JP2004244265A - Boron nitride powder and its manufacturing method - Google Patents

Boron nitride powder and its manufacturing method Download PDF

Info

Publication number
JP2004244265A
JP2004244265A JP2003035418A JP2003035418A JP2004244265A JP 2004244265 A JP2004244265 A JP 2004244265A JP 2003035418 A JP2003035418 A JP 2003035418A JP 2003035418 A JP2003035418 A JP 2003035418A JP 2004244265 A JP2004244265 A JP 2004244265A
Authority
JP
Japan
Prior art keywords
boron nitride
powder
boron
nitride powder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003035418A
Other languages
Japanese (ja)
Inventor
Hisato Tokoro
久人 所
Shigeo Fujii
重男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003035418A priority Critical patent/JP2004244265A/en
Publication of JP2004244265A publication Critical patent/JP2004244265A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively manufacture an h-BN powder having a fine particle size at a low temperature. <P>SOLUTION: In a manufacturing method of the boron nitride powder, a powder mixture of a powder containing a metal oxide and a boron-containing powder is heat-treated in an inert atmosphere including nitrogen to prepare boron nitride. This yields the boron nitride powder having a specific surface area of 5-100 m<SP>2</SP>/g. Preferably, the boron nitride powder contains wire-like or cylindrical boron nitride microbodies of ≤0.5 μm in diameter. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
窒化ほう素粉末の製造方法に関する。特に、雰囲気を用いた熱処理により作製する窒化ほう素粉末に関する。
【0002】
【従来の技術】
六方晶構造の窒化ほう素(以下、h−BN)は黒鉛と類似の層状構造をとり、その粉末は熱伝導性、電気絶縁性、耐熱性、固体潤滑性などの特性に優れている。上記の特性を活かし、放熱シートやルツボ材料などが製品化されている。また、900℃以下で使用する高温用潤滑剤としても注目されている。h−BN粉末の製法として、例えば、粗製h−BN粉末にランタンを主成分とする化合物を添加し、非酸化性ガス雰囲気下で1500〜2200℃の範囲で熱処理する手法が開示されている(特許文献1)。
【0003】
【特許文献1】
特開平09−295801号公報(第2〜3頁)
【0004】
【発明が解決しようとする課題】
このようなh−BN粉末の製法として、例えば、(1)硼酸または硼酸塩をアンモニアと直接反応させる還元窒化法、(2)硼酸塩や無水硼酸等に尿素やメラミン等の含窒素化合物を添加して非酸化性雰囲気下で加熱処理する含窒素化合物添加法等が知られている。これらの製法は低温合成が可能である一方、未反応生成物を多く含んでいるため、耐水性や耐湿性が弱い。一般に純度98%以上の高純度h−BNを得るために、h−BN粉末を作製した後、窒素やアルゴン等の非酸化性雰囲気中にて1700〜2200℃で加熱する手法がとられている。
【0005】
また、特許文献1では、1500〜2200℃での加熱が不純物の除去を実現する一方で、h−BNの結晶成長を促進させ、粒径が3〜15μm程度の粉末となる。前記粒径では樹脂フィラーとして添加する際に高充填できない、などの不都合が生じる。また、2000℃付近での加熱は製造コストが高くなるという問題がある。
そこで、本発明の目的は、微細な粒径を有するh−BN粉末を低温で安価に製造することである。
【0006】
【課題を解決するための手段】
粒径が微細なh−BN粉末を低温で合成させる手法を鋭意検討した結果、ほう素粉末と金属酸化物粉末との混合粉を、窒素を含有する不活性雰囲気中で加熱する手法を見出した。上記手法によれば、比表面積5〜100m/gのh−BN粉末を1600℃以下の低温で合成することができる。上記手法で得られるh−BN粉末は、ワイヤ状若しくは円筒状の窒化ホウ素微小体であって、その直径が0.5μm以下であることを特徴とする窒化ほう素微小体を含む窒化ほう素粉末である。この窒化ほう素微小体は樹脂フィラーの高充填を可能とするだけでなく、従来のBN粉末では適用できなかった水素吸蔵材や樹脂強化剤としての応用が期待できる。
【0007】
[1] 本発明の窒化ほう素粉末の製造方法は、金属酸化物を含有する粉末とほう素を含有する粉末を混合した粉末を、窒素を含む不活性の雰囲気中で熱処理することにより、窒化ほう素を生成することを特徴とするものである。
