JP2011079701A - Method for producing purified graphite oxide particle-containing liquid - Google Patents

Method for producing purified graphite oxide particle-containing liquid Download PDF

Info

Publication number
JP2011079701A
JP2011079701A JP2009233186A JP2009233186A JP2011079701A JP 2011079701 A JP2011079701 A JP 2011079701A JP 2009233186 A JP2009233186 A JP 2009233186A JP 2009233186 A JP2009233186 A JP 2009233186A JP 2011079701 A JP2011079701 A JP 2011079701A
Authority
JP
Japan
Prior art keywords
graphite oxide
containing liquid
oxide particle
filtration
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009233186A
Other languages
Japanese (ja)
Other versions
JP5446703B2 (en
Inventor
Takuya Goto
拓也 後藤
Kazuyoshi Joto
和良 上等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009233186A priority Critical patent/JP5446703B2/en
Publication of JP2011079701A publication Critical patent/JP2011079701A/en
Application granted granted Critical
Publication of JP5446703B2 publication Critical patent/JP5446703B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a graphite oxide particle-containing liquid which contains sufficiently thin graphite oxide particles. <P>SOLUTION: The method for producing a purified graphite oxide particle-containing liquid includes a preparation step of preparing a graphite oxide particle-containing liquid which contains graphite oxide particles; and a purification step of purifying the graphite oxide particle-containing liquid to obtain a purified graphite oxide particle-containing liquid, wherein the purification step includes a filtration step of filtering the graphite oxide particle-containing liquid with a filter membrane to separate a filtrate from a concentrated liquid containing graphite oxide particles; and a dispersion medium addition step of adding a dispersion medium to the concentrated liquid, wherein in the filtration step, a flow of the graphite oxide particle-containing liquid is formed along a surface of the filter membrane. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、精製酸化黒鉛粒子含有液の製造方法に関する。   The present invention relates to a method for producing a purified graphite oxide particle-containing liquid.

近年、形状の異方性が高い物質の探索、及びその応用が急速に進行している。このような物質は、多数個で他の物質との複合体にする場合には、低い添加率で高強度などの各種性能を発現すると期待されている。またその形状が極めて細い線状(1次元)や極めて薄い平面状(2次元)で、その物質が電気的に半導体または良導体であれば、単独または少数個の集合体の場合に、電子物性などに量子的な効果を発現するとも期待されている。   In recent years, the search for a material having a high shape anisotropy and its application are rapidly progressing. In the case where a large number of such substances are combined with other substances, it is expected that various properties such as high strength will be exhibited at a low addition rate. Also, if the shape is very thin linear (1D) or very thin planar (2D) and the material is an electrically semiconductor or good conductor, the physical properties can be used in the case of a single or a small number of aggregates. It is also expected to produce a quantum effect.

このような形状の異方性が高い物質としては、炭素原子を骨格とする平面状物質である酸化黒鉛が知られている。酸化黒鉛は黒鉛を特定の方法により酸化することで得られる黒鉛層間化合物の一種である。酸化黒鉛は2次元的な基本層が積み重なった多層構造体であり、一般に層数は非常に多い。酸化黒鉛の基本層は、ジグザグの炭素の列で数えて炭素原子1個分または2個分の厚さの、少しsp結合の傾向のあるsp結合主体の炭素骨格と、その骨格の両側の面に結合した酸性の水酸基とを有する構造を持つと考えられている(例えば、非特許文献1〜3)。 As such a highly anisotropic substance, graphite oxide, which is a planar substance having a carbon atom as a skeleton, is known. Graphite oxide is a kind of graphite intercalation compound obtained by oxidizing graphite by a specific method. Graphite oxide is a multilayer structure in which two-dimensional basic layers are stacked, and the number of layers is generally very large. The basic layer of graphite oxide consists of a carbon skeleton with a thickness of one or two carbon atoms counted in a zigzag carbon array and a sp 3 bond-dominant carbon skeleton with a slight tendency to sp 2 bonds, and both sides of the skeleton. It is thought that it has the structure which has the acidic hydroxyl group couple | bonded with the surface (for example, nonpatent literatures 1-3).

このような酸化黒鉛の粒子は、その厚さが性能に大きく影響し、厚さが薄いほどフィラーとしての効果が高いことから、層数の少ない非常に薄い酸化黒鉛粒子を作製することが重要とされている。   The thickness of such graphite oxide particles greatly affects the performance, and the thinner the thickness, the higher the effect as a filler. Therefore, it is important to produce very thin graphite oxide particles with a small number of layers. Has been.

このような非常に薄い酸化黒鉛粒子は、例えば非特許文献4に開示されており、本発明者らも先に、そのような酸化黒鉛(層数が1枚の場合は例えば酸化グラフェンと呼ぶことが望ましい(グラフェンは黒鉛の1層分の名称))の薄膜状粒子を高収率で製造する方法を見出すと共に、それを還元して層数の非常に少ない黒鉛(層数が1枚の場合はグラフェンと呼ぶことが望ましい)類似の酸化黒鉛の薄膜状粒子を得たところである(特許文献1〜3)。   Such very thin graphite oxide particles are disclosed in, for example, Non-Patent Document 4, and the present inventors have previously described such graphite oxide (when the number of layers is one, for example, called graphene oxide) Is desirable (graphene is the name of one layer of graphite)) and finds a method of producing high-yield thin-film particles and reduces it to reduce the number of graphite (when the number of layers is one) (It is desirable to call it graphene) A thin film-like particle of similar graphite oxide has been obtained (Patent Documents 1 to 3).

酸化黒鉛の薄膜状粒子は、精製された酸化黒鉛粒子含有液中に含有された形態で製造され、この精製された酸化黒鉛粒子含有液は一般的には次のようにして製造される。即ち黒鉛を酸化剤により酸化して酸化黒鉛粒子を製造し、その酸化黒鉛粒子を含有する酸化黒鉛粒子含有液に対して、デカンテーション法、透析法、ろ過法、遠心分離法などを用いた精製を繰り返し行うことにより製造される。このような製造方法により、酸化黒鉛粒子含有液中の不純物イオンが除去され、酸化黒鉛粒子において静電的反発による層間分離が進行し、酸化黒鉛粒子の薄層化が図られることとなる。   The thin film-like particles of graphite oxide are produced in a form contained in a purified graphite oxide particle-containing liquid, and the purified graphite oxide particle-containing liquid is generally produced as follows. That is, graphite is oxidized with an oxidizing agent to produce graphite oxide particles, and the graphite oxide particle-containing liquid containing the graphite oxide particles is purified using a decantation method, a dialysis method, a filtration method, a centrifugation method, or the like. It is manufactured by repeating. By such a manufacturing method, impurity ions in the graphite oxide particle-containing liquid are removed, interlayer separation due to electrostatic repulsion proceeds in the graphite oxide particles, and the graphite oxide particles are thinned.

しかし、デカンテーション法では酸化黒鉛粒子の沈降が遅く、透析法では内外のイオンの濃度勾配が平衡に達することが必要となるため精製に多大な時間がかかる。   However, in the decantation method, the sedimentation of graphite oxide particles is slow, and in the dialysis method, the concentration gradient of the inside and outside ions needs to reach equilibrium, so that a long time is required for purification.

ろ過法は、下記特許文献4及び非特許文献6に開示されているように、酸化黒鉛粒子を含む液をろ過することにより、酸化黒鉛粒子がろ過膜表面に平行に並んで膜を閉塞させるため、この閉塞現象を利用して酸化黒鉛の膜を形成するのに使用されるほど閉塞が起こりやすい。このようにろ過法を用いた精製では、酸化黒鉛粒子が薄膜状であるため、ろ過膜の閉塞が起こりやすく、精製を行うことが困難であると考えられている。   In the filtration method, as disclosed in the following Patent Document 4 and Non-Patent Document 6, by filtering a liquid containing graphite oxide particles, the graphite oxide particles are arranged in parallel with the filtration membrane surface to block the membrane. As the film is used to form a graphite oxide film by utilizing this clogging phenomenon, clogging is likely to occur. Thus, in the refinement | purification using a filtration method, since the graphite oxide particle is a thin film form, the filtration membrane is easy to block | close and it is thought that it is difficult to refine | purify.

これに対し、遠心分離法を用いた精製は、酸化黒鉛粒子の沈降速度を利用したものであり、短時間での精製が可能であるとされている。従って、遠心分離法を用いた精製は、酸化黒鉛粒子と不純物イオン等とを分離するのに有用である(例えば特許文献1,非特許文献5)。   On the other hand, purification using a centrifugal separation method uses the sedimentation rate of graphite oxide particles, and is said to be capable of purification in a short time. Accordingly, purification using a centrifugal separation method is useful for separating graphite oxide particles from impurity ions (for example, Patent Document 1 and Non-Patent Document 5).

しかし、酸化黒鉛粒子が薄くなると、酸化黒鉛粒子を沈降させるために多くの時間が必要となり、特に基本層(酸化グラフェン)の層数が少なくなった酸化黒鉛粒子は沈降速度が極端に小さく、沈降に多大な時間が必要となっていた。このため、遠心分離法を用いた精製では、製造時間の短縮の点で改良の余地があった。   However, as the graphite oxide particles become thinner, more time is required to settle the graphite oxide particles. In particular, the graphite oxide particles having a reduced number of basic layers (graphene oxide) have an extremely low sedimentation rate, so that It took a lot of time. For this reason, the purification using the centrifugal separation method has room for improvement in terms of shortening the production time.

特開2002−53313号公報JP 2002-53313 A 特開2003−176116号公報JP 2003-176116 A 特開2005−63951号公報JP 2005-63951 A 国際公開第2008/143829号International Publication No. 2008/143829

「黒鉛層間化合物」,第5章,炭素材料学会編,リアライズ社(1990)“Graphite Intercalation Compound”, Chapter 5, Carbon Society of Japan, Realize (1990) T. Nakajima et al.A NEW STRUCTURE MODEL OF GRAPHITE OXIDE, Carbon,26, 357 (1988)T. Nakajima et al. A NEW STRUCTURE MODEL OF GRAPHITE OXIDE, Carbon, 26, 357 (1988) M. Mermoux et al.FTIR AND 13C NMR STUDY OF GRAPHITE OXIDE, Carbon,29, 469 (1991)M. Mermoux et al. FTIR AND 13C NMR STUDY OF GRAPHITE OXIDE, Carbon, 29, 469 (1991) N. A. Kotov et al.Ultrathin Graphite Oxide-PolyelectrolyteComposites Prepared by Self-Assembly:Transition Between Conductive andNon-Conductive States, Adv. Mater., 8, 637 (1996)N. A. Kotov et al. Ultrathin Graphite Oxide-PolyelectrolyteComposites Prepared by Self-Assembly: Transition Between Conductive and Non-Conductive States, Adv. Mater., 8, 637 (1996) M.Hirata. Thin-filmparticles of graphite oxide 1:: High-yield synthesis and flexibility of theparticles,Carbon 42,2929-2937(2004)M.Hirata. Thin-film particles of graphite oxide 1 :: High-yield synthesis and flexibility of the particles, Carbon 42, 2929-2937 (2004) Eda,G et al.APPLIED PHYSICS LETTERS 92, 233305 (2008),Transparent and conducting electrodes for organic electronics from reduced grapheneoxideEda, G et al. APPLIED PHYSICS LETTERS 92, 233305 (2008), Transparent and conducting electrodes for organic electronics from reduced grapheneoxide

従って、十分薄い酸化黒鉛粒子を含有する酸化黒鉛粒子含有液の効率的な製造法の確立が求められていた。   Therefore, establishment of an efficient method for producing a graphite oxide particle-containing liquid containing sufficiently thin graphite oxide particles has been demanded.

