KR100696311B1 - Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids - Google Patents

Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids Download PDF

Info

Publication number
KR100696311B1
KR100696311B1 KR1020050047220A KR20050047220A KR100696311B1 KR 100696311 B1 KR100696311 B1 KR 100696311B1 KR 1020050047220 A KR1020050047220 A KR 1020050047220A KR 20050047220 A KR20050047220 A KR 20050047220A KR 100696311 B1 KR100696311 B1 KR 100696311B1
Authority
KR
South Korea
Prior art keywords
supercritical fluid
mea
catalyst
manufacturing
carrier
Prior art date
Application number
KR1020050047220A
Other languages
Korean (ko)
Other versions
KR20060125270A (en
Inventor
석준호
김화용
변정연
강유찬
Original Assignee
석준호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 석준호 filed Critical 석준호
Priority to KR1020050047220A priority Critical patent/KR100696311B1/en
Publication of KR20060125270A publication Critical patent/KR20060125270A/en
Application granted granted Critical
Publication of KR100696311B1 publication Critical patent/KR100696311B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • H01M4/885Impregnation followed by reduction of the catalyst salt precursor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

본 발명은 고분자 전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell, 이하 PEMFC)에 관한 발명으로 연료전지의 핵심부인 전극촉매 및 막전극 접합체(Membrane Electrode Assembly, 이하 MEA)를 제조함에 있어, 초임계 유체를 용매로 하여 제조하는 방법으로, 성능이 뛰어나면서도 제조공정을 단순화한 것이다.The present invention relates to a polymer electrolyte fuel cell (PEMFC), and to manufacturing an electrode catalyst and a membrane electrode assembly (MEA), which are core parts of a fuel cell, a supercritical fluid is used as a solvent. It is a manufacturing method using the above, which simplifies the manufacturing process while having excellent performance.

고분자 전해질 연료전지, 전극촉매, MEA, 초임계 유체  Polymer electrolyte fuel cell, electrode catalyst, MEA, supercritical fluid

Description

초임계 유체를 이용한 연료전지용 전극촉매의 담지 및 일체형 막/전극 접합체 제조 방법 {Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids}Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids

도1은 고분자 전해질 연료전지의 단면 모식도 1 is a schematic cross-sectional view of a polymer electrolyte fuel cell

도2는 본 발명에서 일체형 MEA를 제조하는 방법을 나타낸 제조 개념도 Figure 2 is a manufacturing conceptual diagram showing a method of manufacturing an integrated MEA in the present invention

도3은 본 발명에서 제조과정 중의 담지체가 도포된 나피온 막의 단면도 Figure 3 is a cross-sectional view of the Nafion membrane coated with the carrier during the manufacturing process in the present invention

1.음극1.cathode

2.카본클로쓰 또는 카본페이퍼2.carbon cloth or carbon paper

3.음극의 담지체에 담지된 촉매층3. Catalyst layer supported on the carrier of the cathode

4.고분자 전해질 막4.polymer electrolyte membrane

5.양극5.anode

6.양극의 담지체에 담지된 촉매층6. Catalyst layer supported on the carrier of the anode

7.고분자 전해질 층7.polymer electrolyte layer

8.담지체층8.support layer

연료전지는 물의 전기분해 반응의 역반응을 이용하여 수소 혹은 그 외의 탄화수소류 및 산소를 가지고 전기를 생산해내는 일종의 직류발전 장치이다. 이 중에서 전해질을 고분자 막으로 사용하였을 경우를 고분자 전해질 연료전지(PEMFC)라 하며, 이 PEMFC는 다른 종류의 연료전지에 비해 비교적 낮은 온도에서 구동되고, 효율이 높으며, 전류밀도 및 출력밀도가 크고, 시동시간이 짧으며, 또한 전해질로 고체인 고분자막을 이용하였기 때문에 무공해 차량의 동력원 및 이동용 전원으로 관심을 받는 분야이다.   A fuel cell is a type of direct current generator that generates electricity with hydrogen or other hydrocarbons and oxygen using a reverse reaction of water electrolysis. Among these, when the electrolyte is used as a polymer membrane, it is called a polymer electrolyte fuel cell (PEMFC). The PEMFC is operated at a relatively low temperature, has high efficiency, has a high current density and a high power density, Since the start-up time is short and a solid polymer membrane is used as the electrolyte, it is a field of interest as a power source and a power source for a pollution-free vehicle.

[반응식][Scheme]

H2 -> 2H+ + 2e- H 2 -> 2H + + 2e -

1/2O2 + 2H+ +2e- -> H2O 1 / 2O 2 + 2H + + 2e - -> H 2 O

상기는 PEMFC의 구동 반응식을 나타낸 것으로 음극(1)에서는 H2가 카본페이퍼 또는 카본The above shows the reaction scheme of the PEMFC. In the cathode 1, H 2 is carbon paper or carbon.

클로쓰(2) 층을 지나면서 확산되어, 다공성의 담지체에 담지되어 있는 촉매 Pt(3)와 만나 반응하여 수소 이온의 형태로 고분자 전해질 막(4)을 타고 양극(5)으로 이동하여, 공급되는 산소와 만나 촉매층(6)에서 반응하여 물을 형성하게 되며, 이때 생성되는 전자를 이용하는 것이 PEMFC의 원리이다.It diffuses through the cloth (2) layer, meets and reacts with the catalyst Pt (3) supported on the porous carrier, and moves to the anode (5) via the polymer electrolyte membrane (4) in the form of hydrogen ions, PEMFC is a principle of using the generated electrons by reacting with the supplied oxygen and reacting in the catalyst layer 6.

본 발명은 초임계 유체를 이용하여 담지체에 전극촉매를 담지하는 방법과, 고분자 전해질 연료전지의 핵심부인 막-전극 접합체(MEA) 및 제조방법에 관한 것이다.The present invention relates to a method of supporting an electrode catalyst on a support using a supercritical fluid, a membrane-electrode assembly (MEA), which is an essential part of a polymer electrolyte fuel cell, and a manufacturing method.

기존의 일반적인 전극촉매 담지법은 솔루션 상에서 담지체에 촉매를 함침하고 이를 환원시키는 방법이었다. 그러나 본 발명에서는 솔루션 상이 아닌, 초임계 유체상에서 전극촉매를 담지하는 방법으로, 기존의 방법보다 효과적인 함침을 할 수 있다는 장점을 가진다. 초임계 유체란 임계점 이상의 온도 및 압력을 가지는 물질의 상태를 나타낸 용어로서, 초임계 유체의 밀도는 액체의 밀도와 비슷하지만 점도는 기체의 점도처럼 낮기 때문에 상기 초임계 유체의 확산계수가 액체의 확산계수에 비하여 수백 또는 수천 배 정도 크다. 그러므로, 초임계 유체를 용매로 사용할 경우 점도가 기체처럼 작으므로 시료 침투력이 좋고, 확산계수가 크므로 물질의 평형상태에 빠르게 접근할 수 있어 함침 공정에 유리하다. 전술한 초임계 유체로 사용하기 위한 적합한 물질로는 폭발성이나 인화성이 낮고, 임계온도나 임계압력이 비교적 낮은 물리적 특성을 지닌 물질이 유리하다. 그러므로, 전술한 물리적 특성을 고려하여 볼 때, 바람직하게는, 비극성 유기용매인 이산화탄소를 사용할 수 있다.Conventional electrocatalyst support has been a method of impregnating a catalyst in a support on a solution and reducing it. However, in the present invention, the method of supporting the electrocatalyst in the supercritical fluid phase, rather than the solution phase, has the advantage that the impregnation can be more effective than the conventional method. Supercritical fluid is a term used to describe a state of a substance having a temperature and pressure above a critical point. Since the density of a supercritical fluid is similar to that of a liquid, but the viscosity is as low as that of a gas, the diffusion coefficient of the supercritical fluid is diffusion of a liquid. Hundreds or thousands of times larger than the coefficient. Therefore, when the supercritical fluid is used as a solvent, the viscosity is as small as gas, so the sample penetration is good, and the diffusion coefficient is large, so that the equilibrium state of the material can be quickly accessed, which is advantageous for the impregnation process. Suitable materials for use as the above-mentioned supercritical fluids are materials having physical properties of low explosiveness or flammability and relatively low critical temperature or critical pressure. Therefore, in view of the above-described physical properties, carbon dioxide, which is preferably a nonpolar organic solvent, may be used.

또한 일체형 MEA는 기존의 MEA(2,3,4,6) 제조 방법과는 전혀 다른 새로운 기술로서, 기존의 MEA는 기체가 확산되어 들어와서 반응하는 전극층(2,3)과 수소 이온이 생성되어 넘어가는 전해질막(4)를 각각 제조 방법에 의해 제조하여 가열 압착하는 방식으로 제작한 반면, 본 발명에서는 막과 전극을 제조단계에서 하나로 제조하는 일체형 MEA를 제조한 것이다.In addition, the integrated MEA is a new technology that is completely different from the existing MEA (2, 3, 4, 6) manufacturing method, and the existing MEA generates hydrogen ions and electrode layers (2, 3) that react with gas diffusion. Whereas the electrolyte membrane 4 is produced by the manufacturing method by the heat-compression method, respectively, in the present invention, an integral MEA is prepared in which the membrane and the electrode are manufactured as one in the manufacturing step.

본 발명은 먼저 초임계 유체를 이용하여 담지체에 촉매를 담지함에 있어, 기존의 솔루션에서가 아닌 초임계 유체상에서 하는 것으로, 이는 초임계 유체는 점도가 기체와 비슷한 정도이므로 시료에의 침투력 및 확산이 좋으며, 담지체 표면에서의 표면장력이 작용하지 않도록 하므로 효과적으로 금속 전조물이 함침되어질 수 있다는 장점을 이용하여 보다 효과적으로 촉매를 담지할 수 있다.In the present invention, in the case of supporting a catalyst on a support using a supercritical fluid, it is performed in a supercritical fluid rather than in a conventional solution. Since the supercritical fluid has a viscosity similar to that of a gas, the penetration force and diffusion into a sample This is good, so that the surface tension at the surface of the carrier does not work so that the catalyst can be more effectively supported by using the advantage that the metal precursor can be impregnated effectively.

또한 MEA의 제조에 있어, 기존의 MEA의 가열압착인 제조 방식의 문제점인 막과 전극 사이에서의 발생하는 계면저항을 제거하도록 막과 전극을 하나의 형태로 만드는 일체형 MEA를 제조하여 PEMFC의 성능을 향상시키고, 막 및 전극을 제조한 후에 이를 다시 가열 압착했던 방식 대신 일체형 MEA를 제조함으로써 가열 압착 단계를 생략하도록 하여 MEA 제조 공정을 단순화 시키는 것을 목적으로 한다.In addition, in the manufacture of MEA, PEMFC performance is improved by fabricating an integrated MEA in which the membrane and the electrode are formed in one form so as to remove the interfacial resistance generated between the membrane and the electrode, which is a problem of the conventional manufacturing method, which is heat-compression of the MEA. It is intended to simplify the MEA manufacturing process by improving the temperature, and by eliminating the heat compression step by manufacturing the integrated MEA instead of the method in which the film and the electrode are manufactured and then heat-compressed again.

본 발명은 두 가지로 이루어져 있다. 초임계 유체를 이용한 전극촉매의 담지 방법과 이를 이용하여 일체형 MEA를 제조하는 방법이다. 본 발명에서는 종래의 솔루션 상이 아닌, 초임계 유체상에서 전극촉매를 담지하는 방법으로, 기존의 방법보다 효과적인 함침을 할 수 있다는 장점을 가진다. 초임계 유체란 임계점 이상의 온도 및 압력을 가지는 물질의 상태를 나타낸 용어로서, 초임계 유체의 밀도는 액체의 밀도와 비슷하지만 점도는 기체의 점도처럼 낮기 때문에 상기 초임계 유체의 확산계수가 액체의 확산계수에 비하여 수백 또는 수천 배 정도 크다. 그러므로, 초임계 유체를 용매로 사용할 경우 점도가 기체처럼 작으므로 시료 침투력이 좋고, 확산계수가 크므로 물질의 평형상태에 빠르게 접근할 수 있어 함침 공정에 유리하다. 전술한 초임계 유체로 사용하기 위한 적합한 물질로는 폭발성이나 인화성이 낮고, 임계온도나 임계압력이 비교적 낮은 물리적 특성을 지닌 물질이 유리하다. 그러므로, 전술한 물리적 특성을 고려하여 볼 때, 바람직하게는, 비극성 유기용매인 이산화탄소를 사용할 수 있다.The present invention consists of two things. A method of supporting an electrode catalyst using a supercritical fluid and a method of manufacturing an integrated MEA using the same. In the present invention, the method of supporting the electrocatalyst in a supercritical fluid phase, rather than the conventional solution phase, has the advantage that the impregnation can be more effective than the conventional method. Supercritical fluid is a term used to describe a state of a substance having a temperature and pressure above a critical point. Since the density of a supercritical fluid is similar to that of a liquid, but the viscosity is as low as that of a gas, the diffusion coefficient of the supercritical fluid is diffusion of a liquid. Hundreds or thousands of times larger than the coefficient. Therefore, when the supercritical fluid is used as a solvent, the viscosity is as small as gas, so the sample penetration is good, and the diffusion coefficient is large, so that the equilibrium state of the material can be quickly accessed, which is advantageous for the impregnation process. Suitable materials for use as the above-mentioned supercritical fluids are materials having physical properties of low explosiveness or flammability and relatively low critical temperature or critical pressure. Therefore, in view of the above-described physical properties, carbon dioxide, which is preferably a nonpolar organic solvent, may be used.

1. 초임계 유체를 이용한 전극촉매 담지 방법1. Electrocatalyst supporting method using supercritical fluid

촉매를 담지할 수 있는 담지체에 촉매를 함침시키기 위해 이를 초임계 유체 함침이 가능한 고온, 고압에서 버틸 수 있는 반응기에 넣고, 초임계 유체에 녹는 금속 전조물을 넣어 온도 40~100℃에서, 100~400bar 사이의 압력에서 1~24 시간 동안 함침시킨다. 이 때의 금속 전조물은 유기금속 화합물의 형태로 전이금속에 하나 또는 그 이상의 유기 리간드를 포함하는 것으로서, 초임계 유체에 잘 녹는 물질로, beta-diketonate 계열의 Platinum hexafluoroacetylacetonate (이하 Pt(hfac)2), Platinum(II) acetylacetonate (Pt(acac)2), Ruthenium(III) acetylacetonate (Ru(acac)3), 알킬계열의 dimethyl(cyclooctadiene)platinum(II) (CODPtMe2), Bis(2,2,6,6-tetramethyl-3,5-heptanedionato)(1,5-cyclooctadiene)ruthenium (Ru(cod)(tmhd)2)등이 있다. In order to impregnate the catalyst on the support that can support the catalyst, put it in a reactor capable of withstanding high temperature and high pressure capable of supercritical fluid impregnation, and put a metal precursor dissolved in the supercritical fluid at a temperature of 40 to 100 ° C. Immerse for 1 to 24 hours at pressure between ~ 400 bar. At this time, the metal precursor is an organometallic compound, which contains one or more organic ligands in the transition metal, and is well soluble in supercritical fluid, and is a beta-diketonate-based Platinum hexafluoroacetylacetonate (hereinafter Pt (hfac) 2 ). ), Platinum (II) acetylacetonate (Pt (acac) 2 ), Ruthenium (III) acetylacetonate (Ru (acac) 3 ), Alkyl-based dimethyl (cyclooctadiene) platinum (II) (CODPtMe 2 ), Bis (2,2, 6,6-tetramethyl-3,5-heptanedionato) (1,5-cyclooctadiene) ruthenium (Ru (cod) (tmhd) 2 ).

Figure 112005029450582-pat00001
Figure 112005029450582-pat00002
Figure 112005029450582-pat00003
Figure 112005029450582-pat00001
Figure 112005029450582-pat00002
Figure 112005029450582-pat00003

Figure 112005029450582-pat00004
Figure 112005029450582-pat00005
Figure 112005029450582-pat00004
Figure 112005029450582-pat00005

여기에서 ruthenium은 PEMFC용 platinum 촉매의 제조 외에, PEMFC의 일종인 수소 대신 메탄올을 연료로 사용하는 직접 메탄올 연료전지(DMFC)용 촉매 Pt-Ru 합금의 제조를 위해 쓰인다. 이는 초임계 유체를 용매로 하여 금속 전조물을 녹여 전해질 막의 담지체층에 금속 전조물을 함침시키는 것으로, 초임계 유체는 점도가 기체와 비슷한 정도이기에 시료에의 침투력 및 확산이 좋으며, 담지체 표면에서의 표면장력이 작용하지 않도록 하므로 효과적으로 금속 전조물이 함침되어질 수 있다는 장점을 가진다. Here, ruthenium is used for the production of a catalyst Pt-Ru alloy for direct methanol fuel cell (DMFC) using methanol as fuel instead of hydrogen, which is a kind of PEMFC. This impregnates the metal precursor with the supercritical fluid as a solvent and impregnates the metal precursor in the electrolyte layer of the electrolyte membrane. Since the supercritical fluid has a viscosity similar to that of gas, the penetration and diffusion into the sample are good. Since the surface tension of does not work, it has the advantage that the metal precursor can be effectively impregnated.

이렇게 금속 전조물이 함침된 담지체는 질소 분위기 하의 100~500℃의 고온에서 환원시키거나, 환원제를 이용하여 30~80℃ 2~100mM 용액 내에서 환원시켜 금속 전구체를 유기금속 화합물의 형태에서 금속의 형태로 전환시켜 담지체에 Pt 또는 Pt-Ru 금속 촉매가 담지되도록 한다.The supporting material impregnated with the metal precursor is reduced at a high temperature of 100 to 500 ° C. under a nitrogen atmosphere, or reduced in a 30 to 80 ° C. 2 to 100 mM solution using a reducing agent, thereby reducing the metal precursor in the form of an organometallic compound. It is converted into the form of so that the support is supported on the Pt or Pt-Ru metal catalyst.

2. 일체형 MEA의 제조 방법2. Manufacturing method of integrated MEA

기존의 MEA는 제조된 막과 전극을 가지고 고온에서 가압하여 제조한다. 그러나 이렇게 제조된 MEA는 막과 전극 사이에서 계면 저항이 발생하므로 전지 성능 저하라는 문제점을 가지고 있다. 그리하여 본 발명에서는 이 계면 저항을 제거하기 위해 막과 전극을 제조단계에서부터 일체형으로 만드는 일체형 MEA를 제조방법을 제안한다.Conventional MEAs are manufactured by pressing at a high temperature with the prepared membrane and electrode. However, the manufactured MEA has a problem of deterioration of battery performance because interface resistance occurs between the film and the electrode. Thus, the present invention proposes a method of manufacturing an integrated MEA in which the membrane and the electrode are integrated from the manufacturing stage in order to remove this interface resistance.

본 발명은 도면2의 단계를 거쳐 일체형 MEA를 제조한다. 고분자 전해질 막에, 고분자 전해질 막용 고분자의 솔루션에 담지체를 잘 분산시켜 표면에 도포시킴으로써, 표층에 담지체가 잘 분산되어 있는 고분자 막(도면3)을 제조한다. 상기에서 제조된 막의 담지체층(8)에 촉매를 함침시키기 위해, 위의 1의 전극촉매 제조방법과 동일한 방법으로 초임계 유체를 이용하여 촉매를 함침하고 이를 환원시킨다. 이때 담지체(8)을 감싸고 있는 고분자는 불소계 고분자 또는 이중결합을 포함하는 고분자로, 초임계 유체 내에서 쉽게 팽윤이 일어나므로 효과적으로 금속 전조물이 함침되어질 수 있다는 장점을 가진다.The present invention manufactures the integrated MEA through the steps in FIG. In the polymer electrolyte membrane, the carrier is well dispersed in the solution of the polymer for polymer electrolyte membrane and applied to the surface to prepare a polymer membrane (Fig. 3) in which the carrier is well dispersed in the surface layer. In order to impregnate the catalyst in the carrier layer 8 of the membrane prepared above, the catalyst is impregnated using a supercritical fluid in the same manner as the electrode catalyst production method of 1 above, and reduced. In this case, the polymer surrounding the carrier 8 is a fluorine-based polymer or a polymer including a double bond, and since the swelling occurs easily in the supercritical fluid, the metal precursor can be effectively impregnated.

이상과 같이 본 발명에서는 기존의 방법과는 다른 매체를 용매로 이용하여 촉매를 담지하는 방법과, 가열 압착 방식이 아닌 일체형 MEA를 제조함에 있어 초임계 유체 기술을 사용한다. 이는 초임계 유체의 점도가 기체처럼 작으므로, 시료에 침투력이 좋고, 초임계 상에서의 물질의 함침 과정에서 표면장력이 작용하지 않으므로 효과적으로 함침시킬 수 있다는 장점을 이용한 방법으로, 이 방법을 이용하여 제조된 일체형 MEA는 가열압착의 기존의 제조공정을 배제하여 공정을 단순화함으로써 제조비용을 낮출 수 있고, 또한 막-전극 간의 계면에서 발생하는 계면 저항을 제거함으로써 보다 높은 성능의 연료전지를 구현 할 수 있게 한다.As described above, in the present invention, a supercritical fluid technology is used to manufacture the integrated MEA instead of the method of supporting the catalyst using a medium different from the conventional method as a solvent, and not the hot pressing method. This method uses the advantage that the supercritical fluid viscosity is as small as gas, so that the penetrating power is good in the sample, and the surface tension does not work during the impregnation of the material on the supercritical, so that it can be effectively impregnated. The integrated MEA can reduce manufacturing costs by simplifying the process by eliminating the existing manufacturing process of hot pressing, and also can realize a higher performance fuel cell by eliminating the interface resistance generated at the membrane-electrode interface. do.

Claims (3)

담지체에 전극촉매를 담지함에 있어, 초임계 유체를 용매로 하여 금속 전조물을 담지체에 함침시키는 방법으로, 온도 40~100℃에서, 100~400bar 사이의 압력에서 1~24 시간동안 함침시킨 후, 질소 분위기 하 100~500℃의 고온 또는 환원제 내에서 환원시킴으로써 담지체에 촉매를 담지하는 방법.In supporting the electrocatalyst on the support, a method of impregnating the metal precursor with the supercritical fluid as a solvent, which was impregnated for 1 to 24 hours at a temperature between 40 and 100 ° C. and a pressure between 100 and 400 bar. After that, a method of supporting the catalyst on the support by reducing in a high temperature or reducing agent of 100 ~ 500 ℃ under nitrogen atmosphere. 삭제delete 고분자 전해질 막의 표면에, 고분자 전해질 막용 고분자의 솔루션에 담지체를 분산시켜 도포시킴으로써, 담지체층을 형성시키는 단계; 및Forming a carrier layer by dispersing the carrier in a solution of the polymer for polymer electrolyte membrane on the surface of the polymer electrolyte membrane; And 상기 담지체층에, 초임계 유체를 용매로 하여 금속 전조물을 온도 40~100℃에서, 100~400bar 사이의 압력에서 1~24 시간동안 함침시킨 후, 질소 분위기 하 100~500℃의 고온 또는 환원제 내에서 환원시킴으로써, 상기 담지체층의 담지체에 촉매를 담지시키는 단계;를 포함하는 일체형 MEA 제조 방법.The carrier layer is impregnated with a supercritical fluid as a solvent for a metal precursor at a temperature of 40 to 100 ° C. for 1 to 24 hours at a pressure between 100 and 400 bar, and then a high temperature or reducing agent of 100 to 500 ° C. under a nitrogen atmosphere. Reducing within, the step of supporting the catalyst on the carrier of the carrier layer; integral MEA manufacturing method comprising a.
KR1020050047220A 2005-06-02 2005-06-02 Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids KR100696311B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050047220A KR100696311B1 (en) 2005-06-02 2005-06-02 Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050047220A KR100696311B1 (en) 2005-06-02 2005-06-02 Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020060120200A Division KR101060731B1 (en) 2006-11-30 2006-11-30 Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids

Publications (2)

Publication Number Publication Date
KR20060125270A KR20060125270A (en) 2006-12-06
KR100696311B1 true KR100696311B1 (en) 2007-03-19

Family

ID=37729697

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050047220A KR100696311B1 (en) 2005-06-02 2005-06-02 Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids

Country Status (1)

Country Link
KR (1) KR100696311B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100878459B1 (en) * 2007-12-07 2009-01-13 한국과학기술연구원 Method for preparing a supported metal catalyst using supercritical or subcritical carbon dioxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236762A (en) * 1993-02-10 1994-08-23 Asahi Chem Ind Co Ltd Polymer electrolytic flue cell
KR20020042702A (en) * 2000-08-04 2002-06-05 모리시타 요이찌 Polyelectrolyte fuel cell and production method therefor
JP2003282076A (en) 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd Electrode for fuel cell and manufacturing method of the same, and polymerelectrolyte type fuel cell
JP2004244309A (en) 2003-01-23 2004-09-02 Canon Inc Method of manufacturing nanocarbon material
KR20040097316A (en) * 2002-12-02 2004-11-17 산요덴키가부시키가이샤 Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236762A (en) * 1993-02-10 1994-08-23 Asahi Chem Ind Co Ltd Polymer electrolytic flue cell
KR20020042702A (en) * 2000-08-04 2002-06-05 모리시타 요이찌 Polyelectrolyte fuel cell and production method therefor
JP2003282076A (en) 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd Electrode for fuel cell and manufacturing method of the same, and polymerelectrolyte type fuel cell
KR20040097316A (en) * 2002-12-02 2004-11-17 산요덴키가부시키가이샤 Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
JP2004244309A (en) 2003-01-23 2004-09-02 Canon Inc Method of manufacturing nanocarbon material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1020040097316

Also Published As

Publication number Publication date
KR20060125270A (en) 2006-12-06

Similar Documents

Publication Publication Date Title
Abdelkareem et al. Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells
US8007957B2 (en) Electrode for fuel cell, fuel cell system comprising the same, and method for preparing the same
EP1667271A1 (en) Electrode for fuel cell, fuel cell comprising the same, and method for preparing the same
US20100196594A1 (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising same
JP4898394B2 (en) Method for manufacturing stacked fuel cell
TWI431843B (en) Membrane-electrode assembly (mea) structures and manufacturing methods thereof
JP2005522015A (en) Fuel cell and fuel cell catalyst
KR20180002089A (en) Membrane electrode assembly with adhesive layer between membrane and electrode, method for preparing the same, and fuel cell comprising the same
US20060014073A1 (en) Electrode for fuel cell, fuel cell comprising the same and method for making an electrode
CA3147136A1 (en) Membrane electrode assembly
US20090214918A1 (en) Anode of direct methanol fuel cell and direct methanol fuel cell employing the same
JP2008210581A (en) Fuel cell
KR100696311B1 (en) Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids
US20060199068A1 (en) Electrode and membrane/electrode assembly for fuel cells and fuel cell systems comprising same
KR101312971B1 (en) Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell
KR20180004592A (en) Method of manufacturing membrane electrode assembly, membrane electrode assembly and fuel cell comprising the same
WO2006085619A1 (en) Fuel cell
KR101117630B1 (en) Membrane-electrode assembly for fuel cell and method for preparating the same
KR101060731B1 (en) Preparation of electric catalysts and a sing body MEA for fuel cells using supercritical fluids
KR20110007350A (en) Polymer electrolyte membrane for fuel cell and low-humidified mea
JP2010536151A (en) Electrode for hydrocarbon membrane electrode assembly of direct oxidation fuel cell
KR100682030B1 (en) Production method of metal impregnated polymer electrolyte membrane using supercritical fluid and the polymer electrolyte membrane made by the method
US20090269653A1 (en) Fuel cell
EP1675201B1 (en) Proton conductor, polymer electrolyte comprising the same and fuel cell employing the polymer electrolyte
JP2006338941A (en) Electrolyte membrane-electrode assembly

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130306

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140312

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150301

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee