
第20の手段は、第17ないし第19の手段において、前記作像工程が、静電潜像形成工程、現像工程、中間転写工程、紙転写工程のいずれかを含んでいることを特徴とする。
第21の手段は、第17の手段において、前記作像工程が定着工程を含む場合には、前記第5の工程で定着温度、定着加圧力、紙搬送線速の少なくとも1つを変更することを特徴とする。
第22の手段は、第1または第2の手段に係る画質検出装置における判断手段の機能をコンピュータによって実現するための手順をコンピュータプログラムが備えていることを特徴とする。
第23の手段は、第3の手段に係る画質検出装置における制御演算部の機能をコンピュータによって実現するための手順をコンピュータプログラムが備えていることを特徴とする。
第24の手段は、第9ないし第13の手段に係る画質検出装置における制御手段の機能をコンピュータによって実現するための手順をコンピュータプログラムが備えていることを特徴とする。
第25の手段は、第17ないし第21の手段に係る画質制御方法をコンピュータによって実現するための手順をコンピュータプログラムが備えていることを特徴とする。
第26の手段は、第22ないし第25の手段に係るコンピュータプログラムのプログラムデータがコンピュータによって読み取られ、実行可能に記録媒体に記録されていることを特徴とする。
なお、以下の実施例では、前記判断手段は画像形成装置MFPの制御部CONに対応するが、前記制御演算手段に同様の機能を持たせることも可能である。
本発明によれば、像担持体上に形成された画像パターンの濃度ムラを複数個所で検出し、前記個所の画質のを比較して画像劣化の生じている作像工程を判断するので、画質の劣化が発生する個所を特定することができる。
また、画質(画像の粒状性)の劣化が発生した個所が特定できたときに、その個所に対応する作像工程の作像条件を変更し、フィードバック制御を行うので、画質の劣化を最小限に抑えることができる。
以下、本発明の実施形態について、図面を参照して説明する。
1. 全体構成
図1は本発明の実施形態に係る画像形成装置全体の概略構成を示す図、図2は本発明の実施形態に係る潜像担持体としての感光体ドラムをタンデム配列した乾式二成分現像方式のフルカラー作像装置の画像形成部を示す図である。
図1において、本実施形態に係るタンデム型のカラー画像形成装置MFPの略中央に画像形成部1が配置され、この画像形成部1のすぐ下方には給紙部2が配置され、給紙部2には各段に給紙トレイ21が設けられている。また、画像形成部1の上方には、原稿を読み取るスキャナ部3が配設されている。画像形成部1の用紙搬送方向下流側(図示左側)には排紙収納部、所謂排紙トレイ4が設けられ、排紙された画像形成済みの記録紙が積載される。
画像形成部1では、図2に示すように無端状のベルトからなる中間転写ベルト5の上方に、イエロー(Y)、シアン(C)、マゼンタ(M)、ブラック(K)用の複数の作像ユニット6が並置されている。各々の作像ユニット6では、各色毎に設けられたドラム状の感光体(感光体ドラム)61の外周に沿って、帯電チャージャ62、露光部65、現像ユニット63、クリーニングユニット64、イレーサ(QL)67などが配置されている。帯電チャージャ62は、感光体61の表面に帯電処理を行い、露光部65では、画像情報を感光体61表面にレーザ光で照射する書込ユニット7からのレーザ光が照射される。現像ユニット63は、感光体61の表面に露光されて形成された静電潜像をトナー現像して可視化し、クリーニングユニット64は転写後に感光体61の表面に残留したトナーを除去回収する。
作像プロセスとしては、中間転写ベルト5上に各色毎の画像が作像され、中間転写ベルト5上に4色が重畳されて1つのカラー画像が形成される。その際、最初に、イエロー(Y)の作像部で、イエロー(Y)のトナーを現像し、中間転写ベルト5に一次転写装置(ローラ)66によって転写する。次に、シアン(C)の作像部で、シアンのトナーを現像し、中間転写ベルト5上に転写しする。次に、マゼンタ(M)の作像部で、マゼンタのトナーを現像し、中間転写ベルト5に転写し、最後に、ブラック(K)のトナーを現像し、中間転写ベルト5上に転写し、4色が重畳されたフルカラーのトナー画像が形成される。そして、中間転写ベルト5上に転写された4色のトナー像は、給紙部2から給紙されてきた記録紙20に二次転写装置(ローラ)51で転写され、定着ユニット8によって定着された後、排紙ローラによって排紙トレイ4に排紙され、あるいは両面ユニット9に搬送される。両面印刷時は、搬送経路は分岐部91で分岐され、両面ユニット9を経由して、記録紙20は反転される。そして、レジストローラ23で用紙のスキューが補正され、表面への画像形成動作と同様にして裏面への画像形成動作が行われる。一方、フルカラーのトナー像が転写された後、中間転写ベルト5の表面に残留したトナーはクリーニングユニット52によって除去回収される。なお、符号92は両面ユニット9からの際給紙反転経路である。また、図2では、各部の符号の後に色を表すY,C,M,Kを付けて各色の作像部を区別している。
給紙部2は、給紙トレイ21に未使用の記録紙20が収容されており、最上位の記録紙20がピックアップローラ25によってピックアップされ、給紙ローラ26の回転により、縦搬送路27を介してレジストローラ23側へと搬送される。レジストローラ23は記録紙20の搬送を一時止め、中間転写ベルト5上のトナー像と記録紙20の先端との位置関係が所定の位置になるよう、タイミングをとって記録紙20を送り出す。
スキャナ部3では、コンタクトガラス上に載置される原稿の読み取り走査を行うために、原稿照明用光源とミラーを搭載した第1および第2の走行体が往復移動する。この走行体により走査された画像情報は、レンズによって後方に設置されているCCDの結像面に集光され、CCDによって画像信号として読み込まれる。この読み込まれた画像信号は、デジタル化され画像処理される。そして、画像処理された信号に基づいて、書込ユニット7内のレーザダイオードLDの発光により感光体61の表面に光書き込みが行われ、静電潜像が形成される。LDからの光信号は、公知のポリゴンミラーやレンズを介して感光体61に至る。また、スキャナ部3の上部には、原稿を自動的にコンタクトガラス上に搬送する自動原稿搬送装置(ADF)36が取り付けられている。
なお、本実施形態に係るカラー画像形成装置は、前述のように光走査して原稿を読み取り、デジタル化して用紙に複写する、いわゆるデジタルカラー複写機としての機能の他に、図示せぬ制御装置により原稿の画像情報を遠隔地と授受するファクシミリの機能や、コンピュータが扱う画像情報を用紙上に印刷するいわゆるプリンタの機能を有する多機能の画像形成装置である。どの機能によって形成された画像も同様の画像形成プロセスによって記録紙20上に画像が形成され、すべて1つの排紙トレイ4に排紙され、収納される。画質劣化を検知して画質の劣化が確認された場合には適切な作像条件制御を自動的に行うことができるために、現像剤や感光体などを即座に交換する必要が無く、現像剤や感光体などの寿命を極限まで長くすることができる。
なお、図1では、本発明に係る画像形成装置の一例として4連タンデム型中間転写方式のフルカラー機が図示されているが、これは画像形成装置の代表例として描いているだけであり、4連タンデム型直接転写方式や1ドラム型中間転写方式などのフルカラー機でも良いし、直接転写方式のモノクロ機に、あるいは他の方式の画像形成装置においても本発明は適用できる。
2. 画質
図3及び図4は600dpi書き込み系を有する前記図1及び図2の画像形成装置によって記録紙20上に形成された網点画像(1つの網点の大きさは「2ピクセル×2ピクセル」)の拡大写真(記載上の都合により便宜上、写真撮影時に2値化処理を施している)であり、図3は初期の画像PT1を、図4はある条件において非常に長期に渡りプリントを行った後での画像PT2を示す。図3に示すように初期的には均一であったハーフトーン画像PT1が、長期の作像過程における現像剤や感光体の劣化などの諸要素により、ざらつき感のあるハーフトーン画像PT2となってしまっている。このようなざらつき感は微細な濃度ムラの空間周波数特性として数値化することができ、例えば「粒状度」といった特性値として表現される。
すなわち粒状度の高い(粒状性の悪い)画像はざらつき感の大きな画像を示し、粒状度の低い(粒状性の良い)画像はざらつき感の少ない均一な画像を示す。しかし、濃度ムラの全てが視覚に訴えるざらつき感となる訳ではなく、プリント画像の画質に関しては人間が目視した時にざらつき感を感じなければ良い。濃度ムラに関する平均的な被験者による視覚の空間周波数特性を図5に示す。このように、人間の視覚により濃度ムラを感じる空間周波数は、前述のように約1[cycle/mm]をピークとして
0[cycle/mm]〜約10[cycle/mm]
の範囲の空間周波数領域に限定されることが知られている。
3. 画質検出装置
図6は画像の微細な濃度ムラを測定する画質検出装置の概略構成を示す図である。同図において、画質検出装置100は、光反射型センサ(フォトリフレクタ)110と、この光反射型センサ110からの電気信号を増幅する増幅回路120と、この増幅回路120によって増幅された信号に基づいて所定の演算処理を行う演算手段としての演算回路130と、この演算回路130からの演算出力に基づいて光書き込み制御のための信号を生成する信号生成手段としての信号生成回路140とからなる。前記光反射型センサ110は、光源としてのLED(発光ダイオード−発光素子)101と、LED101からの出射光を所定のビーム径の光ビームに集光する集光レンズ102と、像担持体150上の画像パターン151からの反射光を受光して電気信号に変換する光電変換素子(受光素子)103と、光電変換素子103の結像面に前記画像パターン151からの反射光を結像させる結像レンズ104とからなる。光反射型センサ110は、図7の走査方向の距離(ビーム径)と光量との関係を示す特性図から分かるように照射ビーム径を絞ってスポット光SPとした光反射型センサを用いる。
光反射型センサ110は、LED101からなる光源からの照射ビームを集光レンズ102によって集光し、像担持体150上に形成された画像パターン151面における円形ビーム径がおおよそ400[μm]になるようにしている。ここから反射する光はフォトダイオードなどの光電変換素子103によって検出され、画像パターン151内のトナー粒子152の付着ムラは光電変換素子103へ入射する光量変動として捕らえることができる。
トナー付着量に応じた光量変動を捕らえる方法としては、トナー粒子と像担持体表面における正反射特性もしくは乱反射特性の違いによって検出する方法や、トナー粒子と像担持体表面の反射分光特性の違いによって検出する方法などがあり、これらを組み合わせることでより感度の高い検出を行うこともできる。正反射特性もしくは乱反射特性の違いを利用する場合には、一般にトナー像は乱反射特性が強いことから、像担持体150表面は光沢度が高く正反射特性の強い材質とするのが好ましい。また、反射分光特性の違いによって検出する場合には、トナー粒子52の反射分光特性と像担持体150表面の反射分光特性とが大きく異なる光源波長を用いることが好ましい。図6の測定装置は、870[nm]の発光波長を有するLED101を用い、トナー粒子152と像担持体150表面との乱反射特性の違いを利用した検知方法を実施する例である。ビーム径に関しては図5に示したような人間の視覚の空間周波数特性において最も感度の高い約1[cycle/mm]の濃度ムラが検知できるように、少なくともスポット光SPの走査方向に関するビーム径(図7のd1)は1[mm]以下とする必要がある。このビーム径d1は、図5における空間周波数が最大となる値1[cycle/mm]の逆数である1[mm]から導かれ、この実施形態では、ビーム径(d1)は、およそ400[μm]としている。前記ビーム径d1は、ビーム照射面における前記スポット光SPの単位面積当たりのパワーが最大値の1/eに低下する光ビームの両側の点の間の距離でここでは定義している。
前述の図2は図6の光反射型センサ(画質センサ)10を現像工程直後の中間転写ベルト5に対向させて設置した画像形成装置の作像プロセスの構成の一例を示す図である。スポット光SPによる感光体61Y,61C,61M,61K上の画像の走査は感光体61Y,61C,61M,61Kの回転駆動によってなされ、図3または図4に示したような画像PT1,PT2を用紙搬送方向(図においては長手方向)に走査したときの反射光の出力を検出する。この反射光の前記増幅回路20からの光量(電圧)変動の状態を図8に示す。このときのスポット光SPの走査条件は、走査速度が200[mm/s]、走査距離が約11[mm]、データのサンプリング周期が75[μs]、すなわち、画像上でのサンプリング間隔は約15[μm]ピッチであり、平均処理工程などを含まない1回の走査のみである。なお、図8の光量平均値を求めることによってパターンに付着するトナー粒子152の平均付着量を算出することもできる。
4. 視覚ノイズ(画質)
4.1 ノイズ量の算出
図8に示した時間をパラメータとして光量を出力する出力状態のままでは、画像濃度ムラの空間周波数特性が読み取れないため、前記演算回路130によって空間周波数特性を算出する。空間周波数特性の算出においては、高速フーリエ変換(FFT)等の公知の手法を適用するのが処理速度的にも好ましい。高速フーリエ変換による変換結果を図9に示す。なお、図9の6[cycle/mm]に見られるピークは図3および図4のドットパターンの繰り返し周波数によるものである。
図5から分かるように視覚特性は1[cycle/mm]付近の空間周波数をもつ濃度ムラに非常に敏感であることから、例えば図9における1[cycle/mm]付近のノイズ量を比較することにより、図4に示したパターン(画像PT2)の図3のパターン(画像PT1)に対する画質低下度を知ることができる。このように画質の低下が検知された場合には、適切な画像形成条件の制御を促すよう図6の測定装置における信号生成回路40により信号の生成を行う。この信号を受けて、図6に示した画像形成装置MFPの制御回路CONによって画像形成条件を自動的に制御し、可能な限り正常な画質に復元できるような自動制御を行う。
自動制御のみでは画質の復元が不可能と判断された場合には、制御回路CONは、図示しない表示装置に現像剤や感光体等のパーツの交換を指示し、前記パーツの交換を促す。これらの手続きにより現像剤や感光体などの寿命を最大限に延ばすことができる。また、最低限必要なパターンの大きさが、約1[mm]×約10[mm]程度であるため、パターン画像形成によって消費されてしまうトナー量も最小レベルに抑えることができる。
なお、図2の例では中間転写ベルト5表面の画質を検知するようにスポット光SPが照射されているが、感光体61Y,61C,61M,61K表面や記録媒体20に形成された画像に対してスポット光SPを照射するように構成することもできる。
4.2 視覚ノイズ量の算出
図9の空間周波数特性を得た後に、前記演算回路130によって前記空間周波数特性に対して図5に示した視覚空間周波数特性の重み付けを行い、視覚ノイズ量を求める。図10は、この視覚ノイズ量と空間周波数との関係を示す図で、演算回路130の視覚ノイズ量の出力状態を示している。この重み付けは図9の特性に対して図5の特性を乗算することによって行う。この演算により、視覚に訴える空間周波数特性のみを抽出することができるため、狙いとする画質の検知が容易に行える。また、本実施形態では6[cycle/mm]付近に出現していた画像パターン構造による信号分を除去することが可能となるので、注目している画質に関係のない情報を除去することもできる。このように画質に関係のない情報を除去することができると、誤検知の発生をほとんどなくすことができる。
4.3 視覚ノイズの総量
図10に示した視覚ノイズ量を演算回路130を用いて0.2[cycle/mm]〜4[cycle/mm]の空間周波数領域に関して積分すると、図11に示すように視覚ノイズの総量が算出される。この値により視覚に訴えるほぼ全ての空間周波数領域において総合的な画質変化を知ることができる。
なお、後述の画質評価パターンは50%程度のハーフトーン画像を使用するのが良い。これは粒状性が目立ちやすいからである。まず、図6に示したような単眼センサの場合には画像パターン上、副走査方向の濃度変動連続データ、ラインセンサの場合には主副両走査方向の濃度変動連続データを収集する。モノクロセンサの場合にはある特定波長(色)のみの連続データ、カラーセンサの場合には複数波長(色)の連続データが収集される。この収集された連続データを前述のようにしてフーリエ変換して濃度変動のパワースペクトラムを得る。このパワースペクトラムの平方根(変動の振幅)に視覚の空間周波数特性(VTF)を乗算し、前述のように周波数領域において視覚特性に基づいた濃度変動の重み付けを行う。この重み付けされた濃度変動量を積分することによって、粒状度を求める。これは濃度基準の粒状度の求め方であるが、最近は人間の視覚とのリニアリティーが良い明度の粒状度も採用されている。よって明度の粒状度を求める場合には、最初に濃度データを明度データに変換しておく必要がある。またカラー粒状度を求める場合には、明度情報に色度情報も加えて粒状度を算出する。以上が濃度変動データからの、粒状性情報の求め方である。このようにして求められた粒状性情報に基づいてフィードバック制御をかけることにより、粒状性の安定した画像を連続出力することができる。
濃度ムラに基づいて画質を検知するためのパターンは前述の図3に示すようなパターン以外に例えば最小単位が600dpiのドットを2ピクセル×2ピクセルで1つの単位とし、スポット光SPの走査方向におけるドット配列の繰り返し周期z1を例えばおよそ170[μm](空間周波数f1はおよそ5.9[cycle/mm])とすると、前述のように400[μm]程度のビーム径を有するスポット光SPによって走査を行った場合には、図9のように6[cycle/mm]付近の空間周波数にスペクトルが現れる。この画像パターンそのものに起因するスペクトルが画質検知信号検知領域と重複してしまうのを避けるためには、走査方向におけるドット配列の繰り返し周期z1は250[μm]よりも小さく、好ましくは200[μm]よりも小さくする必要がある。そこで、ここではz1=170[μm]としている。
また、濃度ムラに基づいて画質の検知を行う場合には、例えば後述のように中間転写ベルト200上に下層がベタ画像で上層がハーフトーン画像となるように複数色を重ねて画像パターンを形成し、前記画像パターンに対してスポット光SPを照射し、前記画像パターンをスポット光SPにより走査して画像パターンから反射する光量を検知し、検知された光量に基づいて空間周波数特性に基づく画質を検出するようにすることもできる。このようにすると、S/N比を高めることができる。すなわち、下層がベタ画像で、上層にハーフトーン画像が形成されるようなパターンが形成できるような条件であれば、S/N比の点から見て好ましいが、感光体61で画質検知を行う場合には、下層のベタ画像を形成することはできないので、このようなパターンを形成することはできない。そこで、通常、ベタ画像を形成することなく、検知パターンを像担持体上に直接形成する方法がとられる。
いずれにしても、画質の検知を行うために前記像担持体上に画像パターンを形成する手順と、前記画像パターンに対してスポット光を照射する手順と、前記画像パターンを前記スポット光により走査して前記画像パターンから反射する光量を検知する手順と、前記検知された光量に基づいて画質を検出する手順とを備えたコンピュータプログラムにより画質検知機能を実現することも可能であり、このようなコンピュータプログラムはコンピュータによって読み取り可能に記録された記録媒体から、あるいはネットワークを介してサーバなどからダウンロードされて使用される。
なお、この制御は画質検知装置100の信号生成回路140からの出力信号に基づいて画像形成装置MFPの制御回路CONのCPUが実行する。CPUは、図示しないROMあるいはダウンロードされたプログラムに基づいて図示しないRAMをワークエリアとして使用しながら各処理を実行する。プログラムデータは図示しないネットワークを介してサーバから、あるいは図示しない記録媒体駆動装置を介して例えばCD−ROMやSDカードなどの記録媒体から図示しないハードディスクなどの記憶装置にダウンロードされ、あるいはバージョンアップが行われる。
5.画質検出装置の配置位置と画質劣化検出
図12は、画質検出装置(検出ヘッド−画質センサ)を画像形成装置内に複数個設置した例を示す図である。この図は、図1から作像部(現像〜定着)のみを抜き出して描いた(図2に対して定着ユニット8及び用紙に対して画像を転写する二次転写ローラ51を追加した)図であり、光学的検出手段としての第1の画質センサ10aは現像工程後の感光体61上、第2の画質センサ10bは画像転写位置以後の中間転写ベルト(中間転写体)5上、第3の画質センサ10cは紙転写位置以後及び定着工程以前の紙搬送経路28上、第4の画質センサ10dは定着工程以後の紙搬送経路28上の画質をそれぞれ検出できるように設置されている。第1及び第2の画質センサ10a,10bの間、第2及び第3画質センサ10b,10cの間、第3及び第4の画質センサ10c,10dとの間には各々一種類の作像工程、すなわち、一次転写工程、二次転写工程及び定着工程が含まれており、その作像工程の前後の画質センサ10a−10dの出力を比較することにより、その作像工程で画質劣化が生じているか否かを判断できる。この比較を作像工程ひとつひとつに行っていくことにより、画質劣化の生じている作像工程を判断できることになる。
第1の画質センサ10aは、現像工程後の感光体61K上の画質を検知するように設置されている。図12においては、第1の画質センサ10aを第4ユニット(最も下流側のKの現像工程)にしか描いていないが、これは代表例として描いているだけであり、画質を検出したいユニット6Y,6C,6Mには各々設置されることになる。したがって、第1ないし第3ユニットの各現像ユニット63Y,63C,63Mと一次転写ローラ66Y,66C,66Mとの間にそれぞれあるいは適宜第1の画質センサ10aが設置される。
第1の画質センサ10aの上流には現像ユニット63Kが設置されており、現像工程においては、感光体61K上に形成された静電潜像にトナーを付着させて顕像化するという動作が行われている。つまりこの工程で初めてトナー像が形成される訳であり、トナー像の画質を測定するセンサとしては、第1の画質センサ10aは最上流の位置に設置されているということになる。第1のこの画質センサ10aで検知された画質変動は、現像工程及びそれより上流(静電潜像形成工程)において発生した画質変動だと判断できるので、第1の画質センサ10aによって検出された画質の変動に応じて静電潜像形成条件及び現像条件へフィードバック制御をかけることになる。なお、ここでは第4ユニットを例にとっているのでKの一次転写における画質が検知されるが、前述のように各色のユニット毎に検知することができることはいうまでもない。ここではKで代表して説明する。
図13は、この第1の画質センサ10aと画像パターン151との関係を概念的に示す図である。第1の画質センサ10aでは、LED101から投光される光の波長は、感光体61の感度領域外の光である必要があるため赤外光である。受光素子103によって検知される検知光は、正反射光であっても拡散光であってもよい。正反射光を検知する場合には、感光体61から反射される光量を遮ることによりトナー付着量の変動を検知する。拡散光を検知する場合には図6にも示す像担持体150(感光体61に同じ)上に形成された画像パターン(トナー)151表面から拡散反射される光量を検知することによりトナー付着量の変動を検知する。
第2の画質センサ10bは、中間転写ベルト(体)5上の画質を検知するように設置されている。この位置の画質を検知し、第1の画質センサ10aで検出された画質と比較することにより、中間転写工程での画質劣化度合を把握することができる。その劣化度合に応じて、中間転写のバイアス条件及び加圧条件などにフィードバックをかけることにより、中間転写工程での画質劣化を低減できる。また、第2の画質センサ10bが中間転写ベルト5上に1個のみ設置されているのに対し、画質センサ10が全色に設置されれば4個となる。この場合の画質比較としては、単色パターンを順次出力していき、その単色パターンに対する各色画質センサ10aの出力と第2の画質センサ10bの出力を比較し、各色の中間転写工程にフィードバック制御をかけることになる。なおこの場合、第2の画質センサ10bは各色検知可能であることが必要条件となる。
図14は、この第2の画質センサ10bと画像パターン151との関係を概念的に示す図である。第2の画質センサ10bでは、LED101から投光される光の波長は中間転写ベルト5が感光するわけではないので、可視光でも赤外光でもよい。反射光は、中間転写ベルト5の色、中間転写ベルト5の表面反射特性により正反射光、拡散光のいずれかが検知される。その場合、以下のような組み合わせが好ましい。
a)中間転写ベルト色と画像色とが等しくない場合
a−1)中間転写ベルトのベルト面が全反射に近い場合
カラー:トナー色に感度があり、ベルト色に感度がない波長帯域の光源を用い、その拡散反射光を検知する。
黒:投光波長に関係なく正反射光を検知する。
a−2)中間転写ベルトのベルト面が乱反射面の場合
カラー、黒:ベルト色とトナー色に感度差のある波長帯域の光源を用い、その正反射光あるいは拡散反射光を検知する。
b)中間転写ベルトの色と画像色とがほぼ等しい場合
b−1)中間転写ベルトのベルト面が全反射に近い場合
カラー:トナー、ベルトの両者に感度のある波長帯域の光源を用い、その正反射光あるいは拡散反射光を検知する。または、トナー、ベルトの両者に感度のない波長帯域の光源を用い、その正反射光を検知する。
黒:投光波長に関係なく正反射光を検知する。
b−2)中間転写ベルトのベルト面が乱反射の場合
カラー、黒:乱反射の度合いにより、正反射光あるいは拡散光のいずれかを検知する。
なお、a−1)及びb−1)は、中間転写ベルトとして黒の光沢ベルトを想定していることから導き出されたもので、この条件が変われば、また、その条件に応じて検知波長や反射光の種類として最適なものが選択される。
第3の画質センサ10cは、紙転写工程(二次転写ローラ51)直後の位置に設置され、紙上に転写された未定着画像の画質検知可能となっている。ここで検出された画質を第2の画質センサ10bで検知された中間転写ベルト5上の画質と比較することにより、紙転写工程での画質劣化度合が判断できる。また、この情報を紙転写のバイアス条件や加圧条件などにフィードバックすることにより、紙転写工程での画質劣化を低減できる。
図15は、この第3の画質センサ10cと画像パターン151との関係を概念的に示す図である。第3の画質センサ10cでは、LED101から投光される光の波長は可視光であり、検知光は正反射光あるいは拡散光のいずれかである。すなわち、カラーでは、パターンを形成したトナーのトナー色に感度のない可視光を正反射光で検知する。黒では、可視光を正反射光で検知する。カラーの場合も黒の場合も拡散光を検知するようにしてもよいが、コントラストが小さくなる分、検知感度が落ちてしまうと考えられる。それゆえ、感度を考慮すると前者の方が好ましい。
第4の画質センサ10dは定着工程(定着ユニット8)直後の位置に設置され、紙上定着画像の画質を検知することができるようになっている。ここでは、第3の画質センサ10cで検知された定着前画質と定着後画質を比較することにより、定着工程における画質劣化の度合を判断できる。この画質劣化情報を定着条件にフィードバックすることにより、定着工程における画質劣化を低減できる。
図16は、この第4の画質センサ10dと画像パターン151との関係を概念的に示す図である。第4の画質センサ10dでは、LED101から投光される光の波長は可視光であり、検知光は拡散光である。すなわち、カラーでは、パターンを形成したトナー色に感度のない可視光を拡散光で検知する。黒では、可視光を拡散光で検知する。第4の画質センサ10dの場合、正反射光を検知すると、コントラストが得られない可能性があるため、拡散光検知としている。
このように第1ないし第4の画質検知センサ10a−10dを各作像構成の前後に配置し、各作像工程において画質劣化が生じているか否かを判断し、画質劣化要因になっている工程に対して画質に関するフィードバック制御を行うことによって、各工程における画質劣化の度合を低減し、最終出力紙上の画質劣化度合を低減することが本発明の主旨である。
6.現像工程における粒状度の調節
図17は、感光体61及びその周辺の構成部材を含めた感光体(画像形成)ユニット6の構成図である。このユニットの動作は1の全体構成で説明した通りである。ここでは、図12に示した第1の画質センサ10aによって、画質劣化の原因になっている工程が静電潜像形成工程及び現像工程だと判断された場合、フィードバック制御を行うために少なくとも現像剤担持体(現像ローラ)63aの線速を変化させることができる。この場合の現像剤担持体63aは、図13のように現像ユニット63の上部の感光体61と対向する個所に現像ユニット63から露出するように設置されている。現像剤担持体63aは感光体61と対向して設置され、通常その内部に固定のマグネットが配置されており、その磁界によって現像ユニット63内の現像剤を汲み上げ、現像剤担持体63a上に現像剤穂を形成し、感光体61とのニップ部において現像動作を行っている。実際の現像動作は、この現像剤穂が感光体61に形成された静電潜像に摺擦し、現像バイアス68により現像材担持体63aからトナーを静電潜像上に付着させることによって行われている。なお、図17において、符号63cはトナー供給ローラ、63bはトナー撹拌ローラである。
現像剤担持体63aの線速を変化させることは、この現像剤穂の摺擦速度を変化させることに相当し、現像剤穂が単位時間において静電潜像の単位面積に摺擦する回数を変化させることになる。現像剤穂の摺擦回数が増えると、既に静電潜像上に形成されたトナー像上を、後から回ってきた現像剤穂が摺擦していく回数が増えるため、例えばトナー像の表面が凸凹していた場合にはそれを均し、トナーが欠損していたりするとの欠損していたエリアに更にトナーが充填され、トナー像を整形していくという機能を有すると考えられている。そのため、現像剤担持体63aの回転速度を調節することによってこの機能の効果が変化し、現像工程後の粒状度を調節することが可能となる。
7.現像ポテンシャル
図18は、ポテンシャルの概念を説明する図である。図17も参照して動作を説明すると、まず帯電チャージャ62の働きによって感光体61上が一様に帯電される。この時の電位が図14中の“感光体上暗部電位”であり、この電位は図13中の帯電グリッドバイアス(現像バイアス)68によって制御される。その表面を一様に帯電された感光体は、露光部65において書込データに応じて露光されて静電潜像を形成する。この時、最大書込値で露光された位置の電位を図14中“感光体上明部電位”と呼ぶ。その後、現像剤担持体63aと感光体61のニップ部に回ってきた静電潜像に現像剤穂が摺擦され、かつ現像バイアス68が印加されることによって、静電潜像上にトナーが付着して顕像化される。この時に印加される現像バイアス68と感光体上明部電位の電位差が現像ポテンシャル、現像バイアスと感光体上暗部電位との電位差が地肌ポテンシャルである。
図18中に、現像されるトナーを図示しているが、現像ポテンシャルの値によって感光体上静電潜像部に付着するトナー量が決定される。この現像能力の増減によって、静電潜像の現像具合が変化して画質が変動することが分かっている。これに対して地肌ポテンシャルは、静電潜像部以外の地肌と呼ばれる領域に対するトナー付着量を制御する働きがある。地肌部には基本的にはトナーは付着してはいけないが、どうしても付着してしまうトナーが存在し、その様なトナーが“チリ”と呼ばれている。地肌ポテンシャルの増減によってこの“チリ”の量が変化することが分かっており、これによって画質が影響されると考えられている。実際に両ポテンシャルを単独で変動させた場合に得られた画質変化グラフを図19に示す。このグラフにより、各ポテンシャルを単独で変動させた場合に画質を変化させるこが可能であることが理解できる。よって、前述の画質検出装置100により、画質劣化が生じている工程が静電潜像形成工程及び現像工程であると判断された場合、現像ポテンシャルを変化させることによって、また、地肌ポテンシャルを変化させることによって画質劣化の低減を図ることが可能となる。なお、図19a)は現像ポテンシャルと粒状性(画質)との関係を示し、図19b)は地肌ポテンシャルと粒状性(画質)との関係を示す。
8.一次転写部及び二次転写部
図20は中間転写部(一次転写(ローラ)部)の構成、図21は紙転写部(二次転写(ローラ)部)の構成の一例をそれぞれ示す図である。これらの図は図1に示したような構成の画像形成装置を前提に描いているが、装置構成によっては中間転写ベルトがなく、感光体から直接紙に転写する形式のものもある。
転写工程においては、通常、高効率転写を実現するために電気的な力と物理的な力を併用している。電気的な力とは、図20及び図21に示す“中間転写バイアス”69及び“紙転写バイアス”70のことであり、物理的な力とはそれぞれ中間転写ローラ、紙転写ローラの加圧力71のことである。それぞれ、画質フィードバック制御のために前者(中間転写バイアス69、紙転写バイアス70)および/または後者(中間転写ローラ、紙転写ローラの加圧力71)を変化させる。両者ともに転写効率に影響を与えるパラメータであり、それに伴って画質にも影響を与える。よって、転写工程で画質劣化が生じている場合には、転写バイアス69,70及び転写部加圧力71の双方若しくは一方を変化させることによって、画質劣化を低減することができる。
実際に、転写バイアス69,70及び加圧力71によって画質がどの様に変化するかということになると、転写部の構成、トナーの性質にも左右されるので、その装置によって特性は異なる。ただし、定性的には両者ともに最適値があって、そこから隔たると画質が劣化していくというプロファイルになると考えられる。この最適値が環境変動やトナーの劣化などの外乱によって変化するので、それに合わせて転写バイアスや加圧力を制御する必要がある。なお、転写バイアス(定電圧若しくは定電流)の値はパワーパックへのコマンド指令で制御可能であり、加圧力の制御機構はここでは限定しないが、例えば加圧スプリングによる加圧力をカムやボールねじ等によって制御するように構成することができる。
9.定着ユニット
図22は定着ユニット8の構成の一例を示す図である。この定着ユニット8は、上側の定着ローラ81、下側の加圧ローラ82によって構成されており、各ローラ81,82内部に設置されたヒータ83によって各ローラ81,82が個別に加熱されるようになっている。ただし、この構成は一例であり、これ以外にもヒータが片側しかなかったり、片方若しくは両方が定着ベルトだったりする構成もある。どのような構成であっても、定着ユニット8には加熱源及び温度を検知する温度センサ(図22においてはサーミスタ84a,84b)が設置されており、温度を測定しながら加熱源へのフィードバック制御を行い、一定温度を実現するという構成になっている。
定着工程が画質へ大きな影響を与えることが分かってきている。それは、定着という工程がトナーを融かして紙に押し付けるという動作をしているためであり、トナーの溶融具合、紙への押し付け具合によって、画像の光沢が変わったり、ドットのつぶれ方が変わったりするからである。定着温度が変動すると、トナーの溶融具合が変化し、画像の光沢が変わることはよく知られており、この光沢変動と共に人間の感じる画質も変動することが分かってきている。そこで、逆に環境変動やトナー特性変動等によってトナーの溶融具合が変化した影響で画質が劣化した場合、定着温度を変化させることによって画質劣化度合を低減できることが分かる。また、同様にドットのつぶれ方が変化して画質が劣化した場合、定着部の加圧力89を変化させることによって画像劣化度合を低減させることも可能である。また、定着ユニット8における紙搬送線速を変化させてもよい。このように紙搬送線速を変化させる場合、トナー単位体積に与える熱量を変化させるという意味では定着温度制御と同様の機能を有し、トナー像への加圧具合を変化させるという意味では加圧力制御の機能も有している。これらの機能が及ぼす効果は、定着ユニット8の構成によっても変わってくるので、その構成に応じて適宜フィードバック制御に利用する。
なお、図22において定着ローラ81の表面には用紙との剥離性を確保するために定着ローラ表面にオイルを塗布するためのオイルローラ85と、塗布したオイルの層厚を均一にするためのブレード86と、定着ローラ81の表面に塗布されたオイルおよび定着ローラ81に付着したトナーや汚れを清掃するためのクリーニングローラ87が設けられている。また、加圧ローラ82側には、加圧ローラ82表面に付着した汚れを清掃するクリーニングローラ88が設けられている。
定着ユニット8の構成は様々なものがあり、図23はその中の一例であるベルト定着装置の要部のみを示している。図23においては、図22のようにローラ周辺の各構成部材は省略しているが、同様な部材が設置されている。このような形式の定着ユニット8は上側に図22の定着ローラ81に代えて加熱ローラ81bとテンションローラ81cとの間に張設された定着ベルト81aが設けられ、この定着ベルト81aに加熱ローラ81bから熱量が与えられる。紙搬送経路を搬送されてきた未定着画像を載せた記録紙は、定着ベルト81aから熱量を与えられ、かつ定着ベルト91aのベルトテンションと加圧ローラ82との圧力によって定着される。加圧ローラ82には熱源が入っている場合と入っていない場合とがあるが、この図においては入っている構成としている。また、加圧ローラ82に対して定着ベルト81aを挟んで対向した位置に、加圧対向ローラが設置されている場合もある。この場合は、定着ベルト81aの背後側で定着ベルト81aを保持することから、用紙に対するより高い加圧力を得ることができる。このような構成の定着ユニット8において、フィードバック制御を行うために少なくとも定着温度を変化させる場合には、加熱ローラ81bと加圧ローラ82の熱源の温度を制御し、変化させれば良い。また、定着ユニット8の加圧力を変化させる場合には、加圧ローラ82の加圧力を調整する、テンションローラ81cによるベルトテンションを調整するなどの方法が取られる。また、前記加圧対向ローラの加圧力を調整するという方法を取ることもできる。紙搬送線速を変化させる場合には、各ローラの回転速度を変化させれば良い。どの様な構成の定着ユニット8においても、図22に示した定着ローラ方式のものと同様に制御することにより画質劣化を低減することが可能となる。
10.制御構成
図24は画質検出装置100の制御構成を示すブロック図であり、図6の画質検出装置100の画質検出装置の基本単位を表しており、1個の制御・演算部200に1個の検出ヘッド210が接続されている。ここでは、制御・演算部100は、増幅回路120、演算回路130および信号生成回路140からなり、画像形成装置MFPに搭載された制御部(回路)CONと接続されている。また、検出ヘッド210は、LED(発光素子)101、集光レンズ102、光電変換素子(受光素子)103および結像レンズ104からなる。なお、検出位置に画質検出装置100を配置するとは、少なくとも検出ヘッド100を図12に示した各位置に配置することを意味している。
制御・演算部200には、画像形成装置MFP本体の制御部(回路)CONから画質検出のための制御命令201が送られ、これを受けて制御・演算部200は検出ヘッド部210を駆動状態に制御する。検出ヘッド部210の投光部は常時点灯でも良く、これならば制御信号は必要ない(常時点灯なので読み取りたい時に読み取るだけ)が、昨今のエネルギー低減活動及び投光部の発行素子の寿命を考えると、使用時のみ点灯が望ましい。この場合は制御信号202が必要であり、制御信号202に応じて投光部が点灯することになる。投光部(LED101)が点灯した状態であれば、受光部(受光素子103)は読み取り可能状態であり、検知用パターンのタイミングに合わせて濃度ムラデータを読み取っていく。この読み取った生データ203をそのまま制御・演算部200に送り、画質演算用IC(演算回路130)によって画質情報204へ変換する。この画質情報204が画像形成装置MFP本体の制御部(回路)CONへ送信され、画質に関するフィードバック制御を行うことになる。
図25は、検出ヘッド210を複数個配置し、制御・演算部200を共通利用する制御構成の一例を示すブロック図である。制御・演算部200は図20の例と同様に画像形成装置MFPの本体制御部CONからの制御命令201を受けて制御信号202a,202b,202cを各検出ヘッド210a,210b,210cを制御する機能と、検出ヘッド210a,210b,210cから送られてくる濃度ムラの生データ203を画質情報204へ変換する。
画質情報へ変換する演算回路130は画質演算用ICから構成される。この画質演算用ICはDSPやASIC等のコストの高いICを利用せざるを得ず、複数個配置するとそれだけでコスト高になってしまう。そこで、ここでは画質演算用ICを1個のみの設置とし、複数の検出ヘッド210a,210b,210cで共用するようにしている。その際、各検出ヘッド210a,210b,210cでの画像検出タイミングが重ならないことを前提にしており、アクティブになっている検出ヘッド210a,210b,210cのみから濃度ムラ生データ203が制御・演算部200へ流れ込んでくるので、この生データ203を画質演算用ICで画質に変換し、画像形成装置MFP本体の制御部CONへ送信する。
これに対して、各検出ヘッド210a,210b,210cでの画像検出タイミングが重なることを前提にした場合には、図26に示すように構成する。すなわち、この図22の構成では、制御・演算部200に生データ203a,203b,203cを一次保存するためのメモリ200a,200b,200cが設置されている。このメモリ200a,200b,200cに各検出ヘッド210a,210b,210cで検出した濃度ムラデータの生データ203a,203b,203cを一時的に保存した上で、制御・演算部200に1個のみ搭載されている画質演算用ICで順次画質情報に変換していく。この処理によって、画質演算用ICを複数個設置する必要がなく、コスト高を回避することができる。
11.画質制御
図27ないし図31は画像形成装置MFP本体制御部CONで第1ないし第4の画質センサ10a−10dを使用して行われる画質制御(フィードバック制御)の制御手順を示すフローチャートである。
図27に第1および第2の画質センサ10a,10bによって検出された画質の変化に基づいて行われる画質制御の制御手順を示す。この制御手順では、まず、画質測定用パターンを形成し(ステップS101)、第1および第2の画質センサ10a,10bにより微小領域の画像濃度の変化を測定し、前述のようにして粒状度(画質)を測定する(ステップS102)。次いで、第1および第2の画質センサ10a,10bで検出した粒状度(画質)の差(ΔS)が予め設定された許容範囲内にあるか否かをチェックする(ステップS103)。許容範囲にあれば、画質制御のルーチンから抜ける。許容範囲になければ、中間転写バイアス値および/または転写加圧力の調整の繰り返し回数をチェックする(ステップS104)。所定の範囲に画質が納まるまで中間転写バイアス値および/または転写加圧力の調整を繰り返すが、この繰り返しの最大回数は機械によって設定されており、ここではその回数をnとすると、ステップS104では前記繰り返し回数がn未満かどうかをチェックする。n回未満であれば再度中間転写バイアス値および/または転写加圧力を調整し(ステップS105)、ステップS101からの処理を繰り返す。ステップS104でn回未満でなければ、さらに、n回目であるかどうかをチェックし(ステップS106)、n回目であれば、現像剤の入れ替え動作を行って(ステップS107)、ステップS101に戻り、それ以降の処理を繰り返す。n回目でなければn回以上となっているので、何らかの異常が発生しているものとして、異常終了とする。
なお、前述の図12では黒(K)の画像形成ユニットの前後に第1および第2の画質センサ10a,10bを設けているが、各色の画像形成ユニットについても同様である。その際、第2の画質センサ10bは、最後段の画像形成ユニットの下流側でよい。
この処理手順では、一次転写工程における画質劣化を検知した場合、画質劣化度が小さいうちはリアルタイムで制御できる中間転写バイアス、転写加圧力で画質の回復を試みる。しかし、画質劣化の度合いが大きくなり、画質劣化数値ΔSが閾値βより大きくなった時点で、すなわち、
ΔS>β
となった時点で現像剤の入れ替えによる画質回復を試みる。これは転写での画質劣化に現像剤の帯電特性が大きく影響しているためである。
この現像剤の入れ替えは、トナーのみの入れ替えと、トナーとキャリアを含めた現像剤の入れ替えの2つがある。トナーのみの入れ替えでは、効果が薄いと分かっている場合には、キャリアを含めた現像剤の入れ替え動作をステップS107では行う。入れ替えを行っても画質が回復しない場合には、異常終了とする。
図28に第2および第3の画質センサ10b,10cによって検出された画質の変化に基づいて行われる画質制御の制御手順を示す。この制御手順では、まず、画質測定用パターンを形成し(ステップS201)、第2および第3の画質センサ10b,10cにより微小領域の画像濃度の変化を測定し、前述のようにして粒状度(画質)を測定する(ステップS202)。次いで、第2および第3の画質センサ10b,10cで検出した粒状度(画質)の差(ΔS)が予め設定された許容範囲内にあるか否かをチェックする(ステップS203)。許容範囲にあれば、画質制御のルーチンから抜ける。許容範囲になければ、紙転写バイアス値および/または転写加圧力の調整の繰り返し回数をチェックする(ステップS204)。この場合も、所定の範囲に画質が収まるまで紙転写バイアス値および/または転写加圧力の調整を繰り返す。この繰り返しの最大回数nは機械によって設定されており、ステップS204では前記繰り返し回数がn未満かどうかをチェックする。n回未満であれば紙転写バイアス値および/または転写加圧力を調整し(ステップS205)、ステップS101からの処理を繰り返す。ステップS204でn回未満でなければ、さらに、n回目であるかどうかをチェックし(ステップS206)、n回目でなければ何らかの異常が発生しているものとして、異常終了とし、n回目であれば、現像剤の入れ替え動作を行って(ステップS207)、ステップS201に戻り、それ以降の処理を繰り返す。
この処理手順では、二次転写工程における画質劣化を検知した場合、画質劣化度が小さい内はリアルタイムで制御できる中間転写バイアス、転写加圧力で画質の回復を試みる。しかし、画質劣化の度合いが大きくなり、画質劣化数値ΔSが閾値γより大きくなった時点で、すなわち、
ΔS>γ
となった時点で現像剤の入れ替えによる画質回復を試みる。これは転写での画質劣化に現像剤の帯電特性が大きく影響しているためである。
この現像剤の入れ替えは、トナーのみの入れ替えと、トナーとキャリアを含めた現像剤の入れ替えの2つがある。トナーのみの入れ替えでは、効果が薄いと分かっている場合には、キャリアを含めた現像剤の入れ替え動作をステップS207では行う。入れ替えを行っても画質が回復しない場合には、異常終了とする。
図29に第3および第4の画質センサ10c,10dによって検出された画質の変化に基づいて行われる画質制御の制御手順を示す。この制御手順では、まず、画質測定用パターンを形成し(ステップS301)、第3および第4の画質センサ10c,10dにより微小領域の画像濃度の変化を測定し、前述のようにして粒状度(画質)を測定する(ステップS302)。次いで、第3および第4の画質センサ10c,10dで検出した粒状度(画質)の差(ΔS)が予め設定された許容範囲内にあるか否かをチェックする(ステップS303)。許容範囲にあれば、画質制御のルーチンから抜ける。許容範囲になければ、定着温度調整、定着加圧力調整、紙搬送線速調整の少なくともいずれか1つを調整した回数がn回未満かどうかをチェックし、n回未満であれば、再度ステップS301に戻って、それ以降の処理を繰り返しn回未満でなければ、すなわちn回調整を繰り返しても許容範囲内にはいっていないならば、異常と判断して処理を終える。
この処理手順では、定着工程における画像劣化を検知した場合、画質制御機能を持つ付与熱量の変化で画質回復を試みる。点検的には、定着温度そのものを変化させる。副次的には加圧力、用紙搬送線速を変化させて付与熱量を調整することによっても同様の効果を得ることができる。この制御では、画像の光沢も変化してしまうので、画像の光沢の変化を好まないユーザには、この制御は導入することができない。
この定着熱量による画質制御によっても画質が所定の範囲に戻らなかった場合、すなわち画質が所望量回復しなかった場合には異常終了とし、前述の2つの制御とは異なり、現像剤の入れ替え動作を行わない。これは、定着工程については剤リフレッシュの効果がほとんどないためである。
図30に第1および第3の画質センサ10a,10cによって検出された画質の変化に基づいて行われる画質制御の制御手順を示す。この制御手順では、まず、画質測定用パターンを形成し(ステップS401)、第1および第3の画質センサ10a,10cにより微小領域の画像濃度の変化を測定し、前述のようにして粒状度(画質)を測定する(ステップS402)。次いで、第1および第3の画質センサ10a,10cで検出した粒状度(画質)の差(ΔS)が予め設定された許容範囲内にあるか否かをチェックする(ステップS403)。許容範囲にあれば、画質制御のルーチンから抜ける。許容範囲になければ、中間転写バイアス値および/または紙転写バイアス値(あるいは中間転写加圧力、転写加圧力)の調整の繰り返し回数をチェックする(ステップS404)。所定の範囲に画質が収まるまで中間転写バイアス値および/または紙転写バイアス値(あるいは中間転写加圧力、転写加圧力)の調整を繰り返すが、この繰り返しの最大回数nは前述のように機械によって設定され、ステップS404では前記繰り返し回数がn未満かどうかをチェックする。n回未満であれば中間転写バイアス値および/または紙転写バイアス値(あるいは中間転写加圧力、転写加圧力)をデータテーブルを参照して調整し(ステップS405)、ステップS401からの処理を繰り返す。
ステップS404でn回未満でなければ、さらに、n回目であるかどうかをチェックし(ステップS406)、n回目であれば、現像剤の入れ替え動作を行って(ステップS407)、ステップS401に戻り、それ以降の処理を繰り返す。n回目でなければ何らかの異常が発生しているものとして、異常終了する。
この処理手順では、一次、二次転写工程を含んだ工程における画質劣化を検知した場合、画質劣化度が小さい内はリアルタイムで制御できる中間転写バイアス、紙転写バイアス、転写加圧力で画質の回復を試みる。一次、二次へフィードバック比率は予め作成したデータテーブルを参照して変化させる。片方の工程のみへフィードバックする場合と、両工程へ同時にフィードバックする場合があるからである。
しかし、画質劣化の度合いが大きくなり、画質劣化数値ΔSが閾値δより大きくなった時点で、すなわち、
ΔS>δ
となった時点で現像剤の入れ替えによる画質回復を試みる。これは転写での画質劣化に現像剤の帯電特性が大きく影響しているためである。
この現像剤の入れ替えは、トナーのみの入れ替えと、トナーとキャリアを含めた現像剤の入れ替えの2つがある。トナーのみの入れ替えでは、効果が薄いと分かっている場合には、キャリアを含めた現像剤の入れ替え動作をステップS407では行う。入れ替えを行っても画質が回復しない場合には、異常終了とする。
図31に第1および第4の画質センサ10a,10dによって検出された画質の変化に基づいて行われる画質制御の制御手順を示す。この制御手順では、まず、画質測定用パターンを形成し(ステップS501)、第1および第4の画質センサ10a,10dにより微小領域の画像濃度の変化を測定し、前述のようにして粒状度(画質)を測定する(ステップS502)。次いで、第1および第4の画質センサ10a,10dで検出した粒状度(画質)の差(ΔS)が予め設定された許容範囲内にあるか否かをチェックする(ステップS503)。許容範囲にあれば、画質制御のルーチンから抜ける。許容範囲になければ、中間転写バイアス値および/または紙転写バイアス値(あるいは中間転写加圧力、転写加圧力)の調整の繰り返し回数をチェックする(ステップS504)。所定の範囲に画質が収まるまで中間転写バイアス値および/または紙転写バイアス値(あるいは中間転写加圧力、転写加圧力)の調整を繰り返すが、この繰り返しの最大回数nは前述のように機械によって設定され、ステップS504では前記繰り返し回数がn未満かどうかをチェックする。n回未満であれば中間転写バイアス値および/または紙転写バイアス値(あるいは中間転写加圧力、転写加圧力)をデータテーブルを参照して調整し(ステップS505)、ステップS501からの処理を繰り返す。
ステップS504でn回未満でなければ、さらに、n回目であるかどうかをチェックし(ステップS506)、n回目であれば、現像剤の入れ替え動作を行って(ステップS507)、ステップS501に戻り、それ以降の処理を繰り返す。n回目でなければ、さらに、n+1回目かどうかをチェックし(ステップS508)、n+1回目であれば、定着温度調整、定着加圧力調整、紙搬送線速調整の少なくともいずれか1つを調整し、ステップS501に戻って、それ以降の処理を繰り返す。ステップS508でn+1回目でなければ、何らかの異常が発生しているものとして、異常終了する。
この処理手順は、図27に示したの処理と図29に示した処理を組み合わせたようなものであるが、転写、定着工程の全ての系を含んだ上で画質の制御を行っている。このような場合、転写条件でのフィードバック、現像剤の入れ替え動作、定着条件へのフィードバックという優先順位としている。定着条件の変更が優先順位で最も低くなっているのは、前述のように画像の光沢を変化させてしまうことから、このような変化をなるべく避けたいからである。
なお、異常終了の場合には、制御部CONは画像形成装置MFPの図示しない表示部(ディスプレイ)にその旨のメッセージを表示される。ネットワークを介してPCが接続されている場合には、PCのディスプレイにも表示させるようにすることもできる。このような処理は、主にプロユースの画像形成装置を念頭に置いたものである。オフィスユースの画像形成装置ならば各種フィードバック制御は自動的に行われるべきものであるが、プロユースの画像形成装置においては、オペレータがマニュアルで調整することが好まれる傾向にある。そこで、プロユースの画像形成装置においては、画質劣化の生じている工程を自動的に判断して自動的に画質フィードバック制御をかけるのではなく、測定した画質をそのままオペレータに報知し、オペレータのマニュアル制御に任せるという動作が必要とされる。
以上のように本実施例によれば、以下のような効果を奏する。
(1)画像形成装置内に画質検出装置の検出位置を複数設定することにより、装置内の複数箇所における画質変動を測定することができ、画質劣化を生じさせている作像工程を特定することができる。また、特定された作像工程に対するフィードバック制御を行うことが可能となる。
(2)更に、画質フィードバック制御によって安定した画質の出力を行うことによってミスプリントの発生率を低減し、記録紙の浪費を防止できる。
(3)現像工程は画像形成動作の最上流にあたるため、ここで測定される画質が画像形成装置内の初期画質である。この初期画質を検出することにより、現像工程以前の作像工程の影響で生じている画質変動量を把握できる。
(4)中間転写ベルト上の検出画質と、感光体上の検出画質との比較により、中間転写工程で生じている画質劣化度合を把握できる。
(5)紙上未定着画像からの検出画質と、中間転写体上の検出画質との比較により、紙転写工程で生じている画質劣化度合を把握できる。
(6)紙上定着後画像からの検出画質と、紙上未定着画像からの検出画質との比較により、定着工程における画質劣化度合を把握できる。
(7)画質検出装置を複数個設置することにより、各作像工程における画質劣化度合を把握できる。この情報から、画質劣化の主要因となっている作像工程に対して画質に基づいたフィードバック制御を行うことにより、その工程での画質劣化度合を減少することができる。
(8)静電潜像形成系及び現像系パラメータを変動させることにより、ドットの形成具合、地肌チリの発生具合等が変化する。これらの変化に伴って画質も変動するので、すなわち、前記パラメータを最適に制御することにより、静電潜像形成工程及び現像工程における画質変動量を最小限に抑えることができる。
(9)転写系パラメータを変動させることにより、転写効率等の転写具合が変化する。この変化に伴って画質も変動するので、これらのパラメータを最適に制御することにより、転写工程での画質変動量を最小限に抑えることができる。
(10)定着系パラメータを変動させることにより、定着具合が変化する。この変化に伴って画質も変動するので、これらのパラメータを最適に制御することにより、定着工程での画質変動量を最小限に抑えることができる。
(11)主に印刷機などのプロユースマシンにおいては、オペレータが様々な作像条件をマニュアルで調整できることが好まれる。そこで、画質変動に関しても情報の提供のみとすることにより、オペレータがそれに応じて好みの画質調整を行うことが可能となる。
(12)制御・演算部内の画質演算処理部としては、DSP等を用いてハード的に高速演算処理系を構築するのが最も実用的である。この場合、この高速演算処理系を複数個設置するとコスト高になるため、複数箇所検知には必要不可欠な検出ヘッド部のみを複数個配置とし、制御・演算部内の画質演算処理部を共用とすることによりコストを抑えることができる。
本発明の実施形態に係る潜像担持体としての感光体ドラムをタンデム配列した乾式二成分現像方式のフルカラーの画像形成装置全体を示す図である。 図1における感光体ドラムをタンデム配列した乾式二成分現像方式のフルカラー作像装置の画像形成部を示す図である。 600dpi書き込み系を有する図2の画像形成装置によって記録媒体上に形成された網点画像の初期の画像を示す図である。 600dpi書き込み系を有する図2の画像形成装置によって記録媒体上に形成された網点画像のある条件において非常に長期に渡りプリントを行った後での画像を示す図である。 濃度ムラに関する平均的な被験者による視覚の空間周波数特性を示す図である。 本発明の実施形態における画像の微細な濃度ムラを測定する画質検出装置の概略構成及び画像形成装置の制御回路を示す図である。 走査方向の距離(ビーム径)と光量との関係を示す特性図である。 図6反射光の増幅回路からの光量(電圧)変動を示す図である。 図8の測定結果から高速フーリエ変換(FFT)により算出された空間周波数特性を示す図である。 視覚ノイズ量と空間周波数との関係を示す図である。 算出された視覚ノイズの総量を示す図である。 画質検出装置を画像形成装置内に複数個設置した例を示す図である。 図12における第1の画質センサと画像パターンとの関係を概念的に示す図である。 図12における第2の画質センサと画像パターンとの関係を概念的に示す図である。 図12における第3の画質センサと画像パターンとの関係を概念的に示す図である。 図12における第4の画質センサと画像パターンとの関係を概念的に示す図である。 感光体及びその周辺の構成部材を含めた感光体(画像形成)ユニットの構成を示す図である。 ポテンシャルの概念を説明する図である。 ポテンシャルと粒状性との関係を示す図である。 中間転写部(一次転写(ローラ)部)の構成を示す要部拡大図である。 紙転写部(二次転写(ローラ)部)の構成を示す要部拡大図である。 定着ローラ方式の定着ユニットの構成を示す図である。 定着ベルト方式の定着ユニットの構成を示す図である。 1個の制御・演算部に1個の検出ヘッドが接続された画質検出装置の基本単位となる制御構成を示すブロック図である。 検出ヘッドを複数個配置し、制御・演算部を共通利用する制御構成の一例を示すブロック図である。 検出ヘッドを複数個配置し、制御・演算部を共通利用する制御構成の他の例を示すブロック図である。 第1および第2の画質センサによって検出された画質の変化に基づいて行われる画質制御の制御手順を示すフローチャートである。 第2および第3の画質センサによって検出された画質の変化に基づいて行われる画質制御の制御手順を示すフローチャートである。 第3および第4の画質センサによって検出された画質の変化に基づいて行われる画質制御の制御手順を示すフローチャートである。 第1および第3の画質センサによって検出された画質の変化に基づいて行われる画質制御の制御手順を示すフローチャートである。 第1および第4の画質センサによって検出された画質の変化に基づいて行われる画質制御の制御手順を示すフローチャートである。
符号の説明
1 画像形成部
5 中間転写ベルト
6 作像部
7 露光ユニット
10,10a,10b,10c,10d 画質センサ
20 記録紙
61 感光体(感光体ドラム)
100 画質検出装置
101 LED(発光素子)
102 集光レンズ
103 光電変換素子(受光素子)
104 結像レンズ
120 増幅回路
130 演算回路
140 信号生成回路
200 制御演算部
201 制御命令
202 制御信号
203 生データ
204 画質情報
210,210a,210b,210c 検出ヘッド
CON 制御回路
MFP 画像形成装置
SP スポット光

Claims (26)

  1. 像担持体上に形成された画像パターンの濃度ムラを複数位置で検出し、この検出された濃度ムラに基づいて画質を検出する画質検出手段と、
    前記画質検出手段によって検出された画質を比較し、その比較結果に基づいて画質劣化の生じている作像工程を判断する判断手段と、
    を備えていることを特徴とする画質検出装置。
  2. 前記判断手段は、前記複数位置の2つを選択し、当該2つの位置における画質を比較することを特徴とする請求項1記載の画質検出装置。
  3. 前記複数の画質検出手段が、画像パターンの濃度ムラを光学的に検出するための光学的検出部と、この光学的検出部を制御するとともに、前記光学的検出部の検出出力に基づいて画質を評価する制御演算部とからなることを特徴とする請求項1記載の画質検出装置。
  4. 前記光学的検出部が作像工程の複数位置に設けられていることを特徴とする請求項3記載の画質検出装置。
  5. 前記複数位置の1つが、現像工程後の感光体に対向する位置であることを特徴とする請求項4記載の画質検出装置。
  6. 前記複数位置の1つが、画像転写位置以後の中間転写体に対向する位置であることを特徴とする請求項4記載の画質検出装置。
  7. 前記複数位置の1つが、紙上に画像を転写する紙転写位置以降及び定着工程以前の紙搬送経路に対向する位置であることを特徴とする請求項4記載の画質検出装置。
  8. 前記複数位置の1つが、定着工程以後の紙搬送経路に対向する位置であることを特徴とする請求項4記載の画質検出装置。
  9. 前記判断手段により前記画質劣化が生じていると判断された作像工程の画質が入力され、画質の劣化の度合が所定範囲内に納まるように前記作像工程における作像条件を変更する制御手段をさらに備えていることを特徴とする請求項1記載の画質検出装置。
  10. 前記画質劣化が生じていると判断された作像工程が静電潜像形成工程及び現像工程である場合、前記変更する作像条件が現像剤担持体の線速、現像ポテンシャル、及び地肌ポテンシャルのいずれかであることを特徴とする請求項9記載の画質検出装置。
  11. 前記画質劣化が生じていると判断された作像工程が中間転写工程、紙転写工程のいずれかを含む転写工程である場合、前記変更する作像条件が転写バイアス、転写部の加圧力のいずれかであることを特徴とする請求項9記載の画質検出装置。
  12. 前記画質劣化が生じていると判断された作像工程が定着工程である場合、前記変更する作像条件が定着温度、定着部の加圧力、及び定着部の紙搬送線速のいずれかであることを特徴とする請求項9記載の画質検出装置。
  13. 前記画質劣化が生じていると判断された作像工程が静電潜像形成工程、現像工程、中間転写工程、紙転写工程のいずれかを含む場合、前記制御手段により作像条件を画質が向上するように所定回数変更しても前記画質劣化の度合が所定範囲に納まらないときには、前記制御手段は現像剤を入れ替えることを特徴とする請求項9記載の画質検出装置。
  14. 前記制御演算部は複数の前記光学的検出部に対してそれぞれ制御信号を出力し、前記光学的検出部からそれぞれ検出信号を受け取ることを特徴とする請求項3記載の画質検出装置。
  15. 請求項1ないし14のいずれか1項に記載の画質検出装置を備えていることを特徴とする画像形成装置。
  16. 前記画質検出手段は、検出した画質情報を画像形成装置本体の制御部に出力し、前記制御部は画質の状態を画像形成装置本体の表示部に表示することを特徴とする請求項15記載の画像形成装置。
  17. 像担持体上に画質測定用パターンを形成する第1の工程と、
    複数の作像工程の少なくとも1つを挟んで複数位置に配置された画質検出手段により第1の工程で形成した画質測定用パターンの画質を測定する第2の工程と、
    第2の工程において前記作像工程を挟んだ2つの位置で測定された画質の劣化の度合が許容範囲内にあるかどうかを判定する第3の工程と、
    第3の工程で許容範囲にないと判定されたときに、作像条件を変更したフィードバック制御が所定回行われてたかどうかを判定する第4の工程と、
    第4の工程で所定回行われていない場合に、前記作像工程において画質の劣化の度合が前記許容範囲に入るように作像条件を変更する第5の工程と、
    を備えていることを特徴とする画質制御方法。
  18. 前記第4の工程で所定回行われていた場合に、現像剤またはトナーの入れ替え動作を行わせる第6の工程を更に備えていることを特徴とする請求項17記載の画質制御方法。
  19. 前記第4の工程で所定回を越えて行われていた場合に、異常と判断して処理を終える第7の工程を更に備えていることを特徴とする請求項17記載の画質制御方法。
  20. 前記作像工程が、静電潜像形成工程、現像工程、中間転写工程、紙転写工程のいずれかを含んでいることを特徴とする請求項17ないし19のいずれか1項に記載の画質制御方法。
  21. 前記作像工程が定着工程を含む場合には、前記第5の工程で定着温度、定着加圧力、紙搬送線速の少なくとも1つを変更することを特徴とする請求項17記載の画質制御方法。
  22. 請求項1または2記載の画質検出装置における判断手段の機能をコンピュータによって実現するための手順を備えていることを特徴とするコンピュータプログラム。
  23. 請求項3記載の画質検出装置における制御演算部の機能をコンピュータによって実現するための手順を備えていることを特徴とするコンピュータプログラム。
  24. 請求項9ないし13のいずれか1項に記載の画質検出装置における制御手段の機能をコンピュータによって実現するための手順を備えていることを特徴とするコンピュータプログラム。
  25. 請求項17ないし21のいずれか1項に記載の画質制御方法をコンピュータによって実現するための手順を備えていることを特徴とするコンピュータプログラム。
  26. 請求項22ないし25のいずれか1項に記載のコンピュータプログラムのプログラムデータがコンピュータによって読み取られ、実行可能に記録されていることを特徴とする記録媒体。
JP2003316802A 2003-09-09 2003-09-09 画像の粒状性劣化検出装置、画像形成装置、画像の粒状性劣化判断方法、画像の粒状性の劣化判断プログラム及び記録媒体 Expired - Fee Related JP4523253B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316802A JP4523253B2 (ja) 2003-09-09 2003-09-09 画像の粒状性劣化検出装置、画像形成装置、画像の粒状性劣化判断方法、画像の粒状性の劣化判断プログラム及び記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316802A JP4523253B2 (ja) 2003-09-09 2003-09-09 画像の粒状性劣化検出装置、画像形成装置、画像の粒状性劣化判断方法、画像の粒状性の劣化判断プログラム及び記録媒体

