JP2004018290A - Granular agglomerate of carbonaceous fine fibrous body - Google Patents

Granular agglomerate of carbonaceous fine fibrous body Download PDF

Info

Publication number
JP2004018290A
JP2004018290A JP2002173002A JP2002173002A JP2004018290A JP 2004018290 A JP2004018290 A JP 2004018290A JP 2002173002 A JP2002173002 A JP 2002173002A JP 2002173002 A JP2002173002 A JP 2002173002A JP 2004018290 A JP2004018290 A JP 2004018290A
Authority
JP
Japan
Prior art keywords
fine fibrous
carbonaceous fine
bed reactor
particles
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002173002A
Other languages
Japanese (ja)
Inventor
Junichi Munesawa
宗澤 潤一
Takeshi Kashiwagi
柏木 猛
Shiyuushichi Yoshimura
吉村 修七
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Original Assignee
Shimadzu Corp
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Mitsubishi Chemical Corp, Mitsubishi Chemical Engineering Corp filed Critical Shimadzu Corp
Priority to JP2002173002A priority Critical patent/JP2004018290A/en
Publication of JP2004018290A publication Critical patent/JP2004018290A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide granular agglomerate of a carbonaceous fine fibrous body which has high bulk density, excellent handleability and is efficiently and inexpensively mass-produced as the granular agglomerate of the carbonaceous fine fibrous body having homogeneous shape and property without causing solidification and clogging in the production process. <P>SOLUTION: The granular agglomerate of the carbonaceous fine fibrous body has ≥200 kg/m<SP>3</SP>bulk density. The granular agglomerate of the carbonaceous fine fibrous body is produced by introducing a catalyst particle and a carbon source gas into a jet bed reactor 30, producing agglomerate of the carbonaceous fine fibrous body having 10-200 μm average particle diameter while forming a jet bed and introducing the agglomerate particle and the carbon source gas into fluidized bed reactors 40 and 50 to grow the agglomerate while forming a fluidized bed of the agglomerate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は炭素質微細繊維状体の粒状凝集体に係り、特に、嵩密度が高く、取り扱い性に優れ、また、製造工程で固化、閉塞を引き起こすことなく、均質な形状と物性を有する炭素質微細繊維状体の粒状凝集体として、効率的にかつ安価に大量生産することができる炭素質微細繊維状体の粒状凝集体に関する。
【0002】
【従来の技術】
従来、二酸化炭素、水素、バイオガス(二酸化炭素(CO)とメタン(CH)とを主成分とするガス)等の排ガスを回収し、これを炭素源として触媒の存在下で反応させることにより炭素質生成物として固定化する方法が知られている(特開平11−29314号公報、特開平11−322315号公報)。この方法によれば、炭素質生成物としてカーボンナノチューブと呼称される炭素質微細中空繊維状体が得られることが確認されている。また、カーボンナノチューブは、炭化水素類などの炭素源原料を、高温で触媒存在下にて気相反応させて得られることも知られている(特公平3−64606号公報、特公平3−77288号公報等)。
【0003】
このようにして製造されるカーボンナノチューブに代表される炭素質微細繊維状体は、従来の炭素材料と比較して著しく高導電性であるなどの優れた特性により、近年、新材料として特に注目されている。
【0004】
【発明が解決しようとする課題】
しかしながら、現状では、その製造効率が非常に低く、工業的に安価に大量生産する方法は未だ開発されていないのが現状である。即ち、例えば、反応器内の炭素質微細繊維状体濃度を上げて生産効率を高めようとすると、炭素質微細繊維状体が成長と共に塊状に固化し、連続製造が困難となるという問題がある。
【0005】
また、従来知られているカーボンナノチューブ等の炭素質微細繊維状体は、その密度が著しく低く、従って取り扱いが極めて困難であり、特に飛散し易いため、加工する際の作業環境が劣悪となり、また、飛散による汚染防止のための設備を必要とするという問題があった。
【0006】
本発明は上記従来の問題点を解決し、嵩密度が高く、加工の際の取り扱いが従来の炭素質微細繊維状体より極めて容易な炭素質微細繊維状体の粒状凝集体を提供することを目的とする。
【0007】
本発明はまた、製造工程で固化、閉塞を引き起こすことなく、均質な形状と物性を有する炭素質微細繊維状体の粒状凝集体として、効率的にかつ安価に大量生産することができる炭素質微細繊維状体の粒状凝集体を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の炭素質微細繊維状体の粒状凝集体は、嵩密度が200kg/m以上であることを特徴とする。
【0009】
このように嵩密度の大きい炭素質微細繊維状体の粒状凝集体であれば、取り扱い時の飛散の問題はなく、良好な作業性のもとに容易に加工することができる。しかも、このような嵩密度の大きい本発明の炭素質微細繊維状体の粒状凝集体は、反応工程で固化、閉塞を引き起こすことなく、均質な形状と物性を有する炭素質微細繊維状体の粒状凝集体として効率的にかつ安価に大量生産することができる。
【0010】
なお、本発明において、炭素質微細繊維状体の粒状凝集体の嵩密度とは、JIS K6219−6に従って測定した値である。
【0011】
この炭素質微細繊維状体の粒状凝集体は平均粒径30〜250μm程度であることが好ましい。
【0012】
また、嵩密度の上限に特に制限はないが、製造効率等の面からは、1200kg/m以下である。
【0013】
なお、本発明の炭素質微細繊維状体の粒状凝集体を構成する炭素質微細繊維状体としては、一般に、直径が10〜1000nm特に10〜200nmで、長さが50nm〜100μm、長さ/直径の比率(アスペクト比)が10〜10000の炭素質微細繊維状体、例えば、カーボンナノチューブ等が挙げられる。
【0014】
このような本発明の炭素質微細繊維状体の粒状凝集体は、噴流層反応器内に触媒粒子及び炭素源ガスを導入して、噴流層を形成しながら、炭素質微細繊維状体の平均粒径10〜200μmの微粒状凝集体を製造する工程と、流動層反応器内に、炭素源ガスと前記噴流層反応器から取り出された該微粒状凝集体とを導入して、該微粒状凝集体の流動層を形成しながら該凝集体を成長させる工程とを経て製造されることが、反応器や配管内での固化をより一層確実に防止して、均質な形状と物性を有する炭素質微細繊維状体の粒状凝集体として、効率的かつ安価に大量生産する上で好ましい。
【0015】
このように、炭素質微細繊維状体の微粒状凝集体を噴流層反応器内である程度の大きさに成長させることにより、粒状凝集体の固化を有効に防止することができる理由は次の通りである。
【0016】
炭素源ガスを触媒粒子の存在下に高温反応させると、触媒粒子を反応の基点として炭素質微細繊維状体が生成して繊維状に成長し、触媒粒子の表面に炭素質微細繊維状体が形成された微粒状凝集体が得られる。この炭素質微細繊維状体の成長反応初期においては、凝集体粒子同士が接触した場合、凝集体粒子の表層部分に炭素質微細繊維状体の成長反応部が存在するため、この炭素質微細繊維状体の成長端が互いに絡み合って凝集体粒子が固化し、成長し易い。
【0017】
しかし、凝集体粒子を噴流撹拌で互いに遊離させた状態で炭素質微細繊維状体を成長させると、成長反応部を中心に取り囲むように炭素質微細繊維状体が成長し、成長端が表層面ではなく、内層に表出する機会が多くなる。このため、凝集体粒子同士が接触しても炭素質微細繊維状体同士が絡み合って固化することはなくなる。
【0018】
このように炭素質微細繊維状体が絡み合って固化し易い、反応初期の凝集体粒子同士の絡み合いによる固化を防止するためには、凝集体粒子の滞留を防止して凝集体粒子同士が定常的に接触しないようにする必要がある。
【0019】
そこで、本発明では、好ましくは凝集体粒子同士が固化し易い炭素質微細繊維状体の成長反応の初期において、噴流層内で凝集体粒子を激しく撹拌して互いに遊離させた状態で炭素質微細繊維状体を成長させる。
【0020】
その後、このように噴流層内である程度の大きさに成長させた微粒状凝集体粒子を流動層に移送して更に粒子を成長させることにより、炭素質微細繊維状体を効率的に成長させることができる。即ち、ある程度の大きさに成長した凝集体粒子であれば、互いに絡み合って固化することはない。この流動層は噴流層よりも粒子密度が高く、炭素質微細繊維状体の生成効率が高いため、凝集体粒子を効率的に成長させることができる。
【0021】
これに対して、触媒粒子と炭素源ガスとを最初から流動層に導入して炭素質微細繊維状体を製造しようとすると、凝集体粒子が絡み合って塊状に固まり、反応器から排出することが困難となる。また、粒子密度の比較的低い噴流層内のみで炭素質微細繊維状体を製造しようとすると、製造効率が悪く、また、反応器も大型となり、工業的に不利である。
【0022】
本発明において、噴流層内で凝集体粒子(以下「一次粒子」と称す場合がある。)を平均粒径10〜200μmにまで成長させることは極めて重要であり、この一次粒子の平均粒径が10μm未満では、この一次粒子を流動層に導入して反応させた際に、固化し易い。この一次粒子の平均粒径が200μmを超えるまで噴流層内で反応を行うことは、反応器単位容積当たりの炭素質微細繊維状体生成量が低減し、製造効率の面で好ましくない。噴流層内で一次粒子を平均粒径10〜200μmに成長させて流動層に導入することにより、流動層内での固化を防止して、効率的な炭素質微細繊維状体の製造を行うことができる。
【0023】
本発明において、この一次粒子の平均粒径は30〜100μmであることが好ましい。
【0024】
また、流動層反応器で製造される凝集体粒子、即ち本発明の炭素質微細繊維状体の粒状凝集体(以下「二次粒子」と称す場合がある。)の平均粒径は、本発明においては30〜250μmである。特に好ましくは、この一次粒子の平均粒径の2倍以下、特に1.2〜2.0倍であることが好ましい。
【0025】
なお、ここで言う一次粒子及び二次粒子(凝集体粒子)の粒径は「平均粒径」であり、従って、上記製造工程の一次粒子に粒径10μm未満或いは粒径200μmを超えるものが存在していても良い。同様に、二次粒子についても、一次粒子の平均粒径の2倍を超える凝集体が存在していても良い。
【0026】
【発明の実施の形態】
以下に本発明の炭素質微細繊維状体の粒状凝集体の実施の形態を詳細に説明する。
【0027】
まず、図面を参照して本発明の炭素質微細繊維状体の粒状凝集体の好適な製造方法の一例を説明するが、以下の製造方法は、本発明の粒状凝集体の製造に好適な方法の一例であって、本発明の粒状凝集体の製造方法は、何ら以下の方法に限定されない。本発明は嵩密度が200kg/m以上の炭素質微細繊維状体の粒状凝集体であり、このような嵩密度を有するものであれば、製造方法に何ら制約を受けるものではない。
【0028】
図1は本発明の炭素質微細繊維状体の粒状凝集体の製造方法の一例を示す系統図である。
【0029】
バイオガス等の原料ガスが配管1に供給され、必要に応じ、メタンと炭酸ガスとを略等モル比とするために配管2から二酸化炭素(CO)ガスが添加、混合される。この原料ガスがブロワ3により配管4を経て熱回収熱交換器5に送られ、加熱された後、更に配管6を介して加熱炉7に送られて加熱され、配管8を介して反応器へ送り出される。この配管8は3本の配管9,10,11に分岐している。配管9は噴流層反応器30に接続され、配管10は流動層反応器40に接続され、配管11は流動層反応器50に接続されている。配管9には触媒添加用の配管12が接続されている。
【0030】
噴流層反応器30内では、配管9から導入された原料ガスが上方に噴出して噴流層が形成される。なお、噴流層反応器30には、この噴流層を撹拌するための撹拌機13aが付設されている。
【0031】
噴流層反応器30内の噴流層から飛び出した粒子(炭素微粉及び飛散触媒等)は、ガスと共に配管14からサイクロン15に導かれて捕集され、配管16を介して噴流層反応器30へ戻される。なお、サイクロン15を通り抜けた微細粒子は、ガスと共に配管17からバグフィルタ18に導入され、捕集される。バグフィルタ18にて捕集された粒子は、返送用配管(図示略)を介して噴流層反応器30に戻される。
【0032】
バグフィルタ18にて除塵されたガスは、配管19を介して前記熱回収熱交換器5に導かれ、前記原料ガスと熱交換して降温される。このようにして降温されたガスは、配管20から凝縮器21に導かれ、冷却される。これにより、該ガス中の水蒸気が凝縮して水となって分離され、排出ライン22から排出される。凝縮器21を通ったガスは、配管23を介して前記原料供給用配管1に導かれ、循環戻りガスとして原料ガスに混合される。
【0033】
なお、配管23からはガス分取用の配管24が分岐しており、ガスの一部を前記加熱炉7へ加熱燃料用ガスとして導いている。この配管24は、配管23内を流れるガスの一部を系外に取り出し、循環ガス中に窒素が蓄積することを防止するためのパージラインとして機能している。
【0034】
加熱炉7へは、加熱に必要な熱量を賄うために、前記配管1から原料ガスの一部を配管25を介して導入し、燃料ガスとして用いる。26は空気の導入配管である。
【0035】
ブロワ3の下流側の配管4には配管27を介して水素分離装置28が接続されている。この水素分離装置28は、循環ガス中にHが過剰に蓄積することを防止するためのものである。
【0036】
噴流層反応器30の上部の取出口13bに弁13cが設けられている。この取出口13bに凝集体粒子輸送用の配管29が接続されている。前記配管6から分岐したガス供給用配管31がこの配管29の途中に接続されており、凝集体粒子はこの配管29内を気流搬送され、サイクロン32に導かれる。
【0037】
該サイクロン32内にて捕集された凝集体粒子は、配管33を介して第1の流動層反応器40に導入される。この第1の流動層反応器40の下部に前記配管10から原料ガスが導入されており、該反応器40内に凝集体粒子の流動層が形成されている。
【0038】
噴流層反応器30からの凝集体粒子は、この流動層内において反応し、成長する。成長した粒子は、反応器40の下部に設けられたスクリュ式取出機41により取り出され、配管42を介して第2の流動層反応器50へ送られる。なお、第1の流動層反応器40からの飛散粒子を含むガスは、配管43を介してサイクロン32に導かれて捕集され、反応器40へ戻される。サイクロン32を通ったガスは、配管44を介して前記バグフィルタ18へ送られる。
【0039】
第2の流動層反応器50では、その下部に前記配管11を介して原料ガスが供給されており、該反応器50内に凝集体粒子の流動層が形成されている。
【0040】
第1の流動層反応器40からの凝集体粒子はこの流動層において、更に反応して成長し、成長した粒子は、反応器50の下部に設けられたスクリュ式取出機51により取り出され、製品として系外へ排出される。
【0041】
なお、第2の流動層反応器50からの飛散粒子を含むガスは、配管52を介してサイクロン53に導かれて捕集され、配管54より反応器50へ戻される。サイクロン53を通ったガスは、配管55を介して前記バグフィルタ18へ送られる。
【0042】
本発明の炭素質微細繊維状体の粒状凝集体は、このようにして炭素質微細繊維状体を製造するに当たり、噴流層反応器30において、平均粒径10〜200μmの炭素質微細繊維状体の微粒状の凝集体粒子(一次粒子)を製造し、この平均粒径10〜200μmの一次粒子を流動層反応器40に導入して更に成長させることにより製造することができる。
【0043】
前述の如く、この一次粒子の平均粒径が10μm未満であると、凝集体粒子の固化を有効に防止し得ず、200μmを超えると製造効率が低下する。噴流層反応器30で製造する一次粒子の平均粒径は特に30〜100μmとすることが好ましい。
【0044】
この一次粒子の平均粒径は、噴流層反応器30における反応時間(滞留時間)や原料ガス供給速度、反応温度等を調整することにより制御することができる。
【0045】
噴流層反応器30で製造した一次粒子は更に第1の流動層反応器40及び第2の流動層反応器50で成長させる。流動層の運転条件は、このようにして一次粒子を流動層内で成長させて得られる二次粒子の平均粒径が一次粒子の平均粒径の2倍以下、特に1.2〜2倍になる程度を目安とするのが好ましい。この二次粒子の平均粒径と一次粒子との比が1.2未満では二次粒子の成長が不十分となることがあり、2倍超では、流動層内の滞留時間が過度に長くなり、塊状物を生成させるおそれがあると共に、反応効率を低下させるおそれがある。
【0046】
なお、図1では、流動層反応器として第1の流動層反応器40と第2の流動層反応器50とを2段に設けているが、流動層反応器は、1段のみでも良く、また3段以上に設けても良い。流動層反応器を2段以上に多段に設けて反応条件を反応器毎に制御することにより、反応器単位容積当たりの生産効率を高めると共に、得られる炭素質微細繊維状体の形状や物性等を所望の範囲に容易に調整することができる。
【0047】
反応に用いる炭素源ガスとしては、反応系にガス状で導入することができる炭素化合物であれば良く、特に制限はないが、好ましくは炭化水素及び/又は水素と炭素酸化物とを含むガスが用いられる。特に、炭素源ガスとして、例えば二酸化炭素、水素、バイオガス等のプロセス排ガスを回収利用することは、製造コストの低減のみならず、環境維持にも有効である。二酸化炭素及びメタンを炭素源ガスとして使用する場合、両者が等モルであれば、下記のような反応式に従って、メタン及び二酸化炭素を炭素質生成物として固定化させることが可能となる。
CH → C+2H
   2H+CO → C+2H
【0048】
炭素源ガスとして、二酸化炭素や一酸化炭素のような炭素酸化物のガスを用いる場合、同時に反応に用いるガスとしては還元性ガスを用いる。ここでいう還元性ガスとは、それ自体が還元性を有しているか、又はそのガスが反応系中にて分解して、かかる還元性を有するガスを発生するガスを指す。上記の反応式ではメタンガスが炭素源ガスであると同時に、分解して還元性を有する水素を発生するため、還元性ガスでもある。このような還元性ガスには、水素ガス、更には各種炭化水素ガス、即ちメタン、エタン、プロパン、ブタンのような化合物が挙げられる。
【0049】
一方、触媒としては、炭素源ガスからの炭素質微細繊維状体の生成反応を効率的に行うことのできるものであれば、化学的組成並びに形状等において特に制限されないが、通常、遷移金属及びその化合物が好ましく用いられる。触媒としては特に、ニッケル、コバルト、鉄などの金属触媒が好ましい。これら金属は1種を単独で用いても、2種以上を適宜組み合わせて使用しても良い。また、これら金属は、元素状態でも、酸化物、水酸化物、炭酸塩といった化合物でも使用することができる。更に、これらの触媒成分をシリカなどの担体に担持したものであっても良い。この場合、担体に対する触媒成分の担持量は、担体重量に対して1〜90重量%程度とするのが好ましい。その触媒のパーティクル形状には特に制限はなく、一般に知られている形状、例えば球状等の粒状であっても良い。
【0050】
触媒粒子としては、触媒成分を担体に担持してなる担持触媒粒子が好適に用いられ、この担持触媒粒子の平均粒径は1〜20μmであることが好ましい。なお、この担持触媒粒子の平均粒径とは、担持触媒粒子の個々の粒径の平均値であり、担持触媒粒子の凝集体の粒径は平均粒径の対象としない。
【0051】
このような触媒粒子の使用量には特に制限はないが、噴流層反応器30に導入される炭素源ガスが、触媒有効成分量に対して10〜60L/g・hr程度となるような量とすることが好ましい。
【0052】
また、反応条件は、通常、噴流層反応器30及び流動層反応器40,50共に、反応温度400〜800℃、好ましくは500℃以上600℃未満である。反応温度がこの範囲よりも低いと十分な反応速度が得られず炭素質微細繊維状体の製造効率の点で不利であり、この範囲よりも高いと、一旦生成した炭素と反応雰囲気ガスとの反応が生起して炭素質微細繊維状体の収率が低下する場合があり好ましくない。
【0053】
また、反応圧力は、原料の炭素源ガスが効率的に反応するような条件であれば良く、特に制限はないが、好ましくはゲージ圧1〜200kPa、より好ましくはゲージ圧3〜50kPaである。
【0054】
次に、本発明で好適に使用される噴流層反応器及び流動層反応器の構成について説明する。
【0055】
噴流層反応器は、下部より触媒粒子と炭素源ガスとを導入して、反応器内に凝集体粒子及び触媒粒子の噴流層を形成させながら、炭素質微細繊維状体を成長させ、上部より炭素質微細繊維状体が成長して所定の平均粒径となった凝集体粒子を取り出すことができるような噴流分散機構を有するものである。
【0056】
この噴流層反応器の具体的な構造としては、特に制限はないが、例えば図2(a)(縦断面図)、(b)(図2(a)のA−A’線に沿う断面図)に示すようなものを用いることができる。
【0057】
噴流層反応器の形状は特に限定はないが、図2では逆円錐形であり、他に逆角錐形などが好ましい。図2において、61は触媒及びガス入口、62は吹込部、63は凝集体粒子出口、64はガス出口、65は掻き取り翼、66は撹拌棒である。触媒粒子及び炭素源ガスは、入口61から供給され、反応器内で噴流層を形成する。連続運転の場合、触媒粒子は数回/hr定期的に生産量に応じてバッチ投入される。触媒粒子は反応器下部から、炭素質微細繊維状体の凝集体粒子を生成させながら反応器上部に高炭素濃度マクロ分布を形成して移動していく。生成した炭素質微細繊維状体の凝集体粒子を連続的に排出する場合は、上部棚の開口部より回転掻き取り翼65にて数回/hr定期的に掻き取り、出口63から排出する。
【0058】
流動層反応器は、噴流層反応器からの凝集体粒子を更に炭素源ガスと接触させて造粒成長させる反応器である。
【0059】
この流動層反応器の具体的な構造としては特に制限はないが、例えば図3(縦断面図)に示すようなものを用いることができる。
【0060】
流動層反応器の形状は特に限定はないが、図3では逆円錐形であり、他に逆角錐形、円筒形などが好ましい。また、排出時マスフローを形成させるための円錐型内装物73と凝集体粒子の固化防止のための撹拌棒74、更に炭素源ガスを下部より吹き込むノズル71が設けられている。72はガス入口、75はガス出口、76は凝集体粒子入口、77は凝集体粒子抜き出しスクリュ、78は抜き出し口である。
【0061】
噴流層反応器からの凝集体粒子は、この流動層反応器の凝集体粒子入口76より投入され、ガス入口72からの炭素源ガスと接触しながら、炭素質微細繊維状体を成長させる。流動層反応器では、凝集体粒子は成長しながら凝集固化しない流動層を形成する必要があり、凝集体粒子は成長度、幾何形状が重要な要素となる。従って、凝集体粒子生産量に応じて反応器の基数を適宜設計する必要がある。流動層反応器の連続運転時は、生成した凝集体粒子はスクリュ77から定期的に定量排出される。
【0062】
このような噴流層反応器及び流動層反応器を用いる反応は、連続式で行っても良く、またバッチ式で行っても良い。例えば、噴流層反応器及び流動層反応器の双方を連続式で運転しても良く、噴流層反応器及び流動層反応器の一方を連続式とし、他方をバッチ式としても良く、噴流層反応器及び流動層反応器の双方をバッチ式で運転しても良い。
【0063】
これらの反応器をバッチ式、連続式のいずれかで行うかは、反応条件(滞留時間等)や、所望とする炭素質微細繊維状体の特性(炭素質微細繊維状体の長さ、直径、凝集体粒子粒径等)をコントロールするために、適宜選択することができ、このことは同一設備において、運転方式を選定することにより、種々の特性を有する炭素質微細繊維状体を製造することができることを意味する。
【0064】
本発明においては、反応器や反応系内の配管において、炭素質微細繊維状体の生成反応を抑止する作用を有する窒素等の不活性ガス又は原料である炭素酸化物等を局所的に複数箇所で微量供給することにより、凝集体粒子の固化をより一層確実に防止することができ好ましい。
【0065】
なお、図1に示す如く、噴流層反応器30及び流動層反応器40,50の排ガスは、サイクロン、バグフィルタ等の微粉捕集手段で炭素微粉、触媒粒子等の微粉を捕集した後、原料の炭素源ガスに混合して循環使用することができ、また、捕集した微粉は反応器に戻すことが好ましく、このように排出ガスを回収して循環使用することにより炭素質微細繊維状体の収率を高めることができる。
【0066】
このようにして製造される炭素質微細繊維状体の粒状凝集体を構成する炭素質微細繊維状体、例えばカーボンナノチューブの形状や大きさ、性状や結晶構造、その他の物性は、用いる触媒の特性、原料の炭素源ガスの組成、反応時間、反応温度などに依存して変化するが、通常、直径10〜200nm、長さ50nm〜0.1μmの均質な形状、物性の炭素質微細繊維状体である。
【0067】
本発明の炭素質微細繊維状体の粒状凝集体は、このような炭素質微細繊維状体が嵩密度200kg/m以上、好ましくは300kg/m以上で、好ましくは平均粒径30〜250μm程度に凝集したものである。このような高い嵩密度を有する炭素質微細繊維状体の粒状凝集体は、取り扱い性が著しく良好であり、従来知られている用途、例えば樹脂、ゴム、エラストマー等の補強、着色、導電性付与の等の機能性付与のための添加剤として、また、機能性顔料として塗料、インキ、トナー等の配合成分として、工業的に有利に用いることができる。
【0068】
なお、本発明の炭素質微細繊維状体の粒状凝集体の嵩密度の上限には特に制限はないが、製造効率等の面から一般的には1200kg/m以下である。
【0069】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に何ら限定されるものではない。
【0070】
実施例1
図1に示す方法で炭素質微細繊維状体の粒状凝集体の製造を行った。ただし、第2の流動層反応器50は用いず、第1の流動層反応器40で得られる凝集体粒子を製品とした。
【0071】
原料ガスとしては、二酸化炭素とメタンとの1:1(モル比)混合ガスを用い、配管23からの循環戻りガスと共に熱回収熱交換器5で加熱した後加熱炉7で加熱して600℃に昇温した。
【0072】
この昇温ガスを担持触媒粒子と共に噴流層反応器30に供給し、噴流層反応器30内で噴流層を形成させながら炭素質微細繊維状体の凝集体粒子を成長させ、噴流層反応器30内から定期的に凝集体粒子を取り出し、流動層反応器40に導入した。この一次粒子の平均粒径は45μmであった。なお、この噴流層反応器30における反応条件は、温度550℃、ゲージ圧40kPaとし、担持触媒粒子としては、略球状のシリカ担体に金属ニッケルを担持させた、平均粒径15μmの担持触媒粒子を用い、噴流層反応器30に導入される触媒有効成分量に対して原料ガス(循環戻りガスを含む)を30L/g・hrの割合で導入した。
【0073】
噴流層反応器30で得られた平均粒径45μmの一次粒子は、次いで第1の流動層反応器40で、原料ガスと接触させて更に造粒成長させ、この流動層反応器40から定期的に流動層内の凝集体粒子を取り出して冷却することにより製品とした。
【0074】
この流動層反応器40の反応条件は、温度550℃、ゲージ圧40kPaとし、原料ガスは、触媒有効成分量に対して30L/g・hrの割合で導入した。
【0075】
流動層反応器40から取り出した二次粒子、即ち、炭素質微細繊維状体の粒状凝集体は、外観が球状の粒子であり、平均粒径は65μmで、嵩密度は786kg/mであった。
【0076】
また、得られた粒状凝集体を構成する炭素質微細繊維状体は、直径が10〜200nmで、長さが50nm〜100μm、アスペクト比100〜1000の、均質な形状及び物性を有するカーボンナノチューブであり、上記方法により、反応器30,40や配管等で凝集体粒子の固化を引き起こすことなく、長期にわたり安定した連続生産を行うことができた。
【0077】
なお、噴流層反応器30及び流動層反応器40からの排出ガスは、反応器内で生成した炭素、一酸化炭素、水素、水と飛散した触媒を含む混合ガスであり、各々サイクロン15,32を経てバグフィルタ18で除塵した後、熱回収熱交換器5で原料ガスと熱交換して熱回収し、その後、凝縮器21で約40℃まで冷却して反応生成水を分離回収した。サイクロン15,32で捕集した炭素微粉及び飛散触媒は、各々噴流層反応器30、流動層反応器40に戻した。また、バグフィルタ18で捕集した炭素微粉及び飛散触媒は噴流層反応器30に戻した。
【0078】
本実施例の反応において収率は70%であり、原料ガスとして供給した二酸化炭素とメタンの炭素原料のうちの約70%がカーボンナノチューブとして回収された。
【0079】
本実施例1で得られた炭素質微細繊維状体の粒状凝集体の物性を表1にまとめて記す。
【0080】
実施例2
実施例1において、噴流層反応器30及び流動層反応器40の反応温度を500℃としたこと以外は同様にして反応を行ったところ、表1に示す物性の炭素質微細繊維状体の粒状凝集体を製造することができた。
【0081】
なお、この実施例2においても、反応器30,40や配管等で凝集体粒子の固化を引き起こすことなく、長期にわたり安定した連続生産を行うことができた。
【0082】
実施例3
実施例1において、噴流層反応器30及び流動層反応器40の原料ガス導入量を触媒有効成分量に対して15L/g・hrとしたこと以外は同様にして反応を行ったところ、表1に示す物性の炭素質微細繊維状体の粒状凝集体を製造することができた。
【0083】
なお、この実施例3においても、反応器30,40や配管等で凝集体粒子の固化を引き起こすことなく、長期にわたり安定した連続生産を行うことができた。
【0084】
【表1】

Figure 2004018290
【0085】
比較例1
市販の多層カーボンナノチューブについて、嵩密度を測定したところ、嵩密度は73kg/mであり、その外観は綿状の著しく嵩高い物質であり、極めて取り扱いにくいものであった。
【0086】
【発明の効果】
以上詳述した通り、本発明によれば、嵩密度が従来品に比べて著しく高く、取り扱い性に優れた炭素質微細繊維状体の粒状凝集体が提供される。しかも、この本発明の炭素質微細繊維状体の粒状凝集体は、反応工程において、固化、閉塞を起こすことなく、均質な形状と物性を有する炭素質微細繊維状体の粒状凝集体として効率的にかつ安価に大量生産することが可能である。
【0087】
従って、本発明の炭素質微細繊維状体の粒状凝集体は、従来知られている用途、例えば樹脂、ゴム、エラストマー等の補強、着色、導電性付与の等の機能性付与のための添加剤として、また、機能性顔料として塗料、インキ、トナー等の配合成分として、工業的に有利に用いることができる。
【図面の簡単な説明】
【図1】本発明の炭素質微細繊維状体の粒状凝集体の製造方法の一例を示す系統図である。
【図2】本発明に好適な噴流層反応器の構造を示す図であって、(a)図は縦断面図、(b)図は(a)図のA−A’線に沿う断面図である。
【図3】本発明に好適な流動層反応器の構造を示す縦断面図である。
【符号の説明】
3 ブロワ
5 熱回収熱交換器
7 加熱炉
15,32,53 サイクロン
18 バグフィルタ
21 凝縮器
28 水素分離装置
30 噴流層反応器
40 第1の流動層反応器
41,51 スクリュ式取出機
50 第2の流動層反応器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a granular agglomerate of carbonaceous fine fibrous materials, and in particular, has a high bulk density, is excellent in handleability, and has a uniform shape and physical properties without causing solidification and clogging in a manufacturing process. The present invention relates to a granular agglomerate of carbonaceous fine fibrous bodies that can be efficiently and inexpensively mass-produced as fine agglomerates of fine fibrous bodies.
[0002]
[Prior art]
Conventionally, carbon dioxide, hydrogen, biogas (carbon dioxide (CO2) And methane (CH4) Is recovered as a carbon source, and is reacted as a carbon source in the presence of a catalyst to thereby fix it as a carbonaceous product (JP-A-11-29314). JP-A-11-322315). According to this method, it has been confirmed that a carbonaceous fine hollow fibrous body called a carbon nanotube can be obtained as a carbonaceous product. It is also known that carbon nanotubes can be obtained by subjecting a carbon source material such as hydrocarbons to a gas phase reaction at a high temperature in the presence of a catalyst (JP-B-3-64606, JP-B-3-77288). No.).
[0003]
In recent years, carbonaceous fine fibrous bodies represented by carbon nanotubes produced in this way have attracted particular attention as new materials in recent years due to their excellent properties such as significantly higher conductivity than conventional carbon materials. ing.
[0004]
[Problems to be solved by the invention]
However, at present, the production efficiency is very low, and a method for mass production at low cost industrially has not yet been developed. That is, for example, when the production efficiency is increased by increasing the concentration of the carbonaceous fine fibrous body in the reactor, there is a problem that the carbonaceous fine fibrous body solidifies in a lump as it grows, making continuous production difficult. .
[0005]
In addition, conventionally known carbonaceous fine fibrous materials such as carbon nanotubes have a remarkably low density and are therefore extremely difficult to handle, especially because they are easily scattered, so that the working environment when processing becomes poor, and However, there is a problem that equipment for preventing pollution due to scattering is required.
[0006]
The present invention solves the above-mentioned conventional problems, and provides a bulk aggregate of a carbonaceous fine fibrous body having a high bulk density and extremely easy to handle during processing than a conventional carbonaceous fine fibrous body. Aim.
[0007]
The present invention also provides a carbonaceous fine particle that can be efficiently and inexpensively mass-produced as a granular agglomerate of carbonaceous fine fibrous bodies having a uniform shape and physical properties without causing solidification and blockage in the production process. It is an object of the present invention to provide a fibrous aggregate.
[0008]
[Means for Solving the Problems]
The granular aggregate of the carbonaceous fine fibrous body of the present invention has a bulk density of 200 kg / m.3It is characterized by the above.
[0009]
Such a particulate aggregate of a carbonaceous fine fibrous body having a large bulk density does not have a problem of scattering at the time of handling, and can be easily processed with good workability. Moreover, such a granular agglomerate of the carbonaceous fine fibrous body of the present invention having a large bulk density can be formed into a granular form of a carbonaceous fine fibrous body having a uniform shape and physical properties without causing solidification and blockage in the reaction step. Aggregates can be efficiently and inexpensively mass-produced.
[0010]
In the present invention, the bulk density of the granular aggregate of the carbonaceous fine fibrous material is a value measured according to JIS K6219-6.
[0011]
The granular aggregate of the carbonaceous fine fibrous material preferably has an average particle size of about 30 to 250 μm.
[0012]
The upper limit of the bulk density is not particularly limited, but from the viewpoint of production efficiency and the like, 1200 kg / m3It is as follows.
[0013]
The carbonaceous fine fibrous material constituting the granular aggregate of the carbonaceous fine fibrous material of the present invention generally has a diameter of 10 to 1000 nm, particularly 10 to 200 nm, a length of 50 nm to 100 μm, and a length / A carbonaceous fine fibrous material having a diameter ratio (aspect ratio) of 10 to 10000, for example, a carbon nanotube or the like can be used.
[0014]
Such a granular agglomerate of carbonaceous fine fibrous bodies of the present invention is obtained by introducing catalyst particles and a carbon source gas into a spouted bed reactor, forming a spouted bed, and averaging the carbonaceous fine fibrous bodies. A step of producing fine-particle aggregates having a particle size of 10 to 200 μm, and introducing the carbon source gas and the fine-particle aggregates taken out of the spouted bed reactor into a fluidized-bed reactor to form the fine-particle aggregates. And a step of growing the aggregate while forming a fluidized bed of the aggregate to prevent solidification in the reactor and the piping more reliably, and to form a carbon having a uniform shape and physical properties. It is preferable in terms of efficient and inexpensive mass production as granular aggregates of fine fibrous bodies.
[0015]
The reason why the solidification of the particulate aggregate can be effectively prevented by growing the particulate aggregate of the carbonaceous fine fibrous material to a certain size in the spouted bed reactor as described above is as follows. It is.
[0016]
When the carbon source gas is reacted at a high temperature in the presence of the catalyst particles, a carbonaceous fine fibrous body is formed and grows in a fibrous form with the catalyst particle as a starting point of the reaction, and the carbonaceous fine fibrous body is formed on the surface of the catalyst particle. The formed fine aggregates are obtained. In the early stage of the growth reaction of the carbonaceous fine fibrous body, when the aggregated particles come into contact with each other, the growth reaction portion of the carbonaceous fine fibrous body is present on the surface layer of the aggregated particles, so that the carbonaceous fine fiber Aggregate particles are solidified due to the growing ends of the entangled shapes and easily grow.
[0017]
However, when the carbonaceous fine fibrous material is grown while the aggregate particles are separated from each other by jet agitation, the carbonaceous fine fibrous material grows so as to surround the growth reaction part at the center, and the growth end is the surface layer. Rather, there are more opportunities to show to the inner class. For this reason, even if the aggregate particles come into contact with each other, the carbonaceous fine fibrous bodies are not entangled with each other and solidified.
[0018]
In this way, the carbonaceous fine fibrous materials are entangled and easily solidified.In order to prevent solidification due to entanglement of the aggregated particles in the initial stage of the reaction, the aggregation particles are prevented from staying and the aggregated particles are stationary. It is necessary to avoid contact.
[0019]
Therefore, in the present invention, preferably, in the initial stage of the growth reaction of the carbonaceous fine fibrous body in which the aggregated particles are easily solidified, the aggregated particles are vigorously stirred in the spouted bed to separate them from each other. Grow the fibrous body.
[0020]
Then, by transferring the fine aggregate particles grown to a certain size in the spouted bed to the fluidized bed and further growing the particles, the carbonaceous fine fibrous body can be efficiently grown. Can be. That is, if the aggregate particles have grown to a certain size, they will not be entangled with each other and solidified. Since the fluidized bed has a higher particle density than the spouted bed and a higher generation efficiency of carbonaceous fine fibrous bodies, the aggregated particles can be grown efficiently.
[0021]
On the other hand, when the catalyst particles and the carbon source gas are introduced into the fluidized bed from the beginning to produce a carbonaceous fine fibrous body, the aggregated particles are entangled and solidified in a lump, and may be discharged from the reactor. It will be difficult. Further, if an attempt is made to produce a carbonaceous fine fibrous material only in a spouted bed having a relatively low particle density, the production efficiency is low and the reactor becomes large, which is industrially disadvantageous.
[0022]
In the present invention, it is extremely important that the aggregate particles (hereinafter, sometimes referred to as “primary particles”) grow to an average particle size of 10 to 200 μm in the spouted bed. If it is less than 10 μm, the primary particles are easily solidified when introduced into the fluidized bed and reacted. Performing the reaction in the spouted bed until the average particle size of the primary particles exceeds 200 μm is not preferable in terms of production efficiency because the amount of carbonaceous fine fibrous materials produced per unit volume of the reactor is reduced. The primary particles are grown to an average particle size of 10 to 200 μm in the spouted bed and introduced into the fluidized bed, thereby preventing solidification in the fluidized bed and efficiently producing a carbonaceous fine fibrous body. Can be.
[0023]
In the present invention, the average particle size of the primary particles is preferably 30 to 100 μm.
[0024]
The average particle diameter of the aggregate particles produced in the fluidized bed reactor, that is, the granular aggregate of the carbonaceous fine fibrous body of the present invention (hereinafter sometimes referred to as “secondary particles”) is the present invention. Is 30 to 250 μm. Particularly preferably, the average particle diameter of the primary particles is twice or less, particularly preferably 1.2 to 2.0 times.
[0025]
The particle size of the primary particles and the secondary particles (aggregate particles) referred to herein is the “average particle size”, and therefore, the primary particles of the above-mentioned production process include those having a particle size of less than 10 μm or exceeding 200 μm. May be. Similarly, for the secondary particles, aggregates that are more than twice the average particle size of the primary particles may be present.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the granular aggregate of the carbonaceous fine fibrous body of the present invention will be described in detail.
[0027]
First, an example of a preferred method for producing a granular agglomerate of a carbonaceous fine fibrous body of the present invention will be described with reference to the drawings. The following production method is a method suitable for producing a granular agglomerate of the present invention. The method for producing a granular aggregate of the present invention is not limited to the following method. The present invention has a bulk density of 200 kg / m.3As long as it is a granular aggregate of the above carbonaceous fine fibrous bodies and has such a bulk density, there is no limitation on the production method.
[0028]
FIG. 1 is a system diagram showing an example of the method for producing a granular aggregate of carbonaceous fine fibrous bodies of the present invention.
[0029]
A raw material gas such as biogas is supplied to the pipe 1, and if necessary, carbon dioxide (CO 2) is supplied from the pipe 2 in order to make methane and carbon dioxide gas have a substantially equimolar ratio.2) Gases are added and mixed. This raw material gas is sent by a blower 3 to a heat recovery heat exchanger 5 via a pipe 4 and heated, and then sent to a heating furnace 7 via a pipe 6 to be heated, and then to a reactor via a pipe 8. Will be sent out. This pipe 8 is branched into three pipes 9, 10, and 11. The pipe 9 is connected to a spouted bed reactor 30, the pipe 10 is connected to a fluidized bed reactor 40, and the pipe 11 is connected to a fluidized bed reactor 50. The pipe 9 is connected to a pipe 12 for adding a catalyst.
[0030]
In the spouted bed reactor 30, the raw material gas introduced from the pipe 9 is ejected upward to form a spouted bed. The spouted bed reactor 30 is provided with a stirrer 13a for stirring the spouted bed.
[0031]
Particles (such as carbon fines and scattered catalyst) spouted from the spouted bed in the spouted bed reactor 30 are collected together with the gas by being guided from the pipe 14 to the cyclone 15 and returned to the spouted bed reactor 30 via the pipe 16. It is. The fine particles passing through the cyclone 15 are introduced into the bag filter 18 from the pipe 17 together with the gas, and are collected. The particles collected by the bag filter 18 are returned to the spouted bed reactor 30 via a return pipe (not shown).
[0032]
The gas removed by the bag filter 18 is guided to the heat recovery heat exchanger 5 through a pipe 19, and exchanges heat with the raw material gas to lower the temperature. The gas whose temperature has been lowered in this way is led from the pipe 20 to the condenser 21 and cooled. Thereby, the water vapor in the gas is condensed and separated as water, and is discharged from the discharge line 22. The gas that has passed through the condenser 21 is guided to the raw material supply pipe 1 through a pipe 23, and is mixed with the raw material gas as a circulating return gas.
[0033]
A pipe 24 for gas separation branches off from the pipe 23, and a part of the gas is led to the heating furnace 7 as a gas for heating fuel. The pipe 24 functions as a purge line for taking out a part of the gas flowing in the pipe 23 out of the system and preventing nitrogen from accumulating in the circulating gas.
[0034]
In order to cover the amount of heat required for heating, a part of the raw material gas is introduced from the pipe 1 through the pipe 25 into the heating furnace 7 and used as a fuel gas. 26 is an air introduction pipe.
[0035]
A hydrogen separator 28 is connected to the pipe 4 on the downstream side of the blower 3 via a pipe 27. This hydrogen separation device 28 includes H2Is to prevent excessive accumulation.
[0036]
A valve 13c is provided at the upper outlet 13b of the spouted bed reactor 30. A pipe 29 for transporting aggregate particles is connected to the outlet 13b. A gas supply pipe 31 branched from the pipe 6 is connected in the middle of the pipe 29, and the aggregate particles are transported in the pipe 29 by air flow and guided to the cyclone 32.
[0037]
The aggregate particles collected in the cyclone 32 are introduced into a first fluidized bed reactor 40 via a pipe 33. A raw material gas is introduced into the lower part of the first fluidized bed reactor 40 from the pipe 10, and a fluidized bed of aggregate particles is formed in the reactor 40.
[0038]
Agglomerate particles from the spouted bed reactor 30 react and grow in this fluidized bed. The grown particles are taken out by a screw type take-out machine 41 provided at a lower part of the reactor 40 and sent to a second fluidized bed reactor 50 through a pipe 42. The gas containing the scattered particles from the first fluidized bed reactor 40 is guided to the cyclone 32 via the pipe 43, collected and returned to the reactor 40. The gas that has passed through the cyclone 32 is sent to the bag filter 18 via a pipe 44.
[0039]
In the second fluidized bed reactor 50, a raw material gas is supplied to the lower part through the pipe 11, and a fluidized bed of aggregate particles is formed in the reactor 50.
[0040]
Agglomerate particles from the first fluidized bed reactor 40 further react and grow in this fluidized bed, and the grown particles are taken out by a screw type take-out machine 51 provided at the lower part of the reactor 50 to produce a product. It is discharged outside the system.
[0041]
The gas containing the scattered particles from the second fluidized bed reactor 50 is guided to the cyclone 53 via the pipe 52, collected, and returned to the reactor 50 from the pipe 54. The gas that has passed through the cyclone 53 is sent to the bag filter 18 via a pipe 55.
[0042]
The granular agglomerate of the carbonaceous fine fibrous material of the present invention is used in the production of the carbonaceous fine fibrous material in the spouted bed reactor 30 to produce the carbonaceous fine fibrous material having an average particle size of 10 to 200 μm. Can be produced by introducing fine particles of primary agglomerated particles (primary particles), introducing the primary particles having an average particle size of 10 to 200 μm into the fluidized bed reactor 40, and further growing the particles.
[0043]
As described above, if the average particle size of the primary particles is less than 10 μm, solidification of the aggregated particles cannot be effectively prevented, and if it exceeds 200 μm, the production efficiency decreases. The average particle size of the primary particles produced in the spouted bed reactor 30 is particularly preferably 30 to 100 μm.
[0044]
The average particle size of the primary particles can be controlled by adjusting the reaction time (residence time) in the spouted bed reactor 30, the feed rate of the raw material gas, the reaction temperature, and the like.
[0045]
The primary particles produced in the spouted bed reactor 30 are further grown in a first fluidized bed reactor 40 and a second fluidized bed reactor 50. The operating conditions of the fluidized bed are such that the average particle size of the secondary particles obtained by growing the primary particles in the fluidized bed is twice or less, particularly 1.2 to 2 times, the average particle size of the primary particles. It is preferable to use a certain degree as a guide. When the ratio between the average particle size of the secondary particles and the primary particles is less than 1.2, the growth of the secondary particles may be insufficient. When the ratio is more than twice, the residence time in the fluidized bed may be excessively long. In addition, there is a possibility that a lump may be formed and the reaction efficiency may be reduced.
[0046]
In FIG. 1, the first fluidized bed reactor 40 and the second fluidized bed reactor 50 are provided in two stages as fluidized bed reactors, but the fluidized bed reactor may be only one stage, Further, it may be provided in three or more stages. By providing two or more fluidized bed reactors in multiple stages and controlling the reaction conditions for each reactor, the production efficiency per unit volume of the reactor is increased, and the shape and physical properties of the resulting carbonaceous fine fibrous material are improved. Can be easily adjusted to a desired range.
[0047]
The carbon source gas used for the reaction is not particularly limited as long as it is a carbon compound that can be introduced into the reaction system in a gaseous state, and is preferably a gas containing hydrocarbon and / or hydrogen and carbon oxide. Used. In particular, collecting and utilizing process exhaust gas such as carbon dioxide, hydrogen, biogas, etc. as a carbon source gas is effective not only for reducing the production cost but also for maintaining the environment. When carbon dioxide and methane are used as the carbon source gas, if both are equimolar, methane and carbon dioxide can be immobilized as carbonaceous products according to the following reaction formula.
CH4→ C + 2H2
$ 2H2+ CO2→ C + 2H2O
[0048]
When a carbon oxide gas such as carbon dioxide or carbon monoxide is used as the carbon source gas, a reducing gas is used as the gas used for the reaction. As used herein, the term "reducing gas" refers to a gas which has a reducing property itself or which is decomposed in a reaction system to generate a gas having such a reducing property. In the above reaction formula, methane gas is a reducing gas as well as a carbon source gas because it is decomposed to generate hydrogen having a reducing property. Examples of such reducing gas include hydrogen gas, and various hydrocarbon gases, that is, compounds such as methane, ethane, propane, and butane.
[0049]
On the other hand, the catalyst is not particularly limited in chemical composition and shape, etc., as long as it can efficiently perform a reaction for producing a carbonaceous fine fibrous material from a carbon source gas. The compound is preferably used. As the catalyst, a metal catalyst such as nickel, cobalt, and iron is particularly preferable. These metals may be used alone or in an appropriate combination of two or more. In addition, these metals can be used in an elemental state or in compounds such as oxides, hydroxides, and carbonates. Further, these catalyst components may be supported on a carrier such as silica. In this case, the amount of the catalyst component carried on the carrier is preferably about 1 to 90% by weight based on the weight of the carrier. The particle shape of the catalyst is not particularly limited, and may be a generally known shape, for example, a spherical shape or the like.
[0050]
As the catalyst particles, supported catalyst particles obtained by supporting a catalyst component on a carrier are suitably used, and the average particle size of the supported catalyst particles is preferably 1 to 20 μm. The average particle size of the supported catalyst particles is an average value of the individual particle sizes of the supported catalyst particles, and the average particle size of the aggregate of the supported catalyst particles is not considered.
[0051]
The amount of such catalyst particles used is not particularly limited, but the amount is such that the amount of the carbon source gas introduced into the spouted bed reactor 30 is about 10 to 60 L / g · hr based on the amount of the active catalyst component. It is preferable that
[0052]
The reaction conditions are usually a reaction temperature of 400 to 800 ° C., preferably 500 ° C. or more and less than 600 ° C. for both the spouted bed reactor 30 and the fluidized bed reactors 40 and 50. If the reaction temperature is lower than this range, a sufficient reaction rate cannot be obtained, which is disadvantageous in the production efficiency of the carbonaceous fine fibrous body. A reaction may occur to lower the yield of the carbonaceous fine fibrous material, which is not preferable.
[0053]
The reaction pressure is not particularly limited as long as it is a condition under which the raw material carbon source gas efficiently reacts, and is preferably 1 to 200 kPa, more preferably 3 to 50 kPa.
[0054]
Next, the configurations of the spouted bed reactor and the fluidized bed reactor suitably used in the present invention will be described.
[0055]
The spouted bed reactor introduces catalyst particles and a carbon source gas from the lower part, grows a carbonaceous fine fibrous body while forming a spouted bed of aggregate particles and catalyst particles in the reactor, and from the upper part. It has a jet dispersion mechanism such that the carbonaceous fine fibrous body grows and aggregate particles having a predetermined average particle size can be taken out.
[0056]
Although the specific structure of the spouted bed reactor is not particularly limited, for example, FIG. 2 (a) (longitudinal sectional view), (b) (a sectional view taken along line AA ′ in FIG. 2 (a)) ) Can be used.
[0057]
Although the shape of the spouted bed reactor is not particularly limited, it is an inverted conical shape in FIG. 2, and an inverted pyramid shape or the like is preferable. In FIG. 2, 61 is a catalyst and gas inlet, 62 is a blowing section, 63 is an aggregate particle outlet, 64 is a gas outlet, 65 is a scraper blade, and 66 is a stirring rod. Catalyst particles and a carbon source gas are supplied from the inlet 61 and form a spouted bed in the reactor. In the case of continuous operation, the catalyst particles are batch-injected several times / hr according to the production amount. The catalyst particles move from the lower part of the reactor to form a macroscopic distribution of high carbon concentration in the upper part of the reactor while generating aggregate particles of carbonaceous fine fibrous bodies. In the case of continuously discharging the generated aggregate particles of the carbonaceous fine fibrous material, the particles are periodically scraped several times / hr from the opening of the upper shelf by the rotary scraping blade 65 and discharged from the outlet 63.
[0058]
The fluidized bed reactor is a reactor in which agglomerate particles from the spouted bed reactor are further contacted with a carbon source gas to perform granulation growth.
[0059]
Although the specific structure of the fluidized bed reactor is not particularly limited, for example, the one shown in FIG. 3 (longitudinal sectional view) can be used.
[0060]
The shape of the fluidized bed reactor is not particularly limited, but in FIG. 3, the shape is an inverted cone, and in addition, an inverted pyramid, a cylinder, and the like are preferable. Further, a conical interior 73 for forming a mass flow at the time of discharge, a stirring rod 74 for preventing solidification of aggregate particles, and a nozzle 71 for blowing a carbon source gas from below are provided. 72 is a gas inlet, 75 is a gas outlet, 76 is an agglomerate particle inlet, 77 is an agglomerate particle extraction screw, and 78 is an extraction port.
[0061]
Agglomerate particles from the spouted bed reactor are introduced from the agglomerate particle inlet 76 of the fluidized bed reactor, and grow the carbonaceous fine fibrous body while being in contact with the carbon source gas from the gas inlet 72. In a fluidized bed reactor, it is necessary to form a fluidized bed in which the aggregate particles do not aggregate and solidify while growing, and the degree of growth and the geometric shape of the aggregate particles are important factors. Therefore, it is necessary to appropriately design the number of reactors according to the amount of aggregate particles produced. During continuous operation of the fluidized bed reactor, the produced aggregate particles are periodically discharged from the screw 77 at a constant rate.
[0062]
The reaction using such a spouted bed reactor and a fluidized bed reactor may be performed in a continuous manner or in a batch manner. For example, both the spouted bed reactor and the fluidized bed reactor may be operated continuously, one of the spouted bed reactor and the fluidized bed reactor may be operated continuously, and the other may be operated as a batch type. Both the reactor and the fluidized bed reactor may be operated in a batch mode.
[0063]
Whether these reactors are operated in a batch system or a continuous system depends on the reaction conditions (residence time, etc.) and the desired properties of the carbonaceous fine fibrous material (length, diameter, , Agglomerate particle size, etc.) can be selected as appropriate, which means that in the same facility, by selecting an operation method, a carbonaceous fine fibrous body having various characteristics can be produced. Means you can do it.
[0064]
In the present invention, in a reactor or a pipe in a reaction system, an inert gas such as nitrogen or a carbon oxide as a raw material having an action of suppressing a formation reaction of a carbonaceous fine fibrous material is locally formed at a plurality of locations. By supplying a small amount in the above, solidification of aggregate particles can be more reliably prevented, which is preferable.
[0065]
As shown in FIG. 1, the exhaust gas from the spouted bed reactor 30 and the fluidized bed reactors 40 and 50 is collected by a fine powder collecting means such as a cyclone and a bag filter to collect fine powders such as carbon fine powder and catalyst particles. It can be mixed and recycled with the raw material carbon source gas, and it is preferable to return the collected fine powder to the reactor. The body yield can be increased.
[0066]
The shape and size, properties, crystal structure, and other physical properties of the carbonaceous fine fibrous material constituting the granular aggregate of the carbonaceous fine fibrous material produced in this manner are determined by the characteristics of the catalyst used. It varies depending on the composition of the raw material carbon source gas, the reaction time, the reaction temperature, etc., but usually has a uniform shape of 10 to 200 nm in diameter and 50 nm to 0.1 μm in length, and a carbonaceous fine fibrous material having physical properties. It is.
[0067]
The granular aggregate of the carbonaceous fine fibrous material of the present invention has a bulk density of 200 kg / m2.3Above, preferably 300 kg / m3As described above, the particles are preferably aggregated to have an average particle size of about 30 to 250 μm. The granular aggregate of the carbonaceous fine fibrous material having such a high bulk density has remarkably good handleability, and is conventionally known for use, for example, for reinforcing, coloring, and imparting conductivity to resins, rubbers, and elastomers. It can be industrially advantageously used as an additive for imparting functionality such as No. and as a functional pigment as a compounding component in paints, inks, toners and the like.
[0068]
The upper limit of the bulk density of the particulate aggregate of the carbonaceous fine fibrous material of the present invention is not particularly limited, but is generally 1200 kg / m2 in view of production efficiency and the like.3It is as follows.
[0069]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to the following Examples at all without departing from the gist thereof.
[0070]
Example 1
A granular aggregate of carbonaceous fine fibrous material was produced by the method shown in FIG. However, the aggregated particles obtained in the first fluidized-bed reactor 40 were used as products without using the second fluidized-bed reactor 50.
[0071]
As a raw material gas, a 1: 1 (molar ratio) mixed gas of carbon dioxide and methane is used, and is heated together with the circulating return gas from the pipe 23 in the heat recovery heat exchanger 5 and then heated in the heating furnace 7 to 600 ° C. The temperature rose.
[0072]
The heated gas is supplied to the spouted bed reactor 30 together with the supported catalyst particles, and the aggregated particles of the carbonaceous fine fibrous material are grown while forming the spouted bed in the spouted bed reactor 30. Aggregate particles were periodically taken out of the reactor and introduced into the fluidized bed reactor 40. The average particle size of the primary particles was 45 μm. The reaction conditions in the spouted bed reactor 30 were set at a temperature of 550 ° C. and a gauge pressure of 40 kPa, and as the supported catalyst particles, supported catalyst particles having an average particle diameter of 15 μm in which metal nickel was supported on a substantially spherical silica carrier. The raw material gas (including the circulating return gas) was introduced at a rate of 30 L / g · hr with respect to the amount of the active catalyst component introduced into the spouted bed reactor 30.
[0073]
The primary particles having an average particle size of 45 μm obtained in the spouted bed reactor 30 are then brought into contact with a raw material gas in a first fluidized bed reactor 40 to further perform granulation growth. The aggregated particles in the fluidized bed were taken out and cooled to obtain a product.
[0074]
The reaction conditions of the fluidized bed reactor 40 were a temperature of 550 ° C. and a gauge pressure of 40 kPa, and the raw material gas was introduced at a rate of 30 L / g · hr with respect to the amount of the active catalyst component.
[0075]
The secondary particles taken out of the fluidized bed reactor 40, that is, the particulate aggregates of carbonaceous fine fibrous bodies are spherical particles in appearance, the average particle diameter is 65 μm, and the bulk density is 786 kg / m3Met.
[0076]
Further, the carbonaceous fine fibrous material constituting the obtained granular aggregate is a carbon nanotube having a uniform shape and physical properties having a diameter of 10 to 200 nm, a length of 50 nm to 100 μm, and an aspect ratio of 100 to 1000. In addition, according to the above method, stable continuous production could be performed over a long period of time without causing solidification of aggregate particles in the reactors 30 and 40, piping, and the like.
[0077]
The exhaust gas from the spouted bed reactor 30 and the fluidized bed reactor 40 is a mixed gas containing carbon, carbon monoxide, hydrogen, water, and the scattered catalyst generated in the reactor. After that, dust was removed by the bag filter 18, heat was recovered by exchanging heat with the raw material gas in the heat recovery heat exchanger 5, and then cooled to about 40 ° C. in the condenser 21 to separate and recover the reaction product water. The carbon fines and the scattering catalyst collected by the cyclones 15 and 32 were returned to the spouted bed reactor 30 and the fluidized bed reactor 40, respectively. The carbon fines and the scattered catalyst collected by the bag filter 18 were returned to the spouted bed reactor 30.
[0078]
In the reaction of the present example, the yield was 70%, and about 70% of the carbon material supplied from carbon dioxide and methane supplied as the raw material gas was recovered as carbon nanotubes.
[0079]
Table 1 summarizes the physical properties of the granular aggregates of the carbonaceous fine fibrous body obtained in Example 1.
[0080]
Example 2
The reaction was performed in the same manner as in Example 1 except that the reaction temperature of the spouted bed reactor 30 and the fluidized bed reactor 40 was set to 500 ° C., and the granularity of the carbonaceous fine fibrous material having the physical properties shown in Table 1 was obtained. Aggregates could be produced.
[0081]
Note that also in Example 2, stable continuous production could be performed for a long period of time without causing solidification of aggregate particles in the reactors 30 and 40, piping, and the like.
[0082]
Example 3
The reaction was carried out in the same manner as in Example 1 except that the amount of the raw material gas introduced into the spouted bed reactor 30 and the fluidized bed reactor 40 was changed to 15 L / g · hr with respect to the amount of the catalytically active component. As a result, a granular agglomerate of carbonaceous fine fibrous material having the following physical properties could be produced.
[0083]
Note that also in Example 3, stable continuous production could be performed for a long period of time without causing solidification of aggregate particles in the reactors 30 and 40, piping, and the like.
[0084]
[Table 1]
Figure 2004018290
[0085]
Comparative Example 1
When the bulk density of a commercially available multi-walled carbon nanotube was measured, the bulk density was 73 kg / m3The appearance was a flocculent and extremely bulky substance, which was extremely difficult to handle.
[0086]
【The invention's effect】
As described in detail above, according to the present invention, there is provided a granular agglomerate of carbonaceous fine fibrous material having a significantly higher bulk density than conventional products and excellent in handleability. Moreover, the granular agglomerate of the carbonaceous fine fibrous body of the present invention can be efficiently used as a granular agglomerate of a carbonaceous fine fibrous body having a uniform shape and physical properties without causing solidification and blockage in the reaction step. It can be mass-produced at low cost.
[0087]
Therefore, the particulate aggregate of the carbonaceous fine fibrous body of the present invention may be used for conventionally known applications, for example, for additives such as reinforcement of resin, rubber, and elastomer, coloring, and imparting functionality such as imparting conductivity. And industrially advantageously used as a functional pigment as a compounding component in paints, inks, toners and the like.
[Brief description of the drawings]
FIG. 1 is a system diagram showing one example of a method for producing a granular aggregate of a carbonaceous fine fibrous body of the present invention.
FIGS. 2A and 2B are diagrams showing a structure of a spouted bed reactor suitable for the present invention, wherein FIG. 2A is a longitudinal sectional view, and FIG. 2B is a sectional view taken along line AA ′ in FIG. It is.
FIG. 3 is a longitudinal sectional view showing a structure of a fluidized bed reactor suitable for the present invention.
[Explanation of symbols]
3 blower
5 Heat recovery heat exchanger
7 heating furnace
15, 32, 53 cyclone
18 Bag filter
21 condenser
28 hydrogen separator
30 spouted bed reactor
40 ° first fluidized bed reactor
41,51 screw type unloader
50 ° second fluidized bed reactor

Claims (4)

嵩密度が200kg/m以上であることを特徴とする炭素質微細繊維状体の粒状凝集体。A granular aggregate of carbonaceous fine fibrous bodies, having a bulk density of 200 kg / m 3 or more. 請求項1において、平均粒径が30〜250μmであることを特徴とする炭素質微細繊維状体の粒状凝集体。2. The granular aggregate of carbonaceous fine fibrous bodies according to claim 1, wherein the average particle diameter is 30 to 250 [mu] m. 請求項1又は2において、嵩密度が1200kg/m以下であることを特徴とする炭素質微細繊維状体の粒状凝集体。According to claim 1 or 2, the granular aggregates of carbonaceous fine fibrous body characterized by a bulk density of 1200 kg / m 3 or less. 請求項1ないし3のいずれか1項において、
噴流層反応器内に触媒粒子及び炭素源ガスを導入して、噴流層を形成しながら、炭素質微細繊維状体の平均粒径10〜200μmの微粒状凝集体を製造する工程と、
流動層反応器内に、炭素源ガスと前記噴流層反応器から取り出された該微粒状凝集体とを導入して、該微粒状凝集体の流動層を形成しながら該凝集体を成長させる工程と
を経て製造されたことを特徴とする炭素質微細繊維状体の粒状凝集体。
In any one of claims 1 to 3,
A step of introducing catalyst particles and a carbon source gas into a spouted bed reactor to produce fine aggregates having an average particle size of 10 to 200 μm of the carbonaceous fine fibrous body while forming a spouted bed;
A step of introducing the carbon source gas and the fine particulate aggregate taken out of the spouted bed reactor into a fluidized bed reactor and growing the aggregate while forming a fluidized bed of the fine particulate aggregate. And a granular aggregate of carbonaceous fine fibrous bodies produced through the following steps.
JP2002173002A 2002-06-13 2002-06-13 Granular agglomerate of carbonaceous fine fibrous body Withdrawn JP2004018290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173002A JP2004018290A (en) 2002-06-13 2002-06-13 Granular agglomerate of carbonaceous fine fibrous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173002A JP2004018290A (en) 2002-06-13 2002-06-13 Granular agglomerate of carbonaceous fine fibrous body

Publications (1)

Publication Number Publication Date
JP2004018290A true JP2004018290A (en) 2004-01-22

Family

ID=31172415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173002A Withdrawn JP2004018290A (en) 2002-06-13 2002-06-13 Granular agglomerate of carbonaceous fine fibrous body

Country Status (1)

Country Link
JP (1) JP2004018290A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360099A (en) * 2003-06-03 2004-12-24 Mitsubishi Chemicals Corp Carbonaceous microfiber body
JP2005239531A (en) * 2004-01-27 2005-09-08 Shimizu Corp Spheric carbon nanotube aggregate, its manufacturing method and method for manufacturing composite material
JP2006143532A (en) * 2004-11-19 2006-06-08 Shimizu Corp Method of improving dispersibility of carbon nanotube
JP2006225245A (en) * 2005-02-21 2006-08-31 Mitsubishi Heavy Ind Ltd Nanocarbon material
JP2008519679A (en) * 2004-11-13 2008-06-12 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Catalyst for producing carbon nanotubes by decomposing gaseous carbon compounds with heterogeneous catalysts
WO2009008516A1 (en) * 2007-07-11 2009-01-15 Mikuni Shikiso Kabushiki Kaisha Granulated product of carbon nanotube, and method for production thereof
JP2009533312A (en) * 2006-04-15 2009-09-17 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for producing carbon nanotubes in a fluidized bed
JP2011178660A (en) * 2011-06-06 2011-09-15 Mitsubishi Heavy Ind Ltd Apparatus for producing nanocarbon material and method for purifying nanocarbon material
CN102681372A (en) * 2011-03-09 2012-09-19 佳能株式会社 Apparatus for heat-treating toner and method for producing toner
JP2014513661A (en) * 2011-03-21 2014-06-05 アルケマ フランス Carbon nanotube production method and apparatus for carrying out the method
JP2018203609A (en) * 2017-06-08 2018-12-27 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Method of producing carbon nanotubes in fluidized bed reactor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360099A (en) * 2003-06-03 2004-12-24 Mitsubishi Chemicals Corp Carbonaceous microfiber body
JP2005239531A (en) * 2004-01-27 2005-09-08 Shimizu Corp Spheric carbon nanotube aggregate, its manufacturing method and method for manufacturing composite material
JP4613268B2 (en) * 2004-01-27 2011-01-12 清水建設株式会社 Method for producing spherical carbon nanotube aggregate
JP2008519679A (en) * 2004-11-13 2008-06-12 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Catalyst for producing carbon nanotubes by decomposing gaseous carbon compounds with heterogeneous catalysts
JP4596134B2 (en) * 2004-11-19 2010-12-08 清水建設株式会社 Method for improving dispersibility of carbon nanotubes
JP2006143532A (en) * 2004-11-19 2006-06-08 Shimizu Corp Method of improving dispersibility of carbon nanotube
JP2006225245A (en) * 2005-02-21 2006-08-31 Mitsubishi Heavy Ind Ltd Nanocarbon material
JP2014043395A (en) * 2006-04-15 2014-03-13 Bayer Materialscience Ag Method for manufacturing carbon nanotubes within a fluidized bed
JP2009533312A (en) * 2006-04-15 2009-09-17 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for producing carbon nanotubes in a fluidized bed
KR101460373B1 (en) 2006-04-15 2014-11-10 바이엘 머티리얼사이언스 아게 Method for the production of carbon nanotubes in a fluidized bed
JPWO2009008516A1 (en) * 2007-07-11 2010-09-09 御国色素株式会社 Granule of carbon nanotube and method for producing the same
WO2009008516A1 (en) * 2007-07-11 2009-01-15 Mikuni Shikiso Kabushiki Kaisha Granulated product of carbon nanotube, and method for production thereof
CN102681372A (en) * 2011-03-09 2012-09-19 佳能株式会社 Apparatus for heat-treating toner and method for producing toner
US8653159B2 (en) 2011-03-09 2014-02-18 Canon Kabushiki Kaisha Apparatus for heat-treating toner and method for producing toner
CN102681372B (en) * 2011-03-09 2015-05-06 佳能株式会社 Apparatus for heat-treating toner and method for producing toner
JP2014513661A (en) * 2011-03-21 2014-06-05 アルケマ フランス Carbon nanotube production method and apparatus for carrying out the method
JP2011178660A (en) * 2011-06-06 2011-09-15 Mitsubishi Heavy Ind Ltd Apparatus for producing nanocarbon material and method for purifying nanocarbon material
JP2018203609A (en) * 2017-06-08 2018-12-27 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Method of producing carbon nanotubes in fluidized bed reactor
JP7283866B2 (en) 2017-06-08 2023-05-30 エスケー イノベーション カンパニー リミテッド Method for producing carbon nanotubes in fluidized bed reactor

Similar Documents

Publication Publication Date Title
JP4175182B2 (en) Carbonaceous fine fiber
JP6755269B2 (en) A method for producing solid carbon by reducing carbon dioxide
US7563427B2 (en) Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
KR100750005B1 (en) Method and apparatus for producing carbon nanofibers
JP4082099B2 (en) Method for producing carbonaceous fine fiber
US7947245B2 (en) Method for producing nanocarbon and catalytic reaction device for producing nanocarbon
JP6252911B2 (en) Method and system for forming carbon nanotubes
CA2546639C (en) Method
JP4685454B2 (en) Method for producing single-walled carbon nanotubes using supported catalyst
TWI638770B (en) Reactor system for the production of carbon allotropes
JP4584145B2 (en) Method for converting hydrocarbons
US20090286675A1 (en) Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
US10500594B2 (en) Apparatus and method for continuous preparation of carbon nanotubes
KR20080111534A (en) Method for the production of carbon nanotubes in a fluidized bed
JP2004018290A (en) Granular agglomerate of carbonaceous fine fibrous body
US11820661B2 (en) Device and method for single-stage continuous preparation of carbon nanotubes
WO2014151135A2 (en) Direct combustion heating
US20210167364A1 (en) System and method of producing a composite product
CN107697903A (en) A kind of equipment for producing CNT with fluid bed and preparation method thereof
EP2643268B1 (en) System for hydrogen production
KR102517481B1 (en) Method and System for Manufacturing Carbon Nanotubes
JP2012056775A (en) Apparatus and method for producing nanocarbon material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20061226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070222