JP2004360099A - Carbonaceous microfiber body - Google Patents

Carbonaceous microfiber body Download PDF

Info

Publication number
JP2004360099A
JP2004360099A JP2003158233A JP2003158233A JP2004360099A JP 2004360099 A JP2004360099 A JP 2004360099A JP 2003158233 A JP2003158233 A JP 2003158233A JP 2003158233 A JP2003158233 A JP 2003158233A JP 2004360099 A JP2004360099 A JP 2004360099A
Authority
JP
Japan
Prior art keywords
fine fibrous
carbonaceous fine
fibrous body
carbonaceous
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003158233A
Other languages
Japanese (ja)
Other versions
JP4175182B2 (en
Inventor
Shiyuushichi Yoshimura
修七 吉村
Takeshi Kashiwagi
猛 柏木
Hidehiko Akimoto
秀彦 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Original Assignee
Shimadzu Corp
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Mitsubishi Chemical Corp, Mitsubishi Chemical Engineering Corp filed Critical Shimadzu Corp
Priority to JP2003158233A priority Critical patent/JP4175182B2/en
Publication of JP2004360099A publication Critical patent/JP2004360099A/en
Application granted granted Critical
Publication of JP4175182B2 publication Critical patent/JP4175182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a carbonaceous microfiber body having excellent kneadability with resin and excellent electroconductivity. <P>SOLUTION: The fish-bone type carbonaceous microfiber body has a graphite crystal structure having a fish bone-like arrangement structure in the fiber axis direction in a transmission electron microscope (TEM) image. The angle of a graphite plane is 5-80° to the fiber axis. The ratio of d/D of the innermost diameter (the diameter of the smallest diameter part of a hollow void part observed by TEM) of the void part to the diameter D of a fiber observed by TEM is ≤0.5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は炭素質微細繊維状体に係り、特にフィッシュボーン(魚骨)形の炭素質微細繊維状体に関する。詳しくは、炭素源ガスを触媒の存在下で反応させて製造することができる炭素質微細繊維状体に関する。
【0002】
【従来の技術】
従来、二酸化炭素、水素、バイオガス(二酸化炭素(CO)とメタン(CH)とを主成分とするガス)等の排出ガスを回収し、これを炭素源として触媒の存在下で反応させることにより炭素質生成物として固定化する方法が知られている(特開平11−29314号公報、特開平11−322315号公報)。この方法によれば、炭素質生成物としてカーボンナノチューブと呼称される炭素質微細中空繊維状体が得られることが確認されている。また、カーボンナノチューブは、炭化水素類などの炭素源原料を、高温で触媒存在下にて気相反応させて得られることも知られている(特公平3−64606号公報、特公平3−77288号公報等)。
【0003】
このようにして製造されるカーボンナノチューブに代表される炭素質微細繊維状体は、従来の炭素材料と比較して著しく高導電性であるなどの優れた特性により、近年、新材料として特に注目されている。
【0004】
炭素質微細繊維状体の1種として、フィッシュボーンタイプのものが知られている。このフィッシュボーンタイプの炭素質微細繊維状体を透過型電子顕微鏡(TEM)で観察すると、図1(a)の如き像として観取される。この炭素質微細繊維状体61は、図1(b)の如き切頭テーパ形のグラファイトよりなる中空コーン状ボーンチップ62が図1(c)の如く多数個、同軸状に連なったものである。フィッシュボーンタイプの炭素質微細繊維状体61の直径Dはボーンチップ62の最大直径Dと同じである。ボーンチップ62の最小直径dは、炭素質微細繊維状体1の内径の最小内径(直径)に相当する。尚、ボーンチップ62,62間の面間隔t(002)はX線回折(XRD)により測定することも可能であり、その間隔は、通常3.4〜3.6オングストローム(Å)である。ボーンチップ62の開き角度(炭素質微細繊維状体1の中心軸とボーンチップ62の側周面との交叉角度θ)は、TEMにより測定できる。
【0005】
従来報告されているフィッシュボーン型炭素質微細繊維状体としては、例えば、Dは50〜200nm、d/Dは0.6〜0.7nm程度のものが知られている(株式会社GSIクレオス技術資料による)。
【0006】
【特許文献1】
特開平11−29314号公報
【特許文献2】
特開平11−322315号公報
【特許文献3】
特公平3−64606号公報
【特許文献4】
特公平3−77288号公報
【0007】
【発明が解決しようとする課題】
本発明は、樹脂との混練性に優れ、また導電性に優れる炭素質微細繊維状体を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の炭素質微細繊維状体は、グラファイトの結晶構造が、透過型電子顕微鏡(TEM)画像において、繊維軸方向に魚骨状配列構造となっているフィッシュボーン型炭素質微細繊維状体であって、該グラファイト面の角度が、繊維軸に対して5〜80゜の角度をなし、中空空洞部の最内径(TEMによって観測された該空洞部の最も小径の部分の直径)dと、TEMによって観測された繊維の直径Dとの比d/Dが0.5以下であることを特徴とするものである。
【0009】
かかる本発明の炭素質微細繊維状体が樹脂との混練性及び導電性に優れる理由については、繊維状体の側周面にボーンチップ同士の継目間隔によって形成される凹凸や、ボーンチップ同士の面間隔が良い影響を与えているためであろうと推察される。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0011】
本発明の炭素質微細繊維状体は、図1に示すフィッシュボーン型のものである。
【0012】
このフィッシュボーン型の炭素質微細繊維状体のボーンチップ62は、通常は前述の通り中空切頭テーパ形であり、炭素質微細繊維状体は長手方向に貫通した貫通孔を有する中空状である。ただし、本発明では、ボーンチップ62は非切頭形のコーン形(陣笠形)であってもよい。即ち、図1(b),(c)においてd=0であってもよい。この場合、炭素質微細繊維状体は貫通孔を有しないものとなる。
【0013】
本発明では、TEM画像によって測定される図1(c)の角度θ即ち、繊維状体の軸心線方向Aとテーパ形ボーンチップ62の側周面との交叉角度が5〜80゜好ましくは10〜75゜特に好ましくは20〜60゜である。このボーンチップ62の側周面は、グラファイト面からなる。角度θが5〜80゜であることにより、繊維状体の外周面に適度の凹凸が形成され、繊維状体と樹脂との混練性が良好になるものと考えられる。また、角度θが5〜80゜であることにより、ボーンチップ62同士の間の間隙が程良く外周面に向って開放したものとなり、樹脂とのなじみが良くなると考えられる。なお、ボーンチップ62同士の間隙が繊維状体の側周面に開放することにより、水素やリチウムイオンの吸蔵性が向上する効果が期待できる。上記角度θが5〜80゜であると、ボーンチップ同士の結合力が十分に高く、炭素質微細繊維状体の強度も大きいと考えられる。
【0014】
面間距離がこの範囲から外れることは、チューブのグラファイト積層構造に欠陥があることを意味し、上記の特性が損なわれる恐れがある。
【0015】
本発明の炭素質微細繊維状体では、その最内径dと外径Dとの比d/Dが0.5以下、好ましくは0.01〜0.5特に好ましくは0.05〜0.3である。Dが同じ場合、d/Dが小さいほど、炭素質微細繊維状体はボーンチップ62の最内径dが小さいものであることになり、ボーンチップ62の1個当りのカーボン量が多いことになる。
【0016】
従って、d/Dの値は、炭素質微細繊維状体の強度と導電性とのバランスに影響があると考えられ、さらには水素やリチウムを吸蔵する際、チューブあたりの吸蔵量、ひいては製品単位体積あたりの吸蔵量が増加する可能性を示している。
【0017】
なお、炭素質微細繊維状体の外径Dは10〜200nm特に15〜100nmが好ましい。Dが10nmよりも小さいと、炭素質微細繊維状体の樹脂等への混練性が低下する恐れがあると共に、低コストでの製造が非常に困難となる。逆にDが200nmよりも大きいと、炭素質微細繊維状体の導電性や強度への改善効果が低下するおそれがある。
【0018】
本発明の炭素質微細繊維状体は、製造法について特に制限はないが、好ましくは触媒存在下での気相反応法にて製造される。気相反応法の反応装置についても特に制限はなく、固定床反応装置や流動床反応装置といった反応装置にて製造することができるが、製造効率の点でさらに好ましくは、噴流層反応器内に触媒粒子及び炭素源ガスを導入して、噴流層を形成しながら、炭素質微細繊維状体の平均粒径10〜200μmの微粒状凝集体を製造する工程と、流動層反応器内に、炭素源ガスと前記噴流層反応器から取り出された該微粒状凝集体とを導入して、該微粒状凝集体の流動層を形成しながら該凝集体を成長させる工程とを有する方法により製造することができる。
【0019】
この製造方法に従って、炭素源ガスを触媒粒子の存在下に高温反応させると、触媒粒子を反応の基点として炭素質微細繊維状体が生成して繊維状に成長し、触媒粒子の表面に炭素質微細繊維状体が形成された微粒状凝集体が得られる。
【0020】
凝集体粒子を噴流撹拌で互いに遊離させた状態で炭素質微細繊維状体を成長させると、成長反応部を中心に取り囲むように炭素質微細繊維状体が成長する。
【0021】
この製造方法では、凝集体粒子同士が固化し易い炭素質微細繊維状体の成長反応の初期において、噴流層内で凝集体粒子を激しく撹拌して互いに遊離させた状態で炭素質微細繊維状体を成長させる。
【0022】
その後、このように噴流層内である程度の大きさに成長させた微粒状凝集体粒子を流動層に移送して更に粒子を成長させることにより、炭素質微細繊維状体を効率的に成長させることができる。
【0023】
上記製造方法において、噴流層内で凝集体粒子(以下「一次粒子」と称す場合がある。)を平均粒径10〜200μmにまで成長させることが好ましい。この一次粒子の平均粒径が10μm未満では、この一次粒子を流動層に導入して反応させた際に、固化し易い。この一次粒子の平均粒径が200μmを超えるまで噴流層内で反応を行うことは、反応器単位容積当たりの炭素質微細繊維状体生成量が低減し、製造効率の面で好ましくない。噴流層内で一次粒子を平均粒径10〜200μmに成長させて流動層に導入することにより、流動層内での固化を防止して、効率的な炭素質微細繊維状体の製造を行うことができる。
【0024】
図2は、この炭素質微細繊維状体の製造方法の一例を示す系統図である。
【0025】
バイオガス等の原料ガスが配管1に供給され、必要に応じ、メタンと炭酸ガスとを略等モル比とするために配管2から二酸化炭素(CO)ガスが添加、混合される。この原料ガスがブロワ3により配管4を経て熱回収熱交換器5に送られ、加熱された後、更に配管6を介して加熱炉7に送られて加熱され、配管8を介して反応器へ送り出される。この配管8は3本の配管9,10,11に分岐している。配管9は噴流層反応器30に接続され、配管10は流動層反応器40に接続され、配管11は流動層反応器50に接続されている。配管9には触媒添加用の配管12が接続されている。
【0026】
噴流層反応器30内では、配管9から導入された原料ガスが上方に噴出して噴流層が形成される。なお、噴流層反応器30には、この噴流層を撹拌するための撹拌機13aが付設されている。
【0027】
噴流層反応器30内の噴流層から飛び出した粒子(炭素微粉及び飛散触媒等)は、ガスと共に配管14からサイクロン15に導かれて捕集され、配管16を介して噴流層反応器30へ戻される。なお、サイクロン15を通り抜けた微細粒子は、ガスと共に配管17からバグフィルタ18に導入され、捕集される。バグフィルタ18にて捕集された粒子は、返送用配管(図示略)を介して噴流層反応器30に戻される。
【0028】
バグフィルタ18にて除塵されたガスは、配管19を介して前記熱回収熱交換器5に導かれ、前記原料ガスと熱交換して降温される。このようにして降温されたガスは、配管20から凝縮器21に導かれ、冷却される。これにより、該ガス中の水蒸気が凝縮して水となって分離され、排出ライン22から排出される。凝縮器21を通ったガスは、配管23を介して前記原料供給用配管1に導かれ、循環戻りガスとして原料ガスに混合される。
【0029】
なお、配管23からはガス分取用の配管24が分岐しており、ガスの一部を前記加熱炉7へ加熱燃料用ガスとして導いている。この配管24は、配管23内を流れるガスの一部を系外に取り出し、循環ガス中に窒素が蓄積することを防止するためのパージラインとして機能している。
【0030】
加熱炉7へは、加熱に必要な熱量を賄うために、前記配管1から原料ガスの一部を配管25を介して導入し、燃料ガスとして用いる。26は空気の導入配管である。
【0031】
ブロワ3の下流側の配管4には配管27を介して水素分離装置28が接続されている。この水素分離装置28は、循環ガス中にHが過剰に蓄積することを防止するためのものである。
【0032】
噴流層反応器30の上部の取出口13bに弁13cが設けられている。この取出口13bに凝集体粒子輸送用の配管29が接続されている。前記配管6から分岐したガス供給用配管31がこの配管29の途中に接続されており、凝集体粒子はこの配管29内を気流搬送され、サイクロン32に導かれる。
【0033】
該サイクロン32内にて捕集された凝集体粒子は、配管33を介して第1の流動層反応器40に導入される。この第1の流動層反応器40の下部に前記配管10から原料ガスが導入されており、該反応器40内に凝集体粒子の流動層が形成されている。
【0034】
噴流層反応器30からの凝集体粒子は、この流動層内において反応し、成長する。成長した粒子は、反応器40の下部に設けられたスクリュ式取出機41により取り出され、配管42を介して第2の流動層反応器50へ送られる。なお、第1の流動層反応器40からの飛散粒子を含むガスは、配管43を介してサイクロン32に導かれて捕集され、反応器40へ戻される。サイクロン32を通ったガスは、配管44を介して前記バグフィルタ18へ送られる。
【0035】
第2の流動層反応器50では、その下部に前記配管11を介して原料ガスが供給されており、該反応器50内に凝集体粒子の流動層が形成されている。
【0036】
第1の流動層反応器40からの凝集体粒子はこの流動層において、更に反応して成長し、成長した粒子は、反応器50の下部に設けられたスクリュ式取出機51により取り出され、製品として系外へ排出される。
【0037】
なお、第2の流動層反応器50からの飛散粒子を含むガスは、配管52を介してサイクロン53に導かれて捕集され、配管54より反応器50へ戻される。サイクロン53を通ったガスは、配管55を介して前記バグフィルタ18へ送られる。
【0038】
本発明においては、このようにして炭素質微細繊維状体を製造するに当たり、噴流層反応器30において、平均粒径10〜200μmの炭素質微細繊維状体の微粒状の凝集体粒子(一次粒子)を製造し、この平均粒径10〜200μmの一次粒子を流動層反応器40に導入して更に成長させる。
【0039】
前述の如く、この一次粒子の平均粒径が10μm未満であると、凝集体粒子の固化を有効に防止し得ず、200μmを超えると製造効率が低下する。噴流層反応器30で製造する一次粒子の平均粒径は特に30〜100μmとすることが好ましい。
【0040】
この一次粒子の平均粒径は、噴流層反応器30における反応時間(滞留時間)や原料ガス供給速度、反応温度等を調整することにより制御することができる。
【0041】
噴流層反応器30で製造した一次粒子は更に第1の流動層反応器40及び第2の流動層反応器50で成長させる。流動層の運転条件は、このようにして一次粒子を流動層内で成長させて得られる二次粒子の平均粒径が一次粒子の平均粒径の2倍以下、特に1.2〜2倍になる程度を目安とするのが好ましい。この二次粒子の平均粒径と一次粒子との比が1.2未満では二次粒子の成長が不十分となることがあり、2倍超では、流動層内の滞留時間が過度に長くなり、塊状物を生成させるおそれがあると共に、反応効率を低下させるおそれがある。
【0042】
なお、図2では、流動層反応器として第1の流動層反応器40と第2の流動層反応器50とを2段に設けているが、流動層反応器は、1段のみでも良く、また3段以上に設けても良い。流動層反応器を2段以上に多段に設けて反応条件を反応器毎に制御することにより、反応器単位容積当たりの生産効率を高めると共に、得られる炭素質微細繊維状体の形状や物性等を所望の範囲に容易に調整することができる。
【0043】
反応に用いる炭素源ガスとしては、反応系にガス状で導入することができる炭素化合物であれば良く、特に制限はないが、好ましくは炭化水素及び/又は水素と炭素酸化物とを含むガスが用いられる。特に、炭素源ガスとして、例えば二酸化炭素、水素、バイオガス等のプロセス排ガスを回収利用することは、製造コストの低減のみならず、環境維持にも有効である。二酸化炭素及びメタンを炭素源ガスとして使用する場合、両者が等モルであれば、下記のような反応式に従って、メタン及び二酸化炭素を炭素質生成物として固定化させることが可能となる。
CH → C+2H
2H+CO → C+2H
【0044】
炭素源ガスとして、二酸化炭素や一酸化炭素のような炭素酸化物のガスを用いる場合、同時に反応に用いるガスとしては還元性ガスを用いる。ここでいう還元性ガスとは、それ自体が還元性を有しているか、又はそのガスが反応系中にて分解して、かかる還元性を有するガスを発生するガスを指す。上記の反応式ではメタンガスが炭素源ガスであると同時に、分解して還元性を有する水素を発生するため、還元性ガスでもある。このような還元性ガスには、水素ガス、更には各種炭化水素ガス、即ちメタン、エタン、プロパン、ブタンのような化合物が挙げられる。
【0045】
一方、触媒としては、炭素源ガスからの炭素質微細繊維状体の生成反応を効率的に行うことのできるものであれば、化学的組成並びに形状等において特に制限されないが、通常、遷移金属及びその化合物が好ましく用いられる。触媒としては特に、ニッケル、コバルト、鉄などの金属触媒が好ましい。これら金属は1種を単独で用いても、2種以上を適宜組み合わせて使用しても良い。また、これら金属は、元素状態でも、酸化物、水酸化物、炭酸塩といった化合物でも使用することができる。更に、これらの触媒成分をシリカなどの担体に担持したものであっても良い。この場合、担体に対する触媒成分の担持量は、担体重量に対して1〜90重量%程度とするのが好ましい。その触媒のパーティクル形状には特に制限はなく、一般に知られている形状、例えば球状等の粒状であっても良い。またそのパーティクルの大きさは、例えば球状等の粒状である場合、直径で1〜20μm程度のものが通常好適に用いられる。
【0046】
このような触媒粒子の使用量には特に制限はないが、噴流層反応器30に導入される炭素源ガスが、触媒有効成分量に対して10〜60L/g・hr程度となるような量とすることが好ましい。
【0047】
また、反応条件は、通常、噴流層反応器30及び流動層反応器40,50共に、反応温度400〜800℃、好ましくは500℃以上600℃未満である。反応温度がこの範囲よりも低いと十分な反応速度が得られず炭素質微細繊維状体の製造効率の点で不利であり、この範囲よりも高いと、一旦生成した炭素と反応雰囲気ガスとの反応が生起して炭素質微細繊維状体の収率が低下する場合があり好ましくない。
【0048】
また、反応圧力は、原料の炭素源ガスが効率的に反応するような条件であれば良く、特に制限はないが、好ましくはゲージ圧1〜200kPa、より好ましくはゲージ圧3〜50kPaである。
【0049】
噴流層反応器は、下部より触媒粒子と炭素源ガスとを導入して、反応器内に凝集体粒子及び触媒粒子の噴流層を形成させながら、炭素質微細繊維状体を成長させ、上部より炭素質微細繊維状体が成長して所定の平均粒径となった凝集体粒子を取り出すことができるような噴流分散機構を有するものである。
【0050】
このような噴流層反応器及び流動層反応器を用いる反応は、連続式で行っても良く、またバッチ式で行っても良い。例えば、噴流層反応器及び流動層反応器の双方を連続式で運転しても良く、噴流層反応器及び流動層反応器の一方を連続式とし、他方をバッチ式としても良く、噴流層反応器及び流動層反応器の双方をバッチ式で運転しても良い。
【0051】
これらの反応器をバッチ式、連続式のいずれかで行うかは、反応条件(滞留時間等)や、所望とする炭素質微細繊維状体の特性(炭素質微細繊維状体の長さ、直径、凝集体粒子粒径等)をコントロールするために、適宜選択することができ、このことは同一設備において、運転方式を選定することにより、種々の特性を有する炭素質微細繊維状体を製造することができることを意味する。
【0052】
なお、図2に示す如く、噴流層反応器30及び流動層反応器40,50の排ガスは、サイクロン、バグフィルタ等の微粉捕集手段で炭素微粉、触媒粒子等の微粉を捕集した後、原料の炭素源ガスに混合して循環使用することができ、また、捕集した微粉は反応器に戻すことが好ましく、このように排出ガスを回収して循環使用することにより炭素質微細繊維状体の収率を高めることができる。
【0053】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に何ら限定されるものではない。
【0054】
実施例1
図2に示す方法で本発明に従って、炭素質微細繊維状体の製造を行った。ただし、第2の流動層反応器50は用いず、第1の流動層反応器40で得られる凝集体粒子を製品とした。
【0055】
原料ガスとしては、二酸化炭素とメタンとの1:1(モル比)混合ガスを用い、配管23からの循環戻りガスと共に熱回収熱交換器5で加熱した後加熱炉7で加熱して600℃に昇温した。
【0056】
この昇温ガスを担持触媒粒子と共に噴流層反応器30に供給し、噴流層反応器30内で噴流層を形成させながら炭素質微細繊維状体の凝集体粒子を成長させ、噴流層反応器30内から定期的に凝集体粒子を取り出し、流動層反応器40に導入した。この一次粒子の平均粒径は45μmであった。なお、この噴流層反応器30における反応条件は、温度550℃、ゲージ圧40kPaとし、担持触媒粒子としては、略球状のシリカ担体に金属ニッケルを担持させた、平均粒径15μmの担持触媒粒子を用い、噴流層反応器30に導入される触媒有効成分量に対して原料ガス(循環戻りガスを含む)を30L/g・hrの割合で導入した。
【0057】
噴流層反応器30で得られた平均粒径45μmの一次粒子は、次いで第1の流動層反応器40で、原料ガスと接触させて更に造粒成長させ、この流動層反応器40から定期的に流動層内の凝集体粒子を取り出して冷却することにより製品とした。
【0058】
この流動層反応器40の反応条件は、温度550℃、ゲージ圧40kPaとし、原料ガスは、触媒有効成分量に対して30L/g・hrの割合で導入した。また、流動層反応器40から取り出した二次粒子の平均粒径は65μmであった。
【0059】
このようにして製造された炭素質微細繊維状体についてTEMによる特性測定結果を表1に示す。
【0060】
また、この炭素質微細繊維状体0.9gと、合成樹脂としてポリカーボネート(三菱エンジニアリングプラスチックス製7025A)44.1g(炭素質微細繊維状体の重量比2%)とを、混練装置(東洋精機製作所製ラボプラストミル)にて260℃で15分間混練した。得られた混合物をプレス成形し、100mm×100mm×2mmの板状成形体を得た。この成形品の導電性(体積固有抵抗値)の測定結果を表1に示す。
【0061】
実施例2
実施例1において、反応温度を500℃としたこと以外は同様にして炭素質微細繊維状体を製造し、同様の試験を行った。結果を表1に示す。
【0062】
実施例3
実施例1において、原料ガスの割合を15L/g・hrとしたこと以外は、同様にして炭素質微細繊維状体を製造し、同様の試験を行った。結果を表1に示す。
【0063】
比較例1
市販の多層(マルチウォール)カーボンナノチューブについて、同様の試験を行った。結果を表1に示す。
【0064】
【表1】

Figure 2004360099
【0065】
【発明の効果】
以上詳述した通り、本発明によれば、混練性、分散性、加工性、機能発現性に優れ、かつ安価な炭素質微細繊維状体が提供される。
【0066】
本発明の炭素質微細繊維状体は、従来のカーボンナノチューブと比較して加工性に優れ、さらに従来のカーボンブラックと同様の方法で混練することが可能であり、同様の用途、例えば樹脂、ゴム、エラストマー等の補強、着色、導電性付与等の機能性付与のための添加剤として、また、機能性顔料として顔料、インキ、トナー等の配合成分として、工業的に有利に用いることができる。
【図面の簡単な説明】
【図1】本発明の炭素質微細繊維状体の構成図である。
【図2】本発明の炭素質微細繊維状体の製造方法の一例を示す系統図である。
【符号の説明】
30 噴流層反応器
40 第1の流動層反応器
50 第2の流動層反応器
61 炭素質微細繊維状体
62 ボーンチップ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbonaceous fine fibrous body, and more particularly to a fishbone (fish bone) -shaped carbonaceous fine fibrous body. More specifically, the present invention relates to a carbonaceous fine fibrous body that can be produced by reacting a carbon source gas in the presence of a catalyst.
[0002]
[Prior art]
BACKGROUND ART Conventionally, exhaust gases such as carbon dioxide, hydrogen, and biogas (gas containing carbon dioxide (CO 2 ) and methane (CH 4 ) as main components) and the like are collected, and are reacted as a carbon source in the presence of a catalyst. Thus, a method for immobilization as a carbonaceous product is known (JP-A-11-29314, JP-A-11-322315). According to this method, it has been confirmed that a carbonaceous fine hollow fibrous body called a carbon nanotube can be obtained as a carbonaceous product. It is also known that carbon nanotubes can be obtained by subjecting a carbon source material such as hydrocarbons to a gas phase reaction at a high temperature in the presence of a catalyst (JP-B-3-64606, JP-B-3-77288). No.).
[0003]
In recent years, carbonaceous fine fibrous bodies represented by carbon nanotubes produced in this way have attracted particular attention as new materials in recent years due to their excellent properties such as significantly higher conductivity than conventional carbon materials. ing.
[0004]
As one type of carbonaceous fine fibrous material, a fishbone type is known. When this fishbone type carbonaceous fine fibrous material is observed with a transmission electron microscope (TEM), it is observed as an image as shown in FIG. This carbonaceous fine fibrous body 61 is formed by coaxially connecting a large number of hollow cone-shaped bone tips 62 made of truncated tapered graphite as shown in FIG. 1B, as shown in FIG. 1C. . The diameter D of the fishbone type carbonaceous fine fibrous material 61 is the same as the maximum diameter D of the bone tip 62. The minimum diameter d of the bone tip 62 corresponds to the minimum inner diameter (diameter) of the inner diameter of the carbonaceous fine fibrous body 1. The surface interval t (002) between the bone tips 62 can be measured by X-ray diffraction (XRD), and the interval is usually 3.4 to 3.6 angstroms (Å). The opening angle of the bone tip 62 (crossing angle θ between the central axis of the carbonaceous fine fibrous body 1 and the side peripheral surface of the bone tip 62) can be measured by TEM.
[0005]
As conventionally reported fishbone-type carbonaceous fine fibrous materials, for example, those having D of about 50 to 200 nm and d / D of about 0.6 to 0.7 nm are known (GSI Creos Technology Co., Ltd.). Source).
[0006]
[Patent Document 1]
JP-A-11-29314 [Patent Document 2]
JP-A-11-322315 [Patent Document 3]
Japanese Patent Publication No. 3-64606 [Patent Document 4]
Japanese Patent Publication No. 3-77288
[Problems to be solved by the invention]
An object of the present invention is to provide a carbonaceous fine fibrous body having excellent kneading properties with a resin and excellent conductivity.
[0008]
[Means for Solving the Problems]
The carbonaceous fine fibrous material of the present invention is a fishbone type carbonaceous fine fibrous material in which the crystal structure of graphite has a fishbone-like array structure in the fiber axis direction in a transmission electron microscope (TEM) image. The angle of the graphite surface forms an angle of 5 to 80 ° with respect to the fiber axis, and the innermost diameter of the hollow cavity (the diameter of the smallest diameter portion of the cavity observed by TEM) d; The fiber is characterized in that the ratio d / D to the fiber diameter D observed by TEM is 0.5 or less.
[0009]
The reason why such a carbonaceous fine fibrous material of the present invention is excellent in kneading property and conductivity with a resin is asperity formed by a seam interval between bone chips on a side peripheral surface of the fibrous material, and between bone chips. It is presumed that this was because the surface spacing had a good effect.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0011]
The carbonaceous fine fibrous body of the present invention is of the fishbone type shown in FIG.
[0012]
The bone tip 62 of the fishbone type carbonaceous fine fibrous body is usually a hollow truncated tapered shape as described above, and the carbonaceous fine fibrous body is a hollow shape having a through hole penetrating in the longitudinal direction. . However, in the present invention, the bone tip 62 may have a non-truncated cone shape (jinkasa shape). That is, d = 0 in FIGS. 1B and 1C. In this case, the carbonaceous fine fibrous body has no through hole.
[0013]
In the present invention, the angle θ of FIG. 1C measured by a TEM image, that is, the crossing angle between the axial direction A of the fibrous body and the side peripheral surface of the tapered bone tip 62 is preferably 5 to 80 °. It is 10 to 75 °, particularly preferably 20 to 60 °. The side peripheral surface of the bone chip 62 is made of a graphite surface. When the angle θ is 5 to 80 °, moderate irregularities are formed on the outer peripheral surface of the fibrous body, and it is considered that the kneadability between the fibrous body and the resin is improved. When the angle [theta] is 5 to 80 [deg.], The gap between the bone chips 62 becomes moderately open toward the outer peripheral surface, and it is considered that the compatibility with the resin is improved. By opening the gap between the bone chips 62 to the side peripheral surface of the fibrous body, an effect of improving the occlusion of hydrogen and lithium ions can be expected. When the angle θ is 5 to 80 °, it is considered that the bonding force between the bone chips is sufficiently high, and the strength of the carbonaceous fine fibrous body is also high.
[0014]
When the inter-plane distance is out of this range, it means that the graphite laminated structure of the tube has a defect, and the above-mentioned characteristics may be impaired.
[0015]
In the carbonaceous fine fibrous body of the present invention, the ratio d / D of the innermost diameter d to the outer diameter D is 0.5 or less, preferably 0.01 to 0.5, and particularly preferably 0.05 to 0.3. It is. When D is the same, the smaller the d / D, the smaller the innermost diameter d of the bone tip 62 of the carbonaceous fine fibrous body, and the greater the carbon amount per bone tip 62. .
[0016]
Therefore, the value of d / D is considered to have an effect on the balance between the strength and the conductivity of the carbonaceous fine fibrous body. Further, when storing hydrogen or lithium, the occlusion amount per tube, and hence the product unit This indicates that the amount of occlusion per volume may increase.
[0017]
The outer diameter D of the carbonaceous fine fibrous body is preferably from 10 to 200 nm, particularly preferably from 15 to 100 nm. If D is less than 10 nm, the kneadability of the carbonaceous fine fibrous material into a resin or the like may be reduced, and production at low cost becomes extremely difficult. Conversely, if D is greater than 200 nm, the effect of improving the conductivity and strength of the carbonaceous fine fibrous body may be reduced.
[0018]
Although the production method of the carbonaceous fine fibrous body of the present invention is not particularly limited, it is preferably produced by a gas phase reaction method in the presence of a catalyst. There is no particular limitation on the reaction apparatus of the gas phase reaction method, and it can be produced by a reaction apparatus such as a fixed bed reaction apparatus or a fluidized bed reaction apparatus. Introducing a catalyst particle and a carbon source gas to form a spouted bed while producing fine particulate aggregates having an average particle size of 10 to 200 μm of carbonaceous fine fibrous material; Introducing a source gas and the fine aggregates taken out of the spouted bed reactor, and growing the aggregates while forming a fluidized bed of the fine aggregates. Can be.
[0019]
When the carbon source gas is reacted at a high temperature in the presence of the catalyst particles according to this production method, a carbonaceous fine fibrous body is generated with the catalyst particles as a starting point of the reaction and grows into a fibrous form. A fine-grained aggregate on which a fine fibrous body is formed is obtained.
[0020]
When the carbonaceous fine fibrous material is grown while the aggregate particles are separated from each other by jet agitation, the carbonaceous fine fibrous material grows so as to surround the growth reaction part at the center.
[0021]
According to this production method, in the initial stage of the growth reaction of the carbonaceous fine fibrous body in which the aggregated particles are easily solidified, the aggregated particles are vigorously stirred in the spouted bed and separated from each other in a state where they are separated from each other. Grow.
[0022]
Then, by transferring the fine aggregate particles grown to a certain size in the spouted bed to the fluidized bed and further growing the particles, the carbonaceous fine fibrous body can be efficiently grown. Can be.
[0023]
In the above production method, it is preferable that the aggregate particles (hereinafter, sometimes referred to as “primary particles”) are grown to an average particle diameter of 10 to 200 μm in the spouted bed. When the average particle diameter of the primary particles is less than 10 μm, the primary particles are easily solidified when introduced into the fluidized bed and reacted. Performing the reaction in the spouted bed until the average particle size of the primary particles exceeds 200 μm is not preferable in terms of production efficiency because the amount of carbonaceous fine fibrous materials produced per unit volume of the reactor is reduced. The primary particles are grown to an average particle size of 10 to 200 μm in the spouted bed and introduced into the fluidized bed, thereby preventing solidification in the fluidized bed and efficiently producing a carbonaceous fine fibrous body. Can be.
[0024]
FIG. 2 is a system diagram showing an example of a method for producing this carbonaceous fine fibrous body.
[0025]
A raw material gas such as biogas is supplied to the pipe 1, and if necessary, carbon dioxide (CO 2 ) gas is added and mixed from the pipe 2 to make methane and carbon dioxide gas have a substantially equimolar ratio. This raw material gas is sent by a blower 3 to a heat recovery heat exchanger 5 via a pipe 4 and heated, and then sent to a heating furnace 7 via a pipe 6 to be heated, and then to a reactor via a pipe 8. Will be sent out. This pipe 8 is branched into three pipes 9, 10, and 11. The pipe 9 is connected to a spouted bed reactor 30, the pipe 10 is connected to a fluidized bed reactor 40, and the pipe 11 is connected to a fluidized bed reactor 50. The pipe 9 is connected to a pipe 12 for adding a catalyst.
[0026]
In the spouted bed reactor 30, the raw material gas introduced from the pipe 9 is ejected upward to form a spouted bed. The spouted bed reactor 30 is provided with a stirrer 13a for stirring the spouted bed.
[0027]
Particles (such as carbon fines and scattered catalyst) spouted from the spouted bed in the spouted bed reactor 30 are collected together with the gas by being guided from the pipe 14 to the cyclone 15 and returned to the spouted bed reactor 30 via the pipe 16. It is. The fine particles passing through the cyclone 15 are introduced into the bag filter 18 from the pipe 17 together with the gas, and are collected. The particles collected by the bag filter 18 are returned to the spouted bed reactor 30 via a return pipe (not shown).
[0028]
The gas removed by the bag filter 18 is guided to the heat recovery heat exchanger 5 through a pipe 19, and exchanges heat with the raw material gas to lower the temperature. The gas whose temperature has been lowered in this way is led from the pipe 20 to the condenser 21 and cooled. Thereby, the water vapor in the gas is condensed and separated as water, and is discharged from the discharge line 22. The gas that has passed through the condenser 21 is guided to the raw material supply pipe 1 through a pipe 23, and is mixed with the raw material gas as a circulating return gas.
[0029]
A pipe 24 for gas separation branches off from the pipe 23, and a part of the gas is led to the heating furnace 7 as a gas for heating fuel. The pipe 24 functions as a purge line for taking out a part of the gas flowing in the pipe 23 out of the system and preventing nitrogen from accumulating in the circulating gas.
[0030]
In order to cover the amount of heat required for heating, a part of the raw material gas is introduced from the pipe 1 through the pipe 25 into the heating furnace 7 and used as a fuel gas. 26 is an air introduction pipe.
[0031]
A hydrogen separator 28 is connected to the pipe 4 on the downstream side of the blower 3 via a pipe 27. The hydrogen separator 28 is for preventing H 2 from excessively accumulating in the circulating gas.
[0032]
A valve 13c is provided at the upper outlet 13b of the spouted bed reactor 30. A pipe 29 for transporting aggregate particles is connected to the outlet 13b. A gas supply pipe 31 branched from the pipe 6 is connected in the middle of the pipe 29, and the aggregate particles are transported in the pipe 29 by air flow and guided to the cyclone 32.
[0033]
The aggregate particles collected in the cyclone 32 are introduced into a first fluidized bed reactor 40 via a pipe 33. A raw material gas is introduced into the lower part of the first fluidized bed reactor 40 from the pipe 10, and a fluidized bed of aggregate particles is formed in the reactor 40.
[0034]
Agglomerate particles from the spouted bed reactor 30 react and grow in this fluidized bed. The grown particles are taken out by a screw type take-out machine 41 provided at a lower part of the reactor 40 and sent to a second fluidized bed reactor 50 through a pipe 42. The gas containing the scattered particles from the first fluidized bed reactor 40 is guided to the cyclone 32 via the pipe 43, collected and returned to the reactor 40. The gas that has passed through the cyclone 32 is sent to the bag filter 18 via a pipe 44.
[0035]
In the second fluidized bed reactor 50, a raw material gas is supplied to the lower part through the pipe 11, and a fluidized bed of aggregate particles is formed in the reactor 50.
[0036]
Agglomerate particles from the first fluidized bed reactor 40 further react and grow in this fluidized bed, and the grown particles are taken out by a screw type take-out machine 51 provided at the lower part of the reactor 50 to produce a product. It is discharged outside the system.
[0037]
The gas containing the scattered particles from the second fluidized bed reactor 50 is guided to the cyclone 53 via the pipe 52, collected, and returned to the reactor 50 from the pipe 54. The gas that has passed through the cyclone 53 is sent to the bag filter 18 via a pipe 55.
[0038]
In the present invention, in producing the carbonaceous fine fibrous material in this manner, in the spouted bed reactor 30, fine aggregate particles (primary particles) of the carbonaceous fine fibrous material having an average particle size of 10 to 200 μm. ) Is produced, and the primary particles having an average particle size of 10 to 200 μm are introduced into the fluidized bed reactor 40 and further grown.
[0039]
As described above, if the average particle size of the primary particles is less than 10 μm, solidification of the aggregated particles cannot be effectively prevented, and if it exceeds 200 μm, the production efficiency decreases. The average particle size of the primary particles produced in the spouted bed reactor 30 is particularly preferably 30 to 100 μm.
[0040]
The average particle size of the primary particles can be controlled by adjusting the reaction time (residence time) in the spouted bed reactor 30, the feed rate of the raw material gas, the reaction temperature, and the like.
[0041]
The primary particles produced in the spouted bed reactor 30 are further grown in a first fluidized bed reactor 40 and a second fluidized bed reactor 50. The operating conditions of the fluidized bed are such that the average particle size of the secondary particles obtained by growing the primary particles in the fluidized bed is twice or less, particularly 1.2 to 2 times, the average particle size of the primary particles. It is preferable to use a certain degree as a guide. When the ratio between the average particle size of the secondary particles and the primary particles is less than 1.2, the growth of the secondary particles may be insufficient. When the ratio is more than twice, the residence time in the fluidized bed may be excessively long. In addition, there is a possibility that a lump may be formed and the reaction efficiency may be reduced.
[0042]
In FIG. 2, the first fluidized bed reactor 40 and the second fluidized bed reactor 50 are provided in two stages as fluidized bed reactors, but the fluidized bed reactor may be only one stage, Further, it may be provided in three or more stages. By providing two or more fluidized bed reactors in multiple stages and controlling the reaction conditions for each reactor, the production efficiency per unit volume of the reactor is increased, and the shape and physical properties of the resulting carbonaceous fine fibrous material are improved. Can be easily adjusted to a desired range.
[0043]
The carbon source gas used for the reaction is not particularly limited as long as it is a carbon compound that can be introduced into the reaction system in a gaseous state, and is preferably a gas containing hydrocarbon and / or hydrogen and carbon oxide. Used. In particular, collecting and utilizing process exhaust gas such as carbon dioxide, hydrogen, biogas, etc. as a carbon source gas is effective not only for reducing the production cost but also for maintaining the environment. When carbon dioxide and methane are used as the carbon source gas, if both are equimolar, methane and carbon dioxide can be immobilized as carbonaceous products according to the following reaction formula.
CH 4 → C + 2H 2
2H 2 + CO 2 → C + 2H 2 O
[0044]
When a carbon oxide gas such as carbon dioxide or carbon monoxide is used as the carbon source gas, a reducing gas is used as the gas used for the reaction. As used herein, the term "reducing gas" refers to a gas which has a reducing property itself or which is decomposed in a reaction system to generate a gas having such a reducing property. In the above reaction formula, methane gas is a reducing gas as well as a carbon source gas because it is decomposed to generate hydrogen having a reducing property. Examples of such reducing gas include hydrogen gas, and various hydrocarbon gases, that is, compounds such as methane, ethane, propane, and butane.
[0045]
On the other hand, the catalyst is not particularly limited in chemical composition and shape, etc., as long as it can efficiently perform a reaction for producing a carbonaceous fine fibrous material from a carbon source gas. The compound is preferably used. As the catalyst, a metal catalyst such as nickel, cobalt and iron is particularly preferable. These metals may be used alone or in an appropriate combination of two or more. In addition, these metals can be used in an elemental state or in compounds such as oxides, hydroxides, and carbonates. Further, these catalyst components may be supported on a carrier such as silica. In this case, the amount of the catalyst component carried on the carrier is preferably about 1 to 90% by weight based on the weight of the carrier. The particle shape of the catalyst is not particularly limited, and may be a generally known shape, for example, a spherical shape or the like. When the particles are in the form of particles such as spheres, for example, particles having a diameter of about 1 to 20 μm are preferably used.
[0046]
The amount of such catalyst particles used is not particularly limited, but the amount is such that the amount of the carbon source gas introduced into the spouted bed reactor 30 is about 10 to 60 L / g · hr based on the amount of the active catalyst component. It is preferable that
[0047]
The reaction conditions are usually a reaction temperature of 400 to 800 ° C., preferably 500 ° C. or more and less than 600 ° C. for both the spouted bed reactor 30 and the fluidized bed reactors 40 and 50. If the reaction temperature is lower than this range, a sufficient reaction rate cannot be obtained, which is disadvantageous in terms of the production efficiency of the carbonaceous fine fibrous body.If the reaction temperature is higher than this range, the reaction between the once generated carbon and the reaction atmosphere gas may occur. A reaction may occur to lower the yield of the carbonaceous fine fibrous material, which is not preferable.
[0048]
The reaction pressure is not particularly limited as long as it is a condition under which the raw material carbon source gas efficiently reacts, and is preferably 1 to 200 kPa, more preferably 3 to 50 kPa.
[0049]
The spouted bed reactor introduces catalyst particles and a carbon source gas from the lower part, grows a carbonaceous fine fibrous body while forming a spouted bed of aggregate particles and catalyst particles in the reactor, and from the upper part. It has a jet dispersion mechanism such that the carbonaceous fine fibrous body grows and aggregate particles having a predetermined average particle size can be taken out.
[0050]
The reaction using such a spouted bed reactor and a fluidized bed reactor may be performed in a continuous manner or in a batch manner. For example, both the spouted bed reactor and the fluidized bed reactor may be operated continuously, one of the spouted bed reactor and the fluidized bed reactor may be operated continuously, and the other may be operated as a batch type. Both the reactor and the fluidized bed reactor may be operated in a batch mode.
[0051]
Whether these reactors are operated in a batch system or a continuous system depends on the reaction conditions (residence time, etc.) and the desired properties of the carbonaceous fine fibrous material (length, diameter, , Agglomerate particle size, etc.) can be selected as appropriate, which means that in the same facility, by selecting an operation method, a carbonaceous fine fibrous body having various characteristics can be produced. Means you can do it.
[0052]
As shown in FIG. 2, the exhaust gas from the spouted bed reactor 30 and the fluidized bed reactors 40 and 50 is collected by a fine powder collecting means such as a cyclone and a bag filter to collect fine powders such as carbon fine powder and catalyst particles. It can be mixed and recycled with the raw material carbon source gas, and it is preferable to return the collected fine powder to the reactor. The body yield can be increased.
[0053]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to the following Examples at all without departing from the gist thereof.
[0054]
Example 1
According to the present invention, a carbonaceous fine fibrous body was produced by the method shown in FIG. However, the aggregated particles obtained in the first fluidized-bed reactor 40 were used as products without using the second fluidized-bed reactor 50.
[0055]
As a raw material gas, a 1: 1 (molar ratio) mixed gas of carbon dioxide and methane is used, and is heated together with the circulating return gas from the pipe 23 in the heat recovery heat exchanger 5 and then heated in the heating furnace 7 to 600 ° C. The temperature rose.
[0056]
This temperature-raised gas is supplied to the spouted bed reactor 30 together with the supported catalyst particles, and while the spouted bed is formed in the spouted bed reactor 30, aggregate particles of the carbonaceous fine fibrous material are grown. Aggregate particles were periodically taken out of the reactor and introduced into the fluidized bed reactor 40. The average particle size of the primary particles was 45 μm. The reaction conditions in the spouted bed reactor 30 were set at a temperature of 550 ° C. and a gauge pressure of 40 kPa, and as the supported catalyst particles, supported catalyst particles having an average particle diameter of 15 μm in which metal nickel was supported on a substantially spherical silica carrier. The raw material gas (including the circulation return gas) was introduced at a rate of 30 L / g · hr with respect to the amount of the active catalyst component introduced into the spouted bed reactor 30.
[0057]
The primary particles having an average particle size of 45 μm obtained in the spouted bed reactor 30 are then brought into contact with a raw material gas in a first fluidized bed reactor 40 to further perform granulation growth. The aggregated particles in the fluidized bed were taken out and cooled to obtain a product.
[0058]
The reaction conditions of the fluidized bed reactor 40 were a temperature of 550 ° C. and a gauge pressure of 40 kPa, and the raw material gas was introduced at a rate of 30 L / g · hr with respect to the amount of the active catalyst component. The average particle size of the secondary particles taken out of the fluidized bed reactor 40 was 65 μm.
[0059]
Table 1 shows the results of TEM measurement of the properties of the carbonaceous fine fibrous material thus manufactured.
[0060]
A kneading device (Toyo Seiki Co., Ltd.) was prepared by mixing 0.9 g of the carbonaceous fine fibrous material and 44.1 g (2% by weight of the carbonaceous fine fibrous material) of polycarbonate (7025A manufactured by Mitsubishi Engineering-Plastics) as a synthetic resin. The mixture was kneaded at 260 ° C. for 15 minutes using a laboratory plastomill manufactured by MFG. The obtained mixture was press-molded to obtain a 100 mm × 100 mm × 2 mm plate-like molded body. Table 1 shows the measurement results of the conductivity (volume resistivity) of this molded product.
[0061]
Example 2
A carbonaceous fine fibrous body was produced in the same manner as in Example 1 except that the reaction temperature was changed to 500 ° C., and a similar test was conducted. Table 1 shows the results.
[0062]
Example 3
A carbonaceous fine fibrous body was manufactured in the same manner as in Example 1 except that the ratio of the raw material gas was set to 15 L / g · hr, and the same test was performed. Table 1 shows the results.
[0063]
Comparative Example 1
A similar test was performed on commercially available multi-wall carbon nanotubes. Table 1 shows the results.
[0064]
[Table 1]
Figure 2004360099
[0065]
【The invention's effect】
As described in detail above, according to the present invention, an inexpensive carbonaceous fine fibrous body having excellent kneading properties, dispersibility, workability, and function expression properties is provided.
[0066]
The carbonaceous fine fibrous body of the present invention has excellent workability as compared with conventional carbon nanotubes, and can be kneaded in the same manner as conventional carbon black, and has similar applications, such as resins and rubbers. It can be industrially advantageously used as an additive for reinforcing the elastomer or the like, coloring, imparting functionality such as imparting conductivity, or as a functional pigment as a compounding component for pigments, inks, toners and the like.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a carbonaceous fine fibrous body of the present invention.
FIG. 2 is a system diagram showing one example of a method for producing a carbonaceous fine fibrous body of the present invention.
[Explanation of symbols]
Reference Signs List 30 spouted bed reactor 40 first fluidized bed reactor 50 second fluidized bed reactor 61 carbonaceous fine fibrous body 62 bone chip

Claims (11)

グラファイトの結晶構造が、透過型電子顕微鏡(TEM)画像において、繊維軸方向にフィッシュボーン(魚骨状)配列構造を有する炭素質微細繊維状体であって、
該グラファイト面の角度が、繊維軸に対して5〜80゜の角度をなし、
中空空洞部の最内径(TEMによって観測された該空洞部の最も小径の部分の直径)dと、TEMによって観測された繊維の直径Dとの比d/Dが0.5以下であることを特徴とする炭素質微細繊維状体。
The crystal structure of graphite is a carbonaceous fine fibrous body having a fishbone (fishbone) array structure in the fiber axis direction in a transmission electron microscope (TEM) image,
The angle of the graphite surface forms an angle of 5 to 80 ° with respect to the fiber axis,
The ratio d / D of the innermost diameter d of the hollow cavity (the diameter of the smallest diameter portion of the cavity observed by TEM) to the diameter D of the fiber observed by TEM is 0.5 or less. Characteristic carbonaceous fine fibrous body.
グラファイト面の角度が、繊維軸に対して10〜75゜であることを特徴とする請求項1記載の炭素質微細繊維状体。2. The carbonaceous fine fibrous body according to claim 1, wherein the angle of the graphite surface is 10 to 75 [deg.] With respect to the fiber axis. グラファイト面の角度が、繊維軸に対して20〜60゜であることを特徴とする請求項2記載の炭素質微細繊維状体。3. The carbonaceous fine fibrous body according to claim 2, wherein the angle of the graphite surface is 20 to 60 degrees with respect to the fiber axis. 前記比d/Dが、0.01〜0.5であることを特徴とする請求項1ないし3のいずれか1項に記載の炭素質微細繊維状体。The carbonaceous fine fibrous body according to any one of claims 1 to 3, wherein the ratio d / D is 0.01 to 0.5. 繊維の直径Dが10〜200nmであることを特徴とする請求項1ないし4のいずれか1項に記載の炭素質微細繊維状体。The carbonaceous fine fibrous body according to any one of claims 1 to 4, wherein the fiber has a diameter D of 10 to 200 nm. 繊維の直径Dが15〜100nmであることを特徴とする請求項5記載の炭素質微細繊維状体。The carbonaceous fine fibrous body according to claim 5, wherein the fiber has a diameter D of 15 to 100 nm. 炭素質微細繊維状体が、触媒の存在下、炭素源ガスを原料として用いて製造されることを特徴とする請求項1ないし6のいずれか1項に記載の炭素質微細繊維状体。The carbonaceous fine fibrous body according to any one of claims 1 to 6, wherein the carbonaceous fine fibrous body is produced using a carbon source gas as a raw material in the presence of a catalyst. 炭素源ガスとして、炭化水素および/または水素と、炭素酸化物とを用いて製造されることを特徴とする請求項7記載の炭素質微細繊維状体。The carbonaceous fine fibrous body according to claim 7, wherein the carbonaceous fine fiber body is produced using a hydrocarbon and / or hydrogen and a carbon oxide as a carbon source gas. 炭素酸化物が、一酸化炭素および/または二酸化炭素であることを特徴とする請求項8記載の炭素質微細繊維状体。The carbonaceous fine fibrous body according to claim 8, wherein the carbon oxide is carbon monoxide and / or carbon dioxide. 炭化水素および/または水素が、メタンおよび/または水素であることを特徴とする請求項9記載の炭素質微細繊維状体。The carbonaceous fine fibrous body according to claim 9, wherein the hydrocarbon and / or hydrogen is methane and / or hydrogen. 原料としてフィードする炭素源ガスが、メタンと二酸化炭素であることを特徴とする請求項7ないし10のいずれか1項に記載の炭素質微細繊維状体。The carbonaceous fine fibrous body according to any one of claims 7 to 10, wherein the carbon source gas fed as a raw material is methane and carbon dioxide.
JP2003158233A 2003-06-03 2003-06-03 Carbonaceous fine fiber Expired - Lifetime JP4175182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158233A JP4175182B2 (en) 2003-06-03 2003-06-03 Carbonaceous fine fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158233A JP4175182B2 (en) 2003-06-03 2003-06-03 Carbonaceous fine fiber

Publications (2)

Publication Number Publication Date
JP2004360099A true JP2004360099A (en) 2004-12-24
JP4175182B2 JP4175182B2 (en) 2008-11-05

Family

ID=34051710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158233A Expired - Lifetime JP4175182B2 (en) 2003-06-03 2003-06-03 Carbonaceous fine fiber

Country Status (1)

Country Link
JP (1) JP4175182B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110570A1 (en) 2008-03-06 2009-09-11 宇部興産株式会社 Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
WO2009153970A1 (en) * 2008-06-18 2009-12-23 Showa Denko K.K. Carbon nanofiber, producing method and use of the same
WO2010114089A1 (en) 2009-04-02 2010-10-07 宇部興産株式会社 Conductive resin composition
US7879261B2 (en) 2007-03-26 2011-02-01 Showa Denko K.K. Carbon nanofiber, production process and use
WO2011016536A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive resin composition
WO2011016535A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive polyamide resin composition
WO2011027863A1 (en) 2009-09-07 2011-03-10 宇部興産株式会社 Multilayer tube for delivery
WO2011027780A1 (en) 2009-09-04 2011-03-10 宇部興産株式会社 Electrically conductive thermoplastic resin composition
JP2012132011A (en) * 2009-04-02 2012-07-12 Ube Industries Ltd Conductive resin composition
JP2012524015A (en) * 2009-04-17 2012-10-11 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon oxide
US8308990B2 (en) 2007-05-31 2012-11-13 Showa Denko K.K. Carbon nanofiber, production process and use
JP2015518461A (en) * 2012-04-16 2015-07-02 シーアストーン リミテッド ライアビリティ カンパニー Methods and reactors for producing solid carbon nanotubes, solid carbon clusters, and forests
US9090472B2 (en) 2012-04-16 2015-07-28 Seerstone Llc Methods for producing solid carbon by reducing carbon dioxide
JP2015533762A (en) * 2012-09-18 2015-11-26 エクソンモービル アップストリーム リサーチ カンパニー Reactor system for producing carbon allotropes
US9586823B2 (en) 2013-03-15 2017-03-07 Seerstone Llc Systems for producing solid carbon by reducing carbon oxides
US9598286B2 (en) 2012-07-13 2017-03-21 Seerstone Llc Methods and systems for forming ammonia and solid carbon products
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
US9783416B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Methods of producing hydrogen and solid carbon
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US10086349B2 (en) 2013-03-15 2018-10-02 Seerstone Llc Reactors, systems, and methods for forming solid products
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
US10115844B2 (en) 2013-03-15 2018-10-30 Seerstone Llc Electrodes comprising nanostructured carbon
US10351974B2 (en) 2012-04-17 2019-07-16 Exxonmobil Upstream Research Company Feedstocks for forming carbon allotropes
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239019A (en) * 1985-04-15 1986-10-24 ザ ダウ ケミカル カンパニー Production of carbon filament and carbon filament obtained thereby
JP2001288625A (en) * 2000-02-04 2001-10-19 Ulvac Japan Ltd Graphite nanofiber, electron emitting source and method for producing the same, display element having the electron emitting source, and lithium ion secondary battery
JP2003054901A (en) * 2001-08-13 2003-02-26 Sony Corp Core-shell carbon nanofiber for hydrogen storage and process for preparing the fiber
JP2003073928A (en) * 2001-08-29 2003-03-12 Gsi Creos Corp Carbon fiber produced by vapor growth method
JP2003073930A (en) * 2001-08-31 2003-03-12 Showa Denko Kk Fine carbon fiber and method for producing the same
JP2004018290A (en) * 2002-06-13 2004-01-22 Mitsubishi Chemical Engineering Corp Granular agglomerate of carbonaceous fine fibrous body
JP2004019018A (en) * 2002-06-13 2004-01-22 Mitsubishi Chemical Engineering Corp Method for producing carbonaceous microfibrous material
JP2004019019A (en) * 2002-06-13 2004-01-22 Mitsubishi Chemical Engineering Corp Carbonaceous fine fiber article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239019A (en) * 1985-04-15 1986-10-24 ザ ダウ ケミカル カンパニー Production of carbon filament and carbon filament obtained thereby
JP2001288625A (en) * 2000-02-04 2001-10-19 Ulvac Japan Ltd Graphite nanofiber, electron emitting source and method for producing the same, display element having the electron emitting source, and lithium ion secondary battery
JP2003054901A (en) * 2001-08-13 2003-02-26 Sony Corp Core-shell carbon nanofiber for hydrogen storage and process for preparing the fiber
JP2003073928A (en) * 2001-08-29 2003-03-12 Gsi Creos Corp Carbon fiber produced by vapor growth method
JP2003073930A (en) * 2001-08-31 2003-03-12 Showa Denko Kk Fine carbon fiber and method for producing the same
JP2004018290A (en) * 2002-06-13 2004-01-22 Mitsubishi Chemical Engineering Corp Granular agglomerate of carbonaceous fine fibrous body
JP2004019018A (en) * 2002-06-13 2004-01-22 Mitsubishi Chemical Engineering Corp Method for producing carbonaceous microfibrous material
JP2004019019A (en) * 2002-06-13 2004-01-22 Mitsubishi Chemical Engineering Corp Carbonaceous fine fiber article

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879261B2 (en) 2007-03-26 2011-02-01 Showa Denko K.K. Carbon nanofiber, production process and use
US8308990B2 (en) 2007-05-31 2012-11-13 Showa Denko K.K. Carbon nanofiber, production process and use
JP2012046864A (en) * 2008-03-06 2012-03-08 Ube Ind Ltd Fine carbon fiber, fine short carbon fiber, and methods for producing the same
WO2009110570A1 (en) 2008-03-06 2009-09-11 宇部興産株式会社 Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
US8696943B2 (en) 2008-06-18 2014-04-15 Showa Denko K.K. Carbon nanofiber, producing method and use of the same
WO2009153970A1 (en) * 2008-06-18 2009-12-23 Showa Denko K.K. Carbon nanofiber, producing method and use of the same
JP2012132011A (en) * 2009-04-02 2012-07-12 Ube Industries Ltd Conductive resin composition
WO2010114089A1 (en) 2009-04-02 2010-10-07 宇部興産株式会社 Conductive resin composition
KR101753918B1 (en) * 2009-04-17 2017-07-04 시어스톤 엘엘씨 Method for producing solid carbon by reducing carbon oxides
JP2012524015A (en) * 2009-04-17 2012-10-11 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon oxide
US10500582B2 (en) 2009-04-17 2019-12-10 Seerstone Llc Compositions of matter including solid carbon formed by reducing carbon oxides
JP2015057372A (en) * 2009-04-17 2015-03-26 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon oxides
US9556031B2 (en) 2009-04-17 2017-01-31 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
WO2011016535A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive polyamide resin composition
WO2011016536A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive resin composition
WO2011027780A1 (en) 2009-09-04 2011-03-10 宇部興産株式会社 Electrically conductive thermoplastic resin composition
WO2011027863A1 (en) 2009-09-07 2011-03-10 宇部興産株式会社 Multilayer tube for delivery
US9090472B2 (en) 2012-04-16 2015-07-28 Seerstone Llc Methods for producing solid carbon by reducing carbon dioxide
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
JP2015518461A (en) * 2012-04-16 2015-07-02 シーアストーン リミテッド ライアビリティ カンパニー Methods and reactors for producing solid carbon nanotubes, solid carbon clusters, and forests
US9637382B2 (en) 2012-04-16 2017-05-02 Seerstone Llc Methods for producing solid carbon by reducing carbon dioxide
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US10351974B2 (en) 2012-04-17 2019-07-16 Exxonmobil Upstream Research Company Feedstocks for forming carbon allotropes
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9598286B2 (en) 2012-07-13 2017-03-21 Seerstone Llc Methods and systems for forming ammonia and solid carbon products
US10358346B2 (en) 2012-07-13 2019-07-23 Seerstone Llc Methods and systems for forming ammonia and solid carbon products
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
JP2015533762A (en) * 2012-09-18 2015-11-26 エクソンモービル アップストリーム リサーチ カンパニー Reactor system for producing carbon allotropes
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
US9993791B2 (en) 2012-11-29 2018-06-12 Seerstone Llc Reactors and methods for producing solid carbon materials
US10086349B2 (en) 2013-03-15 2018-10-02 Seerstone Llc Reactors, systems, and methods for forming solid products
US10115844B2 (en) 2013-03-15 2018-10-30 Seerstone Llc Electrodes comprising nanostructured carbon
US10322832B2 (en) 2013-03-15 2019-06-18 Seerstone, Llc Systems for producing solid carbon by reducing carbon oxides
US9586823B2 (en) 2013-03-15 2017-03-07 Seerstone Llc Systems for producing solid carbon by reducing carbon oxides
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
US9783416B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Methods of producing hydrogen and solid carbon
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Also Published As

Publication number Publication date
JP4175182B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP4175182B2 (en) Carbonaceous fine fiber
US9637382B2 (en) Methods for producing solid carbon by reducing carbon dioxide
EP1391425B1 (en) Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed
EP1623957B1 (en) Process and apparatus for the production of hydrogen
JP5567294B2 (en) Carbon nanomaterial manufacturing method and carbon nanomaterial manufacturing apparatus
US10500594B2 (en) Apparatus and method for continuous preparation of carbon nanotubes
EA028873B1 (en) Method for producing solid carbon by reducing carbon oxides
US20090286675A1 (en) Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
CN102656118B (en) Prepare the method for titanium diboride powder
CN1950296A (en) Single, multi-walled, functionalized and doped carbon nanotubes and composites thereof
JP2004019018A (en) Method for producing carbonaceous microfibrous material
WO2014151135A2 (en) Direct combustion heating
JP4847164B2 (en) Fine carbon fiber structure
CN100434359C (en) Method and device for continuously producing nanometer carbon material
JP2004018290A (en) Granular agglomerate of carbonaceous fine fibrous body
CN103249672B (en) For the system and method that hydrogen is produced
JP2011241104A (en) Method for producing nanocarbon, multiporous composite metal oxide for producing nanocarbon and apparatus for producing nanocarbon
JP2008037694A (en) Nanocarbon material production apparatus and nanocarbon material purification method
KR102517481B1 (en) Method and System for Manufacturing Carbon Nanotubes
JP2011255382A (en) Method for manufacturing catalyst for manufacturing nanocarbon material, and method for manufacturing nanocarbon material
JP2007146316A (en) Method for producing gas phase method carbon fiber
JP2007145678A (en) Method for producing nanocarbon material
JP4511972B2 (en) Nanocarbon material production carrier, method for producing the carrier, nanocarbon material production apparatus
JP2004019019A (en) Carbonaceous fine fiber article
Liu et al. PRODUCTION OF BUNDLE OF SINGLE-WALLED CARBON NANOTUBES USING FE3O4 NANOPARTICLES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4175182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term