Publications (2)

Publication Number Publication Date
JP2005084395A true JP2005084395A (ja) 2005-03-31
JP4523253B2 JP4523253B2 (ja) 2010-08-11

Family

ID=34416588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316802A Expired - Fee Related JP4523253B2 (ja) 2003-09-09 2003-09-09 画像の粒状性劣化検出装置、画像形成装置、画像の粒状性劣化判断方法、画像の粒状性の劣化判断プログラム及び記録媒体

Country Status (1)

Country Link
JP (1) JP4523253B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059308A (ja) * 2009-09-09 2011-03-24 Ricoh Co Ltd 画像形成装置
JP2012013979A (ja) * 2010-07-01 2012-01-19 Konica Minolta Business Technologies Inc カラー画像形成装置
JP2012108504A (ja) * 2010-11-15 2012-06-07 Xerox Corp 転写領域均一性マップを用いた印刷装置の試験転写ニップ
JP2015178189A (ja) * 2014-03-18 2015-10-08 株式会社リコー 画像検査装置、画像形成システム及び画像検査プログラム
JP2020003656A (ja) * 2018-06-28 2020-01-09 株式会社リコー 画像処理装置、画像処理システム、画像処理方法、及びプログラム
JP2020140087A (ja) * 2019-02-28 2020-09-03 株式会社リコー 画像形成装置および画像形成方法
JP7467091B2 (ja) 2019-12-05 2024-04-15 キヤノン株式会社 画像形成装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0895318A (ja) * 1994-09-28 1996-04-12 Fuji Xerox Co Ltd 画像形成装置
JPH08152415A (ja) * 1994-11-29 1996-06-11 Ricoh Co Ltd 画像形成装置
JPH0968872A (ja) * 1995-09-04 1997-03-11 Konica Corp 画像形成装置
JPH09311520A (ja) * 1996-05-24 1997-12-02 Konica Corp 画像形成プロセス制御装置
JPH10202832A (ja) * 1997-01-24 1998-08-04 Matsushita Electric Ind Co Ltd スクリーン印刷機およびスクリーン印刷方法
JP2002318475A (ja) * 2001-04-23 2002-10-31 Ricoh Co Ltd 画像形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0895318A (ja) * 1994-09-28 1996-04-12 Fuji Xerox Co Ltd 画像形成装置
JPH08152415A (ja) * 1994-11-29 1996-06-11 Ricoh Co Ltd 画像形成装置
JPH0968872A (ja) * 1995-09-04 1997-03-11 Konica Corp 画像形成装置
JPH09311520A (ja) * 1996-05-24 1997-12-02 Konica Corp 画像形成プロセス制御装置
JPH10202832A (ja) * 1997-01-24 1998-08-04 Matsushita Electric Ind Co Ltd スクリーン印刷機およびスクリーン印刷方法
JP2002318475A (ja) * 2001-04-23 2002-10-31 Ricoh Co Ltd 画像形成装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059308A (ja) * 2009-09-09 2011-03-24 Ricoh Co Ltd 画像形成装置
JP2012013979A (ja) * 2010-07-01 2012-01-19 Konica Minolta Business Technologies Inc カラー画像形成装置
JP2012108504A (ja) * 2010-11-15 2012-06-07 Xerox Corp 転写領域均一性マップを用いた印刷装置の試験転写ニップ
JP2015178189A (ja) * 2014-03-18 2015-10-08 株式会社リコー 画像検査装置、画像形成システム及び画像検査プログラム
JP2020003656A (ja) * 2018-06-28 2020-01-09 株式会社リコー 画像処理装置、画像処理システム、画像処理方法、及びプログラム
JP7102978B2 (ja) 2018-06-28 2022-07-20 株式会社リコー 画像処理装置、画像処理システム、画像処理方法、及びプログラム
JP2020140087A (ja) * 2019-02-28 2020-09-03 株式会社リコー 画像形成装置および画像形成方法
JP7183867B2 (ja) 2019-02-28 2022-12-06 株式会社リコー 画像形成装置および画像形成方法
JP7467091B2 (ja) 2019-12-05 2024-04-15 キヤノン株式会社 画像形成装置

Also Published As

Publication number Publication date
JP4523253B2 (ja) 2010-08-11

Similar Documents

Publication Publication Date Title
JP5257170B2 (ja) 光沢ムラ評価装置、光沢ムラ評価方法、画像形成装置及び記録媒体
US7236711B2 (en) Full-width array sensing of two-dimensional residual mass structure to enable mitigation of specific defects
US8213816B2 (en) Method and system for banding compensation using electrostatic voltmeter based sensing
US8131168B2 (en) Image forming apparatus that determines a failure in an exposure section based on a detected density of a toner image
US20160334734A1 (en) Image forming device
US8447217B2 (en) Image forming apparatus
JP3722785B2 (ja) 画質検出装置及び画像形成装置
JP5388838B2 (ja) 記録材判別装置及び画像形成装置
JP4363974B2 (ja) 画像形成装置、プロセスカートリッジ、画像形成方法、コンピュータプログラムおよび記録媒体
JP2017181060A (ja) シート種別判定装置、画像形成装置、及びシート種別判定方法
CN103777487A (zh) 图像形成装置及图像形成方法
JP4523253B2 (ja) 画像の粒状性劣化検出装置、画像形成装置、画像の粒状性劣化判断方法、画像の粒状性の劣化判断プログラム及び記録媒体
JP5250195B2 (ja) 原稿レンダリングシステム内の転写欠陥を識別する方法およびゼログラフィック出力装置
US7773897B2 (en) Image forming apparatus and control method thereof
JP4580666B2 (ja) 画像形成装置、画質管理方法、コンピュータプログラムおよび記録媒体
JP6244828B2 (ja) 画像形成装置
JP2009145692A (ja) 画像形成装置および画質調整方法
JP2004302167A (ja) 画質検出装置、画像形成装置、画質検出方法、コンピュータプログラム及び記録媒体
US9411288B2 (en) Toner detection sensor and image forming apparatus
JP2004246152A (ja) 画像形成装置
JP6569586B2 (ja) トナー量検知センサー、および画像形成装置
US8005385B2 (en) Electrophotographic system to enable direct sensing of toner quantity
US20170363990A1 (en) Image forming apparatus
JP5493409B2 (ja) 画像読取装置および画像形成装置
JP2021092433A (ja) 画像形成装置および光沢測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees