JP2004280050A - 埋込み式ワイヤグリッド偏光子 - Google Patents

埋込み式ワイヤグリッド偏光子 Download PDF

Info

Publication number
JP2004280050A
JP2004280050A JP2003355048A JP2003355048A JP2004280050A JP 2004280050 A JP2004280050 A JP 2004280050A JP 2003355048 A JP2003355048 A JP 2003355048A JP 2003355048 A JP2003355048 A JP 2003355048A JP 2004280050 A JP2004280050 A JP 2004280050A
Authority
JP
Japan
Prior art keywords
wire
wire grid
grid polarizer
polarization
contrast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003355048A
Other languages
English (en)
Other versions
JP2004280050A5 (ja
Inventor
Andrew F Kurtz
アンドリュー・エフ・カーツ
Sujatha Ramanujan
スジャータ・ラマヌジャン
Xiang-Dong Mi
ミ・シャン−ドン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of JP2004280050A publication Critical patent/JP2004280050A/ja
Publication of JP2004280050A5 publication Critical patent/JP2004280050A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】 特に広波長帯域幅及びハイコントラストを要する可視光システムに使用される、改善されたワイヤグリッド偏光子を提供する。
【解決手段】 入射光(130)を偏向するワイヤグリッド偏光子(300)は、第1の表面(307)を備えた基材(305)を有する。グリッド又は平行で細長い複合ワイヤ(310)の列が、上記第1の表面(307)上に配置され、隣接するワイヤの各々が、入射光の波長よりも小さいグリッド間隔で隔てられている。各ワイヤは、交互になった細長い金属ワイヤ(330a−i)及び細長い誘電層(350a−i)からなるワイヤ内下部構造(315)を有する。
【選択図】図11a

Description

本発明は、概して、ワイヤグリッド偏光子に関し、より詳しくは、多層ワイヤグリッド偏光子及び可視スペクトル用のビームスプリッタに関する。
平行な導線の配列を用いて、電磁波を偏光した始まりは、110年以上前にさかのぼる。一般的に、透明な基材により支持される薄い平行なコンダクタの配列をなすワイヤグリッドは、電磁スペクトルの赤外部用の偏光子として使用されてきた。
ワイヤグリッド偏光子の性能を決定する主な要因は、平行なグリッド部材の中心間の間隔(ときに周期又はピッチと呼ばれる)と入射光の波長との関係である。もしグリッドの間隔(又は周期)が波長と比較して長ければ、グリッドは、偏光子としてよりもむしろ回折格子として機能し、必ずしも等しい効率ではないが、公知の原理に従い、両方の偏光を回折する。しかしながら、グリッドの間隔(p)が波長よりも相当に短い場合には、グリッドは偏光子として機能し、グリッドに対して平行に偏向される電磁輻射(“s”の偏光)を反射し、直交する偏光(“p”の偏光)の輻射を透過させる。
上記グリッドの周期が約半波長から波長の2倍の範囲内にある遷移領域は、グリッドの透過及び反射特性の急な変化により特徴付けられる。グリッド部材に直交して偏向された光について、特に反射率の急な増大及びそれに対応する透過の減少が、任意の入射角度で1又はそれ以上の特定の波長で生じることとなる。これらの影響は、1902年にウッド(Wood)により最初に報告され、これにより、しばしば、“ウッドの変則性(Wood's Anomalies)”と呼ばれる。続いて、1907年には、レイリー(Rayleigh)がウッドのデータを分析し、その変則性が、波長と、より高いオーダの回折が現れた角度との組合せに際して生じることを発見した。レイリーは、変則性の位置を予測するために、通常、文献において“レイリー共鳴(Rayleigh Resonances)”と呼称される次式を導き出した。

λ=ε(n+/−sinθ)/k (1)

ここで、イプシロン(ε)はグリッドの周期であり、nはグリッドの周囲の媒体の屈折率であり、kは、現れる回折されるタームのオーダに対応する整数であり、λ及びθは、共鳴が現れた場合の波長及び入射角度(共に空気中で測定された)である。
誘電性の基材の一側面側に形成されるグリッドについて、上記数式中のnは、1又は基材の屈折率に等しくなるかもしれない。共鳴が生じる最も長い波長は、次式で与えられる。

λ=ε(n+sinθ) (2)

ここで、nは、基材の屈折率である。
角度に依存することによる影響は、角度が大きくなるにつれ、透過範囲をより大きな波長にシフトさせることである。このことは、偏光子が、偏光式ビームスプリッタ又は偏光式反射鏡として用いられる場合に重要である。
概して、ワイヤグリッド偏光子は、その電場ベクトルがグリッドのワイヤに対して平行である光(“s”偏光)を反射し、その電場ベクトルがグリッドのワイヤに対して垂直である光(“p”偏光)を透過させるが、入射面は、ここに記述されるように、グリッドのワイヤに対して垂直である若しくはそうでないこともある。理想的には、上記ワイヤグリッド偏光子が、例えばSの偏光等の光の一方の偏光に対して完全な鏡として機能し、例えばPの偏光等の光の他方の偏光に対して完全な透過体として機能する。しかしながら、実際には、鏡として用いられる最も反射性のある金属でさえ、入射光のほんの一部を吸収し、90%〜95%のみを反射する。また、平坦なガラスは、表面反射により、入射光を100%透過させない。ワイヤグリッド偏光子および他の偏光デバイスの性能は、関心のある波長及び入射角度の範囲にわたって測定されるコントラスト比又は減衰率(消光比)により最も特徴付けられる。ワイヤグリッド偏光子又は偏光ビームスプリッタに関し、透過ビーム及び反射ビームについてのコントラスト比(Tp/Ts)及び(Rs/Rp)は、共に関心の対象である。
歴史的に、ワイヤグリッド偏光子は、赤外部での使用のために開発されるものであって、可視波長については有用ではなかった。主として、これは、可視スペクトルにおける有効な動作のために十分小さい波長以下の構造を形成することができる処理技術がなかったためである。名目上、グリッド間隔又はピッチ(p)は、有効な動作のために〜λ/5よりも小さくあるべきであり(可視波長についてはp〜0.10−0.13μm)、他方、より細かいピッチ構造(例えばp〜λ/10)が、デバイスのコントラストの更なる改善をもたらすことができる。しかしながら、0.13μmの極紫外線フォトリソグラフィ及び干渉リソグラフィを含む処理技術の近年の発達によれば、可視波長のワイヤグリッド構造が実現可能になった。当該技術分野において知られる可視波長ワイヤグリッド偏光デバイスとしては幾つかあるが、これらのデバイスは、例えばデジタル映画投影用の、需要の高い用途に必要とされる広帯域の可視スペクトルにわたって非常に高い消光比(>1000:1)を供するものでない。
興味深いワイヤグリッド偏光子が、米国特許第4289381号(特許文献1)にガーヴィン(Garvin)等により説明される。ここでは、単一の基材上にある2つ又はそれ以上のグリッドが、誘電性のある中間層により分離される。ワイヤグリッドの各々は別個に配置され、また、ワイヤは入射光に対して不透明なであるほど十分に厚い(100−1000nm)。ワイヤグリッドは、単一のワイヤがたった(500:1)の偏光比をもたらすのに対し、組み合せられた一対のグリッドでは、(250000:1)の偏光比がもたらされるように、効果的に増大させられる。このデバイスは、その概念はおそらく可視波長に拡張可能であるものの、赤外線スペクトル(2−100μm)での使用に関して記述されている。しかしながら、このデバイスは、2つ又はそれ以上の直列したワイヤグリッドを採用するため、追加のコントラスト比は、透過効率及び許容角度の低下と引き換えにされる。更に、このデバイスは、反射ビームについては高品質の消光が得られるように設計されておらず、偏光ビームスプリッタとしての価値が制限される。
可視波長範囲に対するワイヤグリッドの偏光ビームスプリッタが、ヘッグ(Hegg)等により米国特許第538053号(特許文献2)にて説明されている。ここでは、(ピッチp<<λ及び〜150nmの特徴を備えた)金属ワイヤが、金属製のグリッド線上に配置され、金属製のグリッド線が、それぞれ、ガラス又はプラスチックの基材上に配置される。このデバイスは、可視スペクトルのほとんど(0.45−0.65μm)をカバーするように設計されるものの、良好な偏光性能はあまり期待できず、わずか6.3:1の全コントラスト比をもたらすのみである。
米国特許第5748368号(特許文献3)において、タマダ(Tamada)等は、近赤外スペクトル(0.8−0.95μm)用のワイヤグリッド偏光子を説明している。ここでは、ワイヤの構造が、性能を向上させるように形付けられている。この場合、近赤外スペクトルにおける動作は、ワイヤグリッド偏光子と回折格子との間の遷移領域における共鳴のうちの1つを活用することにより、ごく小さなグリッドの間隔(p〜λ/5)よりも長いグリッドの間隔(λ/2<p<λ)を備えたワイヤ構造で実現される。それぞれ140nm厚までのワイヤは、ウェッジプレートを備えたアッセンブリ内のガラス基材上に配置される。特に、デバイスは、台形のワイヤ形状,基材とウェッジプレートとの間のインデックスの一致、及び、入射角調整を組み合せて用い、共鳴帯域を得るべくデバイスの動作を調整する。デバイスが、多くの適用について有用である〜35:1の妥当な消光をもたらす一方で、このコントラストは、高性能を要するデジタル映画等の適用には不適切である。更に、このデバイスは、狭い波長帯域(〜25nm)内でのみ適切に動作し、また、デバイスは、角度に対して敏感である(入射角度が2°シフトされると、共鳴帯域が〜30nmシフトする)。また、これらの考慮すべき点によって、デバイスは、ワイヤグリッドデバイスが“高速の(fast)”光学システム(F/2等)で動作しなければならない広域波長の適用に対して不適切となる。
最近では、共にユタ州のオレムのモクステック社(Moxtek Inc.)に譲受された米国特許第6108131号(ハンセン(Hansen)等)(特許文献4)及び第6122103号(パーキンス(Perkins)等)(特許文献5)が、可視スペクトル用に設計されたワイヤグリッド偏光デバイスを説明している。米国特許第6108131号は、スペクトルの可視領域にて動作するように設計された簡単なワイヤグリッド偏光子を記述している。ワイヤグリッドは、名目上、0.13μmのグリッド線の間隔(p〜λ/5),0.052−0.078μm幅のワイヤ幅、及び、0.02μmより大きいワイヤ厚(t)で、基材上に直接に構成された一連の各ワイヤから構成される。〜0.13μmのグリッド線間隔又はピッチのワイヤを用いることにより、このデバイスは、必要とされる可視波長以下の構造を有し、このことは、装置が、長い波長共鳴帯域以上で、ワイヤグリッド領域で動作することを可能にする。米国特許第6122103号は、より細かいピッチ構造(例えば〜λ/10等)を要することなく、波長スペクトルの広域化、及び、用途の波長スペクトルにわたる効率やコントラストの改善に関し、基本的なワイヤグリッド構造に対する種々の改良を提案するものである。基本的には、最も長い波長共鳴帯域をより短い波長にシフトさせるべく、ワイヤグリッドを取り囲む媒体における有効屈折率(n)を小さくするために、種々の技術が採用されている(数式(1)及び(2)参照)。このことは、ガラス基材を、反射防止被覆として機能する誘電層で被覆し、その後、この中間誘電層上にワイヤグリッドを構成することにより、最も簡単に実現可能である。中間誘電層は、ワイヤグリッドにて光が被る屈折率を効果的に小さくし、これにより、最も長い波長共鳴がより短くなるようにシフトされる。米国特許第6122103号は、また、有効屈折率が、ワイヤ間のスペースに溝部を形成することにより低下させられ、溝部が基材自体の内部及び/又は基材上に配置される中間誘電層内部に延びる別の設計を説明している。これらの設計の改善の結果として、低い波長帯域のエッジ部が、〜50−75nmだけ小さくなるようにシフトし、可視スペクトル全体をカバーすることとなる。更に、平均効率が、基本的な従来技術のワイヤグリッド偏光子に対し、可視スペクトルにわたって〜5%だけ改善させられる。
米国特許第6108131号及び第6122103号に記載されるデバイスは、確かに、従来技術に対する改良物であるが、ワイヤグリッド偏光子及び偏光ビームスプリッタの両方については、更に、性能改善の余地がある。特に、偏光されない光の光源を備えた光学システムに関しては、システムの光効率が最大化される必要があるが、反射及び透過ビームの両方の消光をもたらす偏光ビームスプリッタが有用である。モクステック社から市販されるワイヤグリッド偏光子が、反射チャンネルに関し、100:1若しくはより望ましい2000:1よりも、わずか〜20:1のコントラストをもたらすため、その有用性は制限される。加えて、これらのデバイスの性能は、可視スペクトルにわたり、著しく変化する。ここでは、偏光ビームスプリッタは、青色から赤色まで、〜300:1から〜1200:1まで変化する透過ビームのコントラスト比をもたらし、他方、反射ビームのコントラスト比は、10:1から30:1まで変化する。その結果、可視光にわたるより均一な消光とともに、特に可視スペクトルの青色部分における偏光コントラスト性能を提供する余地がある。最後に、従来技術のワイヤグリッドデバイスによりもたらされるレベルを越えて、透過されたpの偏光に関する偏光コントラストを改善する余地もある。かかる改良は、特に、デジタル映画用のものを含む電子投影システム等の電子イメージングシステムの設計に特に有用である。
米国特許第4289381号明細書 米国特許第5383053号明細書 米国特許第5748368号明細書 米国特許第6108131号明細書 米国特許第6122103号明細書
以上のように、特に広波長帯域幅及びハイコントラスト(目標は1000:1又はそれより大きい)を要する可視光システムにおける使用のための、改善されたワイヤグリッド偏光子の必要がある。加えて、約45°の入射角度における使用のための、改善されたワイヤグリッド偏光子の必要がある。
簡単には、本発明の1つの様相によれば、入射光を偏向するワイヤグリッド偏光子は、第1の表面を備えた基材を有する。グリッドつまり平行で細長い導電ワイヤの列が、上記第1の表面上に配置され、隣接するワイヤの各々が、入射光の波長よりも小さいグリッド間隔で隔てられている。各ワイヤは、交互になった細長い金属ワイヤ及び細長い誘電層からなるワイヤ内下部構造(intra-wire substructure)を有する。ワイヤは、有用な光学デバイスを容易にすべく、ワイヤグリッド偏光子の全体構造内に埋め込まれる(組み込まれる)。これらのワイヤグリッド偏光デバイスを完成させるための設計及び組立方法も記載される。
更に、本発明の別の様相として、一般的には液晶ディスプレイ(LCD)である偏光に基づく反射空間光変調器(reflective spatial light modulator),本発明の改良されたワイヤグリッド偏光ビームスプリッタ、及び、他の偏光光学的構成を有する改良された変調光学システムが、種々の構成で記載される。
以下、本発明の種々の要素に、符号が付され、本発明が、当業者が本発明を実施することができる程度に記載される添付図面を参照する。
図1は、基本的な従来技術のワイヤグリッド偏光子をあらわし、従来技術及び本願発明の両例にわたって用いられる用語を規定する。ワイヤグリッド偏光子100は、誘電基材120により支持される複数の平行な導電電極(ワイヤ)110から構成される。このデバイスは、“p”で示される導体のグリッドの間隔又はピッチ又は周期,“w”で示される個々の導体の幅、そして、tで示される導体の厚さにより特徴付けられる。ワイヤグリッド偏光子は、波長以下の構造を用い、これにより、ピッチ(p),導体又はワイヤの幅(w)、及び、導体又はワイヤの厚さ(t)が全て入射光の波長(λ)よりも小さくなる。光源132により生成された光ビーム130は、垂線に対して角度θで偏光子に入射する。その入射面は、導電素子に直交する。ワイヤグリッド偏光子100は、このビームを、鏡式に反射される光ビーム140と、回折せず、透過される光ビーム150とに分割する。入射する光ビーム130が、ワイヤ110及び溝115のワイヤグリッド構造を波長以下の構造でなく回折格子としてみなす波長の光を含む場合には、高いオーダの回折光ビーム160がまた存在する。S及びPの偏光については、標準的な定義が用いられ、S偏光による光は、上記入射面に直交する偏光ベクトルを有し、それにより、導電素子に平行になる。これに対して、P偏光による光は、上記入射面に平行な偏光ベクトルを有し、導電素子に直交する。
図2aには、可視スペクトル内の波長について、ユタ州オレムのモクステック社(Moxtek Inc.)から市販されるワイヤグリッド偏光ビームスプリッタに関した、透過効率曲線200及び透過に関する“p”偏光のコントラスト比曲線205が示されている。このデバイスは、米国特許第6108131号に記載される基本的なワイヤグリッド偏光ビームスプリッタに類似している。その基本的なワイヤグリッド偏光ビームスプリッタは、誘電基材120上に配置される、40−60%のデューティサイクル(duty cycle)(52−78nmのワイヤ幅(w))を伴って作製された130nmまでのピッチ(p〜λ/5)のワイヤ(平行な導電電極110)を有する。固体の金属ワイヤは、20nmより厚くなるように規定され、これにより、表皮厚さ(δ)が可視波長に関して大きくなる十分な金属の厚さが保証される。このデータは、45°の入射角度でワイヤグリッド偏光子100に入射する適度のNA(開口数)の光ビームに関した、このデバイスについての代表的な値である。このデバイスは、光ビーム130を、入ってくる光の経路から空間的に判別可能な経路を走る2つの出て行く偏光ビーム(140及び150)に分割するため、このデバイスは、偏光用のビームスプリッタであると考えられる。透過に関するコントラスト比曲線205は、透過された“s”の偏光に対する透過された“p”の偏光の平均コントラスト(Tp/Ts)をあらわすものである。ここで、“s”の偏光は、望ましくない漏れである。同様に、反射に関するコントラスト比曲線210は、“p”の偏光に対する、反射され“s”の偏光の平均コントラスト(Rs/Rp)をあらわすものである。図2bには、可視スペクトル内の波長について、垂直入射(θ=0°)する適度のNA光ビーム130に関し、モクステック社(Moxtek Inc.)から市販されるワイヤグリッド偏光子100についての平均性能が示されている。特に、透過効率曲線220及び透過に関するコントラスト比曲線225が提供される(“p”の偏光について)。概して300:1よりも大きい“p”の偏光の透過に関するビームのコントラストを提供するこれらの両方のデバイスの性能は、非常に良好であり、多くの適用に関して満足なものである。
図2a及び2bに示される性能曲線は、既存のワイヤグリッドデバイスに関して、既存の偏光子と同様に非常に良好であるけれども、まだ改良の余地がある。特に、反射に関する“s”の偏光ビームのコントラスト比は、ワイヤグリッド偏光ビームスプリッタについて、反射に関するコントラスト比曲線210によりあらわされるように、相当に低い。偏光コントラストは、(450nmにおける)青色スペクトルにおいて、僅か〜10:1(すなわち10以下の数:1、以下、「〜A」は「A以下の数」をあらわすものとする)であり、また、(650nmにおける)赤色スペクトルにおいてさえ、僅か〜40:1にあらわれる。反射ビーム及び透過ビームの両方が良好な偏光コントラストを要する場合には、この性能は不十分である。一例として、投影光が偏光ビームスプリッタを通じて透過させられそこから反射される、また、ビームが速い(F/4又はより小さい)LCDを基本とする電子投影システムでは、反射における低い性能に伴い、システムにおける追加構成の増加が招来される。その上、この従来のワイヤグリッド偏光ビームスプリッタが、赤色において〜1200:1のコントラストを提供する一方、その偏光は波長で著しく変化し、低い青色(図2aの透過に関するコントラスト比曲線205を再度参照)において〜400:1に低下する。
基本的なワイヤグリッド偏光子の性能レベルは、ワイヤの幅,厚さ,ピッチ若しくはそれら3つの組合せを変化させることにより改善され得る。しかしながら、これらの設計上の変更は、反射ビームにとって望ましい、若しくは、必要とされる波長帯域にわたるコントラスト比を、必ずしも提供しない。更に、米国特許第6122103号に記載されるワイヤグリッドの設計性能における改良は、誘電基材120で入射光の相互作用を調整することにより、波長の通過バンドを広げ、透過効率を向上させるものであるが、ブロードバンドの可視の高コントラストの適用に関して、十分なコントラスト比を必ずしも提供しない。ワイヤグリッド偏光子又は偏光ビームスプリッタを有する米国特許第6108131号及び第6122103号のワイヤグリッド偏光子は、他の引用された従来技術のワイヤグリッドデバイスの特許と同様に、細長いワイヤの平面(図1のX:Y平面)内で共鳴効果を活用するのみである。入射光は、ワイヤ及び誘電基材120に同時に作用するため、インターフェース面における構造的細部もまた性能に影響する(米国特許第6122103号に記載されるように)。その結果、ワイヤの平面は、その面及び誘電基材120の表面下と同様に、ワイヤ自体も含まれるものと考えられるべきである。
本発明の改良されたデバイスに関する基準(ベンチマーク:benchmark)を提供するために、幾つかの従来技術のデバイスが、詳細に分析された。図3aは、米国特許第6108131号に記載される従来技術のワイヤグリッド偏光ビームスプリッタに類似したデバイスに関する波長の関数(function)として算出された反射及び透過に関する偏光のコントラスト比を示している。この分析は、Gsolverの回折分析ソフトウェアツールを用いて、モデル化された。この回折分析ソフトウェアツールは、波長以下の構造が、厳密結合波分析(RCWA:rigorous coupled wave analysis)を用いて、完全にモデル化されることを可能とする。ジーソルバは、テキサス州アレンの私書箱353のグレーティング・ソルバ・デベロップメント・カンパニー(Grating Solver Development Company)から市販されている。ワイヤグリッドデバイスは、透明なガラス基板上に直接形成される一連の平行な細長いワイヤとしてモデル化された。分析は、間隔p=0.13μm、コンダクタの幅w=0.052μm(40%のデューティサイクル),コンダクタの厚さt=0.182μm、また、基材の屈折率n=1.525であるアルミニウムのワイヤグリッドを前提とした。簡略化のため、この分析は、角度θ=45°でワイヤグリッド偏光ビームスプリッタに入射する平行ビームを検討するのみである。図3aは、平行な透過ビームコントラスト250(Tp/Ts)及び平行な反射ビームコントラスト255(Rs/Rp)を提供する。算出された透過ビームコントラスト250は、可視スペクトルにわたり、10−10:1の範囲を有する。これは、図2aに示されるような、実際のデバイスに関して報告された〜1000:1のレベルに比べて非常に大きいものである。しかしながら、図2aのプロット250は、実際のデバイスの角度が平均された性能をあらわす一方、図3aのプロット250は、デバイスを通じた平行ビームの理論上の性能をあらわすものである。また、図3aは、この従来技術のタイプのワイヤグリッドデバイスについてモデル化されるような理論上の反射ビームのコントラスト255を示している。算出された理論的な反射ビームコントラストは、可視スペクトル上で、〜10:1から〜100:1の範囲を有し、実際のデバイスについて図2aに与えられた反射ビームコントラスト255よりも僅かに良好である。図3bは、理論的な全体のコントラストのプロットを示しており、ここで、全体のコントラストCは、

C=1/((1/Ct)+(1/Cr)) (3)

として算出される。透過光ビーム150(“p”偏光)のコントラストを反射光ビーム140(“s”偏光)のコントラストに組み合わせてなる全体のコントラストCは、最小のコントラスト比、すなわち、反射光ビームのコントラストによりほとんど決定されることが分かる。その結果、米国特許第6108131号による従来技術の様式のデバイスの全体のコントラストは、“s”偏光反射ビームにより制限され、青色波長に関した最も低い性能を伴い、可視スペクトル内のわずか〜10:1から〜100:1である。
図4は、同じ従来技術の様式のデバイス(0,0座標が45°に対応する)に関し、500nmでの角度に対する等高線(contour line)としての全体のコントラスト比Cのモデル化された変化を示している。これは、全体のコントラスト比275が、45°の入射における〜23:1から、〜55°の入射(極角度+10°)における〜14:1へ、〜35°の入射における〜30:1(極角度+10°,方位角180°)へ、入射角度で著しく変化する。つまり、図4は、全体のコントラスト比が、大きなNA入射光ビームを有することにより、平均して低下するかを効果的に示している。当然ながら、全体のコントラストCは、反射コントラスト(Rs/Rp)により制限される。角度に対する透過ビームコントラスト(Tp/Ts)の類似した分析が、コントラストの等高線が、非常に狭い角度範囲においてのみ非常に高いコントラストの値で、“マルチーズクロス(Maltese Cross)”パターンをたどり、また、一方、〜800:1の平均コントラスト値が、相当に広い角度範囲(>12°の極の,25°の方位角の)内で見受けられ得る。光効率もまた、ジーソルバでモデル化され、図2aの透過効率曲線200が概ね確認された。“p”の偏光に関した透過効率は、可視スペクトルの大部分にわたり、〜87%まで相当に均一であり、また、一方、反射された“s”の光の効率は、可視スペクトルにわたって、〜92%まで非常に均一であった。
図5aの断面説明図として示される本発明のワイヤグリッド偏光子300は、細長い複合ワイヤ(composite wire)310(すなわち平行な導電電極)は、複数の細長い金属ワイヤ(320,322,324)と、透明な誘電基材305上に配置される該金属ワイヤと交互に積み重なる細長い誘電帯(誘電層340,342,344)とからなる層状の内部構造を有している。ワイヤグリッド偏光子の複合ワイヤを、金属ワイヤ及び誘電層の各厚さを適切に規定しつつ、適切に構成することにより、偏光子の性能を向上させるべく、フォトントンネル現象(photon tunneling)及びグリッド内の共鳴効果が活用され得る。従来技術のワイヤグリッド偏光子と対照的に、本発明のワイヤグリッド偏光子は、細長いワイヤの平面(X:Y平面)内の共鳴効果を用いるのみならず、性能を規定し向上させるべく、Z軸に沿った複数の平行なワイヤ内の平面の間での共鳴効果を用いる。図5aー5dに示されるワイヤグリッド偏光子300は、正確な尺度で描かれるものでなく、その複合ワイヤ310は、誘電層と交互に配置された細長い金属ワイヤのワイヤ内の下部構造(substructure)を示すべく誇張されている。前述したように、従来技術のワイヤグリッドデバイスを用いた場合には、ピッチ(p)及びワイヤ幅(w)が、寸法について波長以下である(〜λ/5若しくはそれより小さい)。そのワイヤの厚さ(t)もまた、必ずしもそうではないが説明されるように、名目上、波長以下である。
特に、本発明のワイヤグリッド偏光子の設計は、共鳴促進トンネル効果(resonance enhanced tunneling)というある程度知られた物理現象の利用に基づく。この現象では、適切に構成された金属層が、入射光に対して部分的に透明となり得る。この現象は、共鳴促進トンネル効果を可能とする光子バンドギャップが構成される場合に生じるもので、例えば1999年12月のOEリポート3頁における記事「光子バンドギャップ構造は金属に透過性をもたせる(Photonic Band Gap Structure Makes Metals Transparent)」等の文献に記載されている。その概念は、また、M.スカロラ(M.Scalora)等による、1998年の3月の、ジャーナル・オブ・アプライド・フィジックス(Journal of Applied Physics:J.App.Phys)の83(5)の2377−2383頁における論説“透明な金属−誘電の1次元の光バンドギャップ構造(Transparent, Metallo-Dielectric, One-Dimensional, Photonic Band-Gap Structures)”により詳細に記載される。
慣習的に、入射光は、反射が生じる前に、表皮厚さ(δ)として知られる短い距離のみ金属フィルムを通じて伝播すると考えられる。表皮厚さは、次の式(4)により算出され得る。
δ=λ/4πn (4)
ここで、算出された厚さは、光の強度が、入光面における値の〜1/eへ低下する距離に対応する(nは、屈折率の虚数部分)。慣習的には、薄い金属層が、それらの厚さが、アルミニウム及び銀などの金属に関して、たった10−15nm(ナノメートル)である典型的な表皮厚さの値δを越えた場合に、伝送された可視光に対して不透明であると考えられる。しかしながら、前述した論説で述べられるように、金属−誘電の光バンドギャップ構造は、薄い金属シート及び薄い誘電シートによる交互の層で構成され得る。これにより、入射光は、表皮厚さ(δ)より厚い個々の金属層中を効率的に伝送され得る。(定義によれば、光バンドギャップ構造は、波長の一範囲がその構造により透過させられる(若しくは遮られる)ように、基材又は他の構造物上で周期的に若しくは準周期的に間隔を隔てられた異なる屈折率を有する同様の厚さの材料又は区分の交互の層を備えたナノスケールの構造である。)最も簡単に、これらの構造は、図5aの単一の複合ワイヤ310、及び、誘電基材305の2次元の面の多くをカバーするために、シート状に引き伸ばされるような、それを構成する交互になった金属ワイヤ(320,322,324)及び誘電層(340,342,344)を検討することにより推測され得る。例えば、上記の論説で述べられた、3つの140nm圧のフッ化マグネシウム(MgF2)により隔てられる3つの30nm厚のアルミニウム(Al)層を有する3つの層からなる周期構造は、緑波長帯における可変の15−50%の透過を提供する。実際に、入射光は、第1の薄い金属層を通り抜け、次の誘電層に微かに衝突する。上記第1の金属層を通じて次の誘電層へ透過させられた光は、第2の金属層に衝突する。全体構造が、ファブリーペロー(Fabry-Perot)キャビティ(又はエタロン(Etalon))とほとんど同様に作用し、誘電層における共鳴が、金属層を介した光の透過を促進するように、適正な境界条件が確立される。共鳴促進トンネル現象は、更に、交互になった薄い金属層及び薄い誘電層を備えつつ繰り返される構造の設計により促進される。確かに、これらの論説は、追加したより多くの周期(その結果しての、総金属厚さへの追加)が、帯域通過領域内の振幅を軽減するとともに、より少ない周期を備えた構造に対する光の総透過を増加させることができることを示している。更に、誘電層の厚さの調整により、なされた変化次第で、より長い又は短い波長に向かって、帯域通過構造のエッジ部がシフトされ得ることが示される。典型的には、これらの構造における薄い誘電層が、薄い金属層よりも相当に厚く(〜3−10×又はそれ以上)、他方、薄い金属層は、ちょうど表皮厚さであっても、理論上の表皮厚さ(δ)よりも数倍厚くてもよい。
金属−誘電の光バンドギャップを用いて可能である、この共鳴促進トンネル現象は、実際のデバイスにおいて広く用いられていない。引用された文献では、この効果は、1波長帯域(例えば可視のもの)を透過させる一方、近傍のバンド(UV及びIR)を遮蔽する光遮蔽デバイス用に有用であると考えられる。かかる光バンドギャップ構造は、近傍の波長帯域を抑制し、単純な金属フィルムに比べて何倍も改善され得る。加えて、米国特許第5751466号(ダウリング(Dowling)等)及び第5907427号(スカロラ(Scalora)等)は、光通信用の可変の光信号遅延デバイスを設計するための、かかる効果の利用を述べている。しかしながら、この従来技術は、一般には偏光デバイスの設計に対して、あるいは、特別にはワイヤグリッド偏光子及び偏光ビームスプリッタに対して、金属−誘電の光バンドギャップ構造の上記共鳴促進トンネル現象を適用する効果を予測していない。更に、上記共鳴促進トンネル現象が、偏光コントラスト、若しくは、全可視スペクトル又はあらゆる単一のカラーバンドにわたる透過を改善することにより、ワイヤグリッド偏光デバイスの性能を改善することは必ずしも明らかにされていない。
したがって、図5a−5dに示されるような本発明のワイヤグリッド偏光子300は、完全に同じように構成され、それぞれ交互になった金属ワイヤ(320,322,324)及び誘電層(340,342,344)を有するワイヤ内下部構造(Intra-wire substructure)を備えた細長い複数の複合ワイヤ310を使用する。従来のワイヤグリッド偏光子のように、ワイヤに平行な偏光はデバイスから反射され、また、ワイヤに直交する偏光が透過させられる。しかしながら、従来のワイヤグリッド偏光子は、典型的には100−150nm厚のモノシリック構造として配置された金属の比較的厚いワイヤを使用する場合には、本発明のワイヤグリッド偏光子が、一連の交互になった薄い金属層及び誘電層として各ワイヤを効果的に構成する。結果として、ワイヤに直交する偏光の入射光は、光トンネル現象及び促進された共鳴効果により、金属層自体を通じて部分的に透過させられ、それにより、反射された偏光に対する透過させられた偏光の全コントラスト比が向上させられる。ワイヤの平面(図1のX:Y平面)内における共鳴効果のみに依存する従来のワイヤグリッド偏光デバイスと比較して、本発明のワイヤグリッド偏光デバイスは、また、性能を決定すべく、直交方向(図1のZ方向)における共鳴効果を利用する。
本発明のワイヤグリッド偏光子300の第1の例が、図5aに示される。ここでは、各長手状の複合ワイヤ310は、交互になった金属層(金属ワイヤ320,322,324)及び誘電物(誘電層340,342,344)を備えた6層からなる周期的な層状のワイヤ内構造315を有している。従来のデバイスと同様に、ワイヤグリッド偏光子300は、ワイヤの幅(w)が52nmであるように、40%のデューティサイクル(duty cycle)で、ワイヤが130nm間隔(p〜λ/5)で配置される構造としてモデル化された。その結果、複合ワイヤ310間の溝312は、78nmの幅を有する。溝312は、光液体(optical liquid)又はゲル等の他の媒体よりむしろ名目上空気で満たされる。同様に、従来のタイプのデバイスのように、このデバイスは、平行ビームが角度θ=45°で入射する偏光ビームスプリッタとしてモデル化された。加えて、複合ワイヤ310は、ワイヤ内構造315が、それぞれ61nm厚のアルミニウムの3つの薄い金属層(金属ワイヤ320,322及び324)と交互になったそれぞれ33nm厚のMgF2の3つの薄い誘電層(誘電層340,342,344)を有してモデル化された。
有効な媒体の理論によれば、入射光が、各層の有効インデックスと相互作用する。ここで、有効インデックスは、複合ワイヤ310の幾何学,層自体の幾何学、層(金属又は誘電物のいずれでも)の複素屈折率、ワイヤ間の物質(空気)の屈折率、及び、隣接する層により確立される境界条件に依存する。図5aに示されるように、このワイヤグリッド偏光子300の例に関して、ワイヤ内構造が、上記第3の誘電層344が、第3の金属層324と透過的な誘電基材305の表面307との間に位置決めされるように設計されている。3つの金属層320,322及び324及び3つの誘電層340,342,344の合計である、複合ワイヤ310の総ワイヤ厚(t)は、282nm又は(〜λ/2)である。図6a及び6bに示されるこのデバイスについてのモデル化された偏光性能については、そのモデル化された結果が図3a及び3bにて与えられた基本的なワイヤグリッド偏光子に対する反射及び透過の両方にて改善が見られる。性能は、精度を保証するために、8つの回折オーダ(diffraction orders)を用い、Gsolverでモデル化された。図6aに示されるように、“p”の光に関した理論上透過されたビームコントラスト250は、可視スペクトルにわたり、10〜10:1で変化し、他方、“s”の光についての反射されたビームコントラスト255は、上記可視スペクトルにわたって、相当に均一な〜100:1を平均化する。その結果、図6bに示される全コントラスト比もまた、全可視スペクトルにわたり、〜100:1を平均化する。向上した偏光性能は、“s”の光の反射効率が〜91%であり、他方、“p”の光の透過効率は、可視スペクトルにわたりほとんど変化なく、〜83%であるため、効率化の代償として得られるものでない。反射された“s”の偏光について、かかる比較的高く均一な偏光コントラストであれば、このデバイスは、偏光ビームスプリッタとして、向上した性能をもたらすに違いない。この適用において、“p”及び“s”の偏光ビームの両方が用いられるべきである。とりわけ、このデバイスは、また、向上した青色の性能と同様に、米国特許第6108131号の従来のデバイスにおいて、(偏光減衰率としても知られる)“p”偏光コントラストにおける〜10×の改良を示している。このとき、反射ビームコントラスト255及び全コントラスト比275は、青色のスペクトルのほとんどにわたり、〜250:1のコントラストを平均化する。かかる性能は、投影システムを含む多くの用途において有用である。
加えて、図3a及び3bに示されるような従来のタイプのデバイスと比較した場合の、図6a及び6bに示されるような第1の例のワイヤグリッド偏光ビームスプリッタデバイスの全コントラスト275及び透過ビームコントラスト250における改善は、低下した角度性能を代償として実現されたものでない。全コントラストCの等高線プロット分析は、〜500:1の平均コントラスト値が、500nmで広い角度範囲(+/−12°の極性(polar)、+/−30°の方位角)で得られることを示した。この第1の例のデバイスは、また、垂直入射(θ=0°)での平行ビームについてモデル化された。垂直入射において、全可視スペクトルにわたる透過ビームのコントラストは、10:1よりも大きいため、第1の例のワイヤグリッド偏光子は、偏光分析器又は偏光子と同様に、また、ワイヤグリッド偏光ビームスプリッタと同様でなく、良好に機能することが証明された。
ワイヤグリッド偏光子に関する本発明、及び、米国特許第4289381号におけるガーヴィン(Garvin)等によるワイヤグリッド偏光子の両方は、Z軸方向に延びるパターン化されたワイヤの複数平面を有するものの、これらのワイヤグリッド偏光子デバイスは、はっきりと異なる。特に、米国特許第4289381号の複数のワイヤグリッド平面の各々におけるワイヤは、厚い(100〜1000μm)のソリッドな金属ワイヤであり、それらは、ワイヤ内構造を欠いており、ワイヤを通じた有用で微かな透過のためには厚すぎる。更に、米国特許第4289381号の2つのグリッドケースに関した複数のワイヤ平面は、重なり合った配置構造を有するよりむしろ、優先的にピッチの2分の1のずれ(offset)を有する。最後に、米国特許第4289381号のワイヤグリッド偏光子の設計は、インターグリッドの共鳴つまりエタロン(Etalon)効果の発生を回避すべく、インターグリッド(inter-grid)の間隔(1)及びピッチオフセット(2)を備えた隣接したワイヤグリッドを優先的に配置する。対照的に、本発明のワイヤグリッド偏光子300は、性能を向上させるべく、特に、層状のワイヤ下部構造内でのエタロン型の共鳴効果を利用する。
本発明のワイヤグリッド偏光子300の第2の例が、図5bに示される。ここでは、各複合ワイヤ310が、交互になった金属層(金属ワイヤ300a−i)及び誘電体(誘電層350a−i)を有する周期的な層をなす18層のワイヤ内構造315を有している。第1の例のデバイスと同様に、第2の例のワイヤグリッド偏光子300は、40%のデューティサイクルで、また、52nmのワイヤ幅(w)での、130nm間隔(p〜λ/5)の複合ワイヤ310の構造としてモデル化された。同様に、従来通り、デバイスは、平行ビームが角度θ=45°で入射する偏光ビームスプリッタとしてモデル化された。前述したとおり、最後の誘電層(330i)は、誘電基材305に隣接している。しかしながら、複合ワイヤ310は、ワイヤ内構造315が、それぞれ17nm厚の9つの薄いアルミニウム金属層(金属層350a−i)と交互になったそれぞれ39nm厚の9つの薄いMgF2の誘電層(誘電層330a−i)を有するようにモデル化された。金属ワイヤ330a−i及び誘電層350a−iの厚さの合計である複合ワイヤ310の総ワイヤ厚(t)は、504nmであり、それは、〜1λである。図7a及び7bに示されるこのデバイスに関したモデル化された偏光性能は、そのモデル化された結果が図3a及び3bに与えられる基本的なワイヤグリッド偏光子に対する反射及び透過における改善点である。図7aに示されるように、“p”の光についての理論上の透過ビームのコントラスト250は、可視スペクトルにわたり、10−10:1で変化し、また、一方、“s”の光についての反射ビームのコントラスト255は、可視スペクトルにわたり、〜100:1の平均をとる。その結果、図7bに示される全コントラスト比275は、また、全可視スペクトルにわたり、〜100:1の平均をとる。このデバイスが、第1の例のデバイスよりも相当に複雑であり、また、一方、“p”の偏光についての理論上の透過ビームコントラスト250は、第1の例のデバイスよりも良好な〜100xであり、また、従来技術のタイプのデバイス(図3a)よりも良好な〜1000xである。
本発明のワイヤグリッド偏光子300の第3の例は、図5bに示される、第2の例のものに類似した18層の構造である。各複合ワイヤ310は、誘電及び金属層の厚さが変更していることを除いて、交互になった金属層及び誘電層を有する18層の周期的な層をなすワイヤ内構造315を有している。この場合には、複合ワイヤ310が、ワイヤ内構造315が、それぞれ17nm厚の9つの薄いアルミニウム金属層(金属ワイヤ350a−i)と交互になったそれぞれ283nm厚の9つの厚いMgF2の誘電層(誘電層330a−i)を有するようにモデル化された。複合ワイヤ310の総ワイヤ厚(t)は2700nmであり、それは、〜5λである。図7c及び7dに示されるように、図7a及び7bと比較すれば、第3のデバイスは、唯一の変化が誘電層350a−iの厚さにあったが、第2のデバイスと比較して、相当に異なる偏光性能を有している。図7dから明らかなように、全体のコントラスト比275は、〜150:1の青色スペクトルにおける平均コントラスト比を有し、また、一方、緑色および赤色スペクトルにおける性能が低下している。全コントラスト比275のプロットは、また、青色波長帯におけるその敏速な振動について注目すべきである。その振動は、〜50:1と〜500:1のコントラスト間でピーク〜谷間を揺動する。厚い誘電層を用いるこの例は、“p”の透過光についての優れた性能のみならず、“s”の反射光についての非常に良好な性能(250:1又はそれより良い)を有する波長帯域調整ワイヤグリッド偏光ビームスプリッタを設計するためのポテンシャル(potential)を提案する。あいにく、ジーソルバは、優れた分析ソフトウェアプログラムであるが、コードは、偏光コントラストの最善化を容易にするために書き込まれておらず、そのため、更に改善された性能を備えた例示的な結果は得られない。しかしながら、金属層及び誘電層の厚さを変化させ得る、非周期的な又は二重に周期的な構造をこの設計の最善化は、所望の結果をもたらすべく、更に、青色における性能を促進することができる。
ワイヤグリッド偏光子300の第3の例の設計に類似した結果が、厚い誘電層を備え計18層以外を備えた同様のワイヤ内構造315を用いて得られることに注目すべきである。第4の例のワイヤグリッド偏光子(不図示)は、構造が8層を有するように、モデル化された。ここでは、それぞれ525nmのMgF2の4つの層が、それぞれ45nm厚の4つのアルミニウム層と交互になる。これにより、複合ワイヤ310の総厚さ(t)は、2.28μmつまり〜4λである。モデル化されたデバイスは、その他の点では、ワイヤピッチ(p),ワイヤ幅(w)及び入射角度に関係して、従来の例のデバイスと同じである。図8a及び8bに示されるこの第4の例のデバイスについての最終的な偏光性能は、青色スペクトルにおける第3の例のデバイス(図7c及び7d)のそれと類似している。面白いことに、図8aは、緑色スペクトルにおける両ビームのための低コントラストを与えつつ、透過及び反射ビームの両方についての青色及び赤色スペクトルにおけるハイコントラストを備えた構造のための可能性を示唆する。
誘電層(283nmに対する39nm)の厚さにより設計においてのみ変化する、18層ワイヤグリッド偏光子の第2及び第3の例に関係して、他の興味ある結果が、中間の誘電層厚を備えた同様のデバイスをモデル化することにより得られる。例えば、56nmの誘電層厚を備えたモデル化されたデバイスは、全可視スペクトルにわたって、最小の〜100:1を提供するが、また、全偏光コントラストが〜1000:1又はそれより大きい場合に、〜450nm及び〜610nmにおける2つの局部に限定されたピークをもたらし、全偏光コントラストは、〜1000:1又はそれより大きい。
本発明のワイヤグリッド偏光子300の第5の例は、図5cに示される。ここで、各複合ワイヤ310は、交互になった金属層(金属ワイヤ320,322及び324)及び誘電体(誘電層340及び342)を有する5つの層による周期的な層状のワイヤ内構造315を有している。他の例示的なデバイスと同様に、第5の例のワイヤグリッド偏光子300は、40%のデューティサイクルで、52nmのワイヤ幅(w)で、130nmのピッチ(p〜λ/5)の複合ワイヤ310の構造としてモデル化された。同様に、従来どおり、デバイスは、偏光ビームスプリッタとしてモデル化された。ここで、平行ビームは、角度θ=45°で入射する。しかしながら、このデバイスは、先の例のような誘電層よりむしろ、金属層(金属ワイヤ324)が誘電基材305に隣接するように設計されたワイヤ内構造315を有している。複合ワイヤ310は、ワイヤ内構造315が、それぞれ61nm厚の3つの薄いアルミニウム金属層(金属ワイヤ320,322及び324)と交互になったそれぞれ55nm厚の2つの薄いMgF2の誘電層(誘電層340及び342)を有するようにモデル化された。複合ワイヤ310の総ワイヤ厚(t)は、293nmであり、λ/2である。図9a及び9bに示されるこのデバイスについてモデル化された偏光性能は、基本のワイヤグリッド偏光子(図3a及び3bに示される)に対する反射及び透過の両方において改善するものの、この5つの層のデバイスは、第1の例の6つの層のデバイスと同様に機能しない。図7aに示されるように、“p”の光についての理論上の透過ビームコントラスト250は、可視スペクトルにわたり、10−10:1で変化し、また、一方、“s”の光についての反射ビームコントラスト255は、可視スペクトルにわたり、わずか〜40:1を平均化する。加えて、青色の性能は、第1の例のデバイスと比較して、その波長帯域にわたり、あまり均一でない。それにもかかわらず、金属層(ワイヤ324)が誘電基材305に接触するこのデバイスはなお有用である。
図5dに示されるように、本発明のワイヤグリッド偏光子300の第6の例は、各複合ワイヤ310内にわずか5つの層を有する第5の例のデバイスの変形例である。ここで、第6の例のデバイスは、非周期的な層状のワイヤ内構造315を有している。そのため、複合ワイヤ310は、ワイヤ内構造315が、2つの薄いMgF2誘電層と交互になったそれぞれ61nm厚である3つの薄いアルミニウム金属層(金属ワイヤ320,322及び324)を有するように、モデル化された。ここで、誘電層340は27.5nm厚であり、誘電層342は82.5nm厚である。従来のとおり、第3の金属層324は、誘電基材305と接触している。第5の例のデバイスと同様に、このデバイスに関した総ワイヤ厚(t)は293nmである。図10a及び図10bに示されるように、このデバイスのモデル化された性能は、青色スペクトルにおける性能が、全コントラスト275により測定されるように、平均して高いことを除いて、第5の例のデバイス(図9a及び9b参照)の性能に類似している。第5及び第6の例のデバイスは、波長帯域調整ワイヤグリッド偏光デバイスのための可能性を再度示唆するものである。
種々の例(1〜6)に関した、“s”の偏光反射効率及び“p”の偏光透過効率により測定されるような光効率のグラフは提示されないが、これは、それらのデータの変化が最小であったことによる。全体として、“s”の偏光に関する反射効率は、可視スペクトルにわたって均一であり、百分率の効率に関し、80%後半から90%前半までのレベルであった。“p”の偏光透過効率は、幾つかの例のデバイスが低い青色領域のスペクトルにおける幾らかの減少を示したことから、僅かに均一でなかった。また、“p”の全偏光透過効率は、“s”の光効率よりも小さく、概して、百分率に関し、80%前半〜中盤のレベルであった。
細長い各複合ワイヤ310は、可視光の波長よりも全体として大きい長さを有していることに注目すべきである。つまり、複合ワイヤ310は、少なくともほぼ0.7μmの長さを有する。しかしながら、ほとんどの実用的なデバイスでは、適用のサイズの要件に依存して、複合ワイヤ310が、数ミリメートル又はちょうど数センチメートルの長さであろう。適用の種々の例のワイヤグリッド偏光デバイスは、グリッドのピッチ又は周期(p)と比較すると、複合ワイヤ310の幅(w)に関係して、40%のデューティサイクルでモデル化されるが、他のデューティサイクルが用いられてもよい。一般に、40−60%のデューティサイクルは、透過及びコントラスト比に関係して、最良の全機能をもたらすこととなる。例示的なデバイスに示されるように、複合ワイヤ310の総厚さ(t)が、透過した“p”の偏光の例外的な透過及び“s”の偏光の排除をもたらしつつ、ほぼ半分の波からほぼ5つの波まで変化する。これに対して、現行のデバイスの製造プロセス方法が、複合ワイヤ310に関し、実現可能なアスペクト比(幅(w)に対する厚さ(t))を制限するかもしれない。その結果、可視スペクトルにおける実用的なデバイスは、わずか〜100−300nmの範囲(〜λ/6から〜λ/2)の総厚さ(t)に制限されるかもしれない。これにより、総ワイヤ厚さの制限は、交互になった金属ワイヤ及び誘電層からなる層状のワイヤ内構造315を備えた複合ワイヤ310に基づく可能な設計について、ソリューションスペース(solution space)及び設計自由度を制約することとなる。しかし、それにもかかわらず、制約されたソリューションスペースにおいて、利点に恵まれた設計が見出され得る。比較によれば、従来技術のワイヤグリッドデバイスは、“s”の偏光の良好な排除を保証すべく、幾らかの表皮厚さ(δ)よりも厚い金属ワイヤの厚さに大きく依存する。更に、この適用の例示的なデバイスが、わずかな数(約1−4)の表皮厚さであり、透過した“p”の偏光の例外的な透過及び“s”の偏光の排除をもたらす細長い金属ワイヤ(例えば330)の厚さを有し得ることに注目すべきである。例えば、第5の例のデバイスは、それぞれ61nm厚さの複数の金属層を用い、それは表皮厚さのほぼ4倍に等しい。最後に、誘電基材120の他方のすなわち反対側の表面は、全透過を向上させるために、反射防止コーティングを有してもよい。
交互になった複数の金属層及び誘電層を有する層状のワイヤ内グリッド構造315を備えたワイヤグリッド偏光子300の設計に関したこれらの種々の例は、可能性のある設計の全範囲を網羅するものでないことを理解すべきである。まず第1に、偏光コントラストの最善化を可能としないGsolverソフトウェアの制限が、もたらされる結果が、それらの可能性未満に制限されることがある。また、例えばアルミニウムの金又は銀への代替え、若しくは、誘電材料MgF2のSiO2又はTiO2への代替えを含む材料の他の組合せが、設計において用いられてもよい。実際の材料の選択は、プロセスの制約とともに、所望の設計性能に依存するであろう。また、たとえ、全ての例示的なデバイスが、金属層として、複合ワイヤ310のワイヤ内構造315の一部をなす最も外側の(誘電基材305から最も遠方の)層を備えつつ設計されても、代わりに、誘電層が最も外側の層として用いられてもよいことを理解すべきである。
加えて、溝部312は、エアよりもむしろ、光学的にクリアな液体,接着剤又はゲルで充填されている。このことは、図5eに示され、ここで、屈折率nの光学的材料は、溝部312内に形成される誘電性充填材360である。例えば、誘電性充填材360は、複合ワイヤ310を部分的に構成する誘電層340,342,344を形成すべく用いられるのと同じ誘電材料であってもよい。結果としてのワイヤグリッド偏光子300は、複合ワイヤ310が誘電性充填材360によって(例えば酸化から)保護されるという利点を備えつつ、効率的に埋め込まれる。
十分に組み込まれたワイヤグリッド偏光子が図5fに示される。ここでは、複合ワイヤ310が、内部の偏光層を含む集積デバイスを形成すべく、誘電基材305上に組み立てられるのみでなく、重ね合わされ、別の誘電基材355と接触している(若しくはほとんど接触している)。この場合、集積デバイスは、プレート偏光子(plate polarizer)である。2つの誘電基材は、同一の光学特性を有しても有していなくともよい。好ましくは、介在するインデックスnの光学材料が設けられ、それは、光学的にクリアな接着剤(又はエポキシ又はゲル)を有し、溝部315を充填し、第2の誘電基材355に接触し、それを複合ワイヤ310の構造に対して固定するのを助ける。代わりに、誘電性充填材360は、誘電層340,342及び344を形成すべく用いられる同様の誘電材料からなり得る。他方、エポキシなどの別の光学材料が、複合ワイヤ310の構造に対して別の誘電性基材355を固定するのに用いられる。内部反射の問題を回避するために、図5e及び5fのワイヤグリッド偏光子における誘電性充填材360のために用いられた介在する光学材料が、誘電基材に対してインデックスが一致する(n=n)、若しくは、いくらか低い方の屈折率(n<n)である。この介在する光学材料は、また、複合ワイヤ310を、ワイヤを別の基材に直接に接触させるよりむしろ、薄い層で覆ってもよい。あいにく、溝部をエア以外の屈折率niの誘電材料で充填することは、よい低いコントラスト及び低い波長帯域のエッジ部をシフトアップさせることにより、ワイヤグリッドデバイスの設計性能を低下させるであろう。これらの変化は、ワイヤピッチ(p)及びワイヤ内下部構造315の両方を偏光するような複合ワイヤ310に関した代替えの設計により補正され得る。
とりわけ、図5fの組み込まれたワイヤグリッド偏光子の誘電基材は、それぞれ、直角プリズムであり、ここで、偏光層は斜辺上に構成される。プリズムは、集積偏光プリズムを形成すべく組立てられ得る。この場合には、偏光層は、内部の対角線に沿って配置され、これにより、マックネイル(MacNeille)型のプリズムと同等のものが提供され、しかも、おそらくは向上した性能が実現される。
別の点として、例示されたデバイスが、非周期的な構造を備えたたった1つのデバイス構造を特色とすることに注目すべきである。デバイス(第6の例)は比較的簡単であるものの、設計を最善化し、デバイスを組み立てるための能力に依存して、ずっと複雑なデバイスも可能である。層状のワイヤ内下部構造315を有する金属層及び誘電層の両方の厚さは、構造を通じて変更され得る。例えば、チャープ構造(chirped structure)等の擬似の周期的なワイヤ内構造が設計されてもよい。また、別の例として、グリッドの外側の領域に対するインターフェースにわたる性能を改良すべく、最も外側の層及び/又は最も内側の(誘電基材305に最も近接する)層の厚さを調整することを除き、ワイヤ内構造315は、金属層及び誘電層を周期的に交互にするよう設計され得る。同様に、誘電基材305は、複合ワイヤ310のワイヤ内構造の最も内側の層が、誘電基材305よりもむしろ、中間層と直接に接触するように、中間層で覆われてもよい。当然ながら、デバイスの最善化は、ワイヤ内構造315の詳細にのみならず、ワイヤピッチ(p)及びワイヤ幅(w)に依存する。実際には、層状のワイヤ内構造315を備えた複合ワイヤ310からなるワイヤグリッド偏光子300を設計する考え方は、ワイヤグリッドデバイスが、より小さいピッチ構造によりもたらされた性能レベルを達成することを可能とする。
また、ワイヤグリッド偏光子300は、デバイスの表面にわたって変化する層状のワイヤ内構造315を有する複合ワイヤ310を備えつつ、設計され組み立てられ得る。これにより、偏光ビーム分割又は偏光分析用に、空間的に様々なデバイスを製作することができることとなる。
全体として図5a−5fに示されるように、複数の金属層及びそれと交互になった誘電層を有する層状のワイヤ内下部構造315を備えて、ワイヤグリッド偏光子300(又は偏光ビームスプリッタ)を設計する実際のプロセスは、デバイスに関した詳細の規定から始まる。最初の詳細は、スペクトル帯域幅,光の入射角度,入射光の角度幅(開口数),透過効率(“p”pol,>〜80%),透過コントラスト(例えば>1000:1),反射効率(“s”pol,>〜80%)及び反射コントラスト(例えば>200:1)である。標準的なワイヤグリッドの特徴,ワイヤピッチ(p)及びワイヤ幅(w)は、その最小値が製造プロセスの制限分解能(resolution)により設定されつつ、決定される。金属層の数及び厚さ、誘電層の数及び厚さを含む複合ワイヤ310に関した名目上の層状のワイヤ内構造315がまた規定される。金属及び誘電体用の材料選択,溝部312におけるいかなる材料用の材料選択、及び、ワイヤ内構造315の周期性及び非周期性等の他のパラメータがまた規定される。ワイヤピッチ(p),ワイヤ幅(w),総ワイヤ厚さ及び層の数などの幾つかのパラメータは、上側及び下側の境界条件を有し、該境界条件の内部では、反復の変化が、最善化を実行すべく生じ得る。設計プロセスは、その後、続行することができ、性能の目標及び製造性の問題に対する結果が評価される。
層状のワイヤ内構造315を備えた複合ワイヤ310からなるワイヤグリッド偏光子300は、相当に複雑な設計を有することができるが、その複雑さは、必ずしも難しい組立プロセスに等しいものでない。全体として、金属又は誘電体である個々の層の組立についての許容度は、比較的ゆるい。典型的な層の厚さの許容度は、設計に基づき、幾つかのデバイスが10nmを越える層の許容度を有し、その他は1nmの許容度又はそれ未満であるように、数ナノメートルであると期待される。
上記ワイヤグリッド構造を形成するためのプロセスは、幾つかの方法で実現され得る。ワイヤ間の溝部312をエアが充満している複合ワイヤ310の場合には、構成が誘電基材305から始まる。以下の例では、第1の金属層が、アルミニウム等の金属を用いて配置される。配置方法は、熱蒸着又はスパッタリングを含む幾つかの標準的方法の1つであってよい。次に、金属が、金属ワイヤ330cの第1の層を形成するために、金属エッチング(できる限りCCl4,BCl3等のドライ金属エッチング)へ継続する標準的なフォトリソグラフィを用いてパターン付けられる。このことは、図12aに示される。次に、第1の誘電層350cが蒸着される。提案される誘電対は、SiO2及びMgF2を含むが、これに限定されるものでない。用いられる装置及び期待される層の数に依存して、誘電層が蒸着された後に、平坦化する必要があるかもしれない。他の金属層(330b)は、金属/誘電体の積み重なりをなすべく、従来どおりに位置決めされ、パターン付けられ、誘電層(350b)へ継続され、できる限り平坦化される。このプロセスは、金属/誘電体の積み重なりが、複合ワイヤ310を形成するための所望数の層を実現するまで繰り返される。各層は、先の層とは異なる寸法で設計され制御される。図12bは、交互になった金属層330及び誘電層350の完成した積み重なりを示すものである。誘電性充填材360は、複合ワイヤ310をパターン付けするプロセスの間に、溝部312内に集められることに注目すべきである。最終層が金属である場合には、最後の金属層がパターン付けられた後に、誘電性エッチングが、複合ワイヤ310間の溝部312から誘電性充填材360を除去するために用いられる。(可能性のある酸素及び窒素のドライエッチングがCF4及びSF6を含むことができる。)最終層が誘電体である場合には、マスキング層が、誘電体の最終層上にパターン付けられ、インターワイヤ誘電性充填材360が除去され、そして、マスキング層が除去される。最終的なデバイスが、図12cに示される。もし誘電基材305上に蒸着された第1の層が誘電体であれば、それが最初に蒸着され、その後、金属のパターン付けを開始してもよい。
誘電体で充填されたインターワイヤ領域(溝部312)を備えた代替えの構造は、一層簡単な組立プロセスを追求するものである。その方法は、誘電体が、インターワイヤ領域から除去されないことを除いて、従来どおりである。この方法は、誘電性充填材360を除去するための誘電体エッチングプロセスからの複合ワイヤ310に対するダメージに関して、何の可能性をもたないという長所を有する。
代わりに、繰り返される誘電体のエッチング又はイオンビームミリング(ion beam milling)を含む方法が採用されてもよい。また、リフトオフ(lift off)方法を考慮してもよい。もしウェットエッチングを考慮するのであれば、特に、エッチングが各層の蒸着後に行われるならば、エッチング薬品の可能な選択は、SiO2エッチングについてのHF、及び、アルミニウムエッチングについてのPANを含む。このデバイスを組み立てる多くの方法が存在することが理解されるべきである。方法の選択は、用いられる材料及び特定の積み重なり構造に依存する。
前述したように、誘電層と交互になった複数の金属層を有する層状のワイヤ内グリッド構造を備えた本願のワイヤグリッド偏光子300は、垂直入射の偏光子として、また、軸外の入射偏光ビームスプリッタとして、向上した性能をもたらすことができる。偏光ビームスプリッタとしてのこの構造の設計及び使用は、反射コントラスト(Rs/Rp)を著しく向上させるべき可能性に基づき、相当の魅力を有している。したがって、図11aは、ワイヤグリッド偏光ビームスプリッタ410及び反射空間光変調器(reflective spatial light modulator)445を有する変調光学システム400を示している。ここで、光の入射ビーム130は、反射光ビーム140及び透過光ビーム150とに分離される。後者は、上記変調器を照明する。取付け,冷却及び電子インターフェース(全て不図示)を含む変調器アッセンブリの一部である空間光変調器445は、名目上、入射透過ビーム光150の偏光状態を変調するLCD(液晶ディスプレイ)である。イメージを付帯する光ビーム490は、変調の処理及びLCD445からの反射、並びに、ワイヤグリッド偏光ビームスプリッタ410での次の反射により生成される。反射光ビーム140における光は、光トラップ(不図示)内に指向させられ得る。光をイメージ化することによる取得への効率的な光路は、光の入射ビーム130,透過光ビーム150、及び、イメージを付帯する光ビーム490を包含するものである。
本発明によれば、ワイヤグリッド偏光ビームスプリッタ410は、誘電層と交互になった複数の金属層の構造を有する複合ワイヤとともに、誘電基材425の第2の表面420上に形成される、層状の波長以下のワイヤ430及び溝部435の構造を有している。図11aに示されるように、ワイヤグリッド偏光ビームスプリッタ410は、好ましくは、層状の波長以下のワイヤ430がLCD445と最も近接するように、また、第1の表面415(名目上反射防止コーティングされる)が、光の入射ビーム130に面するように、方向付けられる。層状の波長以下のワイヤ430を有する第2の表面420をLCD445に最も近接するように配置することにより、ワイヤグリッド偏光ビームスプリッタ410において(吸収された光からの)熱的にもたらされた応力複屈折(stress birefringence)によるコントラスト損失の可能性が抑制される。
また、図11aの変調光学システム400が、プリ偏光子(pre-polarizer)470,偏光分析器475及び2つの偏光補正器450及び460として示されている。プリ偏光子470及び偏光分析器475の両方は、当然ながら、本発明に従った層状の波長以下のワイヤである、ワイヤグリッド偏光子であり得る。これらの種々の構成は、設計目標及び制約に依存して含まれる、若しくは、含まれない。投影レンズ(不図示)等の他の構成は、このシステムと相互に作用してもよい。
第2の例示的な変調光学システム400が、図11bに示される。ここで、反射光ビーム140が、反射空間光変調器(LCD)445を照明する。反射空間光変調器445は、その後、イメージデータを光に伝えるべく、付与された制御信号に従って、入射光の偏光状態を回転させる。その光がワイヤグリッド偏光ビームスプリッタ410を通じて透過するに伴い、イメージを付帯する光ビーム490が生成される。光をイメージ化することによる取得への効率的な光路は、光の入射ビーム130,透過光ビーム150、及び、イメージを付帯する光ビーム490を包含するものである。図11bのワイヤグリッド偏光ビームスプリッタ410が、一部で、傾斜したプレートをを有しているため、投影レンズ(不図示)によりイメージ化されたLCD445のイメージは、傾斜した平行なプレート誘電体を通じた透過におけるイメージ化により導かれる収差(コマ及び非点収差)を受ける。これらの収差は、種々の手段によって光学的に補正され得る。代わりに、ワイヤグリッド偏光ビームスプリッタ410は、偏光用インターフェースが、キューブプリズム(cube prism)内に含まれるように、埋め込まれたワイヤグリッド偏光ビームスプリッタを有すべく変更され得る。かかるプリズムについては前述した。
第3の例示的な変調光学システム400が、図11cに示されている。このシステムでは、2つの変調器,LCD446a及び446bが、反射光ビーム140及び透過光ビーム150によりそれぞれ照明される。イメージを付帯する光ビーム490は、ワイヤグリッド偏光ビームスプリッタ410を通じて透過したLCD446aからの変調された(偏光回転された)光と、ワイヤグリッド偏光ビームスプリッタ410から反射されるLCD446bからの変調された(偏光回転された)光を用いて、組合せで生成される。両偏光(“p”及び“s”)の光を有する、結果としてのイメージを付帯する光ビームは、投影レンズ495により、不図示の目標面(スクリーン等)に対してイメージ化される。図11cの変調光学システム400に、2つのLCD445(1偏光当たり1つ)を装備させることにより、全光学システムの光効率が向上させられる。一例として、フルカラーシステムが開発可能であり、ここでは、光が、3つのカラーチャンネル(赤,緑,青)に分割され、各カラーチャンネルが、図11cの変調光学システム400から構成され、6つのLCDシステムが効果的にもたらされる。誘電層と交互になった複数の金属ワイヤを有する層状のワイヤを備えた本発明のワイヤグリッドビームスプリッタ410が、透過及び反射の両方におけるハイコントラストを同時にもたらすことができるため、この選択肢が考慮され得る。前述したように、埋め込まれた構成がキューブプリズムを形成するような代わりのワイヤグリッド偏光ビームスプリッタ410が、傾斜したプレートの収差を回避するために、また、2つのイメージ化された光ビームに関して一致した光路長さを提供するために用いられてもよい。
他の例示的な変調光学システムは、複合ワイヤが、誘電層と交互になった複数の金属層を有する層状のワイヤ内グリッド構造として形成される本願のワイヤグリッド偏光子300を用いて構成されてもよい。例えば、透過偏光回転空間光変調器(transmissive polarization rotating spatial light modulator)を用いる代わりの変調光学システムは、変調器が、その少なくとも一方が本発明によるワイヤグリッド偏光子である2つの偏光子(プリ偏光子及び分析器)間の光路に位置決めされている。これらのワイヤグリッド偏光子は、液晶ディスプレイ(LCD)以外の、種々のタイプの偏光修正空間光変調器(polarization altering spatial light modulator)と組み合わせて用いられてもよい。例えば、それらはPLZT変調器とともに使用されてもよい。記載した変調光学システム400のいずれもが、イメージプリンタ又は投影ディスプレイ等のより大きなシステムのサブアッセンブリとして用いられてもよいことが理解されるべきである。
最後に、層状のワイヤ内構造315を備えた複合ワイヤ310から構成される改良されたワイヤグリッド偏光子300についての概念が、電子投影のための適用とともに、可視スペクトルにおける作用に関して、特に記述されたが、その概念は、他の適用及び他の波長帯域に対して十分に拡張可能である。多くの例は、全可視スペクトルにわたり又は青色スペクトルにわたり反射コントラストを向上させることに注目したが、当然ながら、他の色(緑色及び青色)の帯域についての反射コントラストを個々に向上させることも可能である。実際に、緑色及び赤色のスペクトルにおける性能向上は、青色スペクトルにおける場合よりも著しい。代わりに、かかるデバイスが、光学的な遠隔通信システムにおける使用に関し、近傍の赤外波長(〜1.0−1.5μm)で、若しくは、遠赤外(20μm等)において、あるいは、電磁スペクトルにおいて設計され組み立てられてもよい。上記概念は、また、“p”の透過コントラストが>10:1であるに、また、“s”の反射コントラストが>10:1である狭い波長偏光デバイスを製作する可能性を有している。同様に、例えば可視スペクトル又は赤外スペクトルのいずれかにおいて、狭い波長のノッチ偏光ビームスプリッタが設計されてもよい。ここでは、“p”及び“s”の偏光の識別が、優れた全コントラストを備えた偏光ビームスプリッタを製作するために同時に最善化された。また、第3の例のデバイスが、最小の偏光コントラストを提供する中間波長帯域を取り囲む大きな波長帯域を高偏光コントラストを備えて提供し得る構造を備えた偏光フィルタデバイスを提案する。例えば、かかるデバイスは、適切に構築された照明と組み合わせられた場合に、品質及び欠点の点検のために、製品組立ラインにおいて有用であるはずである。
従来技術のワイヤグリッド偏光子の斜視図である。 可視スペクトル内で作用するように設計された従来技術のワイヤグリッド偏光子及び偏光ビームスプリッタの相対的な性能を示すグラフの一例である。 可視スペクトル内で作用するように設計された従来技術のワイヤグリッド偏光子及び偏光ビームスプリッタの相対的な性能を示すグラフの一例である。 従来技術に記述された様式のワイヤグリッド偏光ビームスプリッタに関した、可視スペクトルにおける波長に対する、透過され反射された全体の偏光コントラスト比のグラフの一例である。 従来技術に記述された様式のワイヤグリッド偏光ビームスプリッタに関した、可視スペクトルにおける波長に対する、透過され反射された全体の偏光コントラスト比のグラフの一例である。 従来技術に記述された様式のワイヤグリッド偏光ビームスプリッタに関した、500nmの光についての入射角度に対する全体のコントラストの等高線プロット(contour plot)である。 本発明に係るワイヤグリッド偏光子の一構成例を示す断面説明図である。 本発明に係るワイヤグリッド偏光子の一構成例を示す断面説明図である。 本発明に係るワイヤグリッド偏光子の一構成例を示す断面説明図である。 本発明に係るワイヤグリッド偏光子の一構成例を示す断面説明図である。 本発明に係るワイヤグリッド偏光子の一構成例を示す断面説明図である。 本発明に係るワイヤグリッド偏光子の一構成例を示す断面説明図である。 本発明のワイヤグリッド偏光子に関した、波長に対する反射されまた透過された偏光コントラスト比をあらわす描画プロットの一例である。ここでは、デバイスが6層構造を有する。 本発明のワイヤグリッド偏光子に関した、波長に対する全体のコントラスト比をあらわす描画プロットの一例である。ここでは、デバイスが6層構造を有する。 本発明のワイヤグリッド偏光子に関した、波長に対する反射され透過された偏光コントラスト比をあらわす描画プロットの一例である。ここでは、デバイスが18層構造を有する。 本発明のワイヤグリッド偏光子に関した、波長に対する全体のコントラスト比をあらわす描画プロットの一例である。ここでは、デバイスが18層構造を有する。 本発明のワイヤグリッド偏光子に関した、波長に対する反射され透過された偏光コントラスト比をあらわす描画プロットの一例である。ここでは、デバイスが18層構造を有する。 本発明のワイヤグリッド偏光子に関した、波長に対する全体のコントラスト比をあらわす描画プロットの一例である。ここでは、デバイスが18層構造を有する。 本発明のワイヤグリッド偏光子に関した、波長に対する、反射されまた透過された偏光コントラスト比をあらわす描画プロットの一例である。ここでは、デバイスが18層構造を有する。 本発明のワイヤグリッド偏光子に関した、波長に対する全体のコントラスト比をあらわす描画プロットの一例である。ここでは、デバイスが18層構造を有する。 本発明のワイヤグリッド偏光子に関した、波長に対する、反射されまた透過された偏光コントラスト比をあらわす描画プロットである。ここでは、デバイスが代わりとなる18層構造を有する。 本発明のワイヤグリッド偏光子に関した、波長に対する全体のコントラスト比をあらわす描画プロットの一例である。ここでは、デバイスが代わりとなる18層構造を有する。 本発明のワイヤグリッド偏光子に関した、波長に対する反射され透過された偏光コントラスト比をあらわす描画プロットの一例である。ここでは、デバイスが5層構造を有する。 本発明のワイヤグリッド偏光子に関した、波長に対する全体のコントラスト比をあらわす描画プロットの一例である。ここでは、デバイスが5層構造を有する。 本発明に係るワイヤグリッド偏光子を採用し得る変調光学系の一構成例を示す断面説明図である。 本発明に係るワイヤグリッド偏光子を採用し得る変調光学系の一構成例を示す断面説明図である。 本発明に係るワイヤグリッド偏光子を採用し得る変調光学系の一構成例を示す断面説明図である。 本発明に係るワイヤグリッド偏光子の一製造工程を示す断面説明図である。 本発明に係るワイヤグリッド偏光子の一製造工程を示す断面説明図である。 本発明に係るワイヤグリッド偏光子の一製造工程を示す断面説明図である。
符号の説明
130…入射光ビーム
300…ワイヤグリッド偏光子
305…誘電基材
307…第1の表面
310…複合ワイヤ
315…ワイヤ内下部構造
330a〜i…金属ワイヤ
350a〜i…誘電層

Claims (5)

  1. 入射された光ビームを偏光する埋込み式ワイヤグリッド偏光子であって、
    一表面を有する基材と、
    上記表面上に配置された介在する溝部を備えた平行で細長い複合ワイヤの列であり、その各々が、上記入射光の波長よりも小さいグリッド間隔で隔てられる複合ワイヤの列と、を有しており、
    上記溝部の各々が、光学的な誘電材料で充填され、
    上記複合ワイヤの各々が、交互になった細長い金属層及び細長い誘電層からなるワイヤ内下部構造を有し、また、
    交互になった細長い金属ワイヤと細長い誘電層とからなる上記ワイヤ内下部構造が、少なくとも2つの上記細長い金属ワイヤを有していることを特徴とする埋込み式ワイヤグリッド偏光子。
  2. 上記ワイヤグリッド偏光子が、上記入射光ビームに関して所定角度で方向付けられ、該ワイヤグリッド偏光子が、偏光ビームスプリッタとして機能し、上記角度の入射光ビームから、透過され偏光されたビーム及び反射され偏光されたビームを分離することを特徴とする請求項1記載の埋込み式ワイヤグリッド偏光子。
  3. 交互になった細長い金属ワイヤと細長い誘電層とからなる上記ワイヤ内下部構造が、細長い金属層を通じた共鳴促進トンネル現象をサポートすることにより、上記複合ワイヤの列に直交する偏光状態の光の透過が向上させられることを特徴とする請求項1記載の埋込み式ワイヤグリッド偏光子。
  4. 交互になった細長い金属ワイヤと細長い誘電層とからなる上記ワイヤ内下部構造が、上記誘電層の少なくとも1つを有することを特徴とする請求項1記載の埋込み式ワイヤグリッド偏光子。
  5. 上記入射光が、電磁スペクトルにおけるほぼ0.4〜1.6μmの範囲内にあることを特徴とする請求項1記載の埋込み式ワイヤグリッド偏光子。
JP2003355048A 2002-10-15 2003-10-15 埋込み式ワイヤグリッド偏光子 Pending JP2004280050A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/271,197 US6665119B1 (en) 2002-10-15 2002-10-15 Wire grid polarizer

Publications (2)

Publication Number Publication Date
JP2004280050A true JP2004280050A (ja) 2004-10-07
JP2004280050A5 JP2004280050A5 (ja) 2009-07-02

Family

ID=29711702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355048A Pending JP2004280050A (ja) 2002-10-15 2003-10-15 埋込み式ワイヤグリッド偏光子

Country Status (6)

Country Link
US (2) US6665119B1 (ja)
EP (1) EP1411377B1 (ja)
JP (1) JP2004280050A (ja)
CN (1) CN100383568C (ja)
CA (1) CA2438741A1 (ja)
DE (1) DE60314706T2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139283A (ja) * 2004-11-09 2006-06-01 Lg Electronics Inc 液晶ディスプレイ及びその製造方法
JP2006330178A (ja) * 2005-05-24 2006-12-07 Sony Corp 光学装置及び光学装置の製造方法
JP2008096677A (ja) * 2006-10-11 2008-04-24 Asahi Kasei Corp ワイヤグリッド偏光板
JP2008145581A (ja) * 2006-12-07 2008-06-26 Cheil Industries Inc ワイヤーグリッド偏光子及びその製造方法
JP2008145573A (ja) * 2006-12-07 2008-06-26 Seiko Epson Corp 偏光素子とその製造方法、液晶装置、及び電子機器
JP2009105252A (ja) * 2007-10-24 2009-05-14 Cheil Industries Inc 微細パターンの製造方法および光学素子
JP2010501085A (ja) * 2006-08-15 2010-01-14 エーピーアイ ナノファブリケーション アンド リサーチ コーポレーション 偏光子薄膜及びこの製作方法
JP2011133530A (ja) * 2009-12-22 2011-07-07 Ricoh Co Ltd 光偏向装置、光偏向アレー、画像投影表示装置
JP4843617B2 (ja) * 2004-12-06 2011-12-21 モックステック・インコーポレーテッド 多層ワイヤグリッド偏光子
JP2016164618A (ja) * 2015-03-06 2016-09-08 大日本印刷株式会社 転写フィルム、転写フィルムの巻取体、光学フィルム、光学フィルムの巻取体、画像表示装置、転写フィルムの製造方法、光学フィルムの製造方法
US9601532B2 (en) 2013-07-29 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Optical filter with Fabry-Perot resonator comprising a plate-shaped wire grid polarizer
JP2020086002A (ja) * 2018-11-19 2020-06-04 デクセリアルズ株式会社 偏光素子、偏光素子の製造方法及び光学機器
WO2023013753A1 (ja) * 2021-08-05 2023-02-09 日東電工株式会社 電磁波シールド

Families Citing this family (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1303792B1 (en) * 2000-07-16 2012-10-03 Board Of Regents, The University Of Texas System High-resolution overlay alignement methods and systems for imprint lithography
US6909473B2 (en) * 2002-01-07 2005-06-21 Eastman Kodak Company Display apparatus and method
US7061561B2 (en) * 2002-01-07 2006-06-13 Moxtek, Inc. System for creating a patterned polarization compensator
JP2004118153A (ja) * 2002-09-30 2004-04-15 Mitsubishi Electric Corp 投写型表示装置
MY136129A (en) 2002-12-13 2008-08-29 Molecular Imprints Inc Magnification correction employing out-of-plane distortion of a substrate
US6867846B2 (en) * 2003-01-15 2005-03-15 Asml Holding Nv Tailored reflecting diffractor for EUV lithographic system aberration measurement
US7268891B2 (en) * 2003-01-15 2007-09-11 Asml Holding N.V. Transmission shear grating in checkerboard configuration for EUV wavefront sensor
EP1597616A4 (en) * 2003-02-10 2008-04-09 Nanoopto Corp UNIVERSAL BROADBAND POLARIZER, DEVICES COMPRISING THE POLARIZER, AND METHOD FOR MANUFACTURING THE POLARIZER
US6943941B2 (en) * 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US7098442B2 (en) * 2003-03-05 2006-08-29 Raytheon Company Thin micropolarizing filter, and a method for making it
EP3226073A3 (en) 2003-04-09 2017-10-11 Nikon Corporation Exposure method and apparatus, and method for fabricating device
US7150622B2 (en) 2003-07-09 2006-12-19 Molecular Imprints, Inc. Systems for magnification and distortion correction for imprint lithography processes
WO2005008301A1 (fr) * 2003-07-23 2005-01-27 Thomson Licensing Dispositif d’eclairage a recyclage de polarisation dans un double prisme
RU2240280C1 (ru) 2003-10-10 2004-11-20 Ворлд Бизнес Ассошиэйтс Лимитед Способ формирования упорядоченных волнообразных наноструктур (варианты)
US7768018B2 (en) * 2003-10-10 2010-08-03 Wostec, Inc. Polarizer based on a nanowire grid
TW201834020A (zh) 2003-10-28 2018-09-16 日商尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造方法
TW201809801A (zh) 2003-11-20 2018-03-16 日商尼康股份有限公司 光學照明裝置、曝光裝置、曝光方法、以及元件製造方法
DE102004006148A1 (de) * 2004-02-04 2005-09-08 Bausenwein, Bernhard, Dr. Vorrichtung und Verfahren zur reziproken Polarisation mit komplementär wirkenden kartesischen Polarisationsschichten (Kreuzpolarisator)
TWI437618B (zh) 2004-02-06 2014-05-11 尼康股份有限公司 偏光變換元件、光學照明裝置、曝光裝置以及曝光方法
US20050270516A1 (en) * 2004-06-03 2005-12-08 Molecular Imprints, Inc. System for magnification and distortion correction during nano-scale manufacturing
US7768624B2 (en) * 2004-06-03 2010-08-03 Board Of Regents, The University Of Texas System Method for obtaining force combinations for template deformation using nullspace and methods optimization techniques
JP4573873B2 (ja) * 2004-06-03 2010-11-04 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム マイクロリソグラフィにおけるアラインメントとオーバーレイを改善するシステムおよび方法
EP1607773B1 (en) * 2004-06-18 2009-03-11 STMicroelectronics (Research & Development) Limited Polarization sensitive solid state image sensor
US7227145B2 (en) * 2004-07-01 2007-06-05 Lockheed Martin Corporation Polarization and wavelength-selective patch-coupled infrared photodetector
US7785526B2 (en) * 2004-07-20 2010-08-31 Molecular Imprints, Inc. Imprint alignment method, system, and template
US20060027290A1 (en) * 2004-08-03 2006-02-09 Nec Corporation Microstructure and manufacturing process thereof
JP2006058615A (ja) * 2004-08-20 2006-03-02 Sumitomo Chemical Co Ltd 金属細線が埋め込まれた偏光分離素子
US7480017B2 (en) * 2004-09-17 2009-01-20 Radiant Images, Inc. Microdisplay
US7414784B2 (en) * 2004-09-23 2008-08-19 Rohm And Haas Denmark Finance A/S Low fill factor wire grid polarizer and method of use
JP2006126338A (ja) * 2004-10-27 2006-05-18 Nippon Sheet Glass Co Ltd 偏光子およびその製造方法
US7561332B2 (en) * 2004-11-30 2009-07-14 Agoura Technologies, Inc. Applications and fabrication techniques for large scale wire grid polarizers
US7351346B2 (en) * 2004-11-30 2008-04-01 Agoura Technologies, Inc. Non-photolithographic method for forming a wire grid polarizer for optical and infrared wavelengths
US20070231421A1 (en) 2006-04-03 2007-10-04 Molecular Imprints, Inc. Enhanced Multi Channel Alignment
US7292326B2 (en) 2004-11-30 2007-11-06 Molecular Imprints, Inc. Interferometric analysis for the manufacture of nano-scale devices
US7630067B2 (en) 2004-11-30 2009-12-08 Molecular Imprints, Inc. Interferometric analysis method for the manufacture of nano-scale devices
US20080055719A1 (en) * 2006-08-31 2008-03-06 Perkins Raymond T Inorganic, Dielectric Grid Polarizer
US7800823B2 (en) 2004-12-06 2010-09-21 Moxtek, Inc. Polarization device to polarize and further control light
US7961393B2 (en) 2004-12-06 2011-06-14 Moxtek, Inc. Selectively absorptive wire-grid polarizer
US20060127830A1 (en) * 2004-12-15 2006-06-15 Xuegong Deng Structures for polarization and beam control
US7619816B2 (en) * 2004-12-15 2009-11-17 Api Nanofabrication And Research Corp. Structures for polarization and beam control
JP4247627B2 (ja) * 2005-02-10 2009-04-02 セイコーエプソン株式会社 光学素子の製造方法
JP4479535B2 (ja) * 2005-02-21 2010-06-09 セイコーエプソン株式会社 光学素子の製造方法
JP4889239B2 (ja) * 2005-05-18 2012-03-07 チェイル インダストリーズ インコーポレイテッド バックライトユニットおよび液晶表示装置
US20060262250A1 (en) * 2005-05-18 2006-11-23 Hobbs Douglas S Microstructured optical device for polarization and wavelength filtering
EP1887390A4 (en) * 2005-05-27 2010-09-15 Zeon Corp GRID POLARIZATION FILM, METHOD FOR PRODUCING THE SAME, OPTICAL LAMINATE, MANUFACTURING METHOD THEREOF, AND LIQUID CRYSTAL DISPLAY
KR20070074787A (ko) * 2005-06-13 2007-07-18 삼성전자주식회사 계조 전압 발생 장치 및 액정 표시 장치
EP1932029A4 (en) * 2005-08-30 2010-10-13 William M Robertson OPTICAL SENSOR BASED ON THE RESONANCE OF AN ELECTROMAGNETIC SURFACE WAVE IN PHOTONIC PROHIBITED BAND MATERIALS AND METHOD OF USE
JP2007109689A (ja) * 2005-10-11 2007-04-26 Seiko Epson Corp 発光素子、発光素子の製造方法及び画像表示装置
TWI279595B (en) * 2005-11-14 2007-04-21 Ind Tech Res Inst Electromagnetic polarizing structure and polarized electromagnetic device
US8228604B2 (en) * 2005-11-14 2012-07-24 Industrial Technology Research Institute Electromagnetic (EM) wave polarizing structure and method for providing polarized electromagnetic (EM) wave
JP2007183524A (ja) * 2006-01-06 2007-07-19 Cheil Industries Inc 偏光光学素子及びそれを用いた液晶表示装置
JP5100146B2 (ja) * 2006-02-28 2012-12-19 キヤノン株式会社 光学素子及び光学素子の製造方法
KR20090003153A (ko) 2006-04-03 2009-01-09 몰레큘러 임프린츠 인코퍼레이티드 다수의 필드와 정렬 마크를 갖는 기판을 동시에 패턴화하는방법
US20070242352A1 (en) * 2006-04-13 2007-10-18 Macmaster Steven William Wire-grid polarizers, methods of fabrication thereof and their use in transmissive displays
FR2900279B1 (fr) * 2006-04-19 2008-06-06 Commissariat Energie Atomique Filtre spectral micro-structure et capteur d'images
US20070297032A1 (en) * 2006-05-17 2007-12-27 Starzent, Inc. Holographic storage system with single switch access
US20070285774A1 (en) * 2006-06-12 2007-12-13 The Boeing Company Augmenting brightness performance of a beam-splitter in a stereoscopic display
US20070297052A1 (en) * 2006-06-26 2007-12-27 Bin Wang Cube wire-grid polarizing beam splitter
US20070296921A1 (en) * 2006-06-26 2007-12-27 Bin Wang Projection display with a cube wire-grid polarizing beam splitter
JP4762804B2 (ja) * 2006-06-28 2011-08-31 チェイル インダストリーズ インコーポレイテッド 偏光分離素子およびその製造方法
JP2008047673A (ja) * 2006-08-14 2008-02-28 Canon Inc 露光装置及びデバイス製造方法
WO2008022097A2 (en) * 2006-08-15 2008-02-21 Api Nanofabrication And Research Corp. Methods for forming patterned structures
US8755113B2 (en) * 2006-08-31 2014-06-17 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
JP5027468B2 (ja) * 2006-09-15 2012-09-19 日本ミクロコーティング株式会社 プローブクリーニング用又はプローブ加工用シート、及びプローブ加工方法
TW200815787A (en) * 2006-09-20 2008-04-01 Ind Tech Res Inst Polarization light source
JP2008107720A (ja) * 2006-10-27 2008-05-08 Enplas Corp 偏光子およびその製造方法
KR101294004B1 (ko) * 2006-11-02 2013-08-07 삼성디스플레이 주식회사 편광판, 이를 갖는 표시패널 및 표시장치
KR101281164B1 (ko) * 2006-11-21 2013-07-02 삼성디스플레이 주식회사 와이어 그리드 편광자 및 이의 제조방법
US20080129930A1 (en) * 2006-12-01 2008-06-05 Agoura Technologies Reflective polarizer configuration for liquid crystal displays
JP5205747B2 (ja) * 2006-12-08 2013-06-05 ソニー株式会社 液晶表示装置および投射型表示装置
CN101611333A (zh) * 2006-12-08 2009-12-23 纽约市立大学研究基金会 在复合材料中控制光的器件和方法
KR100829756B1 (ko) * 2007-03-02 2008-05-16 삼성에스디아이 주식회사 편광자 및 그를 포함하는 유기 발광 표시 장치
JP4949966B2 (ja) * 2007-03-02 2012-06-13 三星モバイルディスプレイ株式會社 有機発光表示装置
KR20080092784A (ko) 2007-04-13 2008-10-16 삼성전자주식회사 나노 와이어 그리드 편광자 및 이를 채용한 액정디스플레이 장치
US7789515B2 (en) 2007-05-17 2010-09-07 Moxtek, Inc. Projection device with a folded optical path and wire-grid polarizer
US7618178B2 (en) 2007-06-11 2009-11-17 SKC Haas Display Films Co., Lt.d Backlight containing formed birefringence reflective polarizer
JP2009031392A (ja) * 2007-07-25 2009-02-12 Seiko Epson Corp ワイヤーグリッド型偏光素子、その製造方法、液晶装置および投射型表示装置
JP2009031537A (ja) * 2007-07-27 2009-02-12 Seiko Epson Corp 光学素子およびその製造方法、液晶装置、ならびに電子機器
US8451427B2 (en) * 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
EP2046065A1 (en) * 2007-10-04 2009-04-08 Barco NV Split scrolling illumination for light modulator panels
JP5267029B2 (ja) 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
EP2179329A1 (en) * 2007-10-16 2010-04-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
EP2179330A1 (en) 2007-10-16 2010-04-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) * 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US20090231702A1 (en) 2008-03-17 2009-09-17 Qihong Wu Optical films and methods of making the same
WO2009125751A1 (ja) * 2008-04-08 2009-10-15 旭硝子株式会社 ワイヤグリッド型偏光子の製造方法
JP2010009029A (ja) * 2008-05-26 2010-01-14 Canon Inc 光学素子の製造方法及び光学素子
KR101695034B1 (ko) * 2008-05-28 2017-01-10 가부시키가이샤 니콘 공간 광 변조기의 검사 장치, 조명 광학계, 노광 장치, 검사 방법, 조명 광학계의 조정 방법, 조명 방법, 노광 방법, 및 디바이스 제조 방법
JP5459210B2 (ja) * 2008-07-10 2014-04-02 旭硝子株式会社 ワイヤグリッド型偏光子およびその製造方法
US20120075699A1 (en) * 2008-10-29 2012-03-29 Mark Alan Davis Segmented film deposition
US20100284073A1 (en) * 2009-03-04 2010-11-11 General Dynamics Advanced Information Systems System and method for mounting a polarizer
JP2010210706A (ja) * 2009-03-06 2010-09-24 Seiko Epson Corp 偏光素子
KR101610376B1 (ko) * 2009-04-10 2016-04-08 엘지이노텍 주식회사 와이어 그리드 편광자, 이를 포함하는 액정 표시 장치 및 와이어 그리드 편광자의 제조 방법
US8248696B2 (en) * 2009-06-25 2012-08-21 Moxtek, Inc. Nano fractal diffuser
CN102576792B (zh) * 2009-10-22 2015-06-17 日本电气株式会社 发光元件和使用该发光元件的图像显示设备
WO2011048951A1 (ja) * 2009-10-22 2011-04-28 日本電気株式会社 発光素子および該発光素子を用いた画像表示装置
US8913321B2 (en) 2010-09-21 2014-12-16 Moxtek, Inc. Fine pitch grid polarizer
US8611007B2 (en) 2010-09-21 2013-12-17 Moxtek, Inc. Fine pitch wire grid polarizer
KR101319444B1 (ko) * 2010-10-20 2013-10-17 엘지이노텍 주식회사 액정표시장치
KR101197776B1 (ko) 2010-12-27 2012-11-06 엘지이노텍 주식회사 와이어그리드편광자의 제조방법
US20150077851A1 (en) 2010-12-30 2015-03-19 Moxtek, Inc. Multi-layer absorptive wire grid polarizer
JP2012238632A (ja) * 2011-05-10 2012-12-06 Sony Corp 固体撮像装置、固体撮像装置の製造方法、及び、電子機器
US8913320B2 (en) 2011-05-17 2014-12-16 Moxtek, Inc. Wire grid polarizer with bordered sections
US8873144B2 (en) 2011-05-17 2014-10-28 Moxtek, Inc. Wire grid polarizer with multiple functionality sections
WO2013006077A1 (en) 2011-07-06 2013-01-10 Wostec, Inc. Solar cell with nanostructured layer and methods of making and using
DE102011079030B4 (de) 2011-07-12 2014-10-02 Friedrich-Schiller-Universität Jena Polarisator und Verfahren zur Herstellung eines Polarisators
JP5840294B2 (ja) 2011-08-05 2016-01-06 ウォステック・インコーポレイテッドWostec, Inc ナノ構造層を有する発光ダイオードならびに製造方法および使用方法
US9057704B2 (en) 2011-12-12 2015-06-16 Wostec, Inc. SERS-sensor with nanostructured surface and methods of making and using
WO2013109157A1 (en) 2012-01-18 2013-07-25 Wostec, Inc. Arrangements with pyramidal features having at least one nanostructured surface and methods of making and using
JP5938241B2 (ja) * 2012-03-15 2016-06-22 日立マクセル株式会社 光学素子およびその製造方法
US8922890B2 (en) 2012-03-21 2014-12-30 Moxtek, Inc. Polarizer edge rib modification
US9134250B2 (en) 2012-03-23 2015-09-15 Wostec, Inc. SERS-sensor with nanostructured layer and methods of making and using
US9599869B2 (en) * 2013-01-23 2017-03-21 Samsung Display Co., Ltd. Display apparatus
WO2014142700A1 (en) 2013-03-13 2014-09-18 Wostec Inc. Polarizer based on a nanowire grid
KR102117600B1 (ko) * 2013-05-28 2020-06-02 삼성디스플레이 주식회사 편광판 및 이를 포함하는 액정 표시 장치
KR102056902B1 (ko) 2013-05-29 2019-12-18 삼성전자주식회사 와이어 그리드 편광판 및 이를 구비하는 액정 표시패널 및 액정 표시장치
KR102064210B1 (ko) 2013-07-04 2020-01-10 삼성디스플레이 주식회사 편광 소자, 이를 포함하는 편광광 조사 장치 및 이의 제조 방법
KR102089661B1 (ko) 2013-08-27 2020-03-17 삼성전자주식회사 와이어 그리드 편광판 및 이를 구비하는 액정 표시패널 및 액정 표시장치
US20150336340A1 (en) * 2013-09-06 2015-11-26 Asukanet Company, Ltd. Method for producing a light control panel provided with parallelly-arranged light-reflective portions
KR102079163B1 (ko) 2013-10-02 2020-02-20 삼성디스플레이 주식회사 와이어 그리드 편광자, 이를 포함하는 표시 장치 및 이의 제조방법
US9348076B2 (en) 2013-10-24 2016-05-24 Moxtek, Inc. Polarizer with variable inter-wire distance
EP2937665B1 (de) * 2014-04-23 2021-06-16 Hexagon Technology Center GmbH Distanzmessmodul mit einer variablen optischen Abschwächeinheit aus einer LC-Zelle
CN103985924A (zh) * 2014-05-22 2014-08-13 东南大学 一种反射式极化分离器
IL232866B (en) 2014-05-29 2020-08-31 Elta Systems Ltd Polarization rotator
US9684203B2 (en) * 2014-06-25 2017-06-20 Moxtek, Inc. Wire grid polarizer with dual absorptive regions
US20170194167A1 (en) 2014-06-26 2017-07-06 Wostec, Inc. Wavelike hard nanomask on a topographic feature and methods of making and using
GB2528682A (en) * 2014-07-28 2016-02-03 Isis Innovation Plasmonic filter
US10234613B2 (en) 2015-02-06 2019-03-19 Moxtek, Inc. High contrast inverse polarizer
US20170059758A1 (en) 2015-08-24 2017-03-02 Moxtek, Inc. Small-Pitch Wire Grid Polarizer
DE102015115348A1 (de) * 2015-09-11 2017-03-16 Hella Kgaa Hueck & Co. Beleuchtungseinrichtung für ein Kraftfahrzeug
KR20170079671A (ko) * 2015-12-30 2017-07-10 코오롱인더스트리 주식회사 와이어 그리드 편광판 및 이를 포함한 액정표시장치
US10444410B2 (en) 2016-08-16 2019-10-15 Moxtek, Inc. Overcoat wire grid polarizer having conformal coat layer with oxidation barrier and moisture barrier
US10069211B2 (en) * 2016-09-16 2018-09-04 The United States Of America As Represented By The Secretary Of The Navy Broadband circularly polarized patch antenna and method
US10672427B2 (en) 2016-11-18 2020-06-02 Wostec, Inc. Optical memory devices using a silicon wire grid polarizer and methods of making and using
US10139538B2 (en) 2016-11-22 2018-11-27 Moxtek, Inc. Wire grid polarizer with high reflectivity on both sides
WO2018156042A1 (en) 2017-02-27 2018-08-30 Wostec, Inc. Nanowire grid polarizer on a curved surface and methods of making and using
CN107870385A (zh) * 2017-12-22 2018-04-03 苏州大学 一种线栅偏振器的制造方法及制造***
US10852464B2 (en) 2018-03-01 2020-12-01 Moxtek, Inc. High-contrast polarizer
US11079528B2 (en) 2018-04-12 2021-08-03 Moxtek, Inc. Polarizer nanoimprint lithography
US10964507B2 (en) 2018-05-10 2021-03-30 Moxtek, Inc. X-ray source voltage shield
KR20200074662A (ko) 2018-12-17 2020-06-25 삼성전자주식회사 금속-유전체 복합 구조를 구비하는 위상 변환 소자
PH12020050192A1 (en) 2019-07-17 2021-05-17 Moxtek Inc Reflective wire grid polarizer with transparent cap
CN110364823A (zh) * 2019-07-18 2019-10-22 中国科学院光电技术研究所 一种基于金属悬链线光栅的高效率可调谐圆偏振分束器
US11728122B2 (en) 2020-10-23 2023-08-15 Moxtek, Inc. X-ray tube backscatter suppression
CN112350071A (zh) * 2020-11-02 2021-02-09 中国工程物理研究院电子工程研究所 一种反射式太赫兹偏振转换器
CN113534306B (zh) * 2021-07-14 2022-04-19 浙江大学 一种高消光比宽带线偏振片
CN115201953B (zh) * 2022-08-22 2023-01-20 之江实验室 一种双工作波段高衍射效率复合反射光栅

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2224214A (en) 1937-12-28 1940-12-10 Polaroid Corp Light polarizing body
US2287598A (en) 1937-12-28 1942-06-23 Polaroid Corp Method of manufacturing lightpolarizing bodies
US3046839A (en) 1959-01-12 1962-07-31 Polaroid Corp Processes for preparing light polarizing materials
US3235630A (en) 1962-07-17 1966-02-15 Little Inc A Method of making an optical tool
US3479168A (en) 1964-03-09 1969-11-18 Polaroid Corp Method of making metallic polarizer by drawing fusion
US3291550A (en) 1965-04-16 1966-12-13 Polaroid Corp Metallic grid light-polarizing device
US4049944A (en) 1973-02-28 1977-09-20 Hughes Aircraft Company Process for fabricating small geometry semiconductive devices including integrated components
US3969545A (en) 1973-03-01 1976-07-13 Texas Instruments Incorporated Light polarizing material method and apparatus
DE2818103A1 (de) 1978-04-25 1979-11-08 Siemens Ag Verfahren zur herstellung von aus einer vielzahl von auf einer glastraegerplatte angeordneten parallel zueinander ausgerichteten elektrisch leitenden streifen bestehenden polarisatoren
US4221464A (en) 1978-10-17 1980-09-09 Hughes Aircraft Company Hybrid Brewster's angle wire grid infrared polarizer
US4289381A (en) 1979-07-02 1981-09-15 Hughes Aircraft Company High selectivity thin film polarizer
US4514479A (en) 1980-07-01 1985-04-30 The United States Of America As Represented By The Secretary Of The Navy Method of making near infrared polarizers
US4512638A (en) 1982-08-31 1985-04-23 Westinghouse Electric Corp. Wire grid polarizer
US4743092A (en) 1986-11-26 1988-05-10 The United States Of America As Represented By The Secretary Of The Army Polarizing grids for far-infrared and method for making same
US4946231A (en) 1989-05-19 1990-08-07 The United States Of America As Represented By The Secretary Of The Army Polarizer produced via photographic image of polarizing grid
EP0416157A1 (de) 1989-09-07 1991-03-13 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Polarisator
US5122907A (en) 1991-07-03 1992-06-16 Polatomic, Inc. Light polarizer and method of manufacture
US5383053A (en) 1992-04-07 1995-01-17 Hughes Aircraft Company Virtual image display having a high efficiency grid beamsplitter
JPH06138413A (ja) * 1992-10-29 1994-05-20 Canon Inc プレート型偏光分離装置及び該偏光分離装置を用いた偏光照明装置
JPH08184711A (ja) * 1994-12-29 1996-07-16 Sony Corp 偏光光学素子
US5751466A (en) 1996-01-11 1998-05-12 University Of Alabama At Huntsville Photonic bandgap apparatus and method for delaying photonic signals
US5991075A (en) * 1996-11-25 1999-11-23 Ricoh Company, Ltd. Light polarizer and method of producing the light polarizer
US5907427A (en) 1997-10-24 1999-05-25 Time Domain Corporation Photonic band gap device and method using a periodicity defect region to increase photonic signal delay
US6108131A (en) 1998-05-14 2000-08-22 Moxtek Polarizer apparatus for producing a generally polarized beam of light
US6208463B1 (en) 1998-05-14 2001-03-27 Moxtek Polarizer apparatus for producing a generally polarized beam of light
US6081376A (en) 1998-07-16 2000-06-27 Moxtek Reflective optical polarizer device with controlled light distribution and liquid crystal display incorporating the same
US6288840B1 (en) 1999-06-22 2001-09-11 Moxtek Imbedded wire grid polarizer for the visible spectrum
US6122103A (en) * 1999-06-22 2000-09-19 Moxtech Broadband wire grid polarizer for the visible spectrum
US6234634B1 (en) * 1999-07-28 2001-05-22 Moxtek Image projection system with a polarizing beam splitter
US6243199B1 (en) 1999-09-07 2001-06-05 Moxtek Broad band wire grid polarizing beam splitter for use in the visible wavelength region
US6532111B2 (en) 2001-03-05 2003-03-11 Eastman Kodak Company Wire grid polarizer
US20020167727A1 (en) * 2001-03-27 2002-11-14 Hansen Douglas P. Patterned wire grid polarizer and method of use
US6714350B2 (en) * 2001-10-15 2004-03-30 Eastman Kodak Company Double sided wire grid polarizer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139283A (ja) * 2004-11-09 2006-06-01 Lg Electronics Inc 液晶ディスプレイ及びその製造方法
JP4843617B2 (ja) * 2004-12-06 2011-12-21 モックステック・インコーポレーテッド 多層ワイヤグリッド偏光子
JP2006330178A (ja) * 2005-05-24 2006-12-07 Sony Corp 光学装置及び光学装置の製造方法
JP2014219697A (ja) * 2006-08-15 2014-11-20 ポラリゼーション ソリューションズ エルエルシー 直線偏光子、システムと方法、及び製作方法
JP2010501085A (ja) * 2006-08-15 2010-01-14 エーピーアイ ナノファブリケーション アンド リサーチ コーポレーション 偏光子薄膜及びこの製作方法
JP2008096677A (ja) * 2006-10-11 2008-04-24 Asahi Kasei Corp ワイヤグリッド偏光板
JP4520445B2 (ja) * 2006-10-11 2010-08-04 旭化成イーマテリアルズ株式会社 ワイヤグリッド偏光板
JP2008145581A (ja) * 2006-12-07 2008-06-26 Cheil Industries Inc ワイヤーグリッド偏光子及びその製造方法
JP2008145573A (ja) * 2006-12-07 2008-06-26 Seiko Epson Corp 偏光素子とその製造方法、液晶装置、及び電子機器
JP2009105252A (ja) * 2007-10-24 2009-05-14 Cheil Industries Inc 微細パターンの製造方法および光学素子
JP2011133530A (ja) * 2009-12-22 2011-07-07 Ricoh Co Ltd 光偏向装置、光偏向アレー、画像投影表示装置
US9601532B2 (en) 2013-07-29 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Optical filter with Fabry-Perot resonator comprising a plate-shaped wire grid polarizer
JP2016164618A (ja) * 2015-03-06 2016-09-08 大日本印刷株式会社 転写フィルム、転写フィルムの巻取体、光学フィルム、光学フィルムの巻取体、画像表示装置、転写フィルムの製造方法、光学フィルムの製造方法
JP2020086002A (ja) * 2018-11-19 2020-06-04 デクセリアルズ株式会社 偏光素子、偏光素子の製造方法及び光学機器
US11644605B2 (en) 2018-11-19 2023-05-09 Dexerials Corporation Polarizing element having alternately laminated dielectric layers and conductive layers and method for manufacturing polarizing element
JP7333168B2 (ja) 2018-11-19 2023-08-24 デクセリアルズ株式会社 偏光素子、偏光素子の製造方法及び光学機器
WO2023013753A1 (ja) * 2021-08-05 2023-02-09 日東電工株式会社 電磁波シールド

Also Published As

Publication number Publication date
US6665119B1 (en) 2003-12-16
CN1497273A (zh) 2004-05-19
DE60314706D1 (de) 2007-08-16
CA2438741A1 (en) 2004-04-15
DE60314706T2 (de) 2009-07-09
US20040070829A1 (en) 2004-04-15
CN100383568C (zh) 2008-04-23
EP1411377A1 (en) 2004-04-21
EP1411377B1 (en) 2007-07-04
US6788461B2 (en) 2004-09-07

Similar Documents

Publication Publication Date Title
JP2004280050A (ja) 埋込み式ワイヤグリッド偏光子
JP2004280050A5 (ja)
JP4152645B2 (ja) ワイヤグリッド偏光子
KR100714531B1 (ko) 가시 스펙트럼에 대한 광대역 와이어 그리드 편광자
TWI257494B (en) Polarizing optical element and display device including the same
US10310155B2 (en) Multiple-stack wire grid polarizer
US8441710B2 (en) Tunable thin-film filter
US7046442B2 (en) Wire grid polarizer
US20040201889A1 (en) Method and system for providing beam polarization
US20030072079A1 (en) Double sided wire grid polarizer
KR20020066406A (ko) 가시 스펙트럼을 위해 삽입된 전선 격자 편광자
CN109491001B (zh) 基于覆盖折射率匹配层的偏振无关光栅及其制备方法
JP4369256B2 (ja) 分光光学素子
JP4427026B2 (ja) 偏光子および偏光分離素子
Magnusson et al. Cascaded resonant-grating filters: experimental results on lowered sidebands and narrowed lines
RU81601U1 (ru) Резонансное решеточное волноводное зеркало

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A524 Written submission of copy of amendment under section 19 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20090511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602