JP2004244309A5 - - Google Patents

Download PDF

Info

Publication number
JP2004244309A5
JP2004244309A5 JP2004016347A JP2004016347A JP2004244309A5 JP 2004244309 A5 JP2004244309 A5 JP 2004244309A5 JP 2004016347 A JP2004016347 A JP 2004016347A JP 2004016347 A JP2004016347 A JP 2004016347A JP 2004244309 A5 JP2004244309 A5 JP 2004244309A5
Authority
JP
Japan
Prior art keywords
raw material
catalyst
solvent
dissolving
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004016347A
Other languages
Japanese (ja)
Other versions
JP2004244309A (en
JP4532913B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004016347A priority Critical patent/JP4532913B2/en
Priority claimed from JP2004016347A external-priority patent/JP4532913B2/en
Publication of JP2004244309A publication Critical patent/JP2004244309A/en
Publication of JP2004244309A5 publication Critical patent/JP2004244309A5/ja
Application granted granted Critical
Publication of JP4532913B2 publication Critical patent/JP4532913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

第二の本発明は、鎖状飽和炭化水素、鎖状不飽和炭化水素、環状飽和炭化水素及び含有酸素に対する含有炭素の原子比率が2.0以上であるアルコールから選択される一種類以上の原料と、
遷移金属元素含有物質、アルミナ、シリカ及び炭化珪素から選択される一つ以上の物質から成る触媒に、前記原料を溶解する溶媒、前記触媒を溶解する溶媒、水、ヘリウム、アルゴン、窒素、水素、一酸化炭素、亜酸化窒素及びアンモニアから選択される少なくとも一種以上を添加し、
100〜800℃の温度範囲かつ0.2MPa〜60MPaの圧力下で、少なくとも前記原料を溶解する溶媒、前記触媒を溶解する溶媒、水、ヘリウム、アルゴン、窒素、水素、一酸化炭素、亜酸化窒素及びアンモニアから選択される少なくとも一種以上を超臨界流体又は亜臨界流体にして前記原料と接触させる工程を含むことを特徴とするナノカーボン材料の製造方法を提供するものである。
The second present invention provides at least one kind of raw material selected from chain saturated hydrocarbons, chain unsaturated hydrocarbons, cyclic saturated hydrocarbons, and alcohols having an atomic ratio of carbon to oxygen of 2.0 or more. When,
Transition metal element-containing material, alumina, a catalyst comprising at least one material selected from silica and silicon carbide , a solvent for dissolving the raw material, a solvent for dissolving the catalyst, water, helium, argon, nitrogen, hydrogen, At least one or more selected from carbon monoxide, nitrous oxide and ammonia ,
A solvent dissolving at least the raw material, a solvent dissolving the catalyst, water, helium, argon, nitrogen, hydrogen, carbon monoxide, nitrous oxide in a temperature range of 100 to 800 ° C. and a pressure of 0.2 MPa to 60 MPa And a step of converting at least one selected from ammonia and ammonia into a supercritical fluid or a subcritical fluid and contacting the raw material with the raw material.

Claims (8)

鎖状飽和炭化水素、鎖状不飽和炭化水素、環状飽和炭化水素及び含有酸素に対する含有炭素の原子比率が2.0以上であるアルコールから選択される一種類以上の化合物である原料を、
遷移金属元素含有物質、アルミナ、シリカ及び炭化珪素から選択される一種以上の物質からなる触媒の存在下、
100〜800℃の温度範囲かつ0.2MPa〜60MPaの圧力下で、前記原料を超臨界流体又は亜臨界流体とする工程を含むことを特徴とするナノカーボン材料の製造方法。
A raw material that is one or more compounds selected from alcohols in which the atomic ratio of the carbon atom to the chain saturated hydrocarbon, the chain unsaturated hydrocarbon, the cyclic saturated hydrocarbon, and the oxygen contained is 2.0 or more,
In the presence of a catalyst comprising one or more substances selected from transition metal element-containing substances, alumina, silica and silicon carbide,
A method for producing a nanocarbon material, comprising a step of converting the raw material into a supercritical fluid or a subcritical fluid in a temperature range of 100 to 800 ° C. and a pressure of 0.2 MPa to 60 MPa.
鎖状飽和炭化水素、鎖状不飽和炭化水素、環状飽和炭化水素及び含有酸素に対する含有炭素の原子比率が2.0以上であるアルコールから選択される一種類以上の原料と、
遷移金属元素含有物質、アルミナ、シリカ及び炭化珪素から選択される一つ以上の物質から成る触媒に、前記原料を溶解する溶媒、前記触媒を溶解する溶媒、水、ヘリウム、アルゴン、窒素、水素、一酸化炭素、亜酸化窒素及びアンモニアから選択される少なくとも一種以上を添加し、
100〜800℃の温度範囲かつ0.2MPa〜60MPaの圧力下で、少なくとも前記原料を溶解する溶媒、前記触媒を溶解する溶媒、水、ヘリウム、アルゴン、窒素、水素、一酸化炭素、亜酸化窒素及びアンモニアから選択される少なくとも一種以上を超臨界流体又は亜臨界流体にして前記原料と接触させる工程を含むことを特徴とするナノカーボン材料の製造方法。
Chain saturated hydrocarbons, chain unsaturated hydrocarbons, cyclic saturated hydrocarbons and at least one kind of raw material selected from alcohols having an atomic ratio of contained carbon to contained oxygen of 2.0 or more,
Transition metal element-containing material, alumina, a catalyst comprising one or more materials selected from silica and silicon carbide , a solvent for dissolving the raw material, a solvent for dissolving the catalyst, water, helium, argon, nitrogen, hydrogen, At least one or more selected from carbon monoxide, nitrous oxide and ammonia ,
A solvent for dissolving at least the raw material, a solvent for dissolving the catalyst, water, helium, argon, nitrogen, hydrogen, carbon monoxide, nitrous oxide in a temperature range of 100 to 800 ° C. and a pressure of 0.2 MPa to 60 MPa And a step of converting at least one selected from ammonia and ammonia into a supercritical fluid or a subcritical fluid and contacting the raw material with the raw material.
超臨界流体又は亜臨界流体とした原料及び前記触媒に加えて、前記原料を溶解する溶媒、前記触媒を溶解する溶媒、水、ヘリウム、アルゴン、窒素、水素、一酸化炭素、亜酸化窒素及びアンモニアから選択される少なくとも一種以上とを添加して原料に接触させることを特徴とする請求項1に記載のナノカーボン材料の製造方法。   Supercritical fluid or subcritical fluid In addition to the raw material and the catalyst, a solvent for dissolving the raw material, a solvent for dissolving the catalyst, water, helium, argon, nitrogen, hydrogen, carbon monoxide, nitrous oxide and ammonia The method for producing a nanocarbon material according to claim 1, wherein at least one selected from the group consisting of: 前記原料の溶媒が、二酸化炭素、芳香族炭化水素及びエーテルから選択される少なくとも一種以上のものであることを特徴とする請求項2又は3に記載のナノカーボン材料の製造方法。 The method for producing a nanocarbon material according to claim 2 , wherein the solvent of the raw material is at least one selected from carbon dioxide, aromatic hydrocarbon, and ether. 前記遷移金属元素含有物質が、遷移金属及び遷移金属化合物から選択される少なくとも一種以上であることを特徴とする請求項1〜4のいずれかに記載のナノカーボン材料の製造方法。 The method for producing a nanocarbon material according to any one of claims 1 to 4, wherein the transition metal element-containing substance is at least one selected from transition metals and transition metal compounds. 前記原料を超臨界流体又は亜臨界流体とする工程又は超臨界流体又は亜臨界流体と接触させる工程を、触媒と界面活性剤の存在下で行うことを特徴とする請求項1〜5のいずれかに記載のナノカーボン材料の製造方法。 The step of making the raw material a supercritical fluid or a subcritical fluid or a step of bringing the raw material into contact with a supercritical fluid or a subcritical fluid is performed in the presence of a catalyst and a surfactant . 3. The method for producing a nanocarbon material according to item 1. 前記原料を超臨界流体又は亜臨界流体とする工程又は超臨界流体又は亜臨界流体と接触させる工程で得られた反応生成物を400〜2800℃の温度で焼成する工程を含むことを特徴とする請求項1〜6のいずれかに記載のナノカーボン材料の製造方法。 A step of baking the reaction product obtained in the step of making the raw material a supercritical fluid or a subcritical fluid or in a step of bringing the raw material into contact with a supercritical fluid or a subcritical fluid at a temperature of 400 to 2800 ° C. A method for producing a nanocarbon material according to any one of claims 1 to 6 . 得られるナノカーボン材料を構成するユニットの形状が、少なくともフィラメント状(ワーム状)及びチューブ状から選択される形状であることを特徴とする請求項1〜7のいずれかに記載のナノカーボン材料の製造方法。 The nanocarbon material according to any one of claims 1 to 7, wherein a shape of a unit constituting the obtained nanocarbon material is at least a shape selected from a filament shape (worm shape) and a tube shape. Production method.
JP2004016347A 2003-01-23 2004-01-23 Method for producing nanocarbon material Expired - Fee Related JP4532913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016347A JP4532913B2 (en) 2003-01-23 2004-01-23 Method for producing nanocarbon material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003014212 2003-01-23
JP2004016347A JP4532913B2 (en) 2003-01-23 2004-01-23 Method for producing nanocarbon material

Publications (3)

Publication Number Publication Date
JP2004244309A JP2004244309A (en) 2004-09-02
JP2004244309A5 true JP2004244309A5 (en) 2007-03-08
JP4532913B2 JP4532913B2 (en) 2010-08-25

Family

ID=33032008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016347A Expired - Fee Related JP4532913B2 (en) 2003-01-23 2004-01-23 Method for producing nanocarbon material

Country Status (1)

Country Link
JP (1) JP4532913B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4704013B2 (en) * 2004-11-16 2011-06-15 財団法人電力中央研究所 Carbon nanotube production method and apparatus
JP4061411B2 (en) * 2005-01-25 2008-03-19 国立大学法人信州大学 Field emission electrode and manufacturing method thereof
JP4856878B2 (en) * 2005-01-28 2012-01-18 キヤノン株式会社 Method for producing silicon carbide
JP2006231107A (en) * 2005-02-22 2006-09-07 National Institute Of Advanced Industrial & Technology Catalyst for manufacturing nanocarbon material, catalyst fine particles, manufacturing method of catalyst for manufacturing nanocarbon material
KR100696311B1 (en) 2005-06-02 2007-03-19 석준호 Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids
JP4466549B2 (en) 2005-12-06 2010-05-26 トヨタ自動車株式会社 Method for producing single-walled carbon nanotubes with increased diameter
KR101060731B1 (en) 2006-11-30 2011-08-30 석준호 Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids
KR20100028356A (en) * 2008-09-04 2010-03-12 한국과학기술연구원 Transition metal oxides/multi-walled carbon nanotube nanocomposite and method for manufacturing the same
KR101174870B1 (en) 2009-02-06 2012-08-17 에이비씨상사 주식회사 Graphene complex composition and transparent conductive film using thereof
KR101622304B1 (en) 2009-08-05 2016-05-19 삼성전자주식회사 Substrate comprising graphene and process for preparing the same
JP5476883B2 (en) * 2009-09-15 2014-04-23 独立行政法人物質・材料研究機構 Nanocarbon material composite and method for producing the same
WO2014054792A1 (en) * 2012-10-05 2014-04-10 ソニー株式会社 Active material, process for manufacturing active material, electrode, and secondary battery
KR102093441B1 (en) * 2013-03-11 2020-03-25 삼성전자주식회사 A method for preparing grapheme
JP6074803B2 (en) * 2013-03-26 2017-02-08 国立研究開発法人物質・材料研究機構 Carbon nanoball and method for producing the same
JP6289995B2 (en) 2014-05-13 2018-03-07 株式会社東芝 Negative electrode, negative electrode manufacturing method, and nonaqueous electrolyte battery
US11180236B1 (en) 2016-06-02 2021-11-23 X Development Llc Carbon pressure vessels for gas storage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541434B2 (en) * 1992-11-20 1996-10-09 日本電気株式会社 Carbon nano tube manufacturing method
JP2737736B2 (en) * 1996-01-12 1998-04-08 日本電気株式会社 Method for producing carbon single-walled nanotube
JP3365475B2 (en) * 1997-03-27 2003-01-14 三菱化学株式会社 Method for producing monoatomic carbon nanotubes
JP3986711B2 (en) * 1998-07-21 2007-10-03 昭和電工株式会社 Method for producing single-walled carbon nanotube
JP3007983B1 (en) * 1998-09-05 2000-02-14 工業技術院長 Manufacturing method of ultra fine carbon tube
JP3963639B2 (en) * 2000-03-09 2007-08-22 ダイセル化学工業株式会社 Titanium oxide composite carbide, method for producing the same, and method for decomposing chemical substances thereby
JP2002037614A (en) * 2000-07-24 2002-02-06 Kagawa Industry Support Foundation Filament carbon and method of producing it using hydrothermal synthesis
JP2004142955A (en) * 2002-10-21 2004-05-20 Mitsubishi Gas Chem Co Inc Process for manufacturing precursor of metal/carbon composite material

Similar Documents

Publication Publication Date Title
JP2004244309A5 (en)
Konieczny et al. Catalyst development for thermocatalytic decomposition of methane to hydrogen
Wu et al. Mechanistic study of oxidative coupling of methane over Mn2O3 Na2WO4SiO2 catalyst
TWI495613B (en) Process for preparing higher hydridosilanes
WO2003012008A3 (en) Production of fischer-tropsch synthesis produced wax
Al-Juaied et al. Ethylene epoxidation in a catalytic packed-bed membrane reactor: experiments and model
TW200911687A (en) Integrated processes for generating carbon monoxide for carbon nanomaterial production
Zheng et al. Oxidation of graphene with variable defects: alternately symmetrical escape and self-restructuring of carbon rings
Lee et al. Application of multisection packing concept to sorption-enhanced steam methane reforming reaction for high-purity hydrogen production
Van Looij et al. Mechanism of the partial oxidation of methane to synthesis gas over Pd
Simate et al. Kinetic model of carbon nanotube production from carbon dioxide in a floating catalytic chemical vapour deposition reactor
Beaver et al. Selection of CO2 chemisorbent for fuel-cell grade H2 production by sorption-enhanced water gas shift reaction
JP2006504762A5 (en)
JP4798347B2 (en) TiC ultrafine particles or TiO2 ultrafine particle-supporting carbon nanotubes, TiC nanotubes and methods for producing them
Li et al. CO2 decomposition over Pd membrane surfaces
Iglesia et al. Structure-sensitivity and ensemble effects in reactions of strongly adsorbed intermediates: catalytic dehydrogenation and dehydration of formic acid on nickel
KR20150028800A (en) Method for purification of ammonia, mixtures of nitrogen and hydrogen, or nitrogen, hydrogen and ammonia
Somekawa et al. VOC decomposition over a wide range of temperatures using thermally stable Cr6+ sites in a porous silica matrix
Spinicci et al. A study of the catalytic combustion of methane in non-steady conditions
EP1765732B1 (en) Process for producing ammonia on the basis of nitrogen and hydrogen obtained from natural gas
KR101632502B1 (en) Method of manufacturing a mixed metal oxide catalyst and removing method of carbon monoxide in hydrogen
Nguyen et al. Fabrication of the coke-resistant and easily reducible Ni/SiC catalyst for CO2 methanation
JPWO2019171882A1 (en) A method for removing oxygen from crude carbon monoxide gas and a method for purifying carbon monoxide gas
Lee et al. Self-oscillatory behavior in toluene oxidation on zeolite-NaX
Pełech Preparation of carbon nanotubes using cvd CVD method