[2] 本発明の窒化ほう素粉末の製造方法は、ほう素を含有する金属粉末を、窒素を含む不活性の雰囲気中で熱処理することにより、窒化ほう素を生成することを特徴とする。
【0008】
[3] 本発明の他の窒化ほう素粉末の製造方法は、さらに、前記[1]又は[2]の製造方法によって得られる窒化ほう素粉末について、含有される金属を酸性溶液中で溶解することにより、比表面積が5〜100m/gである窒化ほう素粉末を得ることを特徴とする。
【0009】
[4] 本発明の窒化ほう素粉末は、前記[1]又は[2]の製造方法によって得られる窒化ほう素粉末であって、金属粒子を担持する窒化ほう素と、金属粒子を担持しない窒化ほう素の混合物であることを特徴とする。
[5] 本発明の他の窒化ほう素粉末は、前記[1]又は[2]の製造方法によって得られる窒化ほう素粉末であって、比表面積が5〜100m/gであることを特徴とする。より望ましくは比表面積が5〜20m/gである窒化ほう素粉末とする。
【0010】
[6] 本発明の他の窒化ほう素粉末は、六方晶相の窒化ほう素粉末と菱面体相の窒化ほう素粉末との混合物であることを特徴とする。
[7] 本発明の他の窒化ほう素粉末は、六方晶相と菱面体相の混相であることを特徴とする。
[8] 本発明の他の窒化ほう素粉末は、ワイヤ状若しくは円筒状の窒化ほう素微小体を含む窒化ほう素粉末であって、前記窒化ほう素微小体の直径が0.5μm以下であることを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について述べる。本発明で用いるほう素粉末は市販のほう素粉末で構わないが、例えば金属ほう化物、炭化ほう素等のほう素化合物であってもよい。即ち、ほう素粉末とは、ほう素、金属ほう化物、炭化ほう素の少なくとも一つを含有している粉末である。また、ほう素粉末の平均粒径は0.001〜100μmの範囲が好ましいが、実用的には平均粒径1〜50μmの範囲がより好ましい。
【0012】
本発明では前記ほう素粉末に金属酸化物粉末を添加して得られる混合粉末を、窒素を含有する不活性性雰囲気において1000〜1600℃の範囲で加熱する。
金属酸化物粉末は混合粉の5〜80wt%を占めるように添加されるのが好ましい。ほう素粉末と金属酸化物粉末との混合は市販の回転ミキサーで行ってもよいし、乳鉢中で手動混合してもよい。混合粉末を加熱する際、アルミナ、黒鉛、BNなどの耐熱性かつ安定性に優れた材料で構成されるルツボに充填すればよい。熱処理時の不活性雰囲気は窒素ガス、アンモニアガスなどが好ましいが、例えばアルゴンガスと窒素ガスの混合ガスであってもよい。金属酸化物を構成する金属としては、遷移金属またはそれら合金が好ましく、より好ましくはFe、Co、Ni、Cr、Mn、Mo、Pd、Ir、またはそれらを含む合金が適している。上記金属の酸化物は加熱時の昇温過程でほう素によって還元されて金属へと変化する。
【0013】
また、上記金属は、金属−ほう素結合(M−B結合)、及び金属−窒素結合(M−N結合)の標準生成エンタルピーをHM−B、HM−Nと表した場合、
M−B<HM−N
という関係が成立し、ほう化物が形成しやすい。したがって昇温過程で還元された金属は余剰のほう素と反応して金属ほう化物が生成する。さらに1000〜1600℃の温度に到達すると、M−B結合よりもB−N結合の結合エネルギーが小さくなるため、金属ほう化物中のほう素が雰囲気中の窒素原子と反応してh−BNが生成する。すなわち上記金属がh−BNの生成を促進させる役割を果たす。上記手法により得られたh−BN粉末の比表面積をBET法により測定すると、5〜20m/gである。またX線回折測定により相の同定を行なうと、h−BNの他に菱面体構造のBN(r−BN)と原料に用いた金属酸化物から還元された金属が存在している。上記h−BN粉末は、Fe、Co、Ni、Cr、Mn、Mo、Pd、Ir、またはそれらを含む合金の粒子を担持している窒化ほう素粉末を含む。また上記h−BN粉末は、ワイヤ状若しくは円筒状の窒化ほう素微小体であって、その直径が0.5μm以下であることを特徴とする窒化ほう素微小体を含んでいる。
【0014】
h−BN粉末が含有している金属粒子を除去する場合は、以下の分離操作を行なう。すなわち、金属含有h−BN粉末を酸性溶液中に浸漬させて金属を溶出させる。酸性溶液としては塩酸、硝酸、硫酸、酢酸などが代表例として挙げられるが、金属を溶出するに足る酸性溶液で構わない。その後、沈殿物を水洗して乾燥させることによりh−BN粉末のみを得ることができる。分離後のh−BN粉末について比表面積をBET法により測定すると5〜100m/gが得られる。
【0015】
本発明で言うところの比表面積は、市販のBET比表面積測定装置(例えば、粉粒体や多孔質体の比表面積を測定するもの)を用いて、BET法で本発明の窒化ほう素粉末を分析して求めることができるBET比表面積とする。BET法は、不活性気体の低温低湿物理吸着による比表面積分析手法である。この比表面積分析とは、粉体粒子表面に吸着占有面積の判った分子を液体窒素の温度で吸着させ、その量から試料の比表面積を求める分析方法である。
【0016】
【実施例】
以下に実施例を示す。
(実施例1)
平均粒径26μmのホウ素粉末5gと平均粒径0.03μmのヘマタイト(Fe)粉末5gをV型混合機に投入して10分間混合した。この混合粉末を窒化ほう素製のルツボに充填して管状電気炉に設置し、流量2(l/min)の窒素ガス気流中で、室温から3(℃/min)の速度で昇温した後、1100℃で2時間保持して室温まで炉冷した。熱処理前の混合粉末は赤黒色であったが、熱処理後の粉末は灰白色に変色していた。熱処理後の粉末についてX線回折測定(Cu,Kα線)を行なったところ、図1に示すような回折パターンが得られ、上記熱処理を施した粉末からは六方晶の窒化ほう素(h−BN)と菱面体の窒化ほう素(r−BN)、およびα−Feの回折ピークを検出した。上記熱処理後粉末の比表面積をBET法にて測定したところ、6.7m/gを得た。
【0017】
さらに、熱処理後の粉末を透過型電子顕微鏡(TEM)にて観察したところ、図2の写真に示すようなワイヤ状の組織が観察された。格子像を解析すると、この窒化ほう素ワイヤの組織は六方晶構造のh−BNを備えるものであった。また上記ワイヤ状組織以外は不定形状(丸状でも線状でもない)のBN粉末を確認した。図3は、図2の写真の構造を模写した概略図である。窒化ほう素ワイヤ1は部位によってr−BN組織3とh−BN組織2を備え、結晶構造は混相となっている。粉末を構成する窒化ほう素によっては、ほとんどh−BNの結晶構造である粒子も見出された。なお、粉末全体としてはh−BNの組織の割合が主である粉を得ることができた。図3中の符号4は窒化ほう素ワイヤ1を観察するための固定部材の広がりを示す。枠の外に記載した線分(スケール)の長さは200nmに相当する。
【0018】
また、図4の写真に示すようにFe粒子を担持している窒化ほう素ワイヤが存在していた。図5は、図4の写真の構成の内、Fe粒子と窒化ほう素ワイヤのみを模写した概略図であり、窒化ほう素ワイヤ11の一方の端がFe粒子10の端面に接続された様子を示す。窒化ほう素ワイヤ11の組織は、その長手方向にほぼ垂直な向きの線が多数見えることから、層状の組織が長手方向に沿って積層するように成長したものと考えられる。窒化ほう素ワイヤ11(すなわち窒化ほう素微小体)の部分は、その直径が0.12〜0.18μmの範囲内である。
【0019】
次に、窒化ほう素とFe粒子を分離するため、熱処理後の粉末を30%の塩酸水溶液中に30分間浸した。上澄み液を除去した後、沈殿物を純水中で攪拌し、30分間静置した。再び上澄み液を除去後、新しい純水中で攪拌、静置する洗浄工程を3回繰り返した。沈殿物を乾燥させた粉末についてTEM観察したところ、Fe粒子は存在していなかった。上記乾燥粉はh−BNとr−BNで構成される完全な窒化ほう素粉末である。BET法により測定した比表面積は34.7m/gであった。
【0020】
(実施例2)
平均粒径35μmのFeB粉(純度99.9%)をアルミナ製ルツボに適量充填し、流量2(l/min)の窒素ガス気流中で、室温から3(℃/min)の速度で昇温した後、1300℃で2時間保持して室温まで炉冷した。熱処理前後で粉体は黒色から灰白色へと変色していた。熱処理後の粉体についてX線回折パターンを測定した結果、実施例1と同様にh−BN、r−BNとFeのピークを検出した。上記粉末をBET法で測定した比表面積は7.2m/gであった。
さらに熱処理後の粉末の粉体組織をTEMにて観察した結果、実施例1と同様にh−BN構造のワイヤ状微小体を確認した。それ以外には不定形状(球状でも線状でもない)のBN粉末が存在していた。
窒化ほう素とFeを分離するため、実施例1と同様の分離操作を行なった。分離処理後のBN粉末の比表面積を測定すると、36.3m/gであった。
【0021】
【発明の効果】
以上説明したように、本発明に係る窒化ほう素粉末およびその製造方法により、微細な粒径を有するh−BN粉末を低温で安価に製造することができる。
【図面の簡単な説明】
【図1】熱処理後の混合粉末のX線回折パターンを示すグラフである。
【図2】電子顕微鏡で観察した本発明に係る粒子構造の顕微鏡写真である。
【図3】図2の写真の構造に対応する概略図である。
【図4】電子顕微鏡で観察した本発明に係る粒子構造の顕微鏡写真である。
【図5】図4の写真の構造に対応する概略図である。
【符号の説明】
1 窒化ほう素ワイヤ、 2 h−BN組織、 3 r−BN組織、
4 固定部材、 10 Fe粒子、 11 窒化ほう素ワイヤ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing boron nitride powder. In particular, the present invention relates to a boron nitride powder produced by a heat treatment using an atmosphere.
[0002]
[Prior art]
Hexagonal boron nitride (hereinafter, h-BN) has a layered structure similar to graphite, and its powder has excellent properties such as thermal conductivity, electric insulation, heat resistance, and solid lubricity. Taking advantage of the above characteristics, heat dissipation sheets and crucible materials have been commercialized. In addition, it is attracting attention as a high-temperature lubricant used at 900 ° C. or lower. As a method for producing the h-BN powder, for example, a method has been disclosed in which a compound containing lanthanum as a main component is added to crude h-BN powder and heat treatment is performed at 1500 to 2200 ° C. in a non-oxidizing gas atmosphere ( Patent Document 1).
[0003]
[Patent Document 1]
JP-A-09-295801 (pages 2-3)
[0004]
[Problems to be solved by the invention]
As a method for producing such h-BN powder, for example, (1) a reduction nitridation method in which boric acid or borate is directly reacted with ammonia, and (2) a nitrogen-containing compound such as urea or melamine is added to borate or boric anhydride. There is known a method of adding a nitrogen-containing compound in which heat treatment is performed in a non-oxidizing atmosphere. These processes can be synthesized at a low temperature, but contain a large amount of unreacted products, so that their water resistance and moisture resistance are weak. Generally, in order to obtain a high-purity h-BN having a purity of 98% or more, a method of producing an h-BN powder and then heating it at 1700 to 2200 ° C. in a non-oxidizing atmosphere such as nitrogen or argon is used. .
[0005]
In Patent Document 1, while heating at 1500 to 2200 ° C. realizes the removal of impurities, it promotes the crystal growth of h-BN, resulting in a powder having a particle size of about 3 to 15 μm. When the particle size is as described above, disadvantages such as high filling cannot be obtained when the resin filler is added. In addition, there is a problem that the heating at around 2000 ° C. increases the production cost.
Therefore, an object of the present invention is to produce h-BN powder having a fine particle size at low temperature and at low cost.
[0006]
[Means for Solving the Problems]
As a result of earnestly studying a technique for synthesizing h-BN powder having a fine particle diameter at a low temperature, a technique for heating a mixed powder of boron powder and metal oxide powder in an inert atmosphere containing nitrogen was found. . According to the above method, h-BN powder having a specific surface area of 5 to 100 m 2 / g can be synthesized at a low temperature of 1600 ° C. or less. The h-BN powder obtained by the above method is a wire-shaped or cylindrical boron-nitride fine body, and the diameter thereof is 0.5 μm or less. It is. The boron nitride microparticles not only enable high filling of the resin filler, but also can be expected to be applied as a hydrogen storage material or a resin reinforcing agent that could not be applied with the conventional BN powder.
[0007]
[1] The method for producing a boron nitride powder according to the present invention comprises the steps of: heat treating a powder obtained by mixing a powder containing a metal oxide and a powder containing boron in an inert atmosphere containing nitrogen; It is characterized by generating boron.
[2] The method for producing boron nitride powder of the present invention is characterized in that boron nitride-containing metal powder is heat-treated in an inert atmosphere containing nitrogen to produce boron nitride.
[0008]
[3] Another method for producing boron nitride powder of the present invention further comprises dissolving a contained metal in an acidic solution with respect to the boron nitride powder obtained by the production method of [1] or [2]. Thereby, a boron nitride powder having a specific surface area of 5 to 100 m 2 / g is obtained.
[0009]
[4] The boron nitride powder of the present invention is a boron nitride powder obtained by the production method of the above [1] or [2], wherein the boron nitride supports metal particles and the nitride does not support metal particles. It is a mixture of boron.
[5] Another boron nitride powder of the present invention is a boron nitride powder obtained by the method of [1] or [2], and has a specific surface area of 5 to 100 m 2 / g. And More preferably, it is a boron nitride powder having a specific surface area of 5 to 20 m 2 / g.
[0010]
[6] Another boron nitride powder of the present invention is a mixture of a hexagonal phase boron nitride powder and a rhombohedral phase boron nitride powder.
[7] Another boron nitride powder of the present invention is characterized in that it is a mixed phase of a hexagonal phase and a rhombohedral phase.
[8] Another boron nitride powder of the present invention is a boron nitride powder containing wire-shaped or cylindrical boron nitride fine particles, wherein the diameter of the boron nitride fine particles is 0.5 μm or less. It is characterized by the following.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. The boron powder used in the present invention may be a commercially available boron powder, but may be a boron compound such as a metal boride or boron carbide. That is, the boron powder is a powder containing at least one of boron, metal boride, and boron carbide. Further, the average particle diameter of the boron powder is preferably in the range of 0.001 to 100 μm, but practically the average particle diameter is more preferably in the range of 1 to 50 μm.
[0012]
In the present invention, the mixed powder obtained by adding the metal oxide powder to the boron powder is heated in an inert atmosphere containing nitrogen at a temperature in the range of 1000 to 1600 ° C.
The metal oxide powder is preferably added so as to account for 5 to 80 wt% of the mixed powder. The mixing of the boron powder and the metal oxide powder may be performed by a commercially available rotary mixer, or may be manually mixed in a mortar. When the mixed powder is heated, it may be filled in a crucible made of a material having excellent heat resistance and stability, such as alumina, graphite, and BN. The inert atmosphere during the heat treatment is preferably nitrogen gas, ammonia gas, or the like, but may be, for example, a mixed gas of argon gas and nitrogen gas. As a metal constituting the metal oxide, a transition metal or an alloy thereof is preferable, and more preferably, Fe, Co, Ni, Cr, Mn, Mo, Pd, Ir, or an alloy containing them is suitable. The oxide of the metal is reduced by boron in a heating process during heating and changes to a metal.
[0013]
In addition, when the metal has a standard enthalpy of formation of a metal-boron bond (MB bond) and a metal-nitrogen bond (MN bond) as HM -B and HM -N ,
HM -B <HM -N
Is established, and a boride is easily formed. Therefore, the metal reduced in the process of raising the temperature reacts with the excess boron to form a metal boride. Further, when the temperature reaches 1000 to 1600 ° C., the binding energy of the BN bond becomes smaller than that of the MB bond, so that boron in the metal boride reacts with the nitrogen atom in the atmosphere to form h-BN. Generate. That is, the metal plays a role in promoting the production of h-BN. The specific surface area of the h-BN powder obtained by the above method is 5 to 20 m 2 / g when measured by the BET method. When the phases are identified by X-ray diffraction measurement, BN (r-BN) having a rhombohedral structure and a metal reduced from the metal oxide used as a raw material exist in addition to h-BN. The h-BN powder includes boron nitride powder carrying particles of Fe, Co, Ni, Cr, Mn, Mo, Pd, Ir, or an alloy containing them. The h-BN powder is a wire-shaped or cylindrical boron nitride microparticle, and contains boron nitride microparticles having a diameter of 0.5 μm or less.
[0014]
When removing metal particles contained in the h-BN powder, the following separation operation is performed. That is, the metal is eluted by immersing the metal-containing h-BN powder in an acidic solution. Representative examples of the acidic solution include hydrochloric acid, nitric acid, sulfuric acid, and acetic acid, but an acidic solution sufficient to elute the metal may be used. Thereafter, the precipitate is washed with water and dried to obtain only the h-BN powder. When the specific surface area of the separated h-BN powder is measured by the BET method, 5 to 100 m 2 / g is obtained.
[0015]
The specific surface area referred to in the present invention is determined by using a commercially available BET specific surface area measuring device (for example, a device for measuring the specific surface area of a granular material or a porous material) by the BET method using the boron nitride powder of the present invention. The BET specific surface area can be determined by analysis. The BET method is a specific surface area analysis method by low-temperature and low-humidity physical adsorption of an inert gas. The specific surface area analysis is an analysis method in which molecules having a known adsorption occupation area are adsorbed on the surface of powder particles at the temperature of liquid nitrogen, and the specific surface area of the sample is determined from the amount.
[0016]
【Example】
Examples will be described below.
(Example 1)
5 g of boron powder having an average particle diameter of 26 μm and 5 g of hematite (Fe 2 O 3 ) powder having an average particle diameter of 0.03 μm were charged into a V-type mixer and mixed for 10 minutes. This mixed powder was filled in a crucible made of boron nitride, placed in a tubular electric furnace, and heated from room temperature at a rate of 3 (° C./min) in a nitrogen gas flow at a flow rate of 2 (l / min). The furnace was kept at 1100 ° C. for 2 hours and cooled to room temperature. The mixed powder before the heat treatment was red-black, but the powder after the heat treatment turned grayish white. An X-ray diffraction measurement (Cu, Kα ray) of the heat-treated powder gave a diffraction pattern as shown in FIG. 1. From the heat-treated powder, hexagonal boron nitride (h-BN) was obtained. ), Rhombohedral boron nitride (r-BN) and α-Fe diffraction peaks were detected. When the specific surface area of the powder after the heat treatment was measured by the BET method, 6.7 m 2 / g was obtained.
[0017]
Further, when the powder after the heat treatment was observed with a transmission electron microscope (TEM), a wire-like structure as shown in the photograph of FIG. 2 was observed. When the lattice image was analyzed, the structure of the boron nitride wire was provided with h-BN having a hexagonal structure. In addition, BN powder having an irregular shape (neither round nor linear) other than the above wire-like structure was confirmed. FIG. 3 is a schematic diagram that replicates the structure of the photograph of FIG. The boron nitride wire 1 has an r-BN structure 3 and an h-BN structure 2 depending on the portion, and the crystal structure is a mixed phase. Depending on the boron nitride constituting the powder, particles having an almost h-BN crystal structure were also found. It should be noted that a powder mainly composed of h-BN was obtained as the whole powder. Reference numeral 4 in FIG. 3 indicates the extension of the fixing member for observing the boron nitride wire 1. The length of the line segment (scale) described outside the frame corresponds to 200 nm.
[0018]
Further, as shown in the photograph of FIG. 4, there was a boron nitride wire carrying Fe particles. FIG. 5 is a schematic view in which only the Fe particles and the boron nitride wire are copied from the configuration of the photograph of FIG. 4, showing a state where one end of the boron nitride wire 11 is connected to the end surface of the Fe particle 10. Show. Since the structure of the boron nitride wire 11 has many lines substantially perpendicular to the longitudinal direction, it is considered that the layered structure has grown so as to be laminated along the longitudinal direction. The diameter of the portion of the boron nitride wire 11 (that is, the boron nitride fine body) is in the range of 0.12 to 0.18 μm.
[0019]
Next, in order to separate boron nitride and Fe particles, the heat-treated powder was immersed in a 30% hydrochloric acid aqueous solution for 30 minutes. After removing the supernatant, the precipitate was stirred in pure water and allowed to stand for 30 minutes. After removing the supernatant again, the washing step of stirring and standing in fresh pure water was repeated three times. TEM observation of the dried powder of the precipitate revealed no Fe particles. The dry powder is a complete boron nitride powder composed of h-BN and r-BN. The specific surface area measured by the BET method was 34.7 m 2 / g.
[0020]
(Example 2)
An appropriate amount of FeB powder (purity 99.9%) having an average particle size of 35 μm is filled in an alumina crucible, and the temperature is raised from room temperature to 3 (° C./min) in a nitrogen gas flow at a flow rate of 2 (l / min). After that, it was kept at 1300 ° C. for 2 hours and cooled in a furnace to room temperature. Before and after the heat treatment, the powder changed color from black to off-white. As a result of measuring the X-ray diffraction pattern of the powder after the heat treatment, peaks of h-BN, r-BN, and Fe were detected as in Example 1. The specific surface area of the above powder measured by the BET method was 7.2 m 2 / g.
Furthermore, as a result of observing the powder structure of the powder after the heat treatment with a TEM, a wire-like fine body having an h-BN structure was confirmed as in Example 1. In addition, BN powder of irregular shape (not spherical or linear) was present.
In order to separate boron nitride and Fe, the same separation operation as in Example 1 was performed. When the specific surface area of the BN powder after the separation treatment was measured, it was 36.3 m 2 / g.
[0021]
【The invention's effect】
As described above, the boron nitride powder and the method for producing the same according to the present invention make it possible to produce h-BN powder having a fine particle size at low temperature and at low cost.
[Brief description of the drawings]
FIG. 1 is a graph showing an X-ray diffraction pattern of a mixed powder after heat treatment.
FIG. 2 is a micrograph of the particle structure according to the present invention observed with an electron microscope.
FIG. 3 is a schematic view corresponding to the structure of the photograph of FIG. 2;
FIG. 4 is a micrograph of the particle structure according to the present invention observed with an electron microscope.
FIG. 5 is a schematic view corresponding to the structure of the photograph of FIG.
[Explanation of symbols]
1 boron nitride wire, 2 h-BN structure, 3 r-BN structure,
4 fixing member, 10 Fe particle, 11 boron nitride wire

Claims (8)

金属酸化物を含有する粉末とほう素を含有する粉末を混合した粉末を、窒素を含む不活性の雰囲気中で熱処理することにより、窒化ほう素を生成することを特徴とする窒化ほう素粉末の製造方法。By heat treating a powder obtained by mixing a powder containing a metal oxide and a powder containing boron in an inert atmosphere containing nitrogen to produce boron nitride, Production method. ほう素を含有する金属粉末を、窒素を含む不活性の雰囲気中で熱処理することにより、窒化ほう素を生成することを特徴とする窒化ほう素粉末の製造方法。A method for producing boron nitride powder, comprising producing boron nitride by heat-treating a metal powder containing boron in an inert atmosphere containing nitrogen. 請求項1又は2の製造方法によって得られる窒化ほう素粉末について、含有される金属を酸性溶液中で溶解することにより、比表面積が5〜100m/gである窒化ほう素粉末を得ることを特徴とする窒化ほう素粉末の製造方法。The boron nitride powder obtained by the production method according to claim 1 or 2 is obtained by dissolving a contained metal in an acidic solution to obtain a boron nitride powder having a specific surface area of 5 to 100 m 2 / g. A method for producing boron nitride powder, which is a feature of the present invention. 請求項1又は2の製造方法によって得られる窒化ほう素粉末であって、金属粒子を担持する窒化ほう素と、金属粒子を担持しない窒化ほう素の混合物であることを特徴とする窒化ほう素粉末。A boron nitride powder obtained by the method according to claim 1, which is a mixture of boron nitride supporting metal particles and boron nitride not supporting metal particles. . 請求項1又は2の製造方法によって得られる窒化ほう素粉末であって、比表面積が5〜100m/gであることを特徴とする窒化ほう素粉末。A boron nitride powder obtained by the production method according to claim 1, wherein the specific surface area is 5 to 100 m 2 / g. 六方晶相の窒化ほう素粉末と菱面体相の窒化ほう素粉末との混合物であることを特徴とする窒化ほう素粉末。A boron nitride powder, which is a mixture of a hexagonal phase boron nitride powder and a rhombohedral phase boron nitride powder. 六方晶相と菱面体相の混相であることを特徴とする窒化ほう素粉末。A boron nitride powder, which is a mixed phase of a hexagonal phase and a rhombohedral phase. ワイヤ状若しくは円筒状の窒化ほう素微小体を含む窒化ほう素粉末であって、前記窒化ほう素微小体の直径が0.5μm以下であることを特徴とする窒化ほう素粉末。A boron nitride powder containing wire-shaped or cylindrical boron nitride fine particles, wherein the diameter of the boron nitride fine particles is 0.5 μm or less.
JP2003035418A 2003-02-13 2003-02-13 Boron nitride powder and its manufacturing method Pending JP2004244265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035418A JP2004244265A (en) 2003-02-13 2003-02-13 Boron nitride powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035418A JP2004244265A (en) 2003-02-13 2003-02-13 Boron nitride powder and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004244265A true JP2004244265A (en) 2004-09-02

Family

ID=33020847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035418A Pending JP2004244265A (en) 2003-02-13 2003-02-13 Boron nitride powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004244265A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240942A (en) * 2005-03-04 2006-09-14 National Institute For Materials Science Method for manufacturing high purity boron nitride nanotube
JP2013147403A (en) * 2012-01-23 2013-08-01 Mitsubishi Chemicals Corp Metal compound-containing boron nitride and composite material composition containing the same
EP2799134A4 (en) * 2011-11-29 2015-06-24 Kansai Electric Power Co Co2 desorption catalyst
TWI547436B (en) * 2011-11-29 2016-09-01 Mitsubishi Chem Corp a boron nitride agglomerated particle, a composition containing the same, and a three-dimensional integrated circuit having a layer composed of the composition
JP2020164352A (en) * 2019-03-28 2020-10-08 日亜化学工業株式会社 Hexagonal boron nitride fiber and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240942A (en) * 2005-03-04 2006-09-14 National Institute For Materials Science Method for manufacturing high purity boron nitride nanotube
JP4534016B2 (en) * 2005-03-04 2010-09-01 独立行政法人物質・材料研究機構 Method for producing high purity boron nitride nanotubes
EP2799134A4 (en) * 2011-11-29 2015-06-24 Kansai Electric Power Co Co2 desorption catalyst
TWI547436B (en) * 2011-11-29 2016-09-01 Mitsubishi Chem Corp a boron nitride agglomerated particle, a composition containing the same, and a three-dimensional integrated circuit having a layer composed of the composition
US9822294B2 (en) 2011-11-29 2017-11-21 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
US10400151B2 (en) 2011-11-29 2019-09-03 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, composition containing said particles, and three- dimensional integrated circuit having layer comprising said composition
US10835892B2 (en) 2011-11-29 2020-11-17 The Kansai Electric Power Co., Inc. CO2 desorption catalyst
JP2013147403A (en) * 2012-01-23 2013-08-01 Mitsubishi Chemicals Corp Metal compound-containing boron nitride and composite material composition containing the same
JP2020164352A (en) * 2019-03-28 2020-10-08 日亜化学工業株式会社 Hexagonal boron nitride fiber and method for producing the same
JP7376764B2 (en) 2019-03-28 2023-11-09 日亜化学工業株式会社 Hexagonal boron nitride fiber and its manufacturing method

Similar Documents

Publication Publication Date Title
Portehault et al. A general solution route toward metal boride nanocrystals
Shi et al. Obtaining ultra-long copper nanowires via a hydrothermal process
KR100558966B1 (en) Metal Nanocomposite Powders Reinforced with Carbon Nanotubes and Their Fabrication Process
JP5105503B2 (en) ε Iron oxide production method
Dippong et al. Magnetic properties evolution of the CoxFe3-xO4/SiO2 system due to advanced thermal treatment at 700° C and 1000° C
Piquemal et al. One-step construction of silver nanowires in hexagonal mesoporous silica using the polyol process
Xie et al. Preparation of nano-sized titanium carbide particles via a vacuum carbothermal reduction approach coupled with purification under hydrogen/argon mixed gas
JP2019182737A (en) Hexagonal boron nitride powder and manufacturing method therefor
Li et al. Production of nanosized YAG powders with spherical morphology and nonaggregation via a solvothermal method
Wan et al. Controlled-synthesis, characterization, and magnetic properties of Fe 3 O 4 nanostructures
CN109206140B (en) Method for preparing aluminum nitride powder based on pyrolysis method
JP2012193409A (en) Iron fine particle and production method therefor
Masipa et al. Decoration of multi-walled carbon nanotubes by metal nanoparticles and metal oxides using chemical evaporation method
Lin et al. Preparation of Nd-Fe-B based magnetic materials by soft chemistry and reduction-diffusion process
JP2004244265A (en) Boron nitride powder and its manufacturing method
JP2005514314A (en) Method for producing α-alumina nanopowder
Wang et al. Effects of surfactants on the structure and crystal growth behavior of Sm2Zr2O7 nanocrystalline
JP2005120470A (en) Method for producing metallic fine particle, and metallic fine particle
JP2010103512A (en) METHOD FOR PRODUCING FePd/Fe NANOCOMPOSITE MAGNET
Zhang et al. Preparation and Catalytic Activity of M 2 O 3/CNTs (M= Y, Nd, Sm) Nanocomposites by Solvothermal Process
Schweyer-Tihay et al. On the nature of metallic nanoparticles obtained from molecular Co 3 Ru–carbonyl clusters in mesoporous silica matrices
JP2004196574A (en) Spinel-containing ferrite spherical porous silica particle and its manufacturing method
Ling et al. Synthesis of urchin-like CdWO 4 microspheres via a facile template free hydrothermal method
JP2023049689A (en) Method for producing modified hexagonal boron nitride powder and modified hexagonal boron nitride powder
JP2004124248A5 (en)