本発明は上記事情に鑑みてなされたものであり、十分薄い酸化黒鉛粒子を含有する酸化黒鉛粒子含有液の効率的な製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an efficient method for producing a graphite oxide particle-containing liquid containing sufficiently thin graphite oxide particles.

本発明者らは、上記課題を解決するために、酸化黒鉛粒子が十分に薄くても、酸化黒鉛粒子含有液を短時間で精製できる精製酸化黒鉛粒子含有液の製造方法の確立を目指し、特にろ過法を用いた精製に着目して鋭意検討を重ねた。ここで、ろ過法は、上述したように、酸化黒鉛の薄い膜をろ過膜に形成してしまうことから、酸化黒鉛粒子のうち、特に基本層の層数が少ないものを含有する酸化黒鉛粒子含有液に対して、ろ過法で分散媒を分離することは実用的でないと考えられていた。このことは、いわゆるクロスフロー方式でろ過膜に酸化黒鉛粒子を流通させた場合でも同様であると考えられていた。   In order to solve the above problems, the present inventors aim to establish a method for producing a purified graphite oxide particle-containing liquid that can purify the graphite oxide particle-containing liquid in a short time even if the graphite oxide particles are sufficiently thin. Focusing on purification using filtration methods, we conducted extensive studies. Here, as described above, since the filtration method forms a thin film of graphite oxide on the filtration film, it contains graphite oxide particles that contain particularly few basic layers among the graphite oxide particles. It was considered impractical to separate the dispersion medium from the liquid by a filtration method. This was considered to be the same even when graphite oxide particles were circulated through the filtration membrane by a so-called cross flow method.

ところが、本発明者らがろ過膜の表面に沿って酸化黒鉛粒子含有液の流れを形成しろ過を行ってみたところ、驚くべきことにろ過膜の閉塞が十分に抑制され、分散媒と酸化黒鉛粒子とを効率よく分離できることが判明した。そして、本発明者らがさらに鋭意研究を重ねた結果、上記の効果は、酸化黒鉛粒子が薄くなっても得られることが判明した。こうして本発明者らは以下の発明を完成するに至った。   However, when the inventors formed a flow of a graphite oxide particle-containing liquid along the surface of the filtration membrane and performed filtration, surprisingly, the filtration membrane was sufficiently blocked and the dispersion medium and the graphite oxide were suppressed. It was found that the particles can be separated efficiently. As a result of further earnest studies by the present inventors, it has been found that the above effect can be obtained even when the graphite oxide particles become thin. Thus, the present inventors have completed the following invention.

即ち本発明は、酸化黒鉛粒子を含有する酸化黒鉛粒子含有液を準備する準備工程と、酸化黒鉛粒子含有液を精製し、精製された精製酸化黒鉛粒子含有液を得る精製工程と、を含む精製酸化黒鉛粒子含有液の製造方法であって、前記精製工程が、ろ過膜を用いて酸化黒鉛粒子含有液をろ過し、ろ液と酸化黒鉛粒子を含む濃縮液とに分離するろ過工程と、前記濃縮液に分散媒を添加する分散媒添加工程とを含み、前記ろ過工程において、前記ろ過膜の表面に沿って、酸化黒鉛粒子含有液の流れを形成する、精製酸化黒鉛粒子含有液の製造方法である。   That is, the present invention includes a preparation step of preparing a graphite oxide particle-containing liquid containing graphite oxide particles, and a purification step of purifying the graphite oxide particle-containing liquid and obtaining a purified purified graphite oxide particle-containing liquid. A method for producing a graphite oxide particle-containing liquid, wherein the purification step filters the graphite oxide particle-containing liquid using a filtration membrane, and separates the filtrate into a concentrate containing graphite oxide particles, A method of producing a purified graphite oxide particle-containing liquid, comprising: adding a dispersion medium to the concentrated liquid; and forming a flow of the graphite oxide particle-containing liquid along the surface of the filtration membrane in the filtration step. It is.

この製造方法によれば、ろ過膜を用いたろ過工程において、ろ過膜の表面に沿って酸化黒鉛粒子含有液の流れが形成される。これにより、ろ過膜の閉塞が十分に抑制される。このため、酸化黒鉛粒子の層間分離の妨げとなっている酸化黒鉛粒子含有液中の不純物イオン等を酸化黒鉛粒子と効率よく分離させることが可能となる。さらにろ過工程は、酸化黒鉛粒子を沈降させるものではないため、遠心分離では沈降させることが困難なほどに基本層の層数が少なくなり十分に薄層化された酸化黒鉛粒子でも、酸化黒鉛粒子含有液の精製を効率よく行うことが可能である。加えて、各酸化黒鉛粒子には、酸化黒鉛粒子含有液の流れによってせん断力が加えられることから、薄層化の進行が促進され、単に精製を行ったときよりも効率的に、十分薄い酸化黒鉛粒子を含有する酸化黒鉛粒子含有液を製造することができる。   According to this manufacturing method, the flow of the graphite oxide particle-containing liquid is formed along the surface of the filtration membrane in the filtration step using the filtration membrane. Thereby, obstruction | occlusion of a filtration membrane is fully suppressed. For this reason, it becomes possible to efficiently separate the impurity ions and the like in the graphite oxide particle-containing liquid that hinder interlayer separation of the graphite oxide particles from the graphite oxide particles. Further, since the filtration step does not settle graphite oxide particles, the number of basic layers is so small that it is difficult to settle by centrifugation, and even graphite oxide particles that have been sufficiently thinned, The contained liquid can be purified efficiently. In addition, since a shear force is applied to each graphite oxide particle by the flow of the graphite oxide particle-containing liquid, the progress of thinning is promoted, and the oxidized oxide is sufficiently thin and more efficient than when purified. A graphite oxide particle-containing liquid containing graphite particles can be produced.

前記ろ過工程においては、前記ろ過膜の表面に対する前記酸化黒鉛粒子含有液の流速を0.20m/s以上とすることが好ましい。   In the filtration step, the flow rate of the graphite oxide particle-containing liquid with respect to the surface of the filtration membrane is preferably 0.20 m / s or more.

この場合、ろ過膜の閉塞をより効果的に抑制することができる。その結果、不純物イオンをより効果的に酸化黒鉛粒子から分離することができる。またろ過膜の閉塞が抑制されることにより、ろ過をより長時間にわたって行うこともできる。このため、ろ過膜の洗浄の頻度を減らすことができ、精製酸化黒鉛粒子含有液をより短時間で製造することができる。   In this case, blockage of the filtration membrane can be suppressed more effectively. As a result, impurity ions can be more effectively separated from the graphite oxide particles. Moreover, filtration can be performed for a longer time by suppressing the blockage of the filtration membrane. For this reason, the frequency of washing of the filtration membrane can be reduced, and the purified graphite oxide particle-containing liquid can be produced in a shorter time.

前記ろ過工程においては、前記ろ過膜が中空糸膜であることが好ましい。この場合、膜面積が大きいため、短時間でろ過を行うことができる。   In the filtration step, the filtration membrane is preferably a hollow fiber membrane. In this case, since the membrane area is large, filtration can be performed in a short time.

前記ろ過工程において、前記酸化黒鉛粒子含有液を、前記中空糸膜の内側に流通させることが好ましい。   In the filtration step, the graphite oxide particle-containing liquid is preferably circulated inside the hollow fiber membrane.

この場合、酸化黒鉛粒子含有液を中空糸膜の外側に流通させる場合に比べて、ろ過膜の閉塞を容易に抑制することができる。   In this case, the filtration membrane can be easily blocked as compared with the case where the graphite oxide particle-containing liquid is circulated outside the hollow fiber membrane.

前記分散媒添加工程で添加する分散媒が、前記酸化黒鉛粒子含有液中の分散媒と異なる分散媒であり、前記精製工程において、前記ろ過工程及び前記分散媒添加工程を繰り返し行うことも可能である。この場合、分散媒の種類を効率的に変えることが可能となる。   The dispersion medium added in the dispersion medium addition step is a dispersion medium different from the dispersion medium in the graphite oxide particle-containing liquid, and in the purification step, the filtration step and the dispersion medium addition step can be repeated. is there. In this case, the type of dispersion medium can be changed efficiently.

本発明によれば、酸化黒鉛粒子が十分に薄くても、酸化黒鉛粒子含有液を短時間で精製できると同時に液の流れによるせん断力も加えられることから、十分薄い酸化黒鉛粒子を含有する酸化黒鉛粒子含有液の効率的な製造方法が提供される。   According to the present invention, even if the graphite oxide particles are sufficiently thin, the graphite oxide particle-containing liquid can be purified in a short time and, at the same time, shearing force is applied due to the flow of the liquid. An efficient method for producing a particle-containing liquid is provided.

本発明に含まれるろ過工程を実施するためのろ過装置の一例を示す概略図である。It is the schematic which shows an example of the filtration apparatus for implementing the filtration process contained in this invention. ろ過膜としての中空糸膜を示す部分断面図である。It is a fragmentary sectional view which shows the hollow fiber membrane as a filtration membrane. 実施例1のろ過工程で得られたろ液の導電率とろ過時間との関係を示すグラフである。It is a graph which shows the relationship between the electrical conductivity of the filtrate obtained at the filtration process of Example 1, and filtration time. 実施例1で得られた精製酸化黒鉛粒子含有液中の酸化黒鉛粒子の粒度分布を示すグラフである。3 is a graph showing the particle size distribution of graphite oxide particles in the purified graphite oxide particle-containing liquid obtained in Example 1. FIG. 比較例1で得られた精製酸化黒鉛粒子含有液中の酸化黒鉛粒子の粒度分布を示すグラフである。4 is a graph showing the particle size distribution of graphite oxide particles in the purified graphite oxide particle-containing liquid obtained in Comparative Example 1.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

〔第1実施形態〕
まず本発明の第1実施形態について詳細に説明する。本実施形態では、ろ過膜として中空糸膜を使用する場合について説明する。
[First Embodiment]
First, a first embodiment of the present invention will be described in detail. This embodiment demonstrates the case where a hollow fiber membrane is used as a filtration membrane.

[精製酸化黒鉛粒子含有液の製造方法]
本発明は、酸化黒鉛粒子を含有する酸化黒鉛粒子含有液を準備する準備工程と、酸化黒鉛粒子含有液を精製し、精製された精製酸化黒鉛粒子含有液を得る精製工程と、を含む精製酸化黒鉛粒子含有液の製造方法であって、精製工程が、ろ過膜を用いて酸化黒鉛粒子含有液をろ過し、ろ液と酸化黒鉛粒子を含む濃縮液とに分離するろ過工程と、濃縮液に分散媒を添加する分散媒添加工程とを含み、ろ過工程において、ろ過膜の表面に沿って、酸化黒鉛粒子含有液の流れを形成する、精製酸化黒鉛粒子含有液の製造方法である。
[Method for producing purified graphite oxide particle-containing liquid]
The present invention includes a preparation step for preparing a graphite oxide particle-containing liquid containing graphite oxide particles, and a purification step for purifying the graphite oxide particle-containing liquid and obtaining a purified purified graphite oxide particle-containing liquid. A method for producing a graphite particle-containing liquid, wherein the purification step filters the graphite oxide particle-containing liquid using a filtration membrane and separates the filtrate into a concentrate containing the graphite oxide particles, And a dispersion medium addition step of adding a dispersion medium, and in the filtration step, a flow of the graphite oxide particle-containing liquid is formed along the surface of the filtration membrane.

この製造方法によれば、ろ過膜を用いたろ過工程において、ろ過膜の表面に沿って酸化黒鉛粒子含有液の流れが形成される。これにより、ろ過膜の閉塞が十分に抑制される。このため、酸化黒鉛粒子の層間分離の妨げとなっている酸化黒鉛粒子含有液中の不純物イオン等を酸化黒鉛粒子と効率よく分離させることが可能となる。さらにろ過工程は、酸化黒鉛粒子を沈降させるものではないため、遠心分離では沈降させることが困難なほどに基本層の層数が少なくなり十分に薄層化された酸化黒鉛粒子でも、酸化黒鉛粒子含有液の精製を効率よく行うことが可能である。加えて、各酸化黒鉛粒子には、酸化黒鉛粒子含有液の流れによってせん断力が加えられることから、単に精製を行ったときよりも効率的に十分薄い酸化黒鉛含有液を製造することができる。   According to this manufacturing method, the flow of the graphite oxide particle-containing liquid is formed along the surface of the filtration membrane in the filtration step using the filtration membrane. Thereby, obstruction | occlusion of a filtration membrane is fully suppressed. For this reason, it becomes possible to efficiently separate the impurity ions and the like in the graphite oxide particle-containing liquid that hinder interlayer separation of the graphite oxide particles from the graphite oxide particles. Further, since the filtration step does not settle graphite oxide particles, the number of basic layers is so small that it is difficult to settle by centrifugation, and even graphite oxide particles that have been sufficiently thinned, The contained liquid can be purified efficiently. In addition, since a shearing force is applied to each graphite oxide particle by the flow of the graphite oxide particle-containing liquid, a sufficiently thin graphite oxide-containing liquid can be produced more efficiently than when purification is simply performed.

以下、上記準備工程及び精製工程について詳細に説明する。   Hereinafter, the preparation step and the purification step will be described in detail.

<準備工程>
準備工程は、酸化黒鉛粒子と、これを分散させる分散媒とを含有する酸化黒鉛粒子含有液を準備する工程である。
<Preparation process>
The preparation step is a step of preparing a graphite oxide particle-containing liquid containing graphite oxide particles and a dispersion medium in which the particles are dispersed.

酸化黒鉛粒子は、黒鉛を酸化することにより得られる。   Graphite oxide particles can be obtained by oxidizing graphite.

黒鉛としては、各種黒鉛が使用可能であるが、層構造が発達した結晶性の高い黒鉛が酸化黒鉛の収率が高く、基本層の層数が少ない酸化黒鉛が得られやすいという理由から好ましい。このような黒鉛として、天然黒鉛(特に良質なもの)、キッシュ黒鉛(特に高温で作られたもの)、高配向性熱分解黒鉛が好ましく用いられる他、これらの黒鉛の層間を予め広げた膨張黒鉛も好ましく用いられる。また、黒鉛中の金属元素などの不純物は、予め約0.5質量%以下になるまで除去されていることが望ましい。   As graphite, various types of graphite can be used. Graphite with high crystallinity with a developed layer structure is preferable because the yield of graphite oxide is high and graphite oxide with a small number of basic layers is easily obtained. As such graphite, natural graphite (particularly good quality), quiche graphite (particularly made at high temperature), highly oriented pyrolytic graphite are preferably used, and expanded graphite in which the layers of these graphites are expanded in advance. Are also preferably used. Further, it is desirable that impurities such as metal elements in the graphite have been removed in advance until it becomes about 0.5% by mass or less.

黒鉛の平均粒径は、酸化黒鉛粒子の平均粒径に反映されるため、合成したい酸化黒鉛粒子の平均粒径に応じて適宜選択すればよい。具体的には、酸化黒鉛粒子の平均粒径が例えば100nm以上である場合には、黒鉛の平均粒径を0.1μm以上100μm以下とすればよい。ここで、黒鉛の平均粒径を0.5μm以上50μm以下とすることが好ましく、1μm以上25μm以下とすることがさらに好ましい。黒鉛の平均粒径が0.1μm以上であると、平均粒径が0.1μm未満の場合に比べて、得られる酸化黒鉛粒子のアスペクト比が大きくなって形状異方性が大きくなり、黒鉛の平均粒径が100μm以下であると、黒鉛の平均粒径が100μmを超える場合に比べて、酸化に要する時間を短縮することができる。   Since the average particle size of graphite is reflected in the average particle size of graphite oxide particles, it may be appropriately selected according to the average particle size of graphite oxide particles to be synthesized. Specifically, when the average particle diameter of the graphite oxide particles is, for example, 100 nm or more, the average particle diameter of the graphite may be 0.1 μm or more and 100 μm or less. Here, the average particle size of graphite is preferably 0.5 μm or more and 50 μm or less, and more preferably 1 μm or more and 25 μm or less. When the average particle size of the graphite is 0.1 μm or more, the aspect ratio of the obtained graphite oxide particles is increased and the shape anisotropy is increased as compared with the case where the average particle size is less than 0.1 μm. When the average particle size is 100 μm or less, the time required for oxidation can be shortened compared to the case where the average particle size of graphite exceeds 100 μm.

酸化黒鉛粒子の形状は、特に限定されるものではなく、種々の形状であってもよい。例えば酸化黒鉛粒子の形状は球状であっても平板状であってもよい。ここで、酸化黒鉛粒子の形状が平板状であると好ましい。酸化黒鉛粒子の形状が平板状であると、形状異方性がより高まり、形状異方性が小さい酸化黒鉛粒子と比べて、精製酸化黒鉛粒子含有液を用いて導電膜を製造した場合にその導電膜に導電性を発現させるのに必要な導電膜中の酸化黒鉛粒子の含有率を少なくすることができ、結果的に得られる導電膜からの酸化黒鉛粒子の脱離を抑制でき且つ導電膜の透明性をより高めることができる。   The shape of the graphite oxide particles is not particularly limited, and may be various shapes. For example, the graphite oxide particles may be spherical or flat. Here, it is preferable that the graphite oxide particles have a flat plate shape. When the shape of the graphite oxide particles is flat, the shape anisotropy is further increased, and when the conductive film is produced using the purified graphite oxide particle-containing liquid, compared to the graphite oxide particles having a small shape anisotropy, It is possible to reduce the content of graphite oxide particles in the conductive film necessary for causing the conductive film to exhibit conductivity, and to suppress the detachment of the graphite oxide particles from the resulting conductive film, and the conductive film The transparency of the can be further increased.

酸化黒鉛粒子の形状が平板状である場合、酸化黒鉛粒子の平均粒径が100nm以上であることが好ましい。この場合、形状異方性が高い精製酸化黒鉛粒子が製造できる。   When the shape of the graphite oxide particles is flat, the average particle size of the graphite oxide particles is preferably 100 nm or more. In this case, purified graphite oxide particles having high shape anisotropy can be produced.

酸化黒鉛粒子の「平均粒径」とは、光学顕微鏡または電子顕微鏡を使って5個の酸化黒鉛粒子を観察した場合に、酸化黒鉛粒子の平面方向の粒径の平均値を言うものとする。ここで、「粒径」とは、光学顕微鏡または電子顕微鏡を使って酸化黒鉛粒子を観察したときの酸化黒鉛粒子の最も長い対角線の長さを言うものとする。   The “average particle size” of the graphite oxide particles refers to the average value of the particle sizes in the planar direction of the graphite oxide particles when the five graphite oxide particles are observed using an optical microscope or an electron microscope. Here, “particle diameter” refers to the length of the longest diagonal line of graphite oxide particles when the graphite oxide particles are observed using an optical microscope or an electron microscope.

上記酸化黒鉛粒子としては、公知のBrodie法、Staudenmaier法、Hummers−Offeman法、特開2002−53313号公報および特開2003−176116号公報で開示される方法などによって、黒鉛を酸化することにより得られる酸化黒鉛粒子が利用できる。ここで、Brodie法は硝酸、塩素酸カリウムを使用して黒鉛を酸化させる方法であり、Staudenmaier法は、硝酸、硫酸及び塩素酸カリウムを使用して黒鉛を酸化させる方法である。またHummers−Offeman法は、硫酸、硝酸ナトリウム、過マンガン酸カリウムを使用して黒鉛を酸化する方法である。中でもHummers−Offeman法により製造することが、安全性が高く、短時間で酸化黒鉛粒子を製造できる点から好ましい。   The graphite oxide particles can be obtained by oxidizing graphite by a known Brodie method, Staudenmaier method, Hummers-Offeman method, methods disclosed in JP-A Nos. 2002-53313 and 2003-176116, and the like. Graphite oxide particles can be used. Here, the Brodie method is a method of oxidizing graphite using nitric acid and potassium chlorate, and the Staudenmeier method is a method of oxidizing graphite using nitric acid, sulfuric acid and potassium chlorate. The Hummers-Offeman method is a method of oxidizing graphite using sulfuric acid, sodium nitrate, and potassium permanganate. Among them, it is preferable to produce by the Hummers-Offeman method from the viewpoint that the safety is high and the graphite oxide particles can be produced in a short time.

上記酸化黒鉛粒子を分散させるための分散媒は、酸化黒鉛粒子を分散させることが可能な液体であればいかなるものであってもよい。このような分散媒としては、例えばメタノール、エタノール、アセトン、2−ブタノン、水などを挙げることができる。中でも、酸化黒鉛粒子同士の凝集を防止する観点から、比誘電率が15以上であるメタノール、水が好ましい。特に水が好ましく、水の中でも特にイオン交換水を用いることがより好ましい。   The dispersion medium for dispersing the graphite oxide particles may be any liquid as long as it can disperse the graphite oxide particles. Examples of such a dispersion medium include methanol, ethanol, acetone, 2-butanone, water, and the like. Among these, methanol and water having a relative dielectric constant of 15 or more are preferable from the viewpoint of preventing aggregation of graphite oxide particles. Water is particularly preferable, and it is more preferable to use ion-exchanged water among water.

<精製工程>
精製工程は、上記の準備工程で得られた酸化黒鉛粒子含有液を精製し、精製された精製酸化黒鉛粒子含有液を得る工程であり、具体的には、上記の準備工程で得られた酸化黒鉛粒子含有液において、酸化黒鉛粒子の薄層化の妨げとなる不純物イオン等を酸化黒鉛粒子と分離するために行う工程である。
<Purification process>
The purification step is a step of purifying the graphite oxide particle-containing liquid obtained in the above preparation step to obtain a purified purified graphite oxide particle-containing liquid, and specifically, the oxidation obtained in the above preparation step. In the graphite particle-containing liquid, this is a step performed to separate impurity ions and the like that hinder the thinning of the graphite oxide particles from the graphite oxide particles.

(ろ過工程)
上記精製工程は、ろ過膜としての中空糸膜を用いて酸化黒鉛粒子含有液をろ過し、酸化黒鉛粒子を含有する濃縮液と、不純物イオン等を含有するろ液とに分離するろ過工程を含む。このろ過工程においては、中空糸膜の表面に沿って、酸化黒鉛粒子含有液の流れを形成する。
(Filtration process)
The purification step includes a filtration step of filtering the graphite oxide particle-containing liquid using a hollow fiber membrane as a filtration membrane and separating the filtrate into a concentrate containing graphite oxide particles and a filtrate containing impurity ions and the like. . In this filtration step, a flow of the graphite oxide particle-containing liquid is formed along the surface of the hollow fiber membrane.

図1は、ろ過工程を実施するろ過装置の一例を示す図である。図1に示すように、ろ過装置100は、酸化黒鉛粒子含有液を貯留する循環タンク1と、循環ポンプ2と、酸化黒鉛粒子含有液をろ過するろ過モジュール3とを備えている。ろ過モジュール3は中空糸膜を有しており、中空糸膜によって酸化黒鉛粒子含有液をろ過し、ろ液と酸化黒鉛粒子を含む濃縮液とに分離するものである。また循環タンク1とろ過モジュール3とは、酸化黒鉛含有液を供給する酸化黒鉛粒子含有液供給ラインL1によって接続されるとともに、ろ過モジュール3で得られた濃縮液を循環タンク1に返送する返送ラインL2によって接続されている。またろ過モジュール3には、ろ液を排出するろ液排出ラインL3が接続され、ろ液排出ラインL3からは、逆洗水を供給する逆洗水供給ラインL4が分岐している。逆洗水供給ラインL4には、逆洗水を貯留する逆洗タンク5と、逆洗水をろ過モジュール3に供給する逆洗ポンプ4とが設置されている。   FIG. 1 is a diagram illustrating an example of a filtration device that performs a filtration step. As shown in FIG. 1, the filtration device 100 includes a circulation tank 1 that stores a graphite oxide particle-containing liquid, a circulation pump 2, and a filtration module 3 that filters the graphite oxide particle-containing liquid. The filtration module 3 has a hollow fiber membrane, and the graphite oxide particle-containing liquid is filtered by the hollow fiber membrane and separated into a filtrate and a concentrated liquid containing the graphite oxide particles. The circulation tank 1 and the filtration module 3 are connected by a graphite oxide particle-containing liquid supply line L1 for supplying graphite oxide-containing liquid, and a return line for returning the concentrated liquid obtained by the filtration module 3 to the circulation tank 1. Connected by L2. Moreover, the filtrate discharge line L3 which discharges a filtrate is connected to the filtration module 3, and the backwash water supply line L4 which supplies backwash water branches from the filtrate discharge line L3. The backwash water supply line L4 is provided with a backwash tank 5 that stores backwash water and a backwash pump 4 that supplies backwash water to the filtration module 3.

このろ過装置100では、循環タンク1に貯留された酸化黒鉛粒子含有液は、循環ポンプ2によって、酸化黒鉛粒子含有液供給ラインL1を経てろ過モジュール3に供給される。   In the filtration device 100, the graphite oxide particle-containing liquid stored in the circulation tank 1 is supplied to the filtration module 3 by the circulation pump 2 via the graphite oxide particle-containing liquid supply line L1.

図2は、ろ過膜としての中空糸膜を示す部分断面図である。図2に示すように、中空糸膜10の一端から酸化黒鉛粒子含有液Aを導入すると、酸化黒鉛粒子含有液Aがろ過され、酸化黒鉛粒子を含む濃縮液Cと、酸化黒鉛粒子を含まず中空糸膜10を通過した不純物イオンを含むろ液Bとに分離される。濃縮液Cは、中空糸膜10の他端から排出され、返送ラインL2を経て循環タンク1に返送される。循環タンク1に返送された濃縮液Cは、循環タンク1内に貯留されている酸化黒鉛粒子含有液と混合され、再び酸化黒鉛粒子含有液として使用される。ろ液Bは、ろ液排出ラインL3を経て中空糸膜10の外側に排出される。詳しく述べると、ろ過モジュール3は、中空糸膜10を収容する筒状の密閉容器(図示せず)を有しており、ろ液Bは一旦その密閉容器内に排出され、この密閉容器からろ液排出ラインL3を経て中空糸膜10の外側に排出される。   FIG. 2 is a partial cross-sectional view showing a hollow fiber membrane as a filtration membrane. As shown in FIG. 2, when the graphite oxide particle-containing liquid A is introduced from one end of the hollow fiber membrane 10, the graphite oxide particle-containing liquid A is filtered, and the concentrated liquid C including the graphite oxide particles and the graphite oxide particles are not included. The filtrate is separated into the filtrate B containing impurity ions that have passed through the hollow fiber membrane 10. The concentrated liquid C is discharged from the other end of the hollow fiber membrane 10 and returned to the circulation tank 1 through the return line L2. The concentrated liquid C returned to the circulation tank 1 is mixed with the graphite oxide particle-containing liquid stored in the circulation tank 1 and used again as the graphite oxide particle-containing liquid. The filtrate B is discharged to the outside of the hollow fiber membrane 10 through the filtrate discharge line L3. More specifically, the filtration module 3 has a cylindrical sealed container (not shown) that accommodates the hollow fiber membrane 10, and the filtrate B is once discharged into the sealed container. It is discharged to the outside of the hollow fiber membrane 10 via the liquid discharge line L3.

ろ過モジュール3で使用する中空糸膜10としては、例えばポリアクリロニトリル、ポリフッ化ビニリデン、酢酸セルロース、ポリスルホン、ポリイミド、セラミックなどの材料を用いることができる。   As the hollow fiber membrane 10 used in the filtration module 3, for example, materials such as polyacrylonitrile, polyvinylidene fluoride, cellulose acetate, polysulfone, polyimide, and ceramic can be used.

中空糸膜10としては、UF膜を用いることが好ましい。UF膜を使った場合、膜表面の平滑性が高いため、酸化黒鉛粒子による膜の閉塞を効果的に抑制することができる。中空糸膜10としてUF膜を使用する場合、中空糸膜10の分画分子量は、酸化黒鉛粒子含有液中の不純物イオン等を通過させ、酸化黒鉛粒子を通過させない大きさであればよく、通常は1000〜500000であり、好ましくは3000〜10000である。   As the hollow fiber membrane 10, it is preferable to use a UF membrane. When the UF membrane is used, the membrane surface is highly smooth, so that the membrane can be effectively prevented from being blocked by graphite oxide particles. When a UF membrane is used as the hollow fiber membrane 10, the molecular weight cut off of the hollow fiber membrane 10 may be a size that allows the impurity ions in the graphite oxide particle-containing liquid to pass therethrough and does not allow the graphite oxide particles to pass through. Is 1000 to 500000, preferably 3000 to 10000.

中空糸膜10の内径は通常、0.05〜100mmであり、好ましくは0.5〜3mmである。これにより、酸化黒鉛粒子含有液の閉塞をより十分に抑制できるとともに、小さなろ過圧力で効果的に酸化黒鉛粒子含有液の流速を高めることができる。   The inner diameter of the hollow fiber membrane 10 is usually 0.05 to 100 mm, preferably 0.5 to 3 mm. Thereby, the blockage of the graphite oxide particle-containing liquid can be more sufficiently suppressed, and the flow rate of the graphite oxide particle-containing liquid can be effectively increased with a small filtration pressure.

中空糸膜10の表面に沿って、酸化黒鉛粒子含有液の流れを形成する形態としては、酸化黒鉛粒子含有液を中空糸膜10の外側に流通させ、不純物イオン等を含むろ液を中空糸膜10の内側に排出させる形態と、酸化黒鉛粒子含有液を中空糸膜10の内側に流通させ、不純物イオン等を含むろ液を中空糸膜10の外側に排出させる形態とがある。   As a form of forming the flow of the graphite oxide particle-containing liquid along the surface of the hollow fiber membrane 10, the graphite oxide particle-containing liquid is circulated to the outside of the hollow fiber membrane 10, and the filtrate containing impurity ions or the like is passed through the hollow fiber. There are a configuration in which the graphite oxide particle-containing liquid is circulated inside the hollow fiber membrane 10 and a filtrate containing impurity ions and the like is discharged outside the hollow fiber membrane 10.

これらのうち、酸化黒鉛粒子含有液を中空糸膜10の内側に流通させ、不純物イオン等を含むろ液を中空糸膜10の外側に排出させる方法が、効果的に酸化黒鉛粒子含有液の閉塞を抑制できることから好ましい。   Among these, the method of allowing the graphite oxide particle-containing liquid to flow inside the hollow fiber membrane 10 and discharging the filtrate containing impurity ions to the outside of the hollow fiber membrane 10 effectively blocks the graphite oxide particle-containing liquid. Can be suppressed, which is preferable.

中空糸膜10の表面10aに対する酸化黒鉛粒子含有液Aの流速は0.2m/s以上であることが好ましい。この場合、中空糸膜10の閉塞をより効果的に抑制することができる。その結果、不純物イオンをより効果的に酸化黒鉛粒子から分離することができる。また中空糸膜10の閉塞が抑制されることにより、ろ過をより長時間にわたって行うこともできる。このため、中空糸膜10の洗浄の頻度を減らすことができ、精製酸化黒鉛粒子含有液をより短時間で製造することができる。   The flow rate of the graphite oxide particle-containing liquid A with respect to the surface 10a of the hollow fiber membrane 10 is preferably 0.2 m / s or more. In this case, the blockage of the hollow fiber membrane 10 can be more effectively suppressed. As a result, impurity ions can be more effectively separated from the graphite oxide particles. Moreover, filtration can be performed for a longer time by suppressing the blockage of the hollow fiber membrane 10. For this reason, the frequency of washing of the hollow fiber membrane 10 can be reduced, and the purified graphite oxide particle-containing liquid can be produced in a shorter time.

中空糸膜10の表面10aに対する酸化黒鉛粒子含有液Aの流速はより好ましくは0.5m/s以上であり、さらに好ましくは1m/s以上である。但し、流速は10m/s以下であることが酸化黒鉛粒子の切断を防止する点から好ましい。   The flow rate of the graphite oxide particle-containing liquid A with respect to the surface 10a of the hollow fiber membrane 10 is more preferably 0.5 m / s or more, and further preferably 1 m / s or more. However, the flow rate is preferably 10 m / s or less from the viewpoint of preventing the graphite oxide particles from being cut.

上記酸化黒鉛粒子含有液Aの流速は以下のように定義される。   The flow rate of the graphite oxide particle-containing liquid A is defined as follows.

Figure 2011079701
Figure 2011079701

上記式から分かるように、流速は、ろ過流量と、中空糸膜10の長手方向に直交する面における酸化黒鉛粒子含有液Aが流通する流路の面積とによって決定される。ここで、「流路の面積」とは、中空糸膜10の長手方向に直交する面と中空糸膜10の内壁面である表面10aとの交線によって囲まれる領域の面積に中空糸膜10の本数を乗じたものを意味する。   As can be seen from the above equation, the flow rate is determined by the filtration flow rate and the area of the flow path through which the graphite oxide-containing liquid A flows on the surface orthogonal to the longitudinal direction of the hollow fiber membrane 10. Here, the “area of the flow path” is the area of the region surrounded by the line of intersection between the surface orthogonal to the longitudinal direction of the hollow fiber membrane 10 and the surface 10 a that is the inner wall surface of the hollow fiber membrane 10. Means the product of the number of

ろ過圧力は通常、0.01〜10MPaであるが、0.02〜1MPaであることが好ましく、0.04〜0.2MPaであることがより好ましい。ろ過圧力を0.02〜1MPaとすることで、膜の閉塞が起こりにくく、ろ過流量も大きくすることができる。ろ過圧力は、流量等により調整することができる。   The filtration pressure is usually from 0.01 to 10 MPa, preferably from 0.02 to 1 MPa, and more preferably from 0.04 to 0.2 MPa. By setting the filtration pressure to 0.02 to 1 MPa, the membrane is hardly blocked and the filtration flow rate can be increased. The filtration pressure can be adjusted by the flow rate or the like.

酸化黒鉛粒子含有液Aを中空糸膜10の外側に流通させ、不純物イオン等を含むろ液を中空糸膜10の内側に排出させる形態を用いる場合でも、流速及びろ過圧力は、酸化黒鉛粒子含有液を中空糸膜10の内側に流通させ、不純物イオン等を含むろ液を中空糸膜10の外側に排出させる方法と同様である。具体的には、酸化黒鉛粒子含有液Aをろ過モジュール3の密閉容器内に流通させ、濃縮液Cを返送ラインL2を経て循環タンク1に返送し、ろ液Bを中空糸膜10の内側に集め、流通させて、ろ液排出ラインL3を経て中空糸膜10の外側に排出することになる。但し、上記流速の定義式において、「流路の面積」とは、中空糸膜10を収容する筒状の密閉容器の長手方向に直交する面と密閉容器の内壁面との交線によって囲まれる領域の面積から、密閉容器の長手方向に直交する面と中空糸膜の外周面との交線によって囲まれる領域の面積に中空糸膜10の本数を乗じた値を差し引いた面積を意味する。   Even when the form in which the graphite oxide particle-containing liquid A is circulated outside the hollow fiber membrane 10 and the filtrate containing impurity ions and the like is discharged to the inside of the hollow fiber membrane 10 is used, the flow rate and filtration pressure are not limited. This is the same as the method in which the liquid is circulated inside the hollow fiber membrane 10 and the filtrate containing impurity ions and the like is discharged to the outside of the hollow fiber membrane 10. Specifically, the graphite oxide particle-containing liquid A is circulated in the sealed container of the filtration module 3, the concentrated liquid C is returned to the circulation tank 1 via the return line L2, and the filtrate B is placed inside the hollow fiber membrane 10. Collected, distributed, and discharged to the outside of the hollow fiber membrane 10 through the filtrate discharge line L3. However, in the above flow rate definition formula, “the area of the flow path” is surrounded by the line of intersection between the surface perpendicular to the longitudinal direction of the cylindrical sealed container containing the hollow fiber membrane 10 and the inner wall surface of the sealed container. It means an area obtained by subtracting a value obtained by multiplying the area of the region surrounded by the line of intersection between the surface orthogonal to the longitudinal direction of the sealed container and the outer peripheral surface of the hollow fiber membrane by the number of the hollow fiber membranes 10 from the area of the region.

(分散媒添加工程)
精製工程は、ろ過により得られた濃縮液Cに分散媒を添加する分散媒添加工程を含む。分散媒は循環タンク1に連続あるいは断続的に添加され、循環する分散液中の酸化黒鉛粒子の濃度を調整するとともに不純物イオンの濃度を低下させる。ここで、分散媒としては通常、酸化黒鉛粒子含有液に含まれていた元の分散媒と同一のものが用いられるが、用途に応じて、酸化黒鉛粒子含有液に含まれていた元の分散媒と異なる分散媒を用いることもできる。この場合、ろ過工程を含む精製工程を繰り返し行うことで、酸化黒鉛粒子含有液に含まれていた元の分散媒を、これと異なる他の分散媒に置換することが可能となる。
(Dispersion medium addition process)
The purification step includes a dispersion medium addition step of adding a dispersion medium to the concentrated liquid C obtained by filtration. The dispersion medium is continuously or intermittently added to the circulation tank 1 to adjust the concentration of graphite oxide particles in the circulating dispersion and reduce the concentration of impurity ions. Here, the same dispersion medium as the original dispersion medium contained in the graphite oxide particle-containing liquid is usually used as the dispersion medium, but depending on the application, the original dispersion medium contained in the graphite oxide particle-containing liquid is used. A dispersion medium different from the medium can also be used. In this case, it is possible to replace the original dispersion medium contained in the graphite oxide particle-containing liquid with another dispersion medium different from this by repeating the purification process including the filtration process.

精製は酸化黒鉛粒子の平均厚さが0.4nm〜10nmになるまで実施することが好ましい。この場合、酸化黒鉛における基本層の層数が非常に少なく、平均厚さが薄いことで還元が容易となり、また、形状異方性が顕著に高く、そのため精製酸化黒鉛粒子含有液を用いて導電膜を製造した場合にその導電膜に導電性を発現させるために必要な導電膜中の酸化黒鉛粒子の含有率を低減することが可能となる。このため、導電膜について高い透明性が得られるとともに、導電膜からの酸化黒鉛粒子の脱離を顕著に抑制できる。   The purification is preferably performed until the average thickness of the graphite oxide particles becomes 0.4 nm to 10 nm. In this case, the number of basic layers in graphite oxide is very small, and the average thickness is thin, so that reduction is easy, and the shape anisotropy is remarkably high. When the film is manufactured, it is possible to reduce the content of the graphite oxide particles in the conductive film necessary for the conductive film to exhibit conductivity. For this reason, high transparency is obtained for the conductive film, and detachment of the graphite oxide particles from the conductive film can be remarkably suppressed.

酸化黒鉛粒子の「平均厚さ」とは、原子間力顕微鏡を使って5個の酸化黒鉛粒子について測定された厚さの平均値を言うものとする。   The “average thickness” of graphite oxide particles refers to the average value of thicknesses measured for five graphite oxide particles using an atomic force microscope.

精製工程は、ろ過工程及び分散媒添加工程を含んでいればよく、ろ過工程及び分散媒添加工程を含んでいれば、精製工程の最終段階が分散媒添加工程である必要はなく、ろ過工程であってもよい。   The purification process only needs to include a filtration process and a dispersion medium addition process. If the filtration process and the dispersion medium addition process are included, the final stage of the purification process does not need to be the dispersion medium addition process. There may be.

なお、本発明において、「精製」とは、ろ過工程で得られるろ液の導電率を1/10以下まで低下させることを言う。   In the present invention, “purification” refers to reducing the conductivity of the filtrate obtained in the filtration step to 1/10 or less.

(洗浄工程)
さらにろ過工程を繰り返し行う場合、ろ過工程を一時的に停止し、その間、中空糸膜10を洗浄する洗浄工程を行ってもよい。この洗浄の方法としては、例えば薬品洗浄、逆洗等、種々の方法があるが、短時間で行うことができることから、逆洗が好ましい。
(Washing process)
Furthermore, when performing a filtration process repeatedly, you may stop the filtration process temporarily and may perform the washing | cleaning process which wash | cleans the hollow fiber membrane 10 in the meantime. There are various cleaning methods such as chemical cleaning and backwashing, but backwashing is preferable because it can be performed in a short time.

図1に示すろ過装置100においては、逆洗タンク5から逆洗水供給ラインL4及びろ液排出ラインL3を経て逆洗ポンプ4によりろ過モジュール3に逆洗水を供給することにより逆洗を行うことができる。   In the filtration apparatus 100 shown in FIG. 1, backwashing is performed by supplying backwashing water from the backwashing tank 5 to the filtration module 3 through the backwashing water supply line L4 and the filtrate discharge line L3. be able to.

(ろ過工程を含まない精製工程)
精製工程は、ろ過工程を含まない精製工程を含んでいなくてもよいが、ろ過工程を含まない精製工程を、ろ過工程を含む精製工程の前に含んでいる方が好ましい。ろ過工程を含まない精製工程を行った後にろ過工程を行うと、酸化黒鉛粒子含有液の酸性が弱くなっており、ろ過膜に与えるダメージを十分に低減できる。
(Purification process not including filtration process)
The purification step may not include a purification step that does not include a filtration step, but preferably includes a purification step that does not include a filtration step before a purification step that includes a filtration step. When the filtration step is performed after the purification step not including the filtration step, the acidity of the graphite oxide particle-containing liquid is weakened, and damage to the filtration membrane can be sufficiently reduced.

ろ過工程を含まない精製工程としては、例えばデカンテーション法、遠心分離法、透析法、イオン交換法を用いたものを挙げられる。これらの中でも、遠心分離法を用いた精製工程が、比較的短時間で酸化黒鉛粒子含有液の精製が可能であることから好ましい。   Examples of the purification step not including a filtration step include those using a decantation method, a centrifugal separation method, a dialysis method, and an ion exchange method. Among these, a purification process using a centrifugal separation method is preferable because the liquid containing graphite oxide particles can be purified in a relatively short time.

遠心分離法を用いた精製工程は、例えば、酸化黒鉛粒子含有液を遠心分離する工程と、遠心分離された酸化黒鉛粒子含有液から上澄みを除去する工程と、分散媒を添加する分散媒添加工程を含む。ここで、分散媒としては通常、酸化黒鉛粒子含有液に含まれていた元の分散媒と同一のものが用いられるが、用途に応じて、酸化黒鉛粒子含有液に含まれていた元の分散媒と異なる分散媒を用いることもできる。この場合、精製工程を繰り返し行うことで、酸化黒鉛粒子含有液に含まれていた元の分散媒を、これと異なる他の分散媒に置換することが可能となる。   The purification step using the centrifugal separation method includes, for example, a step of centrifuging the graphite oxide particle-containing liquid, a step of removing the supernatant from the centrifuged graphite oxide particle-containing liquid, and a dispersion medium adding step of adding a dispersion medium including. Here, the same dispersion medium as the original dispersion medium contained in the graphite oxide particle-containing liquid is usually used as the dispersion medium, but depending on the application, the original dispersion medium contained in the graphite oxide particle-containing liquid is used. A dispersion medium different from the medium can also be used. In this case, it is possible to replace the original dispersion medium contained in the graphite oxide particle-containing liquid with another dispersion medium different from this by repeatedly performing the purification step.

上記遠心分離法を用いた精製工程は、酸化黒鉛粒子の平均厚さが50nm以上の段階で行うことが望ましい。この場合、酸化黒鉛粒子の沈降速度が適度なものとなる。精製が進むと酸化黒鉛粒子の平均厚さが小さくなって酸化黒鉛粒子の沈降速度が遅くなるため、上記遠心分離法を用いた精製工程は、精製の初期段階に行うことが望ましい。   The purification step using the centrifugal separation method is desirably performed at a stage where the average thickness of the graphite oxide particles is 50 nm or more. In this case, the sedimentation rate of the graphite oxide particles becomes appropriate. As the purification proceeds, the average thickness of the graphite oxide particles becomes smaller and the sedimentation rate of the graphite oxide particles becomes slower. Therefore, the purification process using the centrifugal separation method is desirably performed in the initial stage of purification.

上記酸化黒鉛粒子は、精製酸化黒鉛粒子含有液を得るために、分散媒のほか、還元剤や高分子材料などの他の成分を添加してもよい。   In addition to the dispersion medium, the graphite oxide particles may contain other components such as a reducing agent and a polymer material in order to obtain a purified graphite oxide particle-containing liquid.

[導電体の製造方法]
上記精製酸化黒鉛粒子含有液の製造方法で得られた精製酸化黒鉛粒子含有液は、導電体の製造に使用することが可能である。ここで、「導電膜」とは、1.0×1012(Ω/□)以下の面積抵抗率を有する膜を言う。
[Conductor manufacturing method]
The purified graphite oxide particle-containing liquid obtained by the method for producing the purified graphite oxide particle-containing liquid can be used for the production of a conductor. Here, the “conductive film” refers to a film having a sheet resistivity of 1.0 × 10 12 (Ω / □) or less.

導電体を製造するには、上記のようにして得られた精製酸化黒鉛粒子含有液を、基体の表面上に塗布してフィルム状に形成し、その後酸化黒鉛粒子含有液を乾燥させて分散媒を除去し、コート膜を形成させた後、酸化黒鉛粒子の還元処理を行えばよい。   In order to produce the conductor, the purified graphite oxide particle-containing liquid obtained as described above is coated on the surface of the substrate to form a film, and then the graphite oxide particle-containing liquid is dried to obtain a dispersion medium. After removing and forming a coat film, the graphite oxide particles may be reduced.

精製酸化黒鉛粒子含有液の塗布の方法は、基体の表面上への塗布が可能であれば特に限定されるものではなく、例えばスピンコータ法、バーコータ法、ロールコータ法などの方法を用いることができる。   The method for applying the purified graphite oxide particle-containing liquid is not particularly limited as long as it can be applied on the surface of the substrate. For example, a spin coater method, a bar coater method, a roll coater method, or the like can be used. .

精製酸化黒鉛粒子含有液を乾燥して分散媒を除去する際の加熱温度は、好ましくは30℃〜100℃、より好ましくは40℃〜80℃である。ただし、数分程度の短い時間であれば、高沸点の溶媒を除去する等の目的のために、200℃といった高温で加熱してもよい。コート膜形成後の酸化黒鉛粒子の還元は例えば、200℃で30分以上加熱処理することで達成される。   The heating temperature for removing the dispersion medium by drying the purified graphite oxide particle-containing liquid is preferably 30 ° C to 100 ° C, more preferably 40 ° C to 80 ° C. However, the heating may be performed at a high temperature such as 200 ° C. for the purpose of removing the high boiling point solvent for a short time of about several minutes. The reduction of the graphite oxide particles after the formation of the coat film is achieved, for example, by heat treatment at 200 ° C. for 30 minutes or more.

なお、精製酸化黒鉛粒子含有液中に還元剤が含まれている場合には、酸化黒鉛粒子還元のための加熱温度を下げることができる。こうして導電体を得ることができる。   In addition, when the reducing agent is contained in the purified graphite oxide particle-containing liquid, the heating temperature for reducing the graphite oxide particles can be lowered. Thus, a conductor can be obtained.

〔第2実施形態〕
次に本発明の第2実施形態について説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.

本実施形態は、ろ過膜として、中空糸膜に代えて、円盤状平膜を用いる点で第1実施形態と相違する。   This embodiment is different from the first embodiment in that a disk-shaped flat membrane is used as a filtration membrane instead of a hollow fiber membrane.

ここで、円盤状平膜は通常、複数枚の円盤状平膜を互いに平行に配列させ、密閉容器中に収容された状態で使用される。ここで、複数の円盤状平膜にはそれらの中心を通るように回転軸が貫通し、その両端は密閉容器によって回転可能に支持される。この状態で、円盤状平膜を回転させることにより、円盤状平膜の表面に沿って、酸化黒鉛粒子含有液の流れを形成することができる。従って、本実施形態でも、第1実施形態と同様、精製酸化黒鉛粒子含有液を短時間で製造することができる。   Here, the disc-shaped flat membrane is usually used in a state where a plurality of disc-shaped flat membranes are arranged in parallel to each other and accommodated in a sealed container. Here, a rotating shaft penetrates through the center of the plurality of disc-shaped flat membranes, and both ends thereof are rotatably supported by the sealed container. In this state, the flow of the graphite oxide particle-containing liquid can be formed along the surface of the disk-shaped flat film by rotating the disk-shaped flat film. Therefore, also in the present embodiment, a purified graphite oxide particle-containing liquid can be produced in a short time as in the first embodiment.

本実施形態では、酸化黒鉛粒子含有液の流速は、円盤の中心と外周の中間の位置(中心から半径の1/2だけ離れた位置)での膜の速度で定義され、円盤状平膜の半径r(m)と平膜の回転速度v(回/s)を使って以下のようにして計算される。

Figure 2011079701
In this embodiment, the flow rate of the graphite oxide particle-containing liquid is defined by the film speed at a position between the center and the outer periphery of the disk (a position away from the center by a half of the radius). It is calculated as follows using the radius r (m) and the rotation speed v (times / s) of the flat membrane.
Figure 2011079701

本発明は、上記第1及び第2実施形態に限定されるものではない。例えば上記第1及び第2実施形態では、ろ過膜として中空糸膜や円盤状平膜が使用されているが、これらに限らず、スパイラル型平膜なども使用することができる。   The present invention is not limited to the first and second embodiments. For example, in the first and second embodiments, a hollow fiber membrane or a disk-like flat membrane is used as the filtration membrane, but not limited to this, a spiral flat membrane can also be used.

また本発明の製造方法は、その精製工程に代えて、上述したろ過工程を含む濃縮工程を用いることで酸化黒鉛粒子含有液の濃縮に使用することもできる。この場合、濃縮工程において、ろ過工程の後に分散媒添加工程を行わなくても行ってもよいが、ろ過工程の後に分散媒添加工程を行う場合には、分散媒添加工程を行うたびごとに分散媒の添加量を減らす必要がある。   Moreover, it can replace with the refinement | purification process and can use the manufacturing method of this invention for the concentration of a graphite oxide particle containing liquid by using the concentration process containing the filtration process mentioned above. In this case, in the concentration step, the dispersion medium addition step may not be performed after the filtration step. However, when the dispersion medium addition step is performed after the filtration step, the dispersion medium is dispersed every time the dispersion medium addition step is performed. It is necessary to reduce the amount of medium added.

以下、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited to a following example at all.

(実施例1)
エスイーシー社製天然黒鉛SNO−3(純度99.97質量%以上)10gを、硝酸ナトリウム(純度99%)7.5g、硫酸(純度96%)621g、過マンガン酸カリウム(純度99%)45gからなる混合液中に入れ、約20℃で7日間、緩やかに撹拌しながら放置した。
Example 1
10 g of natural graphite SNO-3 (purity 99.97% by mass or more) manufactured by ESC Co., Ltd. from 7.5 g of sodium nitrate (purity 99%), 621 g of sulfuric acid (purity 96%), 45 g of potassium permanganate (purity 99%) Into the resulting mixture and left at about 20 ° C. for 7 days with gentle stirring.

得られた高粘度の液を、5質量%硫酸水溶液1000cmに約1時間で撹拌しながら加え、さらに2時間撹拌した。 The obtained high-viscosity liquid was added to 1000 cm 3 of a 5% by mass sulfuric acid aqueous solution with stirring for about 1 hour, and further stirred for 2 hours.

得られた液に過酸化水素(30質量%水溶液)30gを加えて、2時間撹拌した。この液に対して遠心分離を一度行い、上澄みを除去した後、水を加えた。   Hydrogen peroxide (30 mass% aqueous solution) 30g was added to the obtained liquid, and it stirred for 2 hours. The liquid was centrifuged once, the supernatant was removed, and water was added.

以上の操作を20回繰り返して行い、得られた20回分の液を混合した。そして、混合した液に水を加えることで、全液量が60Lになるように調整した。以下、この酸化黒鉛粒子分散液を「分散液A」と呼ぶ。   The above operation was repeated 20 times, and the obtained 20 liquids were mixed. And it adjusted so that the total liquid amount might be set to 60L by adding water to the mixed liquid. Hereinafter, this graphite oxide particle dispersion is referred to as “dispersion A”.

次に、この分散液Aに対し、図1に示すろ過装置100を使用して精製を行った。具体的には、まず分散液Aを循環タンク1に入れた。そして、循環ポンプ2により、限外ろ過モジュール(ろ過膜:中空糸(材質:ポリスルホン、内径:1.4mm、本数:900本、)3、有効膜面積:4.5m、分画分子量:6000)に分散液Aを通液し、ろ過膜表面に沿うように分散液Aを流通させた。具体的にはろ過膜の内壁面に沿うように分散液Aを通液させた。このとき、ろ過膜表面に対する分散液Aの流速が2.5m/sとなるようにろ過流量を調節した。またこのとき、ろ過圧力は0.12MPaとした。 Next, the dispersion A was purified using the filtration device 100 shown in FIG. Specifically, first, the dispersion A was placed in the circulation tank 1. Then, the ultrafiltration module (filtration membrane: hollow fiber (material: polysulfone, inner diameter: 1.4 mm, number: 900)) 3, effective membrane area: 4.5 m 2 , fractional molecular weight: 6000 is circulated by the circulation pump 2. ) Was passed through the dispersion A, and the dispersion A was circulated along the filtration membrane surface. Specifically, the dispersion A was passed along the inner wall surface of the filtration membrane. At this time, the filtration flow rate was adjusted so that the flow rate of the dispersion A with respect to the filtration membrane surface was 2.5 m / s. At this time, the filtration pressure was 0.12 MPa.

こうして分散液Aに対し、ろ過膜を用いて繰り返し精製を行った。このとき、ろ過で減少した分の水については新たに加え、分散液中の酸化黒鉛粒子濃度が一定になるようにした。またろ過装置100においては、ろ過とろ過膜の逆洗とを交互に行った。逆洗は、逆洗タンク5に水を入れておき、逆洗を行う際に、逆洗ポンプ4により逆洗タンク5からろ過モジュール3に水を逆流させることによって行った。こうして精製酸化黒鉛粒子含有液を得た。   Thus, the dispersion A was repeatedly purified using a filtration membrane. At this time, the amount of water reduced by filtration was newly added, and the concentration of graphite oxide particles in the dispersion was made constant. Moreover, in the filtration apparatus 100, filtration and backwashing of the filtration membrane were performed alternately. Backwashing was performed by putting water into the backwash tank 5 and backflowing water from the backwash tank 5 to the filtration module 3 by the backwash pump 4 when backwashing was performed. Thus, a purified graphite oxide particle-containing liquid was obtained.

ろ過モジュール3を用いてろ過を行っている間、ろ過時間とろ液の導電率との関係を調べた。結果を図3に示す。図3に示すように、時間とともにろ液の導電率が減少していることが分かる。これは、ろ液中に不純物イオン等が入り込んでいること、即ち、酸化黒鉛粒子と不純物イオン等とが効率よく分離されていることを示すものである。なお、図3において一定間隔で導電率が極端に下がっているのは、膜の逆洗を行った際に一時的に導電率が下がることに起因するものである。   While filtering using the filtration module 3, the relationship between the filtration time and the conductivity of the filtrate was investigated. The results are shown in FIG. As can be seen from FIG. 3, the conductivity of the filtrate decreases with time. This indicates that impurity ions or the like have entered the filtrate, that is, graphite oxide particles and impurity ions or the like are efficiently separated. In FIG. 3, the extremely low conductivity at regular intervals is due to a temporary decrease in conductivity when the film is backwashed.

図3に示す結果より、分散液A(原料黒鉛200g)のろ液の導電率が1/1000まで低下(すなわち精製)するのに要した時間は5時間であった。   From the result shown in FIG. 3, the time required for the conductivity of the filtrate of the dispersion A (raw material graphite 200 g) to be reduced to 1/1000 (that is, purified) was 5 hours.

また通液中、ろ過流量は100L/h以上であり、ろ過膜の閉塞によりろ液の流量が大きく減少することはなかった。   Moreover, the filtration flow rate was 100 L / h or more during the liquid flow, and the flow rate of the filtrate was not greatly reduced by the clogging of the filtration membrane.

なお、本実施例で得られた精製酸化黒鉛粒子含有液の粒度分布を測定した。具体的には、酸化黒鉛粒子の層数の相対比較は液相沈降式粒度分布計(HORIBA製超遠心式自動粒度分布測定装置CAPA−700)による粒度分布測定により行った。   The particle size distribution of the purified graphite oxide particle-containing liquid obtained in this example was measured. Specifically, the relative comparison of the number of layers of graphite oxide particles was performed by measuring the particle size distribution with a liquid phase sedimentation particle size distribution meter (HORIBA ultracentrifugal automatic particle size distribution analyzer CAPA-700).

液相沈降式粒度分布計とは、粒径に応じて溶媒中の粒子の沈降速度が異なることを利用して粒子の粒径を評価する装置である。密度(ρ)、粘性係数(η)の溶媒中に存在する直径(D)、密度(ρ)の球形粒子はStokesの沈降式に従って一定速度で沈降することが知られており、液相沈降式粒度分布計ではこの理論を応用している(例えばHORIBA製超遠心式自動粒度分布測定装置CAPA−700マニュアル)。Stokesの沈降式は球形粒子に対する式で、形状異方性が高い粒子などについては正確な粒径を反映していない。しかし、溶媒の密度(ρ)、粘性係数(η)および粒子の密度(ρ)が同一の場合、得られる粒径の値は沈降速度と対応があり、粒径の値が小さいものほど沈降速度は遅くなっている。一方で、層数が少ない酸化黒鉛粒子ほど沈降速度が遅くなることから、同一のρ,η,ρで測定したデータをもとに粒径分布を比較することで層数の相対比較が可能になる。粒度分布測定は、下記表1に示す条件で行った。結果を図4に示す。なお、図4において、量(%)(面積基準)とは、全粒子について粒径を直径として求めた円の面積の総和において、ある粒径を持つ粒子の円の面積の和が占める割合を表す。図4に示すように、粒径は0.0〜0.5μmの範囲に集中しており、酸化黒鉛粒子の大部分について薄層化が進行したことが分かる。

Figure 2011079701
A liquid phase sedimentation type particle size distribution analyzer is an apparatus that evaluates the particle size of particles by utilizing the fact that the sedimentation rate of particles in a solvent varies depending on the particle size. It is known that spherical particles having a diameter (D) and a density (ρ) existing in a solvent having a density (ρ 0 ) and a viscosity coefficient (η 0 ) settle at a constant speed according to the Stokes settling equation. This theory is applied to the sedimentation type particle size distribution meter (for example, HORIBA ultracentrifugal automatic particle size distribution analyzer CAPA-700 manual). Stokes' settling equation is a formula for spherical particles and does not reflect the exact particle size of particles with high shape anisotropy. However, when the solvent density (ρ 0 ), viscosity coefficient (η 0 ), and particle density (ρ) are the same, the particle size value obtained corresponds to the sedimentation rate, and the smaller the particle size value, The sedimentation rate is slow. On the other hand, as the graphite oxide particles with a smaller number of layers have a lower sedimentation rate, a relative comparison of the number of layers can be performed by comparing the particle size distribution based on the same data measured at ρ 0 , η 0 , and ρ. It becomes possible. The particle size distribution measurement was performed under the conditions shown in Table 1 below. The results are shown in FIG. In FIG. 4, the amount (%) (area standard) means the ratio of the sum of the areas of the circles of particles having a certain particle diameter to the total area of the circles obtained by using the particle diameter as the diameter for all particles. To express. As shown in FIG. 4, the particle size is concentrated in the range of 0.0 to 0.5 μm, and it can be seen that the thinning of most of the graphite oxide particles progressed.
Figure 2011079701

(実施例2)
ろ過膜表面に対する分散液Aの流速を2.0m/sとなるようにろ過流量を調節したこと以外は実施例1と同様にして精製酸化黒鉛粒子含有液を得た。そして、実施例1と同様に、ろ過時間とろ液の導電率との関係を調べた。その結果、分散液Aのろ液の導電率が1/1000まで低下するのに要した時間は6時間であった。
(Example 2)
A purified graphite oxide particle-containing liquid was obtained in the same manner as in Example 1, except that the filtration flow rate was adjusted so that the flow rate of the dispersion A with respect to the filtration membrane surface was 2.0 m / s. And like Example 1, the relationship between filtration time and the electrical conductivity of a filtrate was investigated. As a result, the time required for the electrical conductivity of the filtrate of dispersion A to drop to 1/1000 was 6 hours.

(実施例3)
ろ過膜表面に対する分散液Aの流速を1.5m/sとなるようにろ過流量を調節したこと以外は実施例1と同様にして精製酸化黒鉛粒子含有液を得た。そして、実施例1と同様に、ろ過時間とろ液の導電率との関係を調べた。その結果、分散液Aのろ液の導電率が1/1000まで低下するのに要した時間は8時間であった。
(Example 3)
A purified graphite oxide particle-containing liquid was obtained in the same manner as in Example 1, except that the filtration flow rate was adjusted so that the flow rate of the dispersion A with respect to the filtration membrane surface was 1.5 m / s. And like Example 1, the relationship between filtration time and the electrical conductivity of a filtrate was investigated. As a result, the time required for the conductivity of the filtrate of dispersion A to drop to 1/1000 was 8 hours.

(実施例4)
最後にろ過膜を用いてろ過を行った後、ろ過で減少した分の水を新たに加えなかったこと以外は実施例1と同様にして精製酸化黒鉛粒子含有液を得た。そして、実施例1と同様に、ろ過時間とろ液の導電率との関係を調べた。その結果、分散液Aのろ液の導電率が1/1000まで低下するのに要した時間は5.5時間であった。
Example 4
Finally, filtration was performed using a filtration membrane, and then purified graphite oxide particle-containing liquid was obtained in the same manner as in Example 1 except that the amount of water reduced by filtration was not newly added. And like Example 1, the relationship between filtration time and the electrical conductivity of a filtrate was investigated. As a result, the time required for the conductivity of the filtrate of dispersion A to drop to 1/1000 was 5.5 hours.

(比較例1)
実施例1で得られた分散液A(60L)のうち3L(原料黒鉛10g分)を抜き取り、この3Lの分散液Aに対し、3質量%硫酸/0.5質量%過酸化水素の混合水溶液を用いた遠心分離を行った後、水を用いた遠心分離を繰り返すことで分散液Aの精製を行った。こうして精製酸化黒鉛粒子含有液を得た。
(Comparative Example 1)
3 L (for 10 g of raw material graphite) of the dispersion A (60 L) obtained in Example 1 was extracted, and a mixed aqueous solution of 3 mass% sulfuric acid / 0.5 mass% hydrogen peroxide was added to the 3 L dispersion A. Then, the dispersion A was purified by repeating the centrifugation using water. Thus, a purified graphite oxide particle-containing liquid was obtained.

このとき、遠心分離後の上澄みの導電率が分散液Aの導電率の1/1000になるまで精製を繰り返した。精製が進むにつれて、酸化黒鉛粒子の沈降が遅くなり、十分沈降させるために長時間の遠心分離を行う必要があった。具体的には、3L分を精製するのに要した時間は30hであり、精製対象となる分散液Aが、実施例1の分散液Aの1/20という少ない量であったも係わらず、5倍以上の精製時間が必要であった。   At this time, purification was repeated until the conductivity of the supernatant after centrifugation was 1/1000 of the conductivity of dispersion A. As refining progressed, the sedimentation of graphite oxide particles slowed down, and it was necessary to centrifuge for a long time in order to sufficiently settle. Specifically, the time required to purify 3 L was 30 h, and although the dispersion A to be purified was a small amount of 1/20 of the dispersion A of Example 1, More than 5 times purification time was required.

また比較例1で得られた精製酸化黒鉛粒子含有液について、実施例1と同様にして、酸化黒鉛粒子の粒度分布を測定した、結果を図5に示す。図5に示すように、比較例1で得られた精製酸化黒鉛粒子含有液では、粒径は0.0〜0.5μmの範囲に集中しておらず、0.0〜5.3μmの範囲、6.2〜7.4μmの範囲に分散して存在しており、酸化黒鉛粒子の薄層化の進行が遅いことが分かる。   Moreover, about the refined graphite oxide particle containing liquid obtained by the comparative example 1, it carried out similarly to Example 1, and measured the particle size distribution of the graphite oxide particle, and the result is shown in FIG. As shown in FIG. 5, in the purified graphite oxide particle-containing liquid obtained in Comparative Example 1, the particle size is not concentrated in the range of 0.0 to 0.5 μm, but in the range of 0.0 to 5.3 μm. It is understood that the progress of thinning of the graphite oxide particles is slow.

以上より、比較例1の方法で、実施例1の分散液Aに対して遠心分離法を用いた精製を行ったところ、分散液Aを、実施例1の分散液Aの1/20にしたにもかかわらず、精製までに30hを要することが分かった。即ち分散液Aは、既に遠心分離法を用いた精製では、沈降速度が遅くなり、十分な精製ができない状態にあった。   As described above, when the dispersion A of Example 1 was purified using the centrifugation method by the method of Comparative Example 1, the dispersion A was reduced to 1/20 of the dispersion A of Example 1. Nevertheless, it was found that it takes 30 hours to purify. That is, the dispersion A had already been in a state where it could not be sufficiently purified due to a slow sedimentation rate in the purification using the centrifugal separation method.

これに対し、実施例1〜4では、精製までに要する時間が5〜8時間であった。このことから、実施例1〜4の方法は比較例1の方法に比べて、精製に要する時間を十分に短縮できることが分かった。   In contrast, in Examples 1 to 4, the time required for purification was 5 to 8 hours. From this, it was found that the methods of Examples 1 to 4 can sufficiently shorten the time required for purification as compared with the method of Comparative Example 1.

よって、本発明によれば、十分に薄い酸化黒鉛粒子を含有する酸化黒鉛粒子含有液を効率的に製造できることが確認された。   Therefore, according to the present invention, it was confirmed that a graphite oxide particle-containing liquid containing sufficiently thin graphite oxide particles can be efficiently produced.

1…循環タンク、2…循環ポンプ、3…ろ過モジュール、4…逆洗ポンプ、5…逆洗タンク、100…ろ過装置、L1…酸化黒鉛粒子含有液供給ライン、L2…返送ライン、L3…ろ液排出ライン、L4…逆洗水供給ライン。   DESCRIPTION OF SYMBOLS 1 ... Circulation tank, 2 ... Circulation pump, 3 ... Filtration module, 4 ... Backwash pump, 5 ... Backwash tank, 100 ... Filtration apparatus, L1 ... Graphite oxide containing liquid supply line, L2 ... Return line, L3 ... Filter Liquid discharge line, L4 ... Backwash water supply line.

Claims (5)

酸化黒鉛粒子と分散媒とを含有する酸化黒鉛粒子含有液を準備する準備工程と、
酸化黒鉛粒子含有液を精製し、精製された精製酸化黒鉛粒子含有液を得る精製工程と、を含む精製酸化黒鉛粒子含有液の製造方法であって、
前記精製工程が、ろ過膜を用いて酸化黒鉛粒子含有液をろ過し、ろ液と酸化黒鉛粒子を含む濃縮液とに分離するろ過工程と、
前記濃縮液に分散媒を添加する分散媒添加工程とを含み、
前記ろ過工程において、前記ろ過膜の表面に沿って、酸化黒鉛粒子含有液の流れを形成する、精製酸化黒鉛粒子含有液の製造方法。
A preparation step of preparing a graphite oxide particle-containing liquid containing graphite oxide particles and a dispersion medium;
Purifying the graphite oxide particle-containing liquid and obtaining a purified graphite oxide particle-containing liquid that has been purified, and a method for producing a purified graphite oxide particle-containing liquid comprising:
The purification step is a filtration step in which the graphite oxide particle-containing liquid is filtered using a filtration membrane, and separated into a filtrate and a concentrate containing graphite oxide particles;
A dispersion medium addition step of adding a dispersion medium to the concentrate,
A method for producing a purified graphite oxide particle-containing liquid, wherein in the filtration step, a flow of the graphite oxide particle-containing liquid is formed along the surface of the filtration membrane.
前記ろ過工程において、前記ろ過膜の表面に対する前記酸化黒鉛粒子含有液の流速を0.20m/s以上とする、請求項1に記載の精製酸化黒鉛粒子含有液の製造方法。   The method for producing a purified graphite oxide particle-containing liquid according to claim 1, wherein in the filtration step, a flow rate of the graphite oxide particle-containing liquid with respect to the surface of the filtration membrane is 0.20 m / s or more. 前記ろ過工程において、前記ろ過膜が中空糸膜である、請求項1又は2に記載の精製酸化黒鉛粒子含有液の製造方法。   The method for producing a purified graphite oxide particle-containing liquid according to claim 1 or 2, wherein, in the filtration step, the filtration membrane is a hollow fiber membrane. 前記ろ過工程において、前記酸化黒鉛粒子含有液を、前記中空糸膜の内側に流通させる、請求項3に記載の精製酸化黒鉛粒子含有液の製造方法。   The manufacturing method of the purified graphite oxide particle containing liquid of Claim 3 which distribute | circulates the said graphite oxide particle containing liquid inside the said hollow fiber membrane in the said filtration process. 前記分散媒添加工程で添加する分散媒が、前記酸化黒鉛粒子含有液中の分散媒と異なる分散媒であり、前記精製工程において、前記ろ過工程及び前記分散媒添加工程を繰り返し行う、請求項1〜4のいずれか一項に記載の精製酸化黒鉛粒子含有液の製造方法。   The dispersion medium added in the dispersion medium addition step is a dispersion medium different from the dispersion medium in the graphite oxide particle-containing liquid, and the filtration step and the dispersion medium addition step are repeatedly performed in the purification step. The manufacturing method of the refinement | purification graphite oxide particle containing liquid as described in any one of -4.
JP2009233186A 2009-10-07 2009-10-07 Method for producing purified graphite oxide particle-containing liquid Expired - Fee Related JP5446703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233186A JP5446703B2 (en) 2009-10-07 2009-10-07 Method for producing purified graphite oxide particle-containing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233186A JP5446703B2 (en) 2009-10-07 2009-10-07 Method for producing purified graphite oxide particle-containing liquid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013231818A Division JP5617992B2 (en) 2013-11-08 2013-11-08 Method for producing purified graphite oxide particle-containing liquid

Publications (2)

Publication Number Publication Date
JP2011079701A true JP2011079701A (en) 2011-04-21
JP5446703B2 JP5446703B2 (en) 2014-03-19

Family

ID=44074163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233186A Expired - Fee Related JP5446703B2 (en) 2009-10-07 2009-10-07 Method for producing purified graphite oxide particle-containing liquid

Country Status (1)

Country Link
JP (1) JP5446703B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079700A (en) * 2009-10-07 2011-04-21 Mitsubishi Gas Chemical Co Inc Method for producing graphite oxide particle-containing liquid
WO2013015229A1 (en) * 2011-07-22 2013-01-31 Semiconductor Energy Laboratory Co., Ltd. Graphite oxide, graphene oxide or graphene, electric device using the same and method of manufacturing the same, and electrodialysis apparatus
WO2014077559A1 (en) * 2012-11-15 2014-05-22 주식회사 아이디티인터내셔널 Method for manufacturing graphite oxide
JP2014105123A (en) * 2012-11-27 2014-06-09 Harima Chemicals Inc Method for producing oriented film of thin layer graphite or of thin layer graphite compound
CN103848419A (en) * 2013-12-10 2014-06-11 南京工业大学 Method for preparing superfine graphite oxide by washing and separating in membrane process
WO2014168362A1 (en) * 2013-04-11 2014-10-16 주식회사 아이디티인터내셔널 Method for manufacturing graphite oxide and apparatus therefor
JP2019136692A (en) * 2018-02-13 2019-08-22 岩井ファルマテック株式会社 Treatment system of fine particle
JP2020146645A (en) * 2019-03-14 2020-09-17 ダイセン・メンブレン・システムズ株式会社 Method of separating and refining fluid containing valuable object

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139012A (en) * 1986-11-29 1988-06-10 Koa Sekiyu Kk Production of graphitic material for electric cell
JP2002053313A (en) * 2000-08-09 2002-02-19 Mitsubishi Gas Chem Co Inc Thin-filmy particle having skeleton consisting of carbon
JP2003176116A (en) * 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc Large, thin film particle consisting of carbon
JP2004091252A (en) * 2002-08-30 2004-03-25 Mitsubishi Gas Chem Co Inc Method for reducing thin-film particle having framework comprising carbon
JP2004091251A (en) * 2002-08-30 2004-03-25 Mitsubishi Gas Chem Co Inc Method for reducing thin-film particle having framework comprising carbon
JP2005053773A (en) * 2003-07-23 2005-03-03 Mitsubishi Gas Chem Co Inc Dispersion of thin film-like particle with skeleton consisting of carbon
JP2005063951A (en) * 2003-07-23 2005-03-10 Mitsubishi Gas Chem Co Inc Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139012A (en) * 1986-11-29 1988-06-10 Koa Sekiyu Kk Production of graphitic material for electric cell
JP2002053313A (en) * 2000-08-09 2002-02-19 Mitsubishi Gas Chem Co Inc Thin-filmy particle having skeleton consisting of carbon
JP2003176116A (en) * 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc Large, thin film particle consisting of carbon
JP2004091252A (en) * 2002-08-30 2004-03-25 Mitsubishi Gas Chem Co Inc Method for reducing thin-film particle having framework comprising carbon
JP2004091251A (en) * 2002-08-30 2004-03-25 Mitsubishi Gas Chem Co Inc Method for reducing thin-film particle having framework comprising carbon
JP2005053773A (en) * 2003-07-23 2005-03-03 Mitsubishi Gas Chem Co Inc Dispersion of thin film-like particle with skeleton consisting of carbon
JP2005063951A (en) * 2003-07-23 2005-03-10 Mitsubishi Gas Chem Co Inc Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6013044961; Masukazu HIRATA et al.: Carbon 2004, Vol.42, pp.2929-2937 *
JPN6013044962; T. TAKAJIMA et al.: Carbon 1988, Vol.26, No.3, pp.357-361 *
JPN6013044963; M. MERMOUX et al.: Carbon 1991, Vol.29, No.3, pp.469-474 *
JPN6013044966; Nicholas A. KOTOV et al.: Advanced Materials 1996, Vol.8, No.8, pp.637-641 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079700A (en) * 2009-10-07 2011-04-21 Mitsubishi Gas Chemical Co Inc Method for producing graphite oxide particle-containing liquid
WO2013015229A1 (en) * 2011-07-22 2013-01-31 Semiconductor Energy Laboratory Co., Ltd. Graphite oxide, graphene oxide or graphene, electric device using the same and method of manufacturing the same, and electrodialysis apparatus
JP2013047171A (en) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd Graphite oxide, graphene oxide or graphene, electric device using the same and method of manufacturing the same, and electrodialysis apparatus
US9573813B2 (en) 2011-07-22 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Graphite oxide, graphene oxide or graphene, electric device using the same and method of manufacturing the same, and electrodialysis apparatus
JP2016104701A (en) * 2011-07-22 2016-06-09 株式会社半導体エネルギー研究所 Electrodialysis device
WO2014077559A1 (en) * 2012-11-15 2014-05-22 주식회사 아이디티인터내셔널 Method for manufacturing graphite oxide
JP2014105123A (en) * 2012-11-27 2014-06-09 Harima Chemicals Inc Method for producing oriented film of thin layer graphite or of thin layer graphite compound
CN105452161A (en) * 2013-04-11 2016-03-30 标准石墨烯有限公司 Method for manufacturing graphite oxide and apparatus therefor
KR101500692B1 (en) * 2013-04-11 2015-03-09 주식회사 아이디티인터내셔널 Method and apparatus for manufacturing graphite oxide
WO2014168362A1 (en) * 2013-04-11 2014-10-16 주식회사 아이디티인터내셔널 Method for manufacturing graphite oxide and apparatus therefor
US10040688B2 (en) 2013-04-11 2018-08-07 Standardgraphene Co., Ltd. Method for manufacturing graphite oxide and apparatus therefor
CN103848419A (en) * 2013-12-10 2014-06-11 南京工业大学 Method for preparing superfine graphite oxide by washing and separating in membrane process
JP2019136692A (en) * 2018-02-13 2019-08-22 岩井ファルマテック株式会社 Treatment system of fine particle
JP7118761B2 (en) 2018-02-13 2022-08-16 岩井ファルマテック株式会社 Fine particle handling system
JP2020146645A (en) * 2019-03-14 2020-09-17 ダイセン・メンブレン・システムズ株式会社 Method of separating and refining fluid containing valuable object
JP7321729B2 (en) 2019-03-14 2023-08-07 ダイセン・メンブレン・システムズ株式会社 Method for separating and purifying fluid containing valuables
JP7358675B2 (en) 2019-03-14 2023-10-10 ダイセン・メンブレン・システムズ株式会社 Method for separating and purifying fluids containing valuables

Also Published As

Publication number Publication date
JP5446703B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5446703B2 (en) Method for producing purified graphite oxide particle-containing liquid
JP5272641B2 (en) Method for evaluating graphite oxide particle-containing liquid, method for producing graphite oxide particle-containing liquid using the same, and method for producing conductor
EP2969943B1 (en) A scalable process for producing exfoliated defect-free, non-oxidised 2-dimensional materials in large quantities
JP5933374B2 (en) Method for producing thin-layer graphite or thin-layer graphite compound
TW201306923A (en) Nanowire purification methods, compositions, and articles
TWI590945B (en) Porous fine porous polyamidoamine hollow fiber membrane and method for producing the same
JP5617992B2 (en) Method for producing purified graphite oxide particle-containing liquid
JPS6397681A (en) Alpha-al203 base sintered abrasive material
US10081020B2 (en) Hydrothermal method for manufacturing filtered silver nanowires
JP2012153590A (en) Aggregate, and dispersion liquid made by dispersing the aggregate in solvent
JP5339099B2 (en) Method for synthesizing thin-film particles having a carbon skeleton
CN105452161A (en) Method for manufacturing graphite oxide and apparatus therefor
CN107215868A (en) The method that the graphene product of high-purity is prepared using oxidation-reduction method Fast Purification
WO1996041855A1 (en) Method of continuous extraction of crude wax and apparatus therefor
EP2975001A1 (en) Method for producing pregraphitic material oxide, graphene oxide or graphene from pregraphitic materials and products produced by said method
JP5481175B2 (en) Carbon nanotube diameter separation method
KR102097133B1 (en) Method for preparation of highly concentrated graphene dispersion
US9073057B2 (en) Method for seperating submicron fraction of carbon nano-materials
JP6873757B2 (en) Manufacturing method of nanodiamond aqueous dispersion
JP5446702B2 (en) Method for producing graphite oxide particle-containing liquid
US11707700B2 (en) Process for interfacial separation of metal nanoparticles or nanowires using centrifugal separators
JP7432306B2 (en) Method for manufacturing carbon material composite
JP7438672B2 (en) Method for manufacturing carbon material composite
KR20180059615A (en) Graphene oxide cleaning method
JP5969905B2 (en) Method for producing alignment film of thin layer graphite or thin layer graphite compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R151 Written notification of patent or utility model registration

Ref document number: 5446703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees