JP2004338982A - Method for manufacturing oriented carbon nanotube membrane having open tip end - Google Patents

Method for manufacturing oriented carbon nanotube membrane having open tip end Download PDF

Info

Publication number
JP2004338982A
JP2004338982A JP2003135677A JP2003135677A JP2004338982A JP 2004338982 A JP2004338982 A JP 2004338982A JP 2003135677 A JP2003135677 A JP 2003135677A JP 2003135677 A JP2003135677 A JP 2003135677A JP 2004338982 A JP2004338982 A JP 2004338982A
Authority
JP
Japan
Prior art keywords
carbon nanotube
substrate
nanotube film
oriented carbon
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003135677A
Other languages
Japanese (ja)
Other versions
JP4375526B2 (en
Inventor
Masao Someya
昌男 染谷
Takashi Fujii
尊 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003135677A priority Critical patent/JP4375526B2/en
Publication of JP2004338982A publication Critical patent/JP2004338982A/en
Application granted granted Critical
Publication of JP4375526B2 publication Critical patent/JP4375526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an oriented carbon nanotube membrane, whose tip end is opened, which can be utilized to various sticking base bodies and to a base body having a large size with a simple process. <P>SOLUTION: This oriented carbon nanotube membrane stuck onto a base body is manufactured through a process for preparing a membrane of oriented carbon nanotubes each having a residual catalyst metal at its tip end on a substrate for growth, and a process for sticking the tip end side of the oriented carbon nanotube membrane to a second base body and peeling the substrate for growth. The oriented membrane comprising carbon nanotubes each having an open tip end is useful for electron emission and storing a gas or as a separating membrane and an electrode. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、配向した多数本のカーボンナノチューブから構成される先端が開口した配向性カーボンナノチューブ膜の製造方法に関する。本発明は、電子放出源、電池の電極、ガス分離膜、センサー、エネルギー貯蔵、吸着剤などの用途の配向性カーボンナノチューブ膜を製造する方法として好適である。
【0002】
【従来の技術】
カーボンナノチューブは、1991年に飯島澄男氏によって発見されたもので(非特許文献1参照)、一般的な形状は、直径1〜100nm、長さ1〜100μmであり、非常に細長い中空のチューブ状の炭素材料である。カーボンナノチューブの用途としては、電子放出源、電池の電極、ガス分離膜、センサー、エネルギー貯蔵など広い分野で提案、期待されている。但し、これらの用途にカーボンナノチューブを用いる場合、個々のチューブの特徴を集約でき、効果的かつ容易に装置に組み込めることができる形状として、チューブが一方向に配向している形状を成している方が好ましい。
【0003】
この配向性カーボンナノチューブ膜の製造法としては、基板上に触媒金属を担持し、炭素化合物を熱分解する方法が知られている(例えば特許文献1参照)。また、本発明者らも、従来にない細さと高さのカーボンナノチューブからなる配向膜の製造に成功している(特許文献2参照)。
【0004】
一方、先端が開口したカーボンナノチューブは、電子放出、ガス貯蔵、分離膜、電極として有用なことが知られている(例えば非特許文献2および特許文献3参照)。また、化学修飾しやすいといった利点もある。これらの利点を集約するためにも、先端が開口したカーボンナノチューブが一方向に配向しているのが好ましい。これまでの先端開口方法としては、先端が閉じているカーボンナノチューブを部分酸化によって開口させる方法がある(例えば特許文献3および4参照)。また、先端にある触媒の除去によって開口させる方法も知られている(例えば特許文献5、6参照)。これらの方法は、カーボンナノチューブの酸化処理やプラズマエッチングといった加工処理が必要であり、多くの手間がかかる。また、開口位置の制御が難しい。
【0005】
一方、化学気相成長法において、先端に触媒金属が残存する先端成長によりカーボンナノチューブを製造すると、根元が開口したカーボンナノチューブが生成することは知られている(例えば非特許文献3参照)。また、基板上で上記製造法を行うことにより、先端に触媒金属が残存する配向性カーボンナノチューブ膜を製造できることが知られている(例えば特許文献2および7参照)。なお、特許文献7では、配向性カーボンナノチューブ膜の製造と熱溶融金属基体への貼り付けを同時に行っている。
【0006】
【非特許文献1】Sumio Iijima、”Helical microtubules of graphitic carbon”、Nature(354)、1991、 pp.56−58
【非特許文献2】Yahachi Saito、”Field emission from carbon nanotubes and its application to electron sources”、Carbon(38)、2000、pp.169−182
【非特許文献3】Z.W.Pan、299、”Direct growth of aligned open carbon nanotubes by chemical vapor deposition”、Chemical Physics Letters、1999、pp.97−102
【特許文献1】特開2001−062299号公報
【特許文献2】特開2002−338221号公報
【特許文献3】特開2003−123623号公報
【特許文献4】特開2002−097008号公報
【特許文献5】特開2002−255527号公報
【特許文献6】特開2001−335310号公報
【特許文献7】特開2002−206169号公報
【0007】
【発明が解決しようとする課題】
このように、従来、先端が開口した配向性カーボンナノチューブ膜の製造には多くの手間がかかり、実施が困難であった。また、大面積への適用が困難、貼り付ける基体に制限がある等の問題があった。本発明の目的は、先端が開口したカーボンナノチューブからなる配向膜の製造方法であり、種々の貼り付け基体に適用でき、簡単な工程でしかも大面積にも適用できる製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、先端が開口した配向性カーボンナノチューブ膜の製造について鋭意研究を重ねた結果、先端に触媒金属が残存する配向性カーボンナノチューブ膜を成長用基板上で作製し、該配向性カーボンナノチューブ膜の先端側を別の基体へ貼り付け、成長用基板を剥がすことによって製造することにより、先端が開口した配向性カーボンナノチューブ膜が製造できることを見いだし本発明に到達した。すなわち、本発明は、先端に触媒金属が残存する配向性カーボンナノチューブ膜を成長用基板上で作製する工程と、該配向性カーボンナノチューブ膜の先端側を第二の基体へ貼り付け、成長用基板を剥がす工程からなる、基体に貼り付いた先端開口配向性カーボンナノチューブ膜の製造方法に関するものである。
【0009】
【発明の実施の形態】
本発明に用いられる配向性カーボンナノチューブ膜には、先端に触媒金属が残存する先端成長で製造したものが用いられる。先端成長とは、カーボンナノチューブが成長する時に、触媒粒子上で炭素化合物の炭化が進むが、この時、触媒粒子を持ち上げながらカーボンナノチューブが成長する方式である。これを基板上で行うと、図1に示すような、成長端に触媒粒子があり、基板側の根元端が開口している配向性カーボンナノチューブ膜が生成する。一般的な基板からの先端成長法としては、基板に触媒を担持し、これに高温下またはプラズマ等のエネルギー照射下で炭素化合物ガスを分解する方法である。
【0010】
先端成長の配向性カーボンナノチューブ膜の製造法において、基板には種々の工夫がなされたものが用いられる。例えば、金属膜、シリコン、細孔が制御された多孔質アルミナ、ゼオライト等が用いられる。続いて、この基板に触媒を担持する。触媒には、鉄、コバルト、ニッケル、モリブデンまたはそれらの化合物が用いられる。触媒の担持にも種々の工夫がなされる。例えば、浸漬、蒸着、逆ミセルによる微粒子化、エッチングによる微細構造化などが行われる。これらの組み合わせにより、先端成長する配向性カーボンナノチューブ膜の触媒基板が完成する。
【0011】
これらの基板を不活性ガス下、真空下または炭素化合物ガス下に置き、熱やプラズマ等で炭素化合物を分解することにより配向性カーボンナノチューブ膜が完成する。炭素化合物には、例えば、メタン、エタン、プロパンなどの飽和炭化水素化合物、エチレン、プロピレン、アセチレンなどの不飽和炭化水素化合物、ベンゼン、トルエンなどの芳香族炭化水素化合物、メタノール、エタノール、アセトンなどの含酸素炭化水素化合物などが用いられる。該炭素化合物の導入形態としては、ガス状のまま導入しても良いし、アルゴンのような不活性ガスと混合して導入しても良いし、あるいは不活性ガス中の飽和蒸気として導入しても良い。これにより、成長端には触媒粒子があり、基板側の根元端は開口している配向性カーボンナノチューブ膜が得られる。
【0012】
このようにして得られた、先端成長の配向性カーボンナノチューブ膜を第二の基体に貼り付けることにより、根元の開口端が上になり、先端が開口した配向性カーボンナノチューブが完成する。この様子を図2に示す。ここで、貼り付け先の基体には用途に応じて種々のものが用いられる。材質としては、例えば、種々の金属、ポリマー、炭素材料等が挙げられる。例えば、電子放出源や電極に用いる場合は金属等の導電性の基体が用いられる。また、ガス分離膜や吸着剤として用いる場合は、対象物質に対して劣化しない物質が選ばれる。
【0013】
ここで、種々の基体への貼り付け方法であるが、通常、接着性物質が用いられる。接着性物質にはボンド、のり、エポキシ樹脂等の接着性のポリマー、低融点金属、導電性ペースト等、一般的なものでよい。ただし、電子放出源や電極に用いる場合は、低融点金属や導電性ペースト等の導電性のある接着性物質を用いる必要がある。また、用途に応じて劣化しない材質を選ぶ必要がある。なお、基体によっては、接着性物質を必要としないものもある。例えば、熱や溶媒により軟化および硬化するものは接着性物質を必要としない。また、重合や凝固により液体から固化するものもある。
【0014】
上述のようにして、配向性カーボンナノチューブ膜の先端側を第二の基体へ貼り付け、成長用基板を剥がすことにより、基体に貼り付いた先端開口配向性カーボンナノチューブ膜が完成する。基体への貼り付けにおいて、基体の種類によっては貼り付けがうまくいかない場合がある。その場合、貼り付けやすい第二の基体を選び、一旦カーボンナノチューブ膜を貼り付け、成長用基板を剥がし、もう一度さらに第三の基体に貼り付け、第二の基体を剥がし、続いて目的の基体に貼り付け、第三の基体を剥がす方法がある。つまり、場合によって、貼り付けおよび剥がしは3回繰り返される。2回や4回では、配向性カーボンナノチューブ膜の先端は触媒粒子のある閉口端になってしまう。5回以上は手間が掛かるため、生産上不利である。
【0015】
この貼り付け時には、必要に応じて配向性カーボンナノチューブ膜をパターン形成することができる。例えば、自発光型ディスプレイの電子放出源に用いる場合、一画素に対応した形状にパターン形成する必要がある。このようにして製造した配向性カーボンナノチューブ膜は、先端が開口しているため、優れた電子放出能がある。また、ガス貯蔵、吸着剤や電極等の吸着シートとしての用途にも適用できる。さらに、このようにして製造した配向性カーボンナノチューブ膜は、触媒粒子が配向膜の下部つまり基体との接点にのみ存在するといった特徴がある。そのため、電子放出源、ガス貯蔵、吸着剤や分離膜等の用途において、触媒粒子の影響がなくなるといった効果もある。
【0016】
【実施例】
以下に実施例をあげて本発明の方法を更に詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(実施例1)
1.配向性カーボンナノチューブ膜の作製
30mm四方のシリカアルミナ板にアルミニウムを真空蒸着した。また、触媒液として、硝酸コバルト4水和物の5.7%溶液にアンモニア水を0.2ml添加した溶液を用意した。この触媒液に前述のアルミ蒸着基板を浸漬し、400℃で焼成した。この基板をアルゴン気流下700℃に昇温した後、プロピレンガス120ml/分、アルゴンガス360ml/分の混合ガスを20分間流した。反応終了冷却後、基板を走査型電子顕微鏡(SEM)で観察したところ、高さ100μmの配向性カーボンナノチューブ膜が生成した。
【0017】
2.配向性カーボンナノチューブ膜の電極基板への貼り付け
30mm四方のポリビニルアルコールシートに水蒸気を含ませた。これに上述の配向性カーボンナノチューブ膜を貼り付け、10MPaの圧力をかけた後、シリカアルミナ基板を剥がした。ポリビニルアルコールシート上に配向性カーボンナノチューブ膜が貼り付いた。開口端は上側になる。続いて、上述のポリビニルアルコールシート上にある配向性カーボンナノチューブ膜に40mmのポリエチレンシートを貼り付け、10MPaの圧力をかけた。ポリビニルアルコールシートに水蒸気をあて、ポリビニルアルコールシートを剥がした。これにより、開口端がポリエチレンシート側にある配向性カーボンナノチューブ膜となった。次に、厚さ5mmの銅板に、導電性銀ペーストを塗布した。塗布の形状は、20mm四方の四角とした。これに上述のシリカアルミナ基板上の配向性カーボンナノチューブ膜を貼り付け、110℃で10MPaの圧力をかけた後、100℃で1時間加熱し、ポリエチレンシートを剥がした。これにより、開口端が上にある配向性カーボンナノチューブ膜を電極基板へ貼り付けた電子放出源が完成した。
【0018】
3.電子放出実験
上述の銅板に貼り付けた配向性カーボンナノチューブ膜を陰極とし、陽極にも銅板を設置した。両電極を厚み200μmのスライドガラスで仕切った。該配向性カーボンナノチューブ膜と陽極との距離は100μmとなる。10−6Paの真空中で二極型の電界電子放出実験を行った。
【0019】
(比較例1)
配向性カーボンナノチューブ膜の電極基板への貼り付け工程で、ポリビニルアルコールシートに貼り付けた後、ポリエチレンシートを経由せずに銅版に貼り付けた。これにより、触媒粒子を含む閉口端が上にある配向性カーボンナノチューブ膜を電極基板へ貼り付けた電子放出源が完成した。実施例1と比較例1の電子放出実験結果を図3に示す。図は、電圧―電流密度曲線である。低電圧で高電流密度が得られる電子放出源が望ましい。開口端を上にすることにより、電子放出性能が大幅に向上するのが分かる。
【0020】
【発明の効果】
先端が開口したカーボンナノチューブからなる配向膜を、簡単な工程で製造できる。種々の貼り付け基体に適用でき、大面積にも適用可能である。当方法で製造した電子放出源により、低電圧で均一な電子放出を行うことができる。このため、フィールドエミッションディスプレイの低電圧駆動および省電力化が行える。
【図面の簡単な説明】
【図1】先端成長で製造した配向性カーボンナノチューブ膜(先端閉口)
【図2】第二の基体へ貼り付けた配向性カーボンナノチューブ膜(先端開口)
【図3】電子放出実験結果
【符号の説明】
1.触媒(閉口端)
2.カーボンナノチューブ
3.配向性カーボンナノチューブ膜成長用基板
4.貼り付け用の基体
5.カーボンナノチューブ開口端
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an oriented carbon nanotube film having an open end formed from a number of oriented carbon nanotubes. INDUSTRIAL APPLICABILITY The present invention is suitable as a method for producing an oriented carbon nanotube film for applications such as an electron emission source, a battery electrode, a gas separation membrane, a sensor, energy storage, and an adsorbent.
[0002]
[Prior art]
Carbon nanotubes were discovered by Sumio Iijima in 1991 (see Non-Patent Document 1), and have a general shape of 1-100 nm in diameter, 1-100 μm in length, and a very elongated hollow tube. Is a carbon material. Carbon nanotubes have been proposed and expected in a wide range of fields such as electron emission sources, battery electrodes, gas separation membranes, sensors, and energy storage. However, when using carbon nanotubes for these applications, the shape of the tubes is oriented in one direction as a shape that can consolidate the characteristics of individual tubes and can be effectively and easily incorporated into the device. Is more preferred.
[0003]
As a method for producing the oriented carbon nanotube film, a method is known in which a catalytic metal is supported on a substrate and a carbon compound is thermally decomposed (for example, see Patent Document 1). In addition, the present inventors have succeeded in producing an alignment film made of carbon nanotubes having unprecedented fineness and height (see Patent Document 2).
[0004]
On the other hand, carbon nanotubes with open ends are known to be useful as electron emission, gas storage, separation membranes, and electrodes (for example, see Non-Patent Document 2 and Patent Document 3). There is also an advantage that chemical modification is easy. In order to collect these advantages, it is preferable that the carbon nanotubes with open ends are oriented in one direction. As a conventional tip opening method, there is a method of opening a carbon nanotube having a closed tip by partial oxidation (for example, see Patent Documents 3 and 4). In addition, a method of opening by removing a catalyst at the tip is also known (for example, see Patent Documents 5 and 6). These methods require processing such as oxidation of carbon nanotubes and plasma etching, and require much labor. Also, it is difficult to control the opening position.
[0005]
On the other hand, it is known that, in a chemical vapor deposition method, when carbon nanotubes are produced by tip growth in which a catalytic metal remains at the tips, carbon nanotubes with open roots are generated (for example, see Non-Patent Document 3). It is also known that an oriented carbon nanotube film having a catalytic metal remaining at the tip can be manufactured by performing the above manufacturing method on a substrate (for example, see Patent Documents 2 and 7). In Patent Document 7, production of an oriented carbon nanotube film and attachment to a hot-melt metal substrate are performed simultaneously.
[0006]
[Non-Patent Document 1] Sumio Iijima, "Helical microtubules of graphic carbon", Nature (354), 1991, pp. 147-64. 56-58
[Non-Patent Document 2] Yahachi Saito, "Field emission from carbon nanotubes and it's applications to electron sources", Carbon (38), 2000, pp. 139-282. 169-182
[Non-Patent Document 3] W. Pan, 299, "Direct growth of aligned open carbon nanotubes by chemical vapor deposition," Chemical Physics Letters, 1999, pp. 97-102
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-062299 [Patent Document 2] Japanese Patent Application Laid-Open No. 2002-338221 [Patent Document 3] Japanese Patent Application Laid-Open No. 2003-123623 [Patent Document 4] Japanese Patent Application Laid-Open No. 2002-097008 [Patent] Reference 5 Japanese Patent Application Laid-Open No. 2002-255527 [Patent Document 6] Japanese Patent Application Laid-Open No. 2001-335310 [Patent Document 7] Japanese Patent Application Laid-Open No. 2002-206169 [0007]
[Problems to be solved by the invention]
As described above, conventionally, the production of an oriented carbon nanotube film having an open end has required much labor and has been difficult to implement. There are also problems such as difficulty in application to a large area and limitation of the substrate to be attached. An object of the present invention is to provide a method for producing an alignment film composed of carbon nanotubes having an open end, which can be applied to various types of bonded substrates and can be applied in a simple process and over a large area. .
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the production of an oriented carbon nanotube film having an open end, and as a result, produced an oriented carbon nanotube film having a catalytic metal at the end on a growth substrate, and prepared the oriented carbon nanotube film. The present inventors have found that an oriented carbon nanotube film having an open end can be manufactured by attaching the tip side of the nanotube film to another substrate and peeling off the growth substrate, thereby achieving the present invention. That is, the present invention provides a step of producing an oriented carbon nanotube film having a catalytic metal remaining at the tip on a growth substrate, and attaching the tip side of the oriented carbon nanotube film to a second substrate, And a method for producing a carbon nanotube film with an open end attached to a substrate, comprising a step of removing the carbon nanotube film.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
As the oriented carbon nanotube film used in the present invention, a film produced by tip growth in which a catalytic metal remains at the tip is used. The tip growth is a method in which the carbon compound is carbonized on the catalyst particles when the carbon nanotubes grow. At this time, the carbon nanotubes grow while lifting the catalyst particles. When this is performed on the substrate, an oriented carbon nanotube film having catalyst particles at the growth end and an opening at the base end on the substrate side is generated as shown in FIG. As a general method of growing a tip from a substrate, a method in which a catalyst is supported on a substrate and a carbon compound gas is decomposed at a high temperature or under irradiation of energy such as plasma.
[0010]
In the manufacturing method of the oriented carbon nanotube film grown at the tip, various devised substrates are used. For example, a metal film, silicon, porous alumina with controlled pores, zeolite, or the like is used. Subsequently, a catalyst is supported on the substrate. As the catalyst, iron, cobalt, nickel, molybdenum or a compound thereof is used. Various measures are taken to support the catalyst. For example, immersion, vapor deposition, fine particle formation by reverse micelles, fine structure formation by etching, and the like are performed. By these combinations, the catalyst substrate of the oriented carbon nanotube film growing at the tip is completed.
[0011]
These substrates are placed under an inert gas, under vacuum, or under a carbon compound gas, and the carbon compound is decomposed by heat, plasma, or the like to complete the oriented carbon nanotube film. Examples of carbon compounds include, for example, saturated hydrocarbon compounds such as methane, ethane, and propane; unsaturated hydrocarbon compounds such as ethylene, propylene, and acetylene; aromatic hydrocarbon compounds such as benzene and toluene; methanol, ethanol, and acetone. An oxygen-containing hydrocarbon compound or the like is used. As the introduction form of the carbon compound, it may be introduced in a gaseous state, may be introduced by mixing with an inert gas such as argon, or may be introduced as a saturated vapor in the inert gas. Is also good. As a result, an oriented carbon nanotube film having catalyst particles at the growth end and an opening at the base end on the substrate side is obtained.
[0012]
By attaching the thus-obtained oriented carbon nanotube film grown at the tip to the second base, the open end at the root is turned upward and the oriented carbon nanotube having the opened tip is completed. This is shown in FIG. Here, various substrates are used depending on the application as the substrate to be attached. Examples of the material include various metals, polymers, and carbon materials. For example, when used for an electron emission source or an electrode, a conductive substrate such as a metal is used. When used as a gas separation membrane or an adsorbent, a substance that does not deteriorate with respect to the target substance is selected.
[0013]
Here, a method of sticking to various substrates is used, and usually, an adhesive substance is used. The adhesive substance may be a general substance such as an adhesive polymer such as a bond, a glue, or an epoxy resin, a low melting point metal, or a conductive paste. However, when used for an electron emission source or an electrode, it is necessary to use a conductive adhesive substance such as a low melting point metal or a conductive paste. In addition, it is necessary to select a material that does not deteriorate according to the application. Note that some substrates do not require an adhesive substance. For example, those that soften and cure by heat or solvent do not require an adhesive material. Some solidify from liquid by polymerization or solidification.
[0014]
As described above, the tip side of the oriented carbon nanotube film is attached to the second base, and the growth substrate is peeled off, whereby the tip open oriented carbon nanotube film attached to the base is completed. When attaching to a substrate, the attachment may not be successful depending on the type of the substrate. In that case, select the second substrate that is easy to stick, once stick the carbon nanotube film, peel off the growth substrate, again stick it on the third substrate, peel off the second substrate, and then on the target substrate There is a method of attaching and peeling the third base. That is, in some cases, sticking and peeling are repeated three times. If the number of times is two or four, the tip of the oriented carbon nanotube film becomes the closed end where the catalyst particles are present. Five or more times are troublesome and disadvantageous in production.
[0015]
At the time of this attachment, the oriented carbon nanotube film can be patterned if necessary. For example, when used as an electron emission source of a self-luminous display, it is necessary to form a pattern in a shape corresponding to one pixel. Since the oriented carbon nanotube film manufactured in this manner has an open end, it has excellent electron emission ability. In addition, the present invention can also be applied to gas storage and use as an adsorption sheet such as an adsorbent or an electrode. Further, the oriented carbon nanotube film produced in this way has a feature that the catalyst particles are present only at the lower part of the orientation film, that is, at the contact point with the substrate. Therefore, there is also an effect that the effect of the catalyst particles is eliminated in applications such as electron emission sources, gas storage, adsorbents and separation membranes.
[0016]
【Example】
Hereinafter, the method of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(Example 1)
1. Preparation of Oriented Carbon Nanotube Film Aluminum was vacuum-deposited on a 30 mm square silica alumina plate. Further, a solution in which 0.2 ml of aqueous ammonia was added to a 5.7% solution of cobalt nitrate tetrahydrate was prepared as a catalyst solution. The above-mentioned aluminum vapor-deposited substrate was immersed in this catalyst solution and fired at 400 ° C. After the substrate was heated to 700 ° C. under an argon gas flow, a mixed gas of 120 ml / min of propylene gas and 360 ml / min of argon gas was flowed for 20 minutes. After cooling the reaction, the substrate was observed with a scanning electron microscope (SEM). As a result, an oriented carbon nanotube film having a height of 100 μm was formed.
[0017]
2. The oriented carbon nanotube film was attached to the electrode substrate, and a 30 mm square polyvinyl alcohol sheet was impregnated with water vapor. The above-mentioned oriented carbon nanotube film was attached thereto, and after applying a pressure of 10 MPa, the silica-alumina substrate was peeled off. An oriented carbon nanotube film was stuck on the polyvinyl alcohol sheet. The open end is on the upper side. Subsequently, a 40 mm polyethylene sheet was attached to the oriented carbon nanotube film on the polyvinyl alcohol sheet, and a pressure of 10 MPa was applied. Water vapor was applied to the polyvinyl alcohol sheet to peel off the polyvinyl alcohol sheet. Thus, an oriented carbon nanotube film having an open end on the polyethylene sheet side was obtained. Next, a conductive silver paste was applied to a copper plate having a thickness of 5 mm. The shape of the application was a square of 20 mm square. The above-mentioned oriented carbon nanotube film on the silica-alumina substrate was attached thereto, and a pressure of 10 MPa was applied at 110 ° C., followed by heating at 100 ° C. for 1 hour to peel off the polyethylene sheet. Thus, an electron emission source in which the oriented carbon nanotube film having the opening end on the upper side was attached to the electrode substrate was completed.
[0018]
3. Electron emission experiment The above-mentioned oriented carbon nanotube film attached to the copper plate was used as a cathode, and the copper plate was also installed on the anode. Both electrodes were separated by a 200 μm thick glass slide. The distance between the oriented carbon nanotube film and the anode is 100 μm. A bipolar field emission experiment was performed in a vacuum of 10 −6 Pa.
[0019]
(Comparative Example 1)
In the step of attaching the oriented carbon nanotube film to the electrode substrate, after attaching to the polyvinyl alcohol sheet, it was attached to the copper plate without passing through the polyethylene sheet. As a result, an electron emission source in which the oriented carbon nanotube film having the closed end including the catalyst particles was attached to the electrode substrate was completed. FIG. 3 shows the results of the electron emission experiment of Example 1 and Comparative Example 1. The figure is a voltage-current density curve. An electron emission source that can provide a high current density at a low voltage is desirable. It can be seen that the electron emission performance is greatly improved by raising the opening end.
[0020]
【The invention's effect】
An alignment film made of a carbon nanotube having an open end can be manufactured by a simple process. It can be applied to various types of bonded substrates and can be applied to large areas. The electron emission source manufactured by this method enables uniform electron emission at a low voltage. Therefore, low voltage driving and power saving of the field emission display can be performed.
[Brief description of the drawings]
Figure 1: Oriented carbon nanotube film produced by tip growth (tip closed)
FIG. 2 Oriented carbon nanotube film attached to a second substrate (tip opening)
FIG. 3 Results of electron emission experiments [Explanation of symbols]
1. Catalyst (closed end)
2. 2. carbon nanotube 3. Substrate for growing oriented carbon nanotube film 4. Substrate for attachment Open end of carbon nanotube

Claims (8)

先端に触媒金属が残存する配向性カーボンナノチューブ膜を成長用基板上で作製する工程と、該配向性カーボンナノチューブ膜の先端側を第二の基体へ貼り付け、成長用基板を剥がす工程からなる、基体に貼り付いた先端開口配向性カーボンナノチューブ膜の製造方法。A step of producing an oriented carbon nanotube film having a catalytic metal remaining at the tip on a growth substrate, and a step of attaching the tip side of the oriented carbon nanotube film to a second substrate and peeling the growth substrate. A method for producing a tip opening oriented carbon nanotube film attached to a base. 請求項1の方法で製造した、基体に貼り付いた先端開口配向性カーボンナノチューブ膜を第三の基体へ貼り付け、元の基体を剥がし、さらに第四の基体を貼り付け第三の基体を剥がすことにより製造することを特徴とする、基体に貼り付いた先端開口配向性カーボンナノチューブ膜の製造方法。The tip-opening oriented carbon nanotube film adhered to the substrate, produced by the method of claim 1, is adhered to a third substrate, the original substrate is peeled off, the fourth substrate is adhered, and the third substrate is peeled off. A method for producing a carbon nanotube film having an open front end adhered to a substrate, characterized by comprising: 配向性カーボンナノチューブ膜を基体へ貼り付ける操作において、接着性物質を用いることを特徴とする、請求項1または2記載の基体に貼り付いた先端開口配向性カーボンナノチューブ膜の製造方法。3. The method according to claim 1, wherein an adhesive substance is used in the operation of attaching the oriented carbon nanotube film to the substrate. 接着性物質にポリマー、低融点金属または導電性ペーストのいずれかを用いることを特徴とする、請求項3記載の基体に貼り付いた先端開口配向性カーボンナノチューブ膜の製造方法。4. The method according to claim 3, wherein the adhesive substance is a polymer, a low melting point metal or a conductive paste. 基体がカーボンナノチューブと接着する性質を有するものであることを特徴とする、請求項1または2記載の基体に貼り付いた先端開口配向性カーボンナノチューブ膜の製造方法。3. The method according to claim 1, wherein the substrate has a property of adhering to the carbon nanotube. カーボンナノチューブと接着する性質を有する基体が、ポリマーシートまたは低融点金属であることを特徴とする請求項5記載の基体に貼り付いた先端開口配向性カーボンナノチューブ膜の製造方法。6. The method according to claim 5, wherein the substrate having the property of adhering to the carbon nanotube is a polymer sheet or a low-melting-point metal. 請求項1〜6いずれか記載の方法で製造した、基体に貼り付いた先端開口配向性カーボンナノチューブ膜を用いることを特徴とする電子放出源。An electron emission source using a carbon nanotube film having an open front end and adhered to a substrate, produced by the method according to claim 1. 請求項1〜6いずれか記載の方法で製造した、基体に貼り付いた先端開口配向性カーボンナノチューブ膜を用いることを特徴とする吸着シートAn adsorption sheet characterized by using a carbon nanotube film having an open front end and attached to a substrate, produced by the method according to claim 1.
JP2003135677A 2003-05-14 2003-05-14 Method for producing tip-opening oriented carbon nanotube film Expired - Fee Related JP4375526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135677A JP4375526B2 (en) 2003-05-14 2003-05-14 Method for producing tip-opening oriented carbon nanotube film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135677A JP4375526B2 (en) 2003-05-14 2003-05-14 Method for producing tip-opening oriented carbon nanotube film

Publications (2)

Publication Number Publication Date
JP2004338982A true JP2004338982A (en) 2004-12-02
JP4375526B2 JP4375526B2 (en) 2009-12-02

Family

ID=33525868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135677A Expired - Fee Related JP4375526B2 (en) 2003-05-14 2003-05-14 Method for producing tip-opening oriented carbon nanotube film

Country Status (1)

Country Link
JP (1) JP4375526B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128896A (en) * 2005-11-04 2007-05-24 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission device and its manufacturing method
JP2008001741A (en) * 2006-06-20 2008-01-10 Furukawa Electric Co Ltd:The Pressure-sensitive adhesive tape for manufacturing member having functional material and method for manufacturing member having functional material
US7357691B2 (en) * 2003-03-27 2008-04-15 Tsinghua University Method for depositing carbon nanotubes on a substrate of a field emission device using direct-contact transfer deposition
JP2011201732A (en) * 2010-03-26 2011-10-13 Hitachi Zosen Corp Peeling method of carbon nanotube and suction implement for peeling
KR20140042363A (en) * 2012-09-28 2014-04-07 코오롱인더스트리 주식회사 Carbon naontube membrane and method for manufacturing the same
JP2018535110A (en) * 2016-06-10 2018-11-29 リンテック オブ アメリカ インコーポレーテッドLintec of America, Inc. Nanofiber sheet
US10590539B2 (en) 2017-02-24 2020-03-17 Lintec Of America, Inc. Nanofiber thermal interface material
US10836633B2 (en) 2015-12-28 2020-11-17 Hitachi Zosen Corporation Carbon nanotube composite material and method for producing carbon nanotube composite material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357691B2 (en) * 2003-03-27 2008-04-15 Tsinghua University Method for depositing carbon nanotubes on a substrate of a field emission device using direct-contact transfer deposition
US7811149B2 (en) 2005-11-04 2010-10-12 Tsinghua University Method for fabricating carbon nanotube-based field emission device
JP2007128896A (en) * 2005-11-04 2007-05-24 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission device and its manufacturing method
JP2008001741A (en) * 2006-06-20 2008-01-10 Furukawa Electric Co Ltd:The Pressure-sensitive adhesive tape for manufacturing member having functional material and method for manufacturing member having functional material
JP2011201732A (en) * 2010-03-26 2011-10-13 Hitachi Zosen Corp Peeling method of carbon nanotube and suction implement for peeling
KR20140042363A (en) * 2012-09-28 2014-04-07 코오롱인더스트리 주식회사 Carbon naontube membrane and method for manufacturing the same
KR101960772B1 (en) 2012-09-28 2019-03-21 코오롱인더스트리 주식회사 Carbon Naontube Membrane and Method for Manufacturing The Same
US10836633B2 (en) 2015-12-28 2020-11-17 Hitachi Zosen Corporation Carbon nanotube composite material and method for producing carbon nanotube composite material
US11414321B2 (en) 2015-12-28 2022-08-16 Hitachi Zosen Corporation Carbon nanotube composite material and method for producing carbon nanotube composite material
JP2018535110A (en) * 2016-06-10 2018-11-29 リンテック オブ アメリカ インコーポレーテッドLintec of America, Inc. Nanofiber sheet
US10747028B2 (en) 2016-06-10 2020-08-18 Lintec Of America, Inc. Nanofiber sheet
CN109070542B (en) * 2016-06-10 2021-03-09 琳得科美国股份有限公司 Nanofiber sheet
CN109070542A (en) * 2016-06-10 2018-12-21 琳得科美国股份有限公司 Nanofiber sheet
US10590539B2 (en) 2017-02-24 2020-03-17 Lintec Of America, Inc. Nanofiber thermal interface material

Also Published As

Publication number Publication date
JP4375526B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
US6346023B1 (en) Method of preparing film of carbon nano-tube and film of carbon nano-tube prepared thereby
JP3740295B2 (en) Carbon nanotube device, manufacturing method thereof, and electron-emitting device
US8557213B2 (en) Carbon nanotubes, substrate and electron emission device with such carbon nanotubes and carbon nanotube synthesizing substrate as well as methods of and apparatus for making them
JP5698982B2 (en) Illumination lamp, nanocarbon material composite substrate, and manufacturing method thereof
EP1801068B1 (en) Method of fabricating nanodevices
WO2004012932A1 (en) Method for synthesizing nanoscale structures in defined locations
WO2006025393A1 (en) Process for producing nano-scale low-dimensional quantum structure, and process for producing integrated circuit using said process
JP2006008473A (en) Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode
JP2004284921A (en) Method of manufacturing carbon nanotube, carbon nanotube device and electrical double layer capacitor
JP4375526B2 (en) Method for producing tip-opening oriented carbon nanotube film
JP2002206169A (en) Carbon nano tube joining body and method of manufacturing for the same
JP5028606B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
JP2007099601A (en) Substrate for laminating nanocarbon material and its production method
JP2005100757A (en) Filament made of carbon nanotube and its utilization
JP2005059135A (en) Device using carbon nano-tube, and its manufacturing method
JP6569675B2 (en) Pot-type nanocarbon material and method for producing the same
JPH09309713A (en) Fullerene and its production
JP2005001942A (en) Process for purifying orientational carbon nanotube membrane
JP3958330B2 (en) Carbon nanotube device and manufacturing method thereof
JP5418874B2 (en) Method for producing nanocarbon material composite and electron-emitting device using the nanocarbon material composite
Vajtai et al. Chemical vapor deposition of organized architectures of carbon nanotubes for applications
JP2009215121A (en) Method for producing flaky nanocarbon composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees