JP2004288525A - Negative electrode material for nonaqueous electrolyte secondary battery - Google Patents

Negative electrode material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004288525A
JP2004288525A JP2003080697A JP2003080697A JP2004288525A JP 2004288525 A JP2004288525 A JP 2004288525A JP 2003080697 A JP2003080697 A JP 2003080697A JP 2003080697 A JP2003080697 A JP 2003080697A JP 2004288525 A JP2004288525 A JP 2004288525A
Authority
JP
Japan
Prior art keywords
silicon
secondary battery
negative electrode
specific resistance
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003080697A
Other languages
Japanese (ja)
Inventor
Tsutomu Takamura
勉 高村
Kyoichi Sekine
強一 関根
Mikio Aramata
幹夫 荒又
Satoru Miyawaki
悟 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003080697A priority Critical patent/JP2004288525A/en
Publication of JP2004288525A publication Critical patent/JP2004288525A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for a nonaqueous electrolyte secondary battery like a lithium ion secondary battery with a high cycle property. <P>SOLUTION: The electrode material for nonaqueous electrolyte secondary cell is a silicon material with small specific resistance in which, one or more elements chosen from among boron, phosphorous, nitrogen, antimony, arsenic, aluminum, gallium and indium are doped, having specific resistance of not higher than 10 Ωcm in a state of a wafer or an ingot. The silicon material with small specific resistance is used for the negative electrode material for a nonaqueous electrolyte secondary battery and provides an excellent cycle property. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、比抵抗の小さい珪素材料を活物質として用いたリチウムイオン二次電池等の非水電解質二次電池用負極材に関する。
【0002】
【従来の技術】
近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Snなどの酸化物及びそれらの複合酸化物を用いる方法(特許文献1:特開平5−174818号公報、特許文献2:特開平6−60867号公報他)、溶融急冷した金属酸化物を負極材として適用する方法(特許文献3:特開平10−294112号公報)、負極材料に酸化珪素を用いる方法(特許文献4:特許第2997741号公報)、負極材料にSiO及びGeOを用いる方法(特許文献5:特開平11−102705号公報)等が知られている。また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(特許文献6:特開2000−243396号公報)、Si粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献7:特開2000−215887号公報)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献8:特開2002−42806号公報)、珪素材料中にホウ素を含有する方法(特許文献9:特開2000−149951号公報)、RFスパッタリング法によるシリコン薄膜を用いた方法(特許文献10:特開2002−83594号公報)がある。
【0003】
【特許文献1】
特開平5−174818号公報
【特許文献2】
特開平6−60867号公報
【特許文献3】
特開平10−294112号公報
【特許文献4】
特許第2997741号公報
【特許文献5】
特開平11−102705号公報
【特許文献6】
特開2000−243396号公報
【特許文献7】
特開2000−215887号公報
【特許文献8】
特開2002−42806号公報
【特許文献9】
特開2000−149951号公報
【特許文献10】
特開2002−83594号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。
【0005】
特に、特開2000−215887号公報の方法においては、均一な炭素皮膜の形成が可能となるものの、Si自体の導電性が低い状態のまま負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮があまりにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならず、特開2000−149951号公報の方法においては、珪素中にホウ素をドープさせ、SiとSiBを共存させることにより、サイクル性の改善がなされているが、未だ不十分である。特開2002−83594号公報の方法においては、RFスパッタリング法によるシリコン薄膜を用いるため工業的生産に不利である。
【0006】
本発明は、上記事情に鑑みなされたもので、よりサイクル性の高いリチウムイオン二次電池等の非水電解質二次電池用負極材を提供することを目的とする。
【0007】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するため鋭意検討を行った結果、よりサイクル性の高い非水電解質二次電池負極用の活剤として有効な比抵抗の小さい珪素材料を見出した。
【0008】
即ち、充放電容量の大きな電極材料の開発は極めて重要であり、各所で研究開発が行われている。このような中で、リチウムイオン二次電池用負極活物質として珪素はその容量が大きいということで大きな関心を持たれているが、繰り返し充放電をしたときの劣化が大きい、即ちサイクル性に劣ること、また、珪素粉末自体が導電性が低いことから、ごく一部のものを除き実用化には至っていないのが現状であった。このような観点より、このサイクル性及び初期効率の改善を目標に検討した結果、珪素自体の比抵抗を小さくすることによって、従来のものと比較して格段にその性能が向上することを見出した。
【0009】
更に詳述すると、珪素をリチウムイオン二次電池負極の活物質として使用した時に、数回の充放電後の急激な充放電容量低下の原因について、構造そのものからの検討を行い、解析した結果、リチウムイオンを大量に吸蔵・放出することによって大きな体積変化が起こり、これに伴い粒子の破壊が起こること、更にリチウムイオンの吸蔵によってもともと導電性が小さい珪素が体積膨張することによって電極自体の導電率が低下し、結果として集電性の低下によりリチウムイオンの電極内の移動が妨げられ、サイクル性及び効率低下が惹起されたことが原因であることがわかった。
【0010】
そこで、このようなことに基づいて、表面の導電性はもちろん、珪素自体の低電気抵抗化について鋭意検討を行った結果、珪素自体にボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種をドープすることによって電気抵抗を小さくし、リチウムイオン二次電池負極活物質としての上記問題を解決し、安定して大容量の充放電容量を有し、かつ充放電のサイクル性及び効率を大幅に向上できること、従って、このように比抵抗の小さい珪素を用いることが有効であることを知見し、本発明をなすに至った。
【0011】
従って、本発明は、下記の比抵抗の小さい珪素材料を用いた非水電解質二次電池用負極材を提供する。
(1)珪素にボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされ、ウェハーもしくはインゴットでの抵抗値が10Ωcm以下である比抵抗の小さい珪素材料を含む非水電解質二次電池用負極材。
(2)上記比抵抗の小さい珪素材料の平均粒子径が0.01〜30μm、BET比表面積が0.5〜20m/gである(1)記載の非水電解質二次電池用負極材。
(3)上記(1)又は(2)の珪素材料と導電材料との混合物であって、混合物中の導電材料が1〜60重量%であり、かつ混合物中の全炭素量が25〜90重量%である混合物を含む非水電解質二次電池用負極材。
【0012】
以下、本発明につき更に詳しく説明する。
本発明は、特にリチウムイオン二次電池用負極活物質として使用した場合、充放電容量が現在主流であるグラファイト系のものと比較してその数倍の容量であることから期待されている反面、繰り返しの充放電による性能低下が大きなネックとなっている珪素系物質のサイクル性及び効率の改善を行ったもので、本発明に係る比抵抗の小さい珪素材料は、珪素にボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープがされ、珪素自体が低電気抵抗化されたものである。
【0013】
本発明の比抵抗の小さい珪素材料は、シリコン単結晶の成長を磁界下引上げ(MCZ)法、チョクラルスキー(CZ)法、浮遊帯域溶融(FZ)法のいずれかを用いて、ボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされ、ウェハーもしくはインゴットでの比抵抗が10Ωcm以下に形成された単結晶シリコン、ブリッジマン法で製造されたボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされ、ウェハーもしくはインゴットでの比抵抗が10Ωcm以下に形成された多結晶シリコン、溶融法による金属シリコンの精製時に純度を高めるため酸素ガス等の吹き込みを行い、不純物をスラグ化して排出する時、ガス吹き込みと同時にリンやボロンを含む化合物と塩を吹き込むことにより、ボロンやリンの濃度を高め、比抵抗が10Ωcm以下に形成された金属シリコン、珪素と水素とで構成されるシラン化合物又はその誘導体からなる珪素化合物を用いて金属箔上に化学薄膜形成法を用いて形成したシリコン薄膜にボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされ、比抵抗が10Ωcm以下に形成されたシリコンであれば、その製造方法は特に限定されるものではない。
【0014】
なお、本発明において比抵抗の小さい珪素材料とは、ボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム、インジウムの一種又は二種以上がドープされて、ウェハーもしくはインゴットでの抵抗値が10Ωcm以下に形成された比抵抗の小さい珪素であり、より好ましくは1Ωcm以下、更に好ましくは0.1Ωcm以下である。なお、抵抗値の下限は特に制限されるものではないが、通常1×10−5Ωcm以上、特に1×10−3Ωcm以上である。
【0015】
この場合、上記元素のドープ量は、珪素の比抵抗を上記値とする量であるが、通常1×1014〜1×1020atoms/cmである。
【0016】
ここで、本発明の比抵抗の小さい珪素材料の粉末及びその導電剤被覆珪素材料の平均粒子径は、0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上、特に好ましくは0.3μm以上で、上限として30μm以下、より好ましくは20μm以下、更に好ましくは10μm以下が好ましい。平均粒子径が小さすぎると、嵩密度が小さくなりすぎて、単位体積当たりの充放電容量が低下するし、逆に平均粒子径が大きすぎると、電極膜作製が困難になり、集電体から剥離するおそれがある。なお、平均粒子径は、レーザー光回折法による粒度分布測定における重量平均値D50(即ち、累積重量が50%となる時の粒子径又はメジアン径)として測定した値である。
【0017】
また、本発明の比抵抗の小さい珪素材料の粉末及びその導電剤被覆珪素材料のBET比表面積は、0.5〜20m/g、特に1〜10m/gが好ましい。BET比表面積が0.5m/gより小さいと、表面活性が小さくなり、電極作製時の結着剤の結着力が小さくなり、結果として充放電を繰り返した時のサイクル性が低下するし、逆にBET比表面積が20m/gより大きいと、電極作製時に溶媒の吸収量が大きくなり、結着性を維持するために結着剤を大量に添加する場合が生じ、結果として導電性が低下し、サイクル性が低下するおそれがある。なお、BET比表面積はNガス吸着量によって測定するBET1点法にて測定した値である。
【0018】
本発明で得られた比抵抗の小さい珪素材料又はその導電剤被覆珪素材料は、これを負極材(負極活物質)として用いることにより、高容量でかつサイクル特性の優れた非水電解質二次電池、特にリチウムイオン二次電池を製造することができる。
【0019】
この場合、本発明における非水電解質二次電池用電極は、物理蒸着法及び化学蒸着法により形成する薄膜電極及び導電剤とバインダーを添加して作る塗布法により作製する電極のいずれでも用いることができる。
【0020】
上記薄膜電極の作製は、上記した比抵抗の小さい珪素材料を用いてこれを金属箔上に蒸着等させればよく、物理蒸着法の種類については、気相原料物質を直線的にマスクの貫通孔に通して基体の成膜面に蒸着させることができれば特に限定されるものではなく、公知の種類の物理蒸着法を用いることができる。例えば、真空蒸着法やラングミュアブロジェット蒸着法、有機分子線エピタキシ法、スパッタリング法など、公知の蒸着方法を用いることができる。更に、物理蒸着装置についても、所定の箇所に固定された蒸着源をもつ蒸着装置を用いて、マスクの貫通孔の貫通方向と斜めに交わる方向を含む複数方向から気相原料物質を基体の表面上に蒸着させる場合や、自在に移動させることができる可動蒸着源をもつ蒸着装置を用いることができる。
【0021】
化学蒸着等の化学薄膜形成法については、珪素原子と水素原子とを含有するシラン化合物又はその誘導体のガスにボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種を含むガスを添加した混合ガスを用いて化学薄膜形成法により金属箔上に珪素にボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされた、比抵抗が10Ωcm以下の薄膜を形成すればよく、特に限定されるものではないが、原料ガスとして、SiH、Si、SiHClなどの珪素と水素とで構成されるシラン化合物又はその誘導体からなる珪素化合物を用いて、H、N又は不活性ガスなどのキャリアガスと共に一定時間供給し、減圧CVD法で温度、圧力等の条件を使用するガスの組み合わせや温度を低温から高温に変化させることによりシリコン薄膜を得る際に、ガス中にリンやボロンを含むガス(PH、Bなど)を一定量添加することで、比抵抗が10Ωcm以下のリンやボロンをドープしたシリコン薄膜を形成できるものであれば、その製造方法は特に限定されるものではない。また、多結晶状態の薄膜を成膜後、リン及びボロンをイオン注入、あるいはリンやボロンを含むペーストを塗布した後、熱拡散現象を利用して、比抵抗を10Ωcm以下としたリンやボロンをドープしたシリコン薄膜を形成でき、この場合その製造方法は特に限定されるものではない。
【0022】
また、塗布法による非水電解質二次電池用電極の作製方法についても、特に限定されるものではなく、比抵抗の小さい珪素材料粉末又はその導電剤被覆珪素材料を用いて負極を作製する場合、比抵抗の小さい珪素材料粉末又はその導電剤被覆珪素材料に異種金属や黒鉛等の導電材料とバインダーを添加し、スラリー状にしたものを金属箔表面上に塗布することにより形成することができる。この場合においても導電材料の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl、Ti、Fe、Ni、Cu、Zn、Ag、Sn、Si等の金属粉末や金属繊維、又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。また、バインダーについても特に限定されず、ポリフッ化ビニリデン、SBR、ポリテトラフルオロエチレン及びポリイミド等を用いることができる。また、金属箔についても特に限定されず、銅、ニッケル、鉄、チタン、コバルト等の金属又はこれらの組み合わせからなる合金の箔やその表面を粗化処理したものやエキスパンドメタル等を用いることができる。
【0023】
ここで、導電材料の添加量は、比抵抗の小さい珪素材料粉末又はその導電剤被覆珪素材料と導電材料の混合物中0〜60重量%が好ましく、特に0〜50重量%が好ましい。60重量%を超えると充放電容量が小さくなる場合がある。なお、導電材料を配合する場合、1重量%以上であることが好ましい。
【0024】
上記負極材を用いて得られたリチウムイオン二次電池は、上記負極活物質を用いる点に特徴を有し、その他の正極、負極、電解質、セパレーターなどの材料及び電池形状などは限定されない。正極活物質としては、例えば、LiCoO、LiNiO、LiMn、V、MnO、TiS、MoSなどの遷移金属の酸化物及びカルコゲン化合物などが用いられる。電解質としては、例えば、過塩素酸リチウム、六フッ化リンリチウムなどのリチウム塩を含む非水溶液が用いられ、非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ビニレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフランなどが単体で又は二種類以上を組み合わせて用いられる。また、これら以外の種々の非水系電解質や固体電解質も使用できる。
【0025】
【実施例】
以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。なお、下記例で組成を示す%は重量%を示す。
【0026】
[実施例1]
半導体用シリコン(抵抗率0.1Ωcm、ボロンドープ1.2×1015atoms/cm、リンドープ1.1×1015atoms/cm)を粗砕して3mm角程度とし、ヘキサンを分散媒としたボールミル粉砕器で粉砕し、得られた懸濁物を濾過し、窒素雰囲気下で脱溶剤後、平均粒子径が1.7μmの粉末を得た。これを用いて下記の方法で電池評価を行った。
【0027】
電池評価
リチウムイオン二次電池負極活物質としての評価は以下の方法・手順にて行った。
まず、得られた比抵抗の小さい珪素材料に人造黒鉛(平均粒子径D50=5μm)を人造黒鉛の炭素が40%となるように加え、混合物を製造した。この混合物にポリフッ化ビニリデンを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、120℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、最終的には2cmに打ち抜き、負極とした。
【0028】
ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートと1,2−ジメトキシエタンの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレーターに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。
【0029】
作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用いて、テストセルの電圧が0Vに達するまで3mAの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が100μAを下回った時点で充電を終了した。放電は3mAの定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。
以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の充放電試験を20サイクル行った。結果を表1に示す。
【0030】
[実施例2]
珪砂を炭素で還元して製造された高純度金属シリコン(純度98.0%、ボロン10ppm、リン40ppm、鉄450ppm、アルミニウム80ppm)粉末(20mm下)を還元雰囲気下、アーク溶解法により溶融し、1600℃のシリコン融液を得た。融液をガス吹き込み口を持つ取鍋に移し取り、ガスと同時に粉体を供給するパウダーインジェクション法により無水ホウ砂(Na)を溶融したシリコンに対し0.5%になるまでアルゴンガスで吹き込み、融液の中でガラス状となっている不純物を取り除いて、室温まで冷却し、ボロンドープ精製シリコンの塊状品を得た。この塊状品の比抵抗を測定したところ、10Ωcmであった。また、各種不純物濃度は、ボロン110ppm、リン10ppm、鉄500ppm、アルミニウム80ppmであった。この塊状品を粗砕して3mm角程度とし、ヘキサンを分散媒としたボールミル粉砕器で粉砕し、得られた懸濁物を濾過し、窒素雰囲気下で脱溶剤後、平均粒子径が2.0μmの粉末を得た。この比抵抗の小さい珪素粉末に人造黒鉛(平均粒子径D50=5μm)が40%となるように加え、混合物を製造した。この混合物にポリフッ化ビニリデンを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、120℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、最終的には2cmに打ち抜き、負極とした。
【0031】
ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、実施例1と同様にして電池評価を行った。その結果を表1に示す。
【0032】
[比較例1]
ケミカルグレード用金属珪素粉末(抵抗率>1000Ωcm、鉄2000ppm、アルミニウム100ppm、クロム500ppm、ニッケル80ppm、ジルコン1600ppm、その他元素(Mo、Ca、P、Ti、Cu、Zn、V)100ppm以下)、平均粒子径3.2μmを用いて実施例1と全く同じ条件で電池評価を行った。その結果を表1に示す。
【0033】
[比較例2]
半導体用シリコン(抵抗率200Ωcm、ボロンドープ2.3×1013atoms/cm、リンドープ2.3×1013atoms/cm)を粗砕して3mm角程度とし、ヘキサンを分散媒としたボールミル粉砕器で20時間粉砕し、平均粒子径D50=2.5μmの粉末を得た。これを用いて実施例1と全く同じ条件で電池評価を行った。その結果を表1に示す。
【0034】
【表1】

Figure 2004288525
【0035】
【発明の効果】
本発明の比抵抗の小さい珪素材料は、非水電解質二次電池用負極材に用いられて、良好なサイクル性を与える。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery using a silicon material having a small specific resistance as an active material.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the remarkable development of portable electronic devices, communication devices, and the like, a secondary battery having a high energy density has been strongly demanded from the viewpoints of economy and reduction in size and weight of the devices. Conventionally, as a measure for increasing the capacity of a secondary battery of this type, for example, a method using an oxide such as V, Si, B, Zr, Sn or the like and a composite oxide thereof as a negative electrode material (Patent Document 1: JP-A-174818, Patent Document 2: JP-A-6-60867 and others), a method of applying a metal oxide that has been melted and quenched as a negative electrode material (Patent Document 3: JP-A-10-294112), and oxidizing the negative electrode material A method using silicon (Patent Document 4: Japanese Patent No. 2997741), a method using Si 2 N 2 O and Ge 2 N 2 O as a negative electrode material (Patent Document 5: Japanese Patent Application Laid-Open No. 11-102705), and the like are known. ing. For the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO after mechanical alloying with graphite (Patent Document 6: Japanese Patent Application Laid-Open No. 2000-243396) is known. (Patent Document 7: Japanese Patent Application Laid-Open No. 2000-215887), a method of coating the surface of silicon oxide particles with a carbon layer by a chemical vapor deposition method (Patent Document 8: Japanese Patent Application Laid-Open No. 2002-42806), (Patent Document 9: JP-A-2000-149951) and a method using a silicon thin film by RF sputtering (Patent Document 10: JP-A-2002-83594).
[0003]
[Patent Document 1]
JP-A-5-174818 [Patent Document 2]
JP-A-6-60867 [Patent Document 3]
JP-A-10-294112 [Patent Document 4]
Japanese Patent No. 2997741 [Patent Document 5]
JP-A-11-102705 [Patent Document 6]
JP 2000-243396 A [Patent Document 7]
JP 2000-21587 A [Patent Document 8]
JP 2002-42806 A [Patent Document 9]
JP 2000-149951 A [Patent Document 10]
JP-A-2002-83594
[Problems to be solved by the invention]
However, in the above-mentioned conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cyclability is insufficient, or the characteristics required in the market are still insufficient, and cannot always be satisfied. Therefore, further improvement in energy density was desired.
[0005]
In particular, in the method disclosed in Japanese Patent Application Laid-Open No. 2000-215887, although a uniform carbon film can be formed, since Si itself is used as a negative electrode material in a state of low conductivity, it can be used to absorb and desorb lithium ions. Japanese Patent Application Laid-Open No. 2000-149951 discloses that the expansion / contraction of the rubber is too large, and as a result, it cannot be put to practical use and the cycleability is reduced. In the method (1), the cycleability is improved by doping boron into silicon and allowing Si and SiB 4 to coexist, but it is still insufficient. The method disclosed in JP-A-2002-83594 is disadvantageous for industrial production because a silicon thin film formed by an RF sputtering method is used.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a negative electrode material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery having higher cyclability.
[0007]
Means for Solving the Problems and Embodiments of the Invention
As a result of intensive studies to achieve the above object, the present inventor has found a silicon material having a small specific resistance that is effective as an active agent for a negative electrode of a non-aqueous electrolyte secondary battery having higher cyclability.
[0008]
That is, the development of an electrode material having a large charge / discharge capacity is extremely important, and research and development are being conducted in various places. In such a situation, silicon has been of great interest as a negative electrode active material for a lithium ion secondary battery because of its large capacity, but has a large deterioration when repeatedly charged and discharged, that is, is inferior in cyclability. In addition, since the silicon powder itself has low conductivity, it has not been put to practical use except for a very small portion of the powder. From this point of view, as a result of studying with the aim of improving the cyclability and the initial efficiency, it was found that by reducing the specific resistance of silicon itself, the performance was significantly improved as compared with the conventional one. .
[0009]
More specifically, when silicon was used as the active material of the negative electrode of the lithium ion secondary battery, the cause of the rapid decrease in charge / discharge capacity after several times of charge / discharge was examined from the structure itself, and the analysis results showed that A large volume change occurs due to the absorption and release of a large amount of lithium ions, which results in the destruction of particles, and the absorption of lithium ions causes the volume of silicon, which originally has low conductivity, to expand, resulting in the conductivity of the electrode itself. It was found that, as a result, the movement of lithium ions in the electrode was hindered due to the decrease in current collecting ability, and the decrease in cyclability and efficiency was caused.
[0010]
Therefore, based on the above, as a result of intensive studies on lowering the electrical resistance of silicon itself, as well as the conductivity of the surface, boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium or indium were added to silicon itself. To reduce the electrical resistance by doping one or more of the above, solve the above problem as a negative electrode active material for a lithium ion secondary battery, have a stable large charge / discharge capacity, and charge / discharge cycles The present inventors have found that the properties and efficiency can be greatly improved, and that it is effective to use silicon having such a small specific resistance, and have accomplished the present invention.
[0011]
Accordingly, the present invention provides a negative electrode material for a non-aqueous electrolyte secondary battery using the following silicon material having a small specific resistance.
(1) Silicon is doped with one or more of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium, and indium, and includes a silicon material having a low specific resistance of 10 Ωcm or less in a wafer or ingot. Anode material for water electrolyte secondary battery.
(2) The negative electrode material for a nonaqueous electrolyte secondary battery according to (1), wherein the silicon material having a small specific resistance has an average particle diameter of 0.01 to 30 μm and a BET specific surface area of 0.5 to 20 m 2 / g.
(3) A mixture of the silicon material of (1) or (2) and a conductive material, wherein the conductive material in the mixture is 1 to 60% by weight and the total carbon content in the mixture is 25 to 90% by weight. % Of a negative electrode material for a non-aqueous electrolyte secondary battery, the mixture including a mixture of 1% by weight.
[0012]
Hereinafter, the present invention will be described in more detail.
The present invention, particularly when used as a negative electrode active material for a lithium ion secondary battery, is expected to have a charge / discharge capacity several times that of a graphite-based battery which is currently the mainstream, The improvement of the cyclability and efficiency of the silicon-based material in which the performance deterioration due to repeated charge / discharge has become a major bottleneck, and the silicon material having a small specific resistance according to the present invention is composed of silicon, boron, phosphorus, nitrogen, One or more of antimony, arsenic, aluminum, gallium, and indium are doped, and silicon itself has low electric resistance.
[0013]
The silicon material having a low specific resistance according to the present invention can be formed by using a method of growing a silicon single crystal by using a magnetic field pulling (MCZ) method, a Czochralski (CZ) method, or a floating zone melting (FZ) method. , Nitrogen, antimony, arsenic, aluminum, gallium or indium, one or more of which are doped, and the specific resistance of the wafer or ingot is formed to be 10 Ωcm or less, single crystal silicon, boron, phosphorus produced by the Bridgman method, Nitrogen, antimony, arsenic, aluminum, gallium, or indium, doped with one or more kinds, polycrystalline silicon formed in a wafer or ingot with a specific resistance of 10 Ωcm or less, in order to increase the purity when purifying metallic silicon by a melting method. When injecting oxygen gas etc. to slag and discharge impurities, gas injection At the same time, a compound containing phosphorus or boron and a salt are blown therein to increase the concentration of boron or phosphorus, and are formed of a metal silicon formed with a specific resistance of 10 Ωcm or less, a silane compound composed of silicon and hydrogen or a derivative thereof. One or more of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium or indium is doped into a silicon thin film formed on a metal foil using a silicon compound using a chemical thin film forming method, and the specific resistance is 10 Ωcm or less. The method of manufacturing the silicon is not particularly limited as long as the silicon is formed.
[0014]
Note that, in the present invention, a silicon material having a small specific resistance refers to one or more of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium, and indium, and has a resistance of 10 Ωcm or less in a wafer or ingot. And more preferably 1 Ωcm or less, more preferably 0.1 Ωcm or less. Although the lower limit of the resistance value is not particularly limited, it is usually 1 × 10 −5 Ωcm or more, particularly 1 × 10 −3 Ωcm or more.
[0015]
In this case, the doping amount of the above element is an amount that makes the specific resistance of silicon the above value, and is usually 1 × 10 14 to 1 × 10 20 atoms / cm 3 .
[0016]
Here, the average particle diameter of the silicon material powder and the conductive agent-coated silicon material having a small specific resistance of the present invention is 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.2 μm or more, and particularly preferably. Is 0.3 μm or more, and preferably 30 μm or less, more preferably 20 μm or less, and still more preferably 10 μm or less. If the average particle size is too small, the bulk density becomes too small, and the charge / discharge capacity per unit volume decreases.On the other hand, if the average particle size is too large, it becomes difficult to prepare an electrode film, and from the current collector. There is a risk of peeling. The average particle diameter is a value measured as a weight average value D 50 (that is, a particle diameter or a median diameter when the cumulative weight becomes 50%) in a particle size distribution measurement by a laser light diffraction method.
[0017]
Further, the BET specific surface area of the silicon material powder having a small specific resistance and the conductive agent-coated silicon material of the present invention is preferably 0.5 to 20 m 2 / g, particularly preferably 1 to 10 m 2 / g. When the BET specific surface area is less than 0.5 m 2 / g, the surface activity becomes small, the binding force of the binder at the time of producing the electrode becomes small, and as a result, the cyclability at the time of repeating charge and discharge decreases, Conversely, if the BET specific surface area is larger than 20 m 2 / g, the amount of solvent absorbed during electrode preparation increases, and a large amount of a binder may be added to maintain the binding property. And the cycleability may be reduced. In addition, the BET specific surface area is a value measured by a BET one-point method measured by the amount of adsorbed N 2 gas.
[0018]
By using the silicon material having a small specific resistance or the silicon material coated with a conductive agent obtained by the present invention as a negative electrode material (negative electrode active material), a non-aqueous electrolyte secondary battery having high capacity and excellent cycle characteristics is obtained. In particular, a lithium ion secondary battery can be manufactured.
[0019]
In this case, the electrode for a non-aqueous electrolyte secondary battery in the present invention may be used for any of a thin film electrode formed by a physical vapor deposition method and a chemical vapor deposition method and an electrode produced by a coating method in which a conductive agent and a binder are added. it can.
[0020]
The above-mentioned thin-film electrode can be produced by using the above-described silicon material having a small specific resistance and vapor-depositing it on a metal foil. The material is not particularly limited as long as it can be vapor-deposited on the film-forming surface of the substrate through the hole, and a known type of physical vapor deposition can be used. For example, a known evaporation method such as a vacuum evaporation method, a Langmuir-Blodgett evaporation method, an organic molecular beam epitaxy method, and a sputtering method can be used. Further, as for the physical vapor deposition apparatus, the vapor-phase raw material is transferred to the surface of the substrate from a plurality of directions including a direction obliquely intersecting with the penetration direction of the through hole of the mask by using a vapor deposition apparatus having a deposition source fixed at a predetermined position. When vapor deposition is performed on the top, a vapor deposition apparatus having a movable vapor deposition source that can be freely moved can be used.
[0021]
For a method of forming a chemical thin film such as chemical vapor deposition, a gas of a silane compound containing silicon atoms and hydrogen atoms or a derivative thereof contains one or more of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium, and indium. Silicon is doped with one or more of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium or indium on a metal foil by a chemical thin film forming method using a mixed gas to which a gas is added, and the specific resistance is 10 Ωcm or less. The material gas may be, but is not limited to, a silane compound composed of silicon and hydrogen, such as SiH 4 , Si 2 H 6 , SiH 2 Cl 2 , or a derivative thereof as a source gas. with the use of a silicon compound, a certain time supplied together with a carrier gas such as H 2, N 2 or an inert gas, reduced pressure CVD method Temperature, when obtaining a silicon thin film by changing the high-temperature combinations or temperature of the gas using the conditions such as the pressure from the low temperature, a gas containing phosphorus or boron in the gas (such as PH 3, B 2 H 6) The production method is not particularly limited as long as it can form a silicon thin film doped with phosphorus or boron having a specific resistance of 10 Ωcm or less by adding a fixed amount. Also, after forming a polycrystalline thin film, phosphorus or boron is ion-implanted, or a paste containing phosphorus or boron is applied, and phosphorus or boron having a specific resistance of 10 Ωcm or less is utilized by utilizing a thermal diffusion phenomenon. A doped silicon thin film can be formed. In this case, the manufacturing method is not particularly limited.
[0022]
Further, the method for producing the electrode for a non-aqueous electrolyte secondary battery by a coating method is also not particularly limited, and when producing a negative electrode using a silicon material powder or a conductive agent-coated silicon material having a small specific resistance, It can be formed by adding a conductive material such as a dissimilar metal or graphite and a binder to a silicon material powder having a small specific resistance or a silicon material coated with the conductive agent, and applying a slurry to the surface of the metal foil. Also in this case, the type of the conductive material is not particularly limited, and may be an electronically conductive material that does not cause decomposition or deterioration in the configured battery. Specifically, Al, Ti, Fe, Ni, Cu, Metal powders and metal fibers such as Zn, Ag, Sn, and Si, or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, and various resin firings Graphite such as a body can be used. Also, the binder is not particularly limited, and polyvinylidene fluoride, SBR, polytetrafluoroethylene, polyimide, or the like can be used. In addition, the metal foil is not particularly limited, and a metal foil such as copper, nickel, iron, titanium, and cobalt, or an alloy foil made of a combination thereof, or a roughened surface thereof, an expanded metal, or the like can be used. .
[0023]
Here, the amount of the conductive material to be added is preferably 0 to 60% by weight, particularly preferably 0 to 50% by weight in the silicon material powder having a small specific resistance or a mixture of the conductive material-coated silicon material and the conductive material. If it exceeds 60% by weight, the charge / discharge capacity may be reduced. In addition, when mix | blending a conductive material, it is preferable that it is 1 weight% or more.
[0024]
The lithium ion secondary battery obtained using the above negative electrode material is characterized by using the above negative electrode active material, and other materials such as a positive electrode, a negative electrode, an electrolyte, a separator, and a battery shape are not limited. As the positive electrode active material, for example, oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2 and chalcogen compounds are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium perchlorate and lithium hexafluoride is used.As the non-aqueous solvent, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, vinylene carbonate, dimethoxy Ethane, γ-butyrolactone, 2-methyltetrahydrofuran and the like are used alone or in combination of two or more. Various other non-aqueous electrolytes and solid electrolytes can also be used.
[0025]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. In the following examples,% indicating the composition indicates% by weight.
[0026]
[Example 1]
Silicon for semiconductor (resistivity: 0.1 Ωcm, boron-doped 1.2 × 10 15 atoms / cm 3 , phosphorus-doped 1.1 × 10 15 atoms / cm 3 ) is roughly crushed to about 3 mm square, and hexane is used as a dispersion medium. The resulting suspension was pulverized with a ball mill pulverizer, the obtained suspension was filtered, and the solvent was removed under a nitrogen atmosphere to obtain a powder having an average particle diameter of 1.7 μm. Using this, battery evaluation was performed by the following method.
[0027]
Battery evaluation The evaluation as a lithium ion secondary battery negative electrode active material was performed by the following method and procedure.
First, artificial graphite (average particle diameter D 50 = 5 μm) was added to the obtained silicon material having a small specific resistance so that carbon of the artificial graphite became 40%, and a mixture was produced. 10% of polyvinylidene fluoride was added to this mixture, and N-methylpyrrolidone was further added to form a slurry. The slurry was applied to a copper foil having a thickness of 20 μm, dried at 120 ° C. for 1 hour, and then the electrode was pressed by a roller press. It was molded and finally punched into 2 cm 2 to obtain a negative electrode.
[0028]
Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluoride as a non-aqueous electrolyte was 1/1 (volume) of ethylene carbonate and 1,2-dimethoxyethane. Ratio) Using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L in the mixed solution, a lithium ion secondary battery for evaluation using a 30 μm thick polyethylene microporous film as a separator was produced.
[0029]
The manufactured lithium ion secondary battery was left overnight at room temperature, and then charged with a constant current of 3 mA using a secondary battery charge / discharge tester (manufactured by Nagano Corporation) until the test cell voltage reached 0 V. After reaching 0 V, charging was performed by reducing the current so as to maintain the cell voltage at 0 V. Then, the charging was terminated when the current value became lower than 100 μA. The discharge was performed at a constant current of 3 mA, and the discharge was terminated when the cell voltage exceeded 2.0 V, and the discharge capacity was determined.
The above charge / discharge test was repeated, and a charge / discharge test of the lithium ion secondary battery for evaluation was performed for 20 cycles. Table 1 shows the results.
[0030]
[Example 2]
High purity metallic silicon (purity 98.0%, boron 10 ppm, phosphorus 40 ppm, iron 450 ppm, aluminum 80 ppm) powder (20 mm below) produced by reducing silica sand with carbon is melted by an arc melting method in a reducing atmosphere, A silicon melt at 1600 ° C. was obtained. The melt is transferred to a ladle having a gas inlet, and powdered powder is supplied simultaneously with the gas until anhydrous borax (Na 2 B 4 O 7 ) becomes 0.5% with respect to the molten silicon. The glass was blown with argon gas to remove glassy impurities in the melt, and cooled to room temperature to obtain a lump of purified boron-doped silicon. The specific resistance of this block was measured to be 10 Ωcm. The concentrations of various impurities were 110 ppm of boron, 10 ppm of phosphorus, 500 ppm of iron, and 80 ppm of aluminum. This lump was roughly crushed to a size of about 3 mm square, crushed with a ball mill crusher using hexane as a dispersion medium, and the resulting suspension was filtered and desolvated under a nitrogen atmosphere. A powder of 0 μm was obtained. Artificial graphite (average particle diameter D 50 = 5 μm) was added to the silicon powder having a small specific resistance so as to be 40% to produce a mixture. 10% of polyvinylidene fluoride was added to this mixture, and N-methylpyrrolidone was further added to form a slurry. The slurry was applied to a copper foil having a thickness of 20 μm, dried at 120 ° C. for 1 hour, and then the electrode was pressed by a roller press. It was molded and finally punched into 2 cm 2 to obtain a negative electrode.
[0031]
Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a battery evaluation was performed in the same manner as in Example 1 using a lithium foil as a counter electrode. Table 1 shows the results.
[0032]
[Comparative Example 1]
Metallic silicon powder for chemical grade (resistivity> 1000Ωcm, iron 2000ppm, aluminum 100ppm, chromium 500ppm, nickel 80ppm, zircon 1600ppm, other elements (Mo, Ca, P, Ti, Cu, Zn, V) 100ppm or less), average particles The battery was evaluated under the same conditions as in Example 1 using a diameter of 3.2 μm. Table 1 shows the results.
[0033]
[Comparative Example 2]
Silicon for semiconductor (resistivity: 200 Ωcm, boron-doped 2.3 × 10 13 atoms / cm 3 , phosphorus-doped 2.3 × 10 13 atoms / cm 3 ) is roughly crushed to about 3 mm square, and ball mill crushing using hexane as a dispersion medium. The mixture was pulverized for 20 hours using a vessel to obtain a powder having an average particle diameter D 50 = 2.5 μm. Using this, battery evaluation was performed under exactly the same conditions as in Example 1. Table 1 shows the results.
[0034]
[Table 1]
Figure 2004288525
[0035]
【The invention's effect】
The silicon material having a small specific resistance of the present invention is used for a negative electrode material for a non-aqueous electrolyte secondary battery, and gives good cycleability.

Claims (3)

珪素にボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされ、ウェハーもしくはインゴットでの比抵抗が10Ωcm以下である比抵抗の小さい珪素材料を含む非水電解質二次電池用負極材。Silicon is doped with one or more of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium and indium, and a non-aqueous electrolyte containing a silicon material having a low specific resistance of 10 Ωcm or less in a wafer or ingot. Anode material for secondary battery. 比抵抗の小さい珪素材料の平均粒子径が0.01〜30μm、BET比表面積が0.5〜20m/gである請求項1記載の非水電解質二次電池用負極材。The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the silicon material having a small specific resistance has an average particle diameter of 0.01 to 30 m and a BET specific surface area of 0.5 to 20 m2 / g. 請求項1又は2記載の珪素材料と導電材料との混合物であって、混合物中の導電材料が1〜60重量%であり、かつ混合物中の全炭素量が25〜90重量%である混合物を含む非水電解質二次電池用負極材。A mixture of the silicon material and the conductive material according to claim 1 or 2, wherein the conductive material in the mixture is 1 to 60% by weight and the total carbon content in the mixture is 25 to 90% by weight. Negative electrode material for non-aqueous electrolyte secondary batteries.
JP2003080697A 2003-03-24 2003-03-24 Negative electrode material for nonaqueous electrolyte secondary battery Pending JP2004288525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080697A JP2004288525A (en) 2003-03-24 2003-03-24 Negative electrode material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080697A JP2004288525A (en) 2003-03-24 2003-03-24 Negative electrode material for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2004288525A true JP2004288525A (en) 2004-10-14

Family

ID=33294480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080697A Pending JP2004288525A (en) 2003-03-24 2003-03-24 Negative electrode material for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2004288525A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008063532A1 (en) 2006-11-17 2008-05-29 Panasonic Corporation Electrode active material for non-aqueous secondary batteries
JP2010021100A (en) * 2008-07-14 2010-01-28 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, lithium-ion secondary battery, and electrochemical capacitor
JP2011187287A (en) * 2010-03-08 2011-09-22 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
JP2014179202A (en) * 2013-03-14 2014-09-25 Seiko Instruments Inc Electrochemical cell
JP2015118924A (en) * 2013-11-13 2015-06-25 株式会社半導体エネルギー研究所 Negative electrode for power storage device, power storage device, and electrical machine
JP2018125086A (en) * 2017-01-30 2018-08-09 京セラ株式会社 Negative electrode material for storage battery, negative electrode for storage battery, and storage battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199524A (en) * 1997-01-17 1998-07-31 Yuasa Corp Non-aqueous electrolyte battery
JPH10208740A (en) * 1997-01-24 1998-08-07 Yuasa Corp Non-aqueous electrolyte battery
JPH10223220A (en) * 1997-02-04 1998-08-21 Yuasa Corp Non-aqueous electrolyte cell
JPH10284129A (en) * 1997-04-10 1998-10-23 Yuasa Corp Nonaqueous electrolyte battery
JPH1140152A (en) * 1997-07-16 1999-02-12 Yuasa Corp Nonaqueous electrolyte battery
JP2000048860A (en) * 1998-07-31 2000-02-18 Mitsubishi Chemicals Corp Lithium secondary battery
JP2000243395A (en) * 1999-02-22 2000-09-08 Tokuyama Corp Negative electrode material of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2001266866A (en) * 2000-03-21 2001-09-28 Nippon Steel Corp Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2001283848A (en) * 2000-03-30 2001-10-12 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2002237294A (en) * 2001-02-08 2002-08-23 Tokuyama Corp Negative electrode for lithium secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199524A (en) * 1997-01-17 1998-07-31 Yuasa Corp Non-aqueous electrolyte battery
JPH10208740A (en) * 1997-01-24 1998-08-07 Yuasa Corp Non-aqueous electrolyte battery
JPH10223220A (en) * 1997-02-04 1998-08-21 Yuasa Corp Non-aqueous electrolyte cell
JPH10284129A (en) * 1997-04-10 1998-10-23 Yuasa Corp Nonaqueous electrolyte battery
JPH1140152A (en) * 1997-07-16 1999-02-12 Yuasa Corp Nonaqueous electrolyte battery
JP2000048860A (en) * 1998-07-31 2000-02-18 Mitsubishi Chemicals Corp Lithium secondary battery
JP2000243395A (en) * 1999-02-22 2000-09-08 Tokuyama Corp Negative electrode material of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2001266866A (en) * 2000-03-21 2001-09-28 Nippon Steel Corp Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2001283848A (en) * 2000-03-30 2001-10-12 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2002237294A (en) * 2001-02-08 2002-08-23 Tokuyama Corp Negative electrode for lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008063532A1 (en) 2006-11-17 2008-05-29 Panasonic Corporation Electrode active material for non-aqueous secondary batteries
JP2010021100A (en) * 2008-07-14 2010-01-28 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, lithium-ion secondary battery, and electrochemical capacitor
JP2011187287A (en) * 2010-03-08 2011-09-22 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
JP2014179202A (en) * 2013-03-14 2014-09-25 Seiko Instruments Inc Electrochemical cell
JP2015118924A (en) * 2013-11-13 2015-06-25 株式会社半導体エネルギー研究所 Negative electrode for power storage device, power storage device, and electrical machine
US10593940B2 (en) 2013-11-13 2020-03-17 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, power storage, device and electrical device
JP2018125086A (en) * 2017-01-30 2018-08-09 京セラ株式会社 Negative electrode material for storage battery, negative electrode for storage battery, and storage battery

Similar Documents

Publication Publication Date Title
KR101361893B1 (en) Method for producing coated carbon particles and use of the latter in anode materials for lithium-ion batteries
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
KR101522963B1 (en) Negative electrode material for rechargeable battery with nonaqueous electrolyte, negative electrode for rechargeable battery with nonaqueous electrolyte, rechargeable battery with nonaqueous electrolyte, and process for producing polycrystalline silicon particles for active material for negative electrode material for rechargeable battery with nonaqueous electrolyte
JP5110565B2 (en) Lithium secondary battery, method for producing positive electrode active material coating particles, and method for producing lithium secondary battery
JP4752992B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP5726870B2 (en) Sulfur / carbon composite conductive materials, use as electrodes, and methods of making such materials
KR101944153B1 (en) Negative electrode material for a rechargeable battery, and method for producing it
JP6003996B2 (en) Electrode active material, method for producing electrode active material, electrode, battery, and method of using clathrate compound
KR101375455B1 (en) Electrode active material for rechargeable battery
KR20130101097A (en) Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor
KR20120132460A (en) Negative electrode material for lithium secondary battery and its manufacturing method, and negative electrode for lithium secondary battery, and lithium secondary battery
JP2011192453A (en) Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, lithium ion secondary battery, and electrochemical capacitor
KR101495451B1 (en) Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
KR20150125658A (en) Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR20170132620A (en) Negative active material and preparation method thereof
KR20180001066A (en) Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR20150022266A (en) Negative active material, negative electrode and lithium battery including the negative active material, and method for manufacturing the negative active material
KR20150120349A (en) Si-based alloy negative electrode material for storage device, and electrode obtained using same
KR102152883B1 (en) Negative active material, negative electrode and lithium battery including the negative active material, and method for manufacturing the negative active material
JP2004323284A (en) Silicon composite and method of manufacturing the same, and negative electrode material for non-aqueous electrolyte secondary battery
US20160181601A1 (en) Composite particles, method for manufacturing same, electrode, and non-aqueous electrolyte secondary cell
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
KR102129913B1 (en) Cathode material for power storage devices
EP4207385A2 (en) Electrochemical apparatus and electronic apparatus including same
JP2013069415A (en) Negative electrode mixture and all-solid lithium-ion battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090507