JPH10199524A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JPH10199524A
JPH10199524A JP9006223A JP622397A JPH10199524A JP H10199524 A JPH10199524 A JP H10199524A JP 9006223 A JP9006223 A JP 9006223A JP 622397 A JP622397 A JP 622397A JP H10199524 A JPH10199524 A JP H10199524A
Authority
JP
Japan
Prior art keywords
lithium
semiconductor
charging
silicon
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9006223A
Other languages
Japanese (ja)
Other versions
JP3620559B2 (en
Inventor
Tokuo Inamasu
徳雄 稲益
Toshiyuki Iba
利行 伊庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP00622397A priority Critical patent/JP3620559B2/en
Publication of JPH10199524A publication Critical patent/JPH10199524A/en
Application granted granted Critical
Publication of JP3620559B2 publication Critical patent/JP3620559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enable an excellent charging/discharging property and a high safety under a high potential and a high energy density by employing, as a negative active material, a foreign semiconductor having its conductivity capable of starting/releasing lithium reversely in an operational range in which any change in a crystal system in volume is small at the time of lithium starting/relating in the case of charging/ discharging time. SOLUTION: An extrinsic semiconductor provides suitability of a high electron conductivity material to be set in an alloy with lithium and particularly a foreign semiconductor whose electron conductivity is higher than 10<-5> Scm<-1> at a normal temperature is excellent in its charging/discharging characteristics. Namely, lithium and silicon alloy is well known but silicon is originally a intrinsic semiconductor with low electron conductivity and its characteristics are poor as a battery negative acute material. However, extrinsic semiconductors such as p-type, n-type, p-n junction semiconductor with doped impurity, etc., particularly in p-type and n-type semiconductor, such a one of good electron conductivity at a high impurity concentration, and such one as having p-n junction at low impurity concentration with low electric resistance for forward current are excellent in both charging/discharging characteristics as negative active substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質電池に関
するもので、さらに詳しくはその負極活物質に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a negative electrode active material thereof.

【0002】[0002]

【従来の技術】従来より非水電解質電池用の負極活物質
として、リチウムを用いることが代表的であったが、充
電時に生成するリチウムの樹枝状析出(デンドライト)
のため、サイクル寿命の点で問題があった。また、この
デンドライトはセパレーターを貫通し内部短絡を引き起
こしたり、発火の原因ともなっている。
2. Description of the Related Art Conventionally, lithium has been typically used as a negative electrode active material for a nonaqueous electrolyte battery. However, dendritic deposition of lithium generated during charging (dendrite)
Therefore, there was a problem in terms of cycle life. In addition, the dendrite penetrates through the separator, causing an internal short circuit and causing ignition.

【0003】また、上記のような充電時に生成するデン
ドライトを防止する目的でリチウム合金も用いられた
が、充電量が大きくなると負極の微細粉化や、負極活物
質の脱落などの問題があった。
Further, lithium alloys have been used for the purpose of preventing dendrite generated at the time of charging as described above. However, when the charge amount is increased, there are problems such as fine powdering of the negative electrode and falling off of the negative electrode active material. .

【0004】現在、長寿命化及び安全性のために負極に
炭素材料を用いる電池などが注目を集め一部実用化され
ている。しかしながら、負極に用いられる炭素材料は、
急速充電時、内部短絡や充電効率の低下という問題があ
った。これらの炭素材料は一般的に、炭素材料へのリチ
ウムのドープ電位が0Vに近いため、急速充電を行う場
合、電位が0V以下になり電極上にリチウムを析出する
ことがあった。そのため、セルの内部短絡を引き起こし
たり、放電効率が低下する原因となる。また、このよう
な炭素材料は、サイクル寿命の点でかなりの改善がなさ
れているが、密度が比較的小さいため、体積当たりの容
量が低くなってしまうことになる。つまり、この炭素材
料は高エネルギー密度という点からは未だ不十分であ
る。その上、炭素上に被膜を形成する必要があるものに
ついては初期充放電効率が低下し、この被膜形成に使わ
れる電気量は不可逆であるため、その電気量分の容量低
下につながる。
At present, batteries using a carbon material for the negative electrode have been attracting attention for their long life and safety, and some of them have been put to practical use. However, the carbon material used for the negative electrode is
At the time of quick charging, there was a problem that an internal short circuit or a reduction in charging efficiency occurred. Since these carbon materials generally have a lithium doping potential of the carbon material close to 0 V, when rapid charging is performed, the potential becomes 0 V or less and lithium may be deposited on the electrode. This may cause an internal short circuit of the cell or lower the discharge efficiency. Although such carbon materials have been considerably improved in terms of cycle life, their relatively low density results in low capacity per volume. That is, this carbon material is still insufficient in terms of high energy density. In addition, in the case where a film needs to be formed on carbon, the initial charge / discharge efficiency decreases, and the amount of electricity used for forming the film is irreversible, which leads to a reduction in capacity corresponding to the amount of electricity.

【0005】一方、金属リチウムやリチウム合金または
炭素材料以外の負極活物質として、シリコンとリチウム
を含有する複合酸化物Lix Si1-y y z (特開平
7−230800号)や、非晶質カルコゲン化合物M1
2 p 4 q (特開平7−288123号)を用いるこ
とが提唱されており、高容量、高エネルギー密度の点で
改善されている。
On the other hand, as a negative electrode active material other than lithium metal, a lithium alloy or a carbon material, a composite oxide Li x Si 1 -y My O z containing silicon and lithium (Japanese Patent Laid-Open No. 7-230800), a non-metal oxide, Crystalline chalcogen compound M 1
It has been proposed to use M 2 p M 4 q (Japanese Patent Laid-Open No. 7-288123), which is improved in terms of high capacity and high energy density.

【0006】しかしながら、上記のような複合酸化物
は、活物質自身の電気伝導度が低いため、急速充電及び
負荷特性に問題があった。この問題を解決する目的で導
電剤の添加が試みられているが、密度の低い炭素材料を
導電剤として用いると、体積当たりの容量が低下するこ
とになる。さらに、導電剤を添加することにより、急速
充電を行うと部分的に電流集中が起こり、導電剤からリ
チウムの析出が観測された。そのため、セルの内部短絡
を引き起こしたり、充放電効率を低下させることがあっ
た。
[0006] However, the above-mentioned composite oxide has a problem in quick charging and load characteristics because the electric conductivity of the active material itself is low. Attempts have been made to add a conductive agent to solve this problem. However, when a carbon material having a low density is used as the conductive agent, the capacity per volume is reduced. Further, by adding a conductive agent, when rapid charging was performed, current concentration partially occurred, and precipitation of lithium from the conductive agent was observed. For this reason, an internal short circuit of the cell may be caused or the charge / discharge efficiency may be reduced.

【0007】また、複合酸化物等は材料自身が酸化物で
あるため、酸化物の還元を経てリチウムとの反応が進行
すると考えられるため、特に初期での不可逆的な還元が
起こり、初期充放電効率が低くなることがあった。
Further, since the material of the composite oxide or the like is itself an oxide, it is considered that the reaction with lithium proceeds through the reduction of the oxide. Efficiency was sometimes reduced.

【0008】この様な状況下でさらなる高容量、高エネ
ルギー密度で、サイクル寿命が長く、安全な非水電解質
電池用負極材料の開発が望まれている。
Under these circumstances, there is a demand for the development of a safe negative electrode material for non-aqueous electrolyte batteries having a higher capacity, a higher energy density, a longer cycle life and a safer life.

【0009】[0009]

【発明が解決しようとする課題】即ち、負極としてリチ
ウム金属やリチウムと金属の合金を用いる場合は、高電
圧や、高容量、高エネルギー密度としての利点はあるも
のの、サイクル性能や安全性の上で問題があり、炭素材
料を用いる場合は、高電圧や、安全性の面で有利である
ものの、高容量、高エネルギー密度の面で不十分であ
る。さらに、酸化物負極を用いる場合は、高容量、高エ
ネルギー密度の点は改善されているようであるが、高電
圧、充放電効率特性、サイクル寿命や安全性の点では満
足がいかないものである。
That is, when lithium metal or an alloy of lithium and a metal is used as the negative electrode, there are advantages in terms of high voltage, high capacity, and high energy density, but in terms of cycle performance and safety. When a carbon material is used, it is advantageous in terms of high voltage and safety, but is insufficient in terms of high capacity and high energy density. Furthermore, when an oxide negative electrode is used, the points of high capacity and high energy density seem to be improved, but they are not satisfactory in terms of high voltage, charge / discharge efficiency characteristics, cycle life and safety. .

【0010】このため、高電圧、高エネルギー密度で、
優れた充放電サイクル特性を示し、安全性の高い二次電
池を得るには、充放電時のリチウムの吸蔵放出の際に結
晶系の変化や体積変化が少なく、できるだけリチウム電
位に近い作動領域で、かつ可逆的にリチウムを吸蔵放出
可能な導電性のある化合物の開発が望まれている。
Therefore, at a high voltage and a high energy density,
In order to obtain a secondary battery with excellent charge-discharge cycle characteristics and high safety, there is little change in the crystal system or volume change during insertion and extraction of lithium during charging and discharging, and in an operating region as close to the lithium potential as possible. It is desired to develop a conductive compound capable of reversibly inserting and extracting lithium.

【0011】[0011]

【課題を解決するための手段】本発明は上記問題点に鑑
みてなされたものであって、非水電解質電池に使用され
る理想的な負極活物質を提案するもので、負極活物質の
主構成物質が、p型半導体、n型半導体、p−n接合を
有する半導体等の外来半導体からなることを特徴とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and proposes an ideal negative electrode active material used for a non-aqueous electrolyte battery. The constituent material is made of a foreign semiconductor such as a p-type semiconductor, an n-type semiconductor, and a semiconductor having a pn junction.

【0012】さらに、上記に挙げた外来半導体の主構成
物質が、Si又はGeであり、それらには少なくとも一
種類以上の不純物がドーピングされており、前記外来半
導体の主構成物質中の不純物が、P,Al,As,S
b,B,Ga,In等のIIIb族、IV族、Vb族の
元素であることを特徴とする。
Further, the main constituent material of the foreign semiconductor mentioned above is Si or Ge, which is doped with at least one kind of impurity, and the main constituent material of the foreign semiconductor is: P, Al, As, S
It is a group IIIb, IV, or Vb group element such as b, B, Ga, or In.

【0013】先に、リチウムとシリコンの合金としては
Binary Alloy Phase Diagra
ms(p2465)にあるように、Li22Si5 までの
組成で合金化することが知られている。また、特開平5
−74463号では、負極にシリコンの単結晶を用いる
ことで、サイクル特性が向上することを報告している。
しかしながら、急速充放電用非水電解質電池の負極材と
して、シリコンにリチウムをドープさせようと試みる
と、ほとんどドープが起こらずにリチウムが析出してし
まうことが分かった。そこで、本発明者らは、すでに不
純物(ドーパント)を有するp型半導体、n型半導体、
p−n接合を有する半導体等の外来半導体について検討
を行った結果、結晶の崩壊や微粉末化や脱落といった現
象が起こらずにリチウムの吸蔵、放出がスムーズに進行
することが分かった。さらに、この反応は約0.1Vと
いう極めてリチウム電位に近い電位で進行し、理論容量
に近い高容量が得られ、可逆性に優れることが分かっ
た。
[0013] First, as an alloy of lithium and silicon, Binary Alloy Phase Diagram is used.
ms (p2465), alloying with a composition up to Li 22 Si 5 is known. Also, Japanese Unexamined Patent Publication No.
No. 74463 reports that the cycle characteristics are improved by using a single crystal of silicon for the negative electrode.
However, it was found that when attempting to dope lithium into silicon as a negative electrode material of a nonaqueous electrolyte battery for rapid charge and discharge, lithium was deposited with almost no doping. Therefore, the present inventors have proposed a p-type semiconductor, an n-type semiconductor, which already have an impurity (dopant),
As a result of examining a foreign semiconductor such as a semiconductor having a pn junction, it was found that lithium absorption and desorption proceed smoothly without phenomena such as crystal collapse, pulverization, and falling off. Further, it was found that this reaction proceeded at a potential very close to the lithium potential of about 0.1 V, a high capacity close to the theoretical capacity was obtained, and the reversibility was excellent.

【0014】また、該外来半導体は、電子伝導性の優れ
たものがリチウムとの合金化に適していることも分かっ
た。特に電子伝導度が常温で10-5Scm-1以上、好まし
くは、1Scm-1以上である外来半導体が充放電特性に優
れていることが分かった。つまり、リチウムとシリコン
の合金は知られているものの、シリコン自身は元来真性
半導体であり、そのままでは電子伝導性が低く、電池負
極材料としての特性が悪かった。そのため、研究の対象
になりにくい素材であったが、不純物をドーピングした
p型半導体、n型半導体、p−n接合を有する半導体等
の外来半導体、特にp型、n型半導体においては不純物
濃度が高く電子伝導性の良好なものが、また、不純物濃
度が低くてもp−n接合を有して順方向の電流に対して
電気抵抗の低いものが、ともに負極活物質としてより充
放電特性の優れたものであることを見い出し、本発明に
至った。
It has also been found that the extrinsic semiconductor having excellent electron conductivity is suitable for alloying with lithium. In particular, it has been found that a foreign semiconductor having an electron conductivity of 10 -5 Scm -1 or more at room temperature, preferably 1 Scm -1 or more has excellent charge / discharge characteristics. That is, although an alloy of lithium and silicon is known, silicon itself was originally an intrinsic semiconductor, and as it was, the electron conductivity was low, and the characteristics as a battery negative electrode material were poor. For this reason, it is a material that is difficult to be studied. However, the impurity concentration of an extrinsic semiconductor such as a p-type semiconductor doped with an impurity, an n-type semiconductor, and a semiconductor having a pn junction, particularly a p-type or n-type semiconductor, Those having high electron conductivity and having low p-n junction and low electric resistance to forward current even if the impurity concentration is low, both have better charge / discharge characteristics as a negative electrode active material. It was found that they were excellent and led to the present invention.

【0015】[0015]

【発明の実施の形態】ここで言う半導体材料としては、
Si,Ge,GaAs,GaP,InSb,GaP,S
iC等が挙げられ、それらのうちSi,Geについて
は、特に優れた充放電特性が得られるので好ましいが、
これらに限定されるものではない。また、その結晶系に
ついては、単結晶、多結晶、アモルファス等が挙げら
れ、それらのうち単結晶については、特に優れた充放電
特性が得られるので好ましいが、これらに限定されるも
のではない。
BEST MODE FOR CARRYING OUT THE INVENTION The semiconductor material mentioned here includes:
Si, Ge, GaAs, GaP, InSb, GaP, S
iC, etc., of which Si and Ge are preferable because particularly excellent charge / discharge characteristics can be obtained.
It is not limited to these. In addition, examples of the crystal system include a single crystal, polycrystal, and amorphous. Among them, a single crystal is preferable because particularly excellent charge / discharge characteristics can be obtained, but is not limited thereto.

【0016】さらに、ここで言う不純物とは周期律表の
すべての元素のうち、ドナー原子、アクセプター原子と
なり得るものであり、好ましくはP,Al,As,S
b,B,Ga,In,Sn等のIIIb族、IVb族、
Vb族の元素であるが、これらに限定されるものではな
い。
Further, the impurities referred to here are those which can be donor atoms and acceptor atoms among all elements of the periodic table, and are preferably P, Al, As, S
IIIb group, IVb group such as b, B, Ga, In, Sn, etc.
It is a Vb group element, but is not limited thereto.

【0017】上記不純物のドーピング方法としては、C
Z法(チョクラルスキ法、または引き上げ法)、FZ
(フローティング・ゾーン法)、特にp−n接合の作る
場合は、合金法、拡散法、イオン注入法、エピタキシャ
ル法等が挙げられるがこれらに限定されるものではな
い。
As the method of doping the impurities, C
Z method (Czochralski method or lifting method), FZ
(Floating zone method) In particular, when a pn junction is formed, an alloy method, a diffusion method, an ion implantation method, an epitaxial method and the like can be mentioned, but the method is not limited thereto.

【0018】不純物添加の濃度については、通常シリコ
ン原子107 個から106 個にドナー原子あるいはアク
セプター原子1個の割合であるが、好ましくは高濃度の
ドーピングが適しており、シリコン原子104 個にドナ
ー原子あるいはアクセプター原子1個の割合、またはそ
れ以上の高濃度であることが望ましい。
The concentration of the impurity added is usually from 10 7 to 10 6 silicon atoms and one donor or acceptor atom, but high-concentration doping is preferable, and 10 4 silicon atoms is suitable. It is desirable that the concentration be as high as one donor atom or one acceptor atom or more.

【0019】本発明に用いる外来半導体は、厚みが0.
1〜500μmであるウエハー状の単板、もしくは平均
粒子サイズ0.1〜100μmである粉体が望ましい。
所定の形状を得る上で、ウエハー状の単板を得るために
はダイヤモンドカッターが用いられ、また粉体を得るた
めには粉砕機や分級機が用いられる。粉体を得る場合、
例えば乳鉢、ボールミル、サンドミル、振動ボールミ
ル、遊星ボールミル、ジェットミル、カウンタージェト
ミル、旋回気流型ジェットミルや篩等が用いられる。粉
砕時には水、あるいはヘキサン等の有機溶剤を共存させ
た湿式粉砕を用いることもできる。分級方法としては、
特に限定はなく、篩や風力分級機などが乾式、湿式とも
に必要に応じて用いられる。
The foreign semiconductor used in the present invention has a thickness of 0.1 mm.
A wafer-like veneer having a particle size of 1 to 500 μm or a powder having an average particle size of 0.1 to 100 μm is desirable.
In obtaining a predetermined shape, a diamond cutter is used to obtain a wafer-like veneer, and a pulverizer or a classifier is used to obtain powder. When you get the powder,
For example, a mortar, a ball mill, a sand mill, a vibration ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air jet mill, a sieve, and the like are used. At the time of pulverization, wet pulverization in which an organic solvent such as water or hexane coexists can be used. As a classification method,
There is no particular limitation, and a sieve or an air classifier may be used as needed in both dry and wet methods.

【0020】本発明に併せて用いる事ができる負極材料
としては、リチウム金属、リチウム合金などや、リチウ
ムイオンまたはリチウム金属を吸蔵放出できる焼成炭素
質化合物やカルコゲン化合物、メチルリチウム等のリチ
ウムを含有する有機化合物等が挙げられる。また、リチ
ウム金属やリチウム合金、リチウムを含有する有機化合
物を併用する事によって、本発明に用いる外来半導体に
リチウムを電池内部で挿入する事も可能である。
The negative electrode material that can be used in conjunction with the present invention includes lithium metal, lithium alloy, etc., calcined carbonaceous compounds capable of inserting and extracting lithium ions or lithium metal, chalcogen compounds, and lithium such as methyllithium. Organic compounds and the like can be mentioned. Further, by using lithium metal, a lithium alloy, and an organic compound containing lithium together, lithium can be inserted into the foreign semiconductor used in the present invention inside the battery.

【0021】本発明の外来半導体を粉末として用いる場
合、電極合剤として導電剤や結着剤やフィラー等を添加
することができる。導電剤としては、電池性能に悪影響
を及ぼさない電子伝導性材料であれば何でも良い。通
常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛な
ど)、人造黒鉛、カーボンブラック、アセチレンブラッ
ク、ケッチェンブラック、カーボンウイスカー、炭素繊
維や金属(銅、ニッケル、アルミニウム、銀、金など)
粉、金属繊維、金属の蒸着物、導電性セラミックス材料
等の導電性材料を1種またはそれらの混合物として含ま
せることができる。これらの中で、黒鉛とアセチレンブ
ラックとケッチェンブラックの併用が望ましい。その添
加量は1〜50重量%が好ましく、特に2〜30重量%
が好ましい。
When the foreign semiconductor of the present invention is used as a powder, a conductive agent, a binder, a filler or the like can be added as an electrode mixture. Any conductive material may be used as long as it does not adversely affect battery performance. Usually, natural graphite (flaky graphite, flaky graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon whiskers, carbon fibers and metals (copper, nickel, aluminum, silver, gold, etc.)
Conductive materials such as powder, metal fibers, metal deposits, and conductive ceramic materials can be included as one type or a mixture thereof. Among these, the combined use of graphite, acetylene black and Ketjen black is desirable. The addition amount is preferably 1 to 50% by weight, particularly 2 to 30% by weight.
Is preferred.

【0022】結着剤としては、通常、テトラフルオロエ
チレン、ポリフッ化ビニリデン、ポリエチレン、ポリプ
ロピレン、エチレン−プロピレンジエンターポリマー
(EPDM)、スルホン化EPDM、スチレンブタジエ
ンゴム(SBR)、フッ素ゴム、カルボメトキシセルロ
ース等といった熱可塑性樹枝、ゴム弾性を有するポリマ
ー、多糖類等を1種または2種以上の混合物として用い
ることができる。また、多糖類の様にリチウムと反応す
る官能基を有する結着剤は、例えばメチル化するなどし
てその官能基を失活させておくことが望ましい。その添
加量としては、1〜50重量%が好ましく、特に2〜3
0重量%が好ましい。
As the binder, usually, tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoro rubber, carbomethoxy cellulose And the like, a thermoplastic tree, a polymer having rubber elasticity, a polysaccharide and the like can be used as one kind or as a mixture of two or more kinds. Further, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount is preferably from 1 to 50% by weight, particularly preferably from 2 to 3% by weight.
0% by weight is preferred.

【0023】フィラーとしては、電池性能に悪影響を及
ぼさない材料であれば何でも良い。通常、ポリプロピレ
ン、ポリエチレン等のオレフィン系ポリマー、アエロジ
ル、ゼオライト、ガラス、炭素等が用いられる。フィラ
ーの添加量は0〜30重量%が好ましい。
As the filler, any material may be used as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 0 to 30% by weight.

【0024】電極活物質の集電体としては、構成された
電池において悪影響を及ぼさない電子伝導体であれば何
でもよい。例えば、正極集電体の材料としては、アルミ
ニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、
導電性高分子、導電性ガラス等の他に、接着性、導電
性、耐酸化性向上の目的で、アルミニウムや銅等の表面
をカーボン、ニッケル、チタンや銀等で処理した物を用
いることができる。負極集電体の材料としては、銅、ス
テンレス鋼、ニッケル、アルミニウム、チタン、焼成炭
素、導電性高分子、導電性ガラス、Al−Cd合金等の
他に、接着性、導電性、耐酸化性向上の目的で、銅等の
表面をカーボン、ニッケル、チタンや銀等で処理した物
を用いることができる。これらの材料については表面を
酸化処理することも可能である。これらの形状について
は、フォイル状の他、フィルム状、シート状、ネット
状、パンチ又はエキスパンドされた形状、ラス体、多孔
質体、発砲体、繊維群の形成体等が用いられる。厚みは
特に限定はないが、1〜500μm程度のものが用いら
れる。
The current collector of the electrode active material may be any collector as long as it does not adversely affect the constructed battery. For example, as the material of the positive electrode current collector, aluminum, titanium, stainless steel, nickel, calcined carbon,
In addition to conductive polymers, conductive glass, etc., it is possible to use aluminum, copper, etc. whose surface is treated with carbon, nickel, titanium, silver, etc. for the purpose of improving adhesiveness, conductivity, and oxidation resistance. it can. Materials for the negative electrode current collector include copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, and Al-Cd alloy, as well as adhesiveness, conductivity, and oxidation resistance. For the purpose of improvement, a product obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver, or the like can be used. These materials can be oxidized on the surface. As these shapes, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched or expanded shape, a lath body, a porous body, a foamed body, a formed body of a fiber group, and the like are used. The thickness is not particularly limited, but a thickness of about 1 to 500 μm is used.

【0025】この様にして得られるp型半導体、n型半
導体、p−n接合を有する半導体等の外来半導体を負極
活物質として用いる。一方、正極活物質としては、Mn
2,MoO3 ,V2 5 ,Lix CoO2 ,Lix
iO2 ,Lix Mn2 4 ,等の金属酸化物や、TiS
2 ,MoS2 ,NbSe3 等の金属カルコゲン化物、ポ
リアセン、ポリパラフェニレン、ポリピロール、ポリア
ニリン等のグラファイト層間化合物、及び導電性高分子
等のアルカリ金属イオンや、アニオンを吸放出可能な各
種の物質を利用することができる。
A foreign semiconductor such as a p-type semiconductor, an n-type semiconductor, and a semiconductor having a pn junction obtained in this manner is used as a negative electrode active material. On the other hand, as the positive electrode active material, Mn
O 2 , MoO 3 , V 2 O 5 , Li x CoO 2 , Li x N
metal oxides such as TiO 2 , Li x Mn 2 O 4 , and TiS
Metal chalcogenides such as 2 , MoS 2 and NbSe 3 , graphite intercalation compounds such as polyacene, polyparaphenylene, polypyrrole and polyaniline, and alkali metal ions such as conductive polymers and various substances capable of absorbing and releasing anions. Can be used.

【0026】特に本発明のp型半導体、n型半導体、p
−n接合を有する半導体等の外来半導体を負極活物質と
して用いる場合、高エネルギー密度という観点からV2
5,MnO2 ,Lix CoO2 ,Lix NiO2 ,L
x Mn2 4 等の3〜4Vの電極電位を有するものが
望ましい。特にLix CoO2 ,Lix NiO2 ,Li
x Mn2 4 等のリチウム含有遷移金属酸化物が好まし
い。
In particular, the p-type semiconductor, n-type semiconductor, p-type semiconductor of the present invention
In the case where a foreign semiconductor such as a semiconductor having a -n junction is used as the negative electrode active material, V 2 is used from the viewpoint of high energy density.
O 5 , MnO 2 , Li x CoO 2 , Li x NiO 2 , L
having an electrode potential of 3~4V such i x Mn 2 O 4 is preferred. In particular, Li x CoO 2 , Li x NiO 2 , Li
lithium-containing transition metal oxides such as x Mn 2 O 4 is preferred.

【0027】また、電解質としては、例えば有機電解
液、高分子固体電解質、無機固体電解質、溶融塩等を用
いることができ、この中でも有機電解液を用いることが
好ましい。この有機電解液の有機溶媒として、プロピレ
ンカーボネート、エチレンカーボネート、ブチレンカー
ボネート、ジエチルカーボネート、ジメチルカーボネー
ト、メチルエチルカーボネート、γ−ブチロラクトン等
のエステル類や、テトラヒドロフラン、2−メチルテト
ラヒドロフラン等の置換テトラヒドロフラン、ジオキソ
ラン、ジエチルエーテル、ジメトキシエタン、ジエトキ
シエタン、メトキシエトキシエタン等のエーテル類、ジ
メチルスルホキシド、スルホラン、メチルスルホラン、
アセトニトリル、ギ酸メチル、酢酸メチル、N−メチル
ピロリドン、ジメチルフォルムアミド等が挙げられ、こ
れらを単独又は混合溶媒として用いることができる。ま
た支持電解質塩としては、LiClO4 、LiPF6
LiBF4 、LiAsF6 、LiCF3 SO3 、LiN
(CF3 SO2 2 等が挙げられる。一方、高分子固体
電解質としては、上記のような支持電解質塩をポリエチ
レンオキシドやその架橋体、ポリフォスファゼンやその
架橋体等といったポリマーの中に溶かし込んだ物を用い
ることができる。さらに、Li3 N,LiI等の無機固
体電解質も使用可能である。つまり、リチウムイオン導
伝性の非水電解質であればよい。
As the electrolyte, for example, an organic electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt and the like can be used, and among them, the organic electrolyte is preferable. As the organic solvent of the organic electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, esters such as γ-butyrolactone, tetrahydrofuran, substituted tetrahydrofuran such as 2-methyltetrahydrofuran, dioxolane, Ethers such as diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, dimethylsulfoxide, sulfolane, methylsulfolane,
Acetonitrile, methyl formate, methyl acetate, N-methylpyrrolidone, dimethylformamide and the like can be mentioned, and these can be used alone or as a mixed solvent. As the supporting electrolyte salt, LiClO 4 , LiPF 6 ,
LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN
(CF 3 SO 2 ) 2 and the like. On the other hand, as the polymer solid electrolyte, a material obtained by dissolving the above-mentioned supporting electrolyte salt in a polymer such as polyethylene oxide or a crosslinked product thereof, or polyphosphazene or a crosslinked product thereof can be used. Further, inorganic solid electrolytes such as Li 3 N and LiI can be used. That is, any non-aqueous electrolyte having lithium ion conductivity may be used.

【0028】セパレーターとしては、イオンの透過度が
優れ、機械的強度のある絶縁性薄膜を用いることができ
る。耐有機溶剤性と疎水性からポリプロピレンやポリエ
チレンといったオレフィン系のポリマー、ガラス繊維、
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等
からつくられたシート、微孔膜、不織布が用いられる。
セパレーターの孔径は、一般に電池に用いられる範囲の
ものであり、例えば0.01〜10μmである。また、
その厚みについても同様で、一般に電池に用いられる範
囲のものであり、例えば5〜300μmである。
As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Olefin polymers such as polypropylene and polyethylene, glass fiber, and organic solvent resistant and hydrophobic
Sheets, microporous membranes, and nonwoven fabrics made of polyvinylidene fluoride, polytetrafluoroethylene, or the like are used.
The pore size of the separator is in a range generally used for a battery, and is, for example, 0.01 to 10 μm. Also,
The same applies to the thickness, which is in the range generally used for batteries, for example, 5 to 300 μm.

【0029】本発明の外来半導体に於いてウエハー状の
板状の形状として用いる場合、集電をとる目的で集電体
と活物質の間に導電性接着層を設けることもできる。導
電性接着剤として通常、銀ペースト、カーボンペースト
が用いられる。また、結晶の一部をニッケルメッキする
ことによって、ハンダや銀ロウのような溶融した金属に
よる接合も可能である。また、その形状は、ダイヤモン
ドカッターやエッチング処理によって自由に加工するこ
とができる。
When the foreign semiconductor of the present invention is used as a wafer-shaped plate, a conductive adhesive layer may be provided between the current collector and the active material for the purpose of collecting current. Usually, silver paste and carbon paste are used as the conductive adhesive. Further, by plating a part of the crystal with nickel, it is possible to join with a molten metal such as solder or silver brazing. The shape can be freely processed by a diamond cutter or an etching process.

【0030】この様な優れた充放電特性が得られる理由
は必ずしも明確ではないが、以下のように考察される。
すなわち、シリコン等の共有結合を有する結晶はリチウ
ムとの合金が可能であり、その容量は大きいことが窺え
る。しかしながら、シリコン等の共有結合を有する結晶
は半導体であるものの真性半導体であり、その常温での
電気伝導度は低く充放電時の分極が比較的大きいのに対
し、p型半導体、n型半導体、p−n接合を有する半導
体等の外来半導体として、シリコン等の共有結合を有す
る結晶を用いると電子伝導度が向上し、容易にリチウム
イオンを0価のリチウムとして吸蔵して電子を与えるこ
とができ、また吸蔵された0価のリチウムは電子を放出
し、リチウムイオンとして放出される。つまり、結晶内
部での電子の流れがリチウムイオンの吸蔵放出を容易に
すると推定される。さらに、この結晶自身が共有結合を
有し、その構造がダイヤモンドと同じ面心立方構造であ
るため非常に強固であり、リチウムの吸蔵放出に関わる
膨脹収縮に追随し、活物質自身の微細化や脱落といった
ことが見られず、充放電の可逆性を向上しているものと
考えられる。
The reason why such excellent charge / discharge characteristics are obtained is not necessarily clear, but is considered as follows.
That is, it can be seen that a crystal having a covalent bond such as silicon can be alloyed with lithium and has a large capacity. However, a crystal having a covalent bond such as silicon is a semiconductor but an intrinsic semiconductor, and its electric conductivity at room temperature is low and polarization at the time of charging and discharging is relatively large, whereas a p-type semiconductor, an n-type semiconductor, When a crystal having a covalent bond such as silicon is used as an extrinsic semiconductor such as a semiconductor having a pn junction, electron conductivity is improved, and electrons can be easily given by occluding lithium ions as zero-valent lithium. The occluded zero-valent lithium emits electrons and is released as lithium ions. That is, it is assumed that the flow of electrons inside the crystal facilitates the insertion and extraction of lithium ions. Furthermore, the crystal itself has a covalent bond, and its structure is very strong because it has the same face-centered cubic structure as diamond.It follows the expansion and contraction related to the insertion and extraction of lithium, and can reduce the size of the active material itself. No dropout was observed, and it is considered that the reversibility of charge and discharge was improved.

【0031】本発明の、p型半導体、n型半導体、p−
n接合を有する半導体等の外来半導体を主構成物質とす
る負極活物質は、非水電解質中において金属リチウムに
対し少なくとも0〜2Vの範囲でリチウムイオンを吸蔵
放出することができ、また半導体結晶が強固なことか
ら、通常の合金に見られる充放電時の微細粉化や負極活
物質の部分的な孤立化が抑えられ、このような負極活物
質を電極材料として用いることにより、サイクル可能な
充放電特性の優れた二次電池の負極として用いることが
できる。特に高濃度の不純物のドープや、p−n接合を
有することにより、結晶内部での電子伝導性が向上する
ことによって、シリコンとリチウムの合金化をスムーズ
にし、充放電のレート特性が向上する。さらに、負極電
位がリチウム電位に近く低いため、電池としての電圧が
高電圧となり、またその容量が大きいことから高エネル
ギー密度が達成される。
According to the present invention, a p-type semiconductor, an n-type semiconductor,
A negative electrode active material mainly composed of an extrinsic semiconductor such as a semiconductor having an n-junction can occlude and release lithium ions in a nonaqueous electrolyte in a range of at least 0 to 2 V with respect to metallic lithium. Because of its strength, fine powdering during charge and discharge and partial isolation of the negative electrode active material, which are seen in ordinary alloys, are suppressed. By using such a negative electrode active material as an electrode material, a chargeable battery that can be cycled is used. It can be used as a negative electrode of a secondary battery having excellent discharge characteristics. In particular, by doping high-concentration impurities or having a pn junction, electron conductivity inside the crystal is improved, so that alloying of silicon and lithium is smoothed, and the rate characteristics of charge and discharge are improved. Further, since the potential of the negative electrode is close to the potential of lithium and low, the voltage of the battery becomes high, and a high energy density is achieved due to its large capacity.

【0032】[0032]

【実施例】以下、本発明の実施例について説明する。 (実施例1)拡散法により、シリコン原子104 個にP
原子1個の割合でドープしたn型半導体であるシリコン
単結晶を(a)、シリコン原子104 個にB原子1個の
割合でドープしたp型半導体であるシリコン単結晶を
(b)、シリコン原子104 個にP及びB原子1個の割
合でドープし、p−n接合を形成した半導体であるシリ
コン単結晶を(c)とする。厚さ0.3mm×縦5mm
×横5mmの大きさに切り出し、重量を測定した。この
固有抵抗はn型半導体は33Scm-1、p型半導体は20
Scm-1であった。次に、縦10mm×横10mmのニッ
ケルメッシュ2枚で挟み込み、ワイヤーを取り付け試験
電極とした。以下の操作は乾燥空気中で行い、材料はす
べてあらかじめ十分に乾燥を行った後に用いた。適当な
大きさの金属リチウムをニッケル板上に圧着したものを
2個作製し、対極及び電位参照極とした。ビーカー中で
LiClO4 を1mol/リットルの濃度に溶解したプ
ロピレンカーボネート溶液を電解液とし、上記で作製し
た3個の電極、即ち試験電極、対極、電位参照極を電解
液中に浸漬し、三端子セルとした。この単極性能試験セ
ルを用いて充放電試験を行った。このセルに1mA電流
を流し、電位参照極に対する試験極の電位が0.00〜
2.00Vの範囲について容量試験を行った。 (比較例1)不純物を含まない半導体としてシリコン単
結晶(d)を厚さ0.3mm×縦5mm×横5mmの大
きさに切り出し、重量を測定した。この固有抵抗は10
-6Scm-1であった。これ以外は上記実施例1と同様にし
て単極性能試験セルを作製し同様の容量試験を行った。
Embodiments of the present invention will be described below. (Example 1) By diffusion method, 10 4 silicon atoms were added with P
The silicon single crystal is doped n-type semiconductor in a ratio of one atom (a), a silicon single crystal is doped p-type semiconductor 10 4 silicon atoms in B atomic ratio of one (b), a silicon A silicon single crystal, which is a semiconductor in which a pn junction is formed by doping 10 4 atoms with one P and B atom, is designated as (c). 0.3mm thick x 5mm long
× Cut out to a size of 5 mm in width and weighed. This specific resistance is 33 Scm -1 for an n-type semiconductor and 20 for a p-type semiconductor.
Scm -1 . Next, it was sandwiched between two nickel meshes having a length of 10 mm and a width of 10 mm, and a wire was attached to form a test electrode. The following operations were performed in dry air, and all the materials were used after sufficiently drying in advance. Two pieces of metal lithium having an appropriate size were pressed on a nickel plate to prepare two pieces, which were used as a counter electrode and a potential reference electrode. A propylene carbonate solution in which LiClO 4 was dissolved at a concentration of 1 mol / liter in a beaker was used as an electrolyte, and the three electrodes prepared above, that is, a test electrode, a counter electrode, and a potential reference electrode were immersed in the electrolyte, Cell. A charge / discharge test was performed using this single-pole performance test cell. A 1 mA current is passed through this cell, and the potential of the test electrode with respect to the potential reference electrode is 0.00 to
A capacity test was performed in the range of 2.00 V. (Comparative Example 1) A silicon single crystal (d) as a semiconductor containing no impurities was cut into a size of 0.3 mm in thickness × 5 mm in length × 5 mm in width, and the weight was measured. This specific resistance is 10
-6 Scm -1 . Except for this, a single-pole performance test cell was prepared in the same manner as in Example 1 and a similar capacity test was performed.

【0033】この様に作製した単極性能試験セルの容量
試験を行った。シリコン単結晶(a)〜(d)を用いた
単極性能試験セルをそれぞれのセル(A)〜(D)とす
る。セル(A)〜(C)に関してはリチウムの吸蔵放出
が確認されたが、セル(D)についてはほとんどリチウ
ムの吸蔵放出ができずリチウムの析出が観察された。こ
のときの初期の容量と10サイクル目の容量を表1に示
した。この結果から明らかなように、本発明である不純
物をドープした外来半導体を用いた負極については、充
放電サイクル性に優れ、高容量であることが分かる。
The capacity test of the monopolar performance test cell thus produced was performed. Monopolar performance test cells using silicon single crystals (a) to (d) are referred to as cells (A) to (D), respectively. With respect to the cells (A) to (C), insertion and extraction of lithium was confirmed, but with respect to the cell (D), almost no insertion and extraction of lithium was performed, and lithium deposition was observed. Table 1 shows the initial capacity and the capacity at the tenth cycle at this time. As is clear from the results, the negative electrode using the foreign semiconductor doped with impurities according to the present invention has excellent charge-discharge cycle characteristics and high capacity.

【0034】[0034]

【表1】 [Table 1]

【0035】(実施例2)実施例1で用いたシリコン単
結晶(a),(b)、n型半導体としてシリコン原子1
4 個にP原子1個の割合でドープしたシリコン多結晶
を(e)、p型半導体としてシリコン原子104個にB
原子1個の割合でドープしたシリコン多結晶を(f)、
について乳鉢で粉砕し、この負極活物質を用いて次のよ
うにしてコイン型リチウム二次電池を試作した。負極活
物質とアセチレンブラック及びポリテトラフルオロエチ
レン粉末とを重量比85:10:5で混合し、トルエン
を加えて十分混練した。これをローラープレスにより厚
み0.3mmのシート状に成形した。次にこれを直径1
6mmの円形に打ち抜き、減圧下200℃で15時間熱
処理して負極2を得た。負極2は負極集電体7の付いた
負極缶5に圧着して用いた。
(Example 2) The silicon single crystals (a) and (b) used in Example 1, and silicon atom 1 as an n-type semiconductor
0 4 in the polycrystalline silicon doped with a ratio of one P atom (e), B to the silicon atom 104 or a p-type semiconductor
(F) a silicon polycrystal doped at a rate of one atom
Was ground in a mortar, and a coin-type lithium secondary battery was prototyped using the negative electrode active material as follows. The negative electrode active material, acetylene black and polytetrafluoroethylene powder were mixed at a weight ratio of 85: 10: 5, and toluene was added and kneaded sufficiently. This was formed into a sheet having a thickness of 0.3 mm by a roller press. Next, this is
The resultant was punched into a 6 mm circle and heat-treated at 200 ° C. for 15 hours under reduced pressure to obtain a negative electrode 2. The negative electrode 2 was used by being pressed against a negative electrode can 5 provided with a negative electrode current collector 7.

【0036】正極1は、正極活物質としてLiCoO2
とアセチレンブラック及びポリテトラフルオロエチレン
粉末とを重量比85:10:5で混合し、トルエンを加
えて十分混練した。これをローラープレスにより厚み
0.8mmのシート状に成形した。次にこれを直径16
mmの円形に打ち抜き、減圧下200℃で15時間熱処
理して正極1を得た。正極1は正極集電体6の付いた正
極缶4に圧着して用いた。 エチレンカーボネートとジ
エチルカーボネートとの体積比1:1の混合溶剤にLi
PF6 を1mol/リットルの濃度に溶解した電解液を
用い、セパレータ3にはポリプロピレン製微多孔膜を用
いた。上記正極、負極、電解液及びセパレータを用いて
直径20mm、厚さ1.6mmのコイン型リチウム電池
を作製した。このシリコン単結晶(a),(b)を用い
た電池をそれぞれA1,B1とし、シリコン多結晶
(e),(f)を用いた電池をそれぞれE1,F1とす
る。なお、図1に本発明のコイン型リチウム電池の断面
図を示す。
The positive electrode 1 is made of LiCoO 2 as a positive electrode active material.
And acetylene black and polytetrafluoroethylene powder were mixed at a weight ratio of 85: 10: 5, and toluene was added and kneaded sufficiently. This was formed into a 0.8 mm thick sheet by a roller press. Next, this is
The positive electrode 1 was obtained by punching out into a circular shape of mm and heat-treating it at 200 ° C. under reduced pressure for 15 hours. The positive electrode 1 was used by being pressed against a positive electrode can 4 provided with a positive electrode current collector 6. Li is added to a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.
An electrolytic solution in which PF 6 was dissolved at a concentration of 1 mol / liter was used, and a microporous polypropylene membrane was used for the separator 3. A coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was manufactured using the above-mentioned positive electrode, negative electrode, electrolyte and separator. Batteries using the silicon single crystals (a) and (b) are referred to as A1 and B1, respectively, and batteries using the silicon polycrystals (e) and (f) are referred to as E1 and F1, respectively. FIG. 1 shows a cross-sectional view of the coin-type lithium battery of the present invention.

【0037】(比較例2)単結晶シリコンの代わりにア
ルミニウム粉末を用い、それ以外は実施例2と同様にし
て電池を作製した。得られた電池をG1とする。
Comparative Example 2 A battery was fabricated in the same manner as in Example 2 except that aluminum powder was used instead of single crystal silicon. Let the obtained battery be G1.

【0038】(実施例3)銅集電体上にアモルファスシ
リコンを0.1mmの厚さにコーティングしイオン注入
法によりPとBをそれぞれ1立方センチメートル当たり
1018個注入したものを負極として用い、それ以外は実
施例2と同様にして電池を作製した。得られた電池をH
1,I1とする。
Example 3 A copper current collector was coated with amorphous silicon to a thickness of 0.1 mm and P and B were implanted by ion implantation at a rate of 10 18 per cubic centimeter, respectively. A battery was fabricated in the same manner as in Example 2 except for the above. The obtained battery is H
1, I1.

【0039】(実施例4)単結晶シリコンの代わりに単
結晶ゲルマニウム粉末を用い、エピタキシャル法により
ゲルマニウム原子104 個にAs原子1個の割合でドー
プしたn型半導体であるゲルマニウム単結晶を(j)、
ゲルマニウム原子104 個にIn原子1個の割合でドー
プしたp型半導体であるゲルマニウム単結晶を(k)と
し、これらの単結晶を負極に用いた以外は実施例2と同
様にして電池を作製した。得られた電池をJ1,K1と
する。
[0039] using a single crystal germanium powder in place of (Example 4) single-crystal silicon, an n-type semiconductor doped with one rate of As atoms to 10 four germanium atoms by epitaxy of germanium single crystal (j ),
A battery was manufactured in the same manner as in Example 2 except that a germanium single crystal, which was a p-type semiconductor doped with 10 4 germanium atoms and one In atom, was used as (k), and these single crystals were used for the negative electrode. did. The obtained batteries are designated as J1 and K1.

【0040】このようにして作製した電池A1,B1,
E1,F1,G1,H1,I1,J1,K1を用いて充
放電サイクル試験を行った。試験条件は、充電電流3m
A、充電終止電圧4.2V、放電電流3mA、放電終止
電圧3.0Vとした。これら作製した電池の充放電試験
の結果を表2に示す。
The batteries A1, B1,
A charge / discharge cycle test was performed using E1, F1, G1, H1, I1, J1, and K1. The test condition was a charging current of 3 m
A, the charge end voltage was 4.2 V, the discharge current was 3 mA, and the discharge end voltage was 3.0 V. Table 2 shows the results of the charge / discharge test of these batteries.

【0041】[0041]

【表2】 [Table 2]

【0042】表1から分かるように本発明による電池A
1,B1,E1,F1,H1,I1,J1,K1は比較
電池G1に比べて充放電特性に優れ、さらに10サイク
ル後の容量減少が小さかった。また、A1,B1とE
1,F1の比較から、単結晶半導体のサイクル特性が、
多結晶半導体よりも優れていることが分かる。この理由
については明確ではないものの、次のように考えられ
る。多結晶半導体は、多くの小さな結晶の塊の集合であ
り、結晶と結晶の間には粒界が存在する。これらの材料
にはがリチウムを吸蔵、放出するにあたって結晶の体積
変化が生じる。つまり、この体積変化に伴って粒界部分
に亀裂が入り、活物質の電子的孤立化、微粉末化が生じ
てサイクル劣化が起こると考えられる。アモルファスシ
リコンを用いたH1,J1については、若干容量が低下
したものの、サイクル特性は優れている。また、シリコ
ンとゲルマニウムの単結晶においてはその性能にほとん
ど差が見られなかった。
As can be seen from Table 1, the battery A according to the present invention
1, B1, E1, F1, H1, I1, J1, and K1 were superior to the comparative battery G1 in charge / discharge characteristics, and the capacity decrease after 10 cycles was small. Also, A1, B1 and E
From the comparison between F1 and F1, the cycle characteristics of the single crystal semiconductor
It turns out that it is superior to a polycrystalline semiconductor. Although the reason for this is not clear, it is considered as follows. A polycrystalline semiconductor is an aggregate of many small crystal lump, and a grain boundary exists between crystals. When these materials occlude and release lithium, the volume of the crystals changes. That is, it is considered that a crack is formed in the grain boundary portion with the change in volume, and the active material is electronically isolated and pulverized to cause cycle deterioration. Regarding H1 and J1 using amorphous silicon, although the capacity is slightly reduced, the cycle characteristics are excellent. In addition, there was almost no difference in the performance of single crystals of silicon and germanium.

【0043】実施例においては、外来半導体としてシリ
コン,ゲルマニウムについて挙げたが、同様の効果が他
の外来半導体についても確認された。なお、本発明は上
記実施例に記載された活物質の出発原料、製造方法、正
極、負極、電解質、セパレータ及び電池形状などに限定
されるものではない。
In the embodiment, silicon and germanium are mentioned as the foreign semiconductors, but the same effect was confirmed for other foreign semiconductors. The present invention is not limited to the starting materials, the production method, the positive electrode, the negative electrode, the electrolyte, the separator, the shape of the battery, and the like of the active material described in the above-described embodiment.

【0044】[0044]

【発明の効果】本発明は上述の如く構成されているの
で、高電圧、高容量、高エネルギー密度で、優れた充放
電サイクル特性を示し、安全性の高い非水電解質電池を
提供できる。
Since the present invention is configured as described above, it is possible to provide a non-aqueous electrolyte battery having high voltage, high capacity, high energy density, excellent charge / discharge cycle characteristics, and high safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のコイン型リチウム電池の断面図であ
る。
FIG. 1 is a sectional view of a coin-type lithium battery of the present invention.

【符号の説明】 1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 8 絶縁パッキング[Description of Signs] 1 positive electrode 2 negative electrode 3 separator 4 positive electrode can 5 negative electrode can 6 positive electrode current collector 7 negative electrode current collector 8 insulating packing

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質の主構成物質が、外来半導体
からなることを特徴とする非水電解質電池。
1. A non-aqueous electrolyte battery wherein the main constituent material of the negative electrode active material is a foreign semiconductor.
【請求項2】 前記外来半導体の主構成物質が、Si又
はGeであり、該Si又はGeには少なくとも一種類以
上の不純物がドーピングされている請求項1記載の非水
電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein a main component of the foreign semiconductor is Si or Ge, and the Si or Ge is doped with at least one or more impurities.
【請求項3】 前記不純物が、IIIb族、IVb族、
Vb族の元素の少なくとも1種以上である請求項2記載
の非水電解質電池。
3. The method according to claim 1, wherein the impurities are a group IIIb, a group IVb,
3. The non-aqueous electrolyte battery according to claim 2, wherein the non-aqueous electrolyte battery is at least one of Vb group elements.
JP00622397A 1997-01-17 1997-01-17 Non-aqueous electrolyte battery Expired - Fee Related JP3620559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00622397A JP3620559B2 (en) 1997-01-17 1997-01-17 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00622397A JP3620559B2 (en) 1997-01-17 1997-01-17 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH10199524A true JPH10199524A (en) 1998-07-31
JP3620559B2 JP3620559B2 (en) 2005-02-16

Family

ID=11632528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00622397A Expired - Fee Related JP3620559B2 (en) 1997-01-17 1997-01-17 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3620559B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167277A (en) * 1997-08-21 1999-03-09 Mitsubishi Chem Corp Lithium secondary battery
WO2000014817A1 (en) * 1998-09-08 2000-03-16 Sumitomo Metal Industries, Ltd. Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
WO2001056099A1 (en) * 2000-01-25 2001-08-02 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
WO2003036751A1 (en) * 2001-10-25 2003-05-01 Sanyo Electric Co.,Ltd. Non-aqueous electrolyte secondary cell
US6685804B1 (en) 1999-10-22 2004-02-03 Sanyo Electric Co., Ltd. Method for fabricating electrode for rechargeable lithium battery
JP2004288525A (en) * 2003-03-24 2004-10-14 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
WO2004042851A3 (en) * 2002-11-05 2005-07-14 Imp College Innovations Ltd Structured silicon anode
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7160646B2 (en) 2001-03-06 2007-01-09 Sanyo Electric Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
WO2008063532A1 (en) 2006-11-17 2008-05-29 Panasonic Corporation Electrode active material for non-aqueous secondary batteries
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7811706B2 (en) 2004-11-08 2010-10-12 Sony Corporation Battery
JP2011082179A (en) * 2006-01-23 2011-04-21 Nexeon Ltd Method of manufacturing fibers comprising silicon or silicon material, and use of the same in lithium storage battery
JP2011103267A (en) * 2009-11-12 2011-05-26 Panasonic Corp Negative electrode for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery using the same
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171901A (en) * 1994-10-21 1996-07-02 Canon Inc Negative electrode for secondary battery, and manufacture of secondary battery employing the negative electrode and of the electrode
JPH1083817A (en) * 1996-07-19 1998-03-31 Sony Corp Anode material and non-aqueous electrolytic secondary battery using the material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171901A (en) * 1994-10-21 1996-07-02 Canon Inc Negative electrode for secondary battery, and manufacture of secondary battery employing the negative electrode and of the electrode
JPH1083817A (en) * 1996-07-19 1998-03-31 Sony Corp Anode material and non-aqueous electrolytic secondary battery using the material

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167277A (en) * 1997-08-21 1999-03-09 Mitsubishi Chem Corp Lithium secondary battery
US6835496B1 (en) 1998-09-08 2004-12-28 Sumitomo Metal Industries, Ltd. Negative electrode material for a non-aqueous electrolyte secondary battery and processes for its manufacture
WO2000014817A1 (en) * 1998-09-08 2000-03-16 Sumitomo Metal Industries, Ltd. Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
US6881518B2 (en) 1998-09-08 2005-04-19 Sumitomo Metal Industries, Ltd. Process for manufacture of negative electrode material for a non-aqueous electrolyte secondary battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7794881B1 (en) 1999-10-22 2010-09-14 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US6685804B1 (en) 1999-10-22 2004-02-03 Sanyo Electric Co., Ltd. Method for fabricating electrode for rechargeable lithium battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7235330B1 (en) 1999-10-22 2007-06-26 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
WO2001056099A1 (en) * 2000-01-25 2001-08-02 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7160646B2 (en) 2001-03-06 2007-01-09 Sanyo Electric Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery
WO2003036751A1 (en) * 2001-10-25 2003-05-01 Sanyo Electric Co.,Ltd. Non-aqueous electrolyte secondary cell
US7407725B2 (en) 2001-10-25 2008-08-05 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
KR100785695B1 (en) 2002-11-05 2007-12-14 임페리얼 이노베이션스 리미티드 Structured Silicon Anode
US7402829B2 (en) 2002-11-05 2008-07-22 Nexeon Ltd. Structured silicon anode
EP2363908A1 (en) * 2002-11-05 2011-09-07 Nexeon Ltd Structured silicon anode
WO2004042851A3 (en) * 2002-11-05 2005-07-14 Imp College Innovations Ltd Structured silicon anode
JP2004288525A (en) * 2003-03-24 2004-10-14 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
US7811706B2 (en) 2004-11-08 2010-10-12 Sony Corporation Battery
JP2011082179A (en) * 2006-01-23 2011-04-21 Nexeon Ltd Method of manufacturing fibers comprising silicon or silicon material, and use of the same in lithium storage battery
JP2011216496A (en) * 2006-01-23 2011-10-27 Nexeon Ltd Method of fabricating fibers including silicon or silicon-based materials and usage of the same in lithium accumulator
JP4839381B2 (en) * 2006-01-23 2011-12-21 ネグゼオン・リミテッド Method for producing fibers composed of silicon or silicon-based materials and their use in lithium batteries
US9583762B2 (en) 2006-01-23 2017-02-28 Nexeon Limited Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
WO2008063532A1 (en) 2006-11-17 2008-05-29 Panasonic Corporation Electrode active material for non-aqueous secondary batteries
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8940437B2 (en) 2007-07-17 2015-01-27 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US9553304B2 (en) 2009-05-07 2017-01-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US10050275B2 (en) 2009-05-11 2018-08-14 Nexeon Limited Binder for lithium ion rechargeable battery cells
JP2011103267A (en) * 2009-11-12 2011-05-26 Panasonic Corp Negative electrode for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery using the same
US9368836B2 (en) 2010-06-07 2016-06-14 Nexeon Ltd. Additive for lithium ion rechargeable battery cells
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US9947920B2 (en) 2010-09-03 2018-04-17 Nexeon Limited Electroactive material

Also Published As

Publication number Publication date
JP3620559B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JP3620559B2 (en) Non-aqueous electrolyte battery
CN100433416C (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
JP5337766B2 (en) Lithium secondary battery
JP3596578B2 (en) Non-aqueous electrolyte secondary battery
JP2007179864A (en) Negative electrode for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
KR100660949B1 (en) Self-healing gallium alloy electrode, lithium secondary battery using thereof and manufacturing method of gallium alloy electrode
KR20070065906A (en) Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
KR20130035911A (en) Positive electrode material, lithium ion secondary battery using thereof, and manufacturing method of positive electrode material
KR20150061695A (en) Anode active materials and lithium secondary battery comprising the same
JP2008059765A (en) Nonaqueous secondary battery
JP2012003997A (en) Nonaqueous electrolyte secondary cell
JP3906944B2 (en) Non-aqueous solid electrolyte battery
US20200354222A1 (en) Silicon Carbon Nanocomposite (SCN) Material, Fabrication Process Therefor, and Use Thereof in an Anode Electrode of a Lithium Ion Battery
JP2012014993A (en) Nonaqueous electrolyte secondary battery
JP3653717B2 (en) Non-aqueous electrolyte battery
JP4281055B2 (en) Nonaqueous electrolyte, nonaqueous electrolyte battery, and method for producing nonaqueous electrolyte battery
JPWO2003079469A1 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
JP4029224B2 (en) Non-aqueous electrolyte battery
JP3824111B2 (en) Non-aqueous electrolyte battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2005025991A (en) Nonaqueous electrolyte secondary battery
JP4355862B2 (en) Non-aqueous electrolyte battery
JP4193008B2 (en) Lithium secondary battery
JP4624500B2 (en) Non-aqueous electrolyte battery
JP2000357517A (en) Electrode, battery using the same, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees