JP2004117166A - 測距装置及びこれを用いた測距システム - Google Patents

測距装置及びこれを用いた測距システム Download PDF

Info

Publication number
JP2004117166A
JP2004117166A JP2002280955A JP2002280955A JP2004117166A JP 2004117166 A JP2004117166 A JP 2004117166A JP 2002280955 A JP2002280955 A JP 2002280955A JP 2002280955 A JP2002280955 A JP 2002280955A JP 2004117166 A JP2004117166 A JP 2004117166A
Authority
JP
Japan
Prior art keywords
data
distance
distance measuring
zero cross
cross point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002280955A
Other languages
English (en)
Other versions
JP3800157B2 (ja
Inventor
Masashi Kawanami
川浪 正史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002280955A priority Critical patent/JP3800157B2/ja
Publication of JP2004117166A publication Critical patent/JP2004117166A/ja
Application granted granted Critical
Publication of JP3800157B2 publication Critical patent/JP3800157B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】耐雑音特性に優れる一方、変調帯域幅による制約を受けることなく測距精度を向上させることができる新規な測距装置及びこれを用いた測距システムを提供する。
【解決手段】複数のゼロクロスポイントを有する測距用データを送受信し、この測距用データの送信タイミングと被測距側から折り返し送信された前記測距データの受信タイミングとの時間差から前記被測距側までの距離を算出する測距装置において、前記被測距側から折り返し送信された測距データの位相を前記被測距装置に送信した測距用データのゼロクロスポイントの間隔に応じてシフトさせ、これら位相の異なる複数の測距用データを総和処理して生成したSカーブ信号のゼロクロスポイントの検出タイミングに基づいて前記被測距側までの距離を算出する手段とを備えた。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
この発明は、0,1パターンのデータ系列、PN符号等からなる測距用データを被測距装置に対して送受信し、この測距用データの送受信タイミングを計測して前記被測距装置までの距離を測定する測距装置及びこれを用いた測距システムに関する。
【0002】
【従来の技術】
従来、ある無線局A及びB間の距離(L)を測定する場合、まず、無線局Aから無線局Bに対して測距用のデータ又はパルス(以下、測距用データという。)を送受信し、この測距用データの送信タイミングから無線局Bにより折り返し送信された測距用データを受信するまでの電波伝搬時間(Td)を計測する。そして、この電波伝搬時間(Td)に光速(C)を乗じ、さらに(1/2)をかけることにより、無線局Aから無線局Bまでの距離(L)を求めることができる。
【0003】
また、電波伝搬時間(Td)を計測する方法としては、基本的に2つの方法がある。第1には、測距用データのゼロクロスする時刻を計測しこのようなゼロクロスタイミングに基づいて電波伝搬時間(Td)を測定する方法(例えば、特許文献1)、第2には、被測距側から折り返し送信されたPN系列等である測距用データと同様のPN系列等の疑似雑音符号との間で相関処理を実施し、その相関ピーク値の検出タイミングに基づいて電波伝搬時間(Td)を測定するという方法(例えば、特許文献2)がある。
【0004】
【特許文献1】
特開2001−165764公報(第2頁右欄第39頁乃至第3頁左欄第23行目の記載事項、図1の内容を参照。)
【0005】
【特許文献2】
特開平5−297129号公報(第3頁左欄第19行目乃至第36行目の記載事項及び同頁右欄第46行目乃至第4頁左欄第10行目の記載事項、図1及び図2の内容を参照。)
【0006】
【発明が解決しようとする課題】
しかし、従来の測距装置による電波伝搬時間(Td)の計測では、例えば、第1の測距用データのゼロクロスする時刻から電波伝搬時間を計測するという方法では、受信波が出力され始めてから一定時間後の安定した部分を用いて電波伝搬時間の測定を行うので、測定時間が長くなるという問題点があった。また、耐雑音特性が低く、無線伝搬路において受信状況が劣化して測距用データに雑音が重畳するような場合にはゼロクロス信号の波形が歪み、正確な電波伝搬時間を計測することができないという問題点があった。
【0007】
また、第2のPN系列の相関処理を実施して電波伝搬時間を計測するという方法では、PN1チップ長内における検出の分解能を向上させるため位相判定手段及び進相・遅相判定結果を平均化するためのフィルター等を設ける必要があり、平均化精度を向上させるためには、複数回のPN相関ピーク検出が必要となり測定時間を要するという問題点があった。
【0008】
また、相関ピーク波形が三角波の形状でありスレシュホールドレベル通過点の検出誤差が大きいという問題点もあった。さらに、相関ピーク波形はPN1チップ長の幅をもつ波形となるため、単純にPN符号の1チップ幅を小さくすることにより電波伝搬時間の計測精度を向上させることも可能であるが、その代償として、PNデータ系列の伝送速度を高める必要があり、無線における変調帯域幅が増加して周波数の有効利用が図れないという問題点があった。なお、無理に変調帯域幅を広げると、無線機の電波法上の規定値を越えることになりかねない。
【0009】
図9は第2の方法による問題点を説明するための相関波形図及びこれに対応したスペクトル波形図である。図9において、28,29はマッチドフィルタ等による相関処理により検出された相関信号波形、30,31はこれに対応したスペクトル波形である。図9(a)に示す相関信号波形24の方が図9(b)に示す相関信号波形29よりも誤差幅が大きく、閾値を上げることにより計測精度を上げることが可能であるが、閾値を高く設定すると相関信号波形のレベル変動による影響を受け易く、相関ピークを検出することが困難となる。また、図9(b)に示すように、PN符号の1チップ幅を小さくすることにより誤差幅を縮小して電波伝搬時間の計測精度を向上させることも可能であるが、無線帯域幅31が大幅に広がってしまい周波数の有効利用が図れない。
【0010】
この発明は上記のような課題を解消するためになされたもので、耐雑音特性に優れる一方、変調帯域幅による制約を受けることなく測距精度を向上させることができる新規な測距装置及びこれを用いた測距システムを提供することを目的とする。
【0011】
【課題を解決するための手段】
請求項1の発明に係る測距装置は、複数のゼロクロスポイントを有する測距用データを送受信し、この測距用データの送信タイミングと被測距側から折り返し送信された前記測距データの受信タイミングとの時間差から前記被測距側までの距離を算出する測距装置において、前記被測距側から折り返し送信された測距データの位相を前記被測距装置に送信した測距用データのゼロクロスポイントの間隔に応じてシフトさせ、これら位相の異なる複数の測距用データを総和処理して生成したSカーブ信号のゼロクロスポイントの検出タイミングに基づいて前記被測距側までの距離を算出する手段とを備えたものである。
【0012】
請求項2の発明に係る測距装置は、複数のゼロクロスポイントを有する測距用データを送受信し、この測距用データの送信タイミングと被測距側から折り返し送信された前記測距データの受信タイミングとの時間差から前記被測距側までの距離を算出する測距装置において、前記被測距側に送信する測距用データのゼロクロスポイントを計測し、基準とするゼロクロスポイントから他のゼロクロスポイントまでの各時間差を算出する手段と、前記被測距側から折り返し送信された前記測距データの位相を前記時間差に応じてそれぞれシフトさせ、これら位相の異なる複数の測距用データを総和処理してSカーブ信号を生成させる手段と、前記Sカーブ信号のゼロクロスポイントの検出タイミングに基づいて前記被測距側までの距離を算出する手段とを備えたものである。
【0013】
請求項3の発明に係る測距装置は、前記測距用データがPNデータ系列であるものである。
【0014】
請求項4の発明に係る測距装置は、前記測距用データが1,0パターンのデータ系列であるものである。
【0015】
請求項5の発明に係る測距装置は、擬似雑音符号のデータ系列を生成するデータ生成部と、このデータ生成部から出力された前記データ系列の各ゼロクロスポイントを計測し、基準とするゼロクロスポイントから他のゼロクロスポイントまでの各時間差を算出するサンプリング処理部と、前記データ系列を変調して被測距装置に送信し、前記被測距装置から折り返し送信された折り返し信号を復調して受信データ系列を復元する無線部と、この無線部により復元された前記受信データ系列の位相を前記サンプリング処理部により算出した前記時間差に応じてそれぞれシフトさせ、これら位相の異なる複数の受信データ系列を総和処理してSカーブ信号を生成するシフト波形総和部と、このシフト波形総和部により生成されたSカーブ信号のゼロクロスポイントを計測するSカーブ計測部と、このSカーブ計測部により計測された前記Sカーブ信号のゼロクロスポイントの検出タイミングに基づいて前記被測距装置までの距離を算出する距離算出部とを備えたものである。
【0016】
請求項6の発明に係る測距装置は、前記被測距装置が複数設けられ、これら複数の被測距装置それぞれに異なるデータ系列の測距用データを送受信するようにしたものである。
【0017】
請求項7の発明に係る測距システムは、測距装置を駅ホーム側、被測距装置を車両側にそれぞれ設け、前記駅ホームの所定位置から前記駅ホームに進入した前記車両までの距離を算出する測距システムにおいて、前記測距装置は、前記車両側に送信する測距用データの各ゼロクロスポイントを計測し、基準とするゼロクロスポイントから他のゼロクロスポイントまでの各時間差を算出する手段と、前記車両側の被測距装置から折り返し送信された前記測距データの位相を前記時間差に応じてそれぞれシフトさせ、これら位相の異なる複数の測距用データを総和処理してSカーブ信号を生成させる手段と、前記Sカーブ信号のゼロクロスポイントに基づいて前記車両までの距離を算出する手段とを備えたものである。
【0018】
請求項8の発明に係る測距システムは、前記被測距装置が無線周波数又は中間周波数の段階で前記測距用データの折り返し処理を行うものである。
【0019】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施形態1について図1乃至図4を用いて説明する。図1はこの発明の実施形態1による測距装置及び被測距装置を示すブロック構成図、図2乃至図4は図1に示すような測距装置及び被測距装置により構成される測距システムの測距原理を説明するための信号波形図等である。
【0020】
図1において、1は測距装置、2は被測距装置である。また、3は測距用データを生成するデータ生成部、4はデータ生成部3から出力された測距用データをA/D変換器等によりサンプリング処理し、測距用データの送信タイミング及び各ゼロクロスポイント間隔の情報を算出する送信側のサンプリング処理部、5はサンプリング処理部4によりサンプリング処理された測距用データを変調する変調部、6は変調部5により変調された測距用データを所定レベルまで増幅処理して被測距装置2に送信する一方、被測距装置2から折り返し送信された折り返し信号を受信して受信処理する無線部、7は無線部6において受信処理された被測距装置2からの折り返し信号を復調して測距用データを復元する復調部、8は復調部7により復元された測距用データをA/D変換器等によりサンプリング処理する受信側のサンプリング処理部、9はサンプリング処理部8によりサンプリング処理された折り返しの測距用データの位相を送信側のサンプリング処理部4において算出した各ゼロクロスポイント間隔情報に基づいてシフトさせ、これら位相の異なる複数の測距用データを総和処理してSカーブ信号を生成するシフト波形総和部、10はシフト波形総和部9により生成されたSカーブ信号のゼロクロスポイントの時刻を計測するSカーブ計測部、11はSカーブ計測部10により計測されたSカーブ信号のゼロクロスポイントの時刻に基づいて被測距装置2までの距離を算出し、その距離情報(測距データ)を出力する距離算出部である。
【0021】
また、12は測距装置1から無線伝送された無線信号による測距用データを受信して受信処理する一方、後述する変調部16により変調処理された折り返しの測距用データを折り返しの無線信号として測距装置1に送信する無線部、13は無線部12により受信処理された測距装置1からの無線信号を復調して測距用データを復元する復調部、14は復調部13により復元された測距用データを一定量遅延させる遅延処理部、15は復調部13により復元された測距用データを復調データとして取り出す一方、遅延処理部14に出力して折り返し処理を行う折り返し処理部、16は遅延処理部14において一定量遅延させた折り返しの測距用データを変調する変調部16である。
【0022】
なお、無線部6,12にはそれぞれ送信アンテナ及び受信アンテナを設けており(図示省略)、測距装置1及び被測距装置2はこれら送信アンテナ及び受信アンテナを介して無線信号の送受信を行う。
【0023】
次に、図1に示す測距装置1及び被測距装置2による測距動作について説明する。まず、測距装置1のデータ生成部3により複数のゼロクロスポイントを有する測距用データが生成され送信側のサンプリング処理部4に出力される。図2はデータ生成部3により生成される測距用データの例を示す信号波形図であり、この実施の形態1において使用される測距データはcr1乃至cr5の5つのゼロクロスポイントを有している。一般に、データ系列は、複数のゼロクロスポイントを有しており、データ系列が長くなるほど多数のゼロクロスポイントを有するが、複数のゼロクロスポイントを有するデータ系列であればよく、任意のパターンのデータ系列を使用してよい。
【0024】
データ生成部3から出力された測距用データは、送信側のサンプリング処理部4によりサンプリング処理され、各パルスがゼロクロスする時刻、すなわちゼロクロスポイントがそれぞれ計測される。また、図2(b)に示すように、このサンプリング処理部4においては、これらゼロクロスポイントの時刻情報に基づいて基準とするゼロクロスポイント(cr5)から他のゼロクロスポイント(cr4,cr3,cr2,cr1)までの時間差(t1,t2,t3,4)を各ゼロクロスタイミング間隔情報として算出すると共に、測距用データの送信タイミング(cr5)を算出する。
【0025】
サンプリング処理部4により送信タイミング及び各ゼロクロスタイミング間隔の情報が算出された測距用データは、変調部5において変調処理を施す。変調された測距用データは無線部5において増幅処理され、無線信号として図示省略した送信アンテナを介して空間に放射される。空間に放射された無線信号による測距データは無線伝送されて被測距装置2により受信される。被測距装置2の無線部12も送信アンテナ及び受信アンテナを有しており、測距装置1から無線伝送された無線信号による測距用データは無線部12の受信アンテナを介して受信される。
【0026】
被測距装置2の無線部12により受信処理された無線信号は復調部13により復調され元の測距用データが復元される。折り返し処理部15は復調部13において復元された測距用データを遅延処理部14の遅延処理により一定時間遅延させ変調部16に出力する。このように被測距装置2において測距用データを一定時間遅延させているのは被測距装置2の折り返し処理に伴う遅延誤差を防止するためであり、測距装置1はこの遅延時間分だけ電波伝搬時間(Td)の遅延誤差を校正する。変調部16は遅延処理部14により一定時間遅延させた折り返しの測距データに変調処理を施して無線部12に出力する。無線部12は変調部16により変調処理された測距用データを増幅処理し、折り返しの無線信号(以下、折り返し信号という。)として送信アンテナを介して空間に放射する。
【0027】
被測距装置2から空間に放射された折り返し信号は測距装置1の図示省略した受信アンテナを介して受信され無線部6により増幅処理等の受信処理を施す。受信処理を施した折り返し信号は復調部7により復調して折り返しの測距用データ(以下、折り返しデータという。)を復元する。復元された折り返しデータは受信側のサンプリング処理部8によりサンプリング処理し、送信側のサンプリング処理部4と同様に各ゼロクロスポイントをそれぞれ計測する。サンプリング処理部8により各ゼロクロスポイントを計測した折り返しデータはシフト波形総和部9に入力され、後述するような総和処理を行う。
【0028】
すなわち、シフト波形総和部9には送信側のサンプリング処理部4において算出した各ゼロクロスポイント間隔情報が入力されており、シフト波形総和部9はまず各ゼロクロスポイント間隔の情報(t1,t2,t3,4)に基づいてサンプリング処理部8によりサンプリング処理した折り返しデータの位相をそれぞれシフトさせる。そして、各ゼロクロスポイント間隔に相当する時間差だけ時間的にシフトされた各折り返しデータとサンプリング処理部8によりサンプリング処理した折り返しデータについて総和処理を行いSカーブ信号を生成する。
【0029】
図3はシフト波形総和部9における総和処理の内容を説明するための信号波形図である。図3において、17は受信側のサンプリング処理部8によりサンプリング処理した折り返しデータの信号波形、18乃至21は送信側のサンプリング処理部4により算出した各ゼロクロスポイント間隔情報に基づいて時間的にシフトされた各折り返しデータの信号波形、22はシフト波形総和部9の総和処理により生成されたSカーブ信号、23はSカーブ信号22のゼロクロスポイント、20はサンプリング処理部8によりサンプリング処理された折り返しデータに重畳した雑音成分を示している。図3に示すように、サンプリング処理部8によりサンプリング処理した折り返しデータを各ゼロクロスポイント間隔に相当する時間差だけ時間的にシフトすると、折り返しデータ17の基準とするゼロクロスポイント(cr5)のタイミングに各ゼロクロスポイント間隔情報に基づいてシフトした各折り返しデータのゼロクロスポイント(cr4,cr3,cr2,cr1)がそれぞれ一致し、これら複数の折り返しデータ17乃至21を総和処理することによりSカーブ信号22が生成される。
【0030】
また、このSカーブ信号22は、PN系列等の擬似雑音符号からなる測距用データを総和処理しているため、折り返しデータ17の基準とするゼロクロスポイント(cr5)のタイミングにおいては正方向成分と負方向成分が強調されて急峻なゼロクロス特性を示すが、他のタイミングにおいては各折り返しデータ17乃至21の正方向成分と負方向成分が平均化され、比較的なだらかな特性となる。例えば、図3に示すような雑音成分24が重畳されていたとしても、各折り返しデータが異なるゼロクロスポイント間隔に応じてシフトされているので、上述したような各ゼロクロスポイント間隔情報に応じてシフトさせた複数の折り返しデータを総和処理することにより、雑音成分24が平均化され、雑音信号による影響を抑制することができる。
【0031】
なお、以上のようなゼロクロスシフト処理、及びゼロクロスシフトした折り返しデータの総和処理は、DSP(Digital Signal Processor、以下、DSPという。)を用いたソフトウェア処理によって実現することができる。具体的には、受信側のサンプリング処理部8によってサンプリング処理したデジタルの折り返しデータをメモリ等の記憶手段に一時記憶させておき、この記憶手段に記憶したデジタルの測距用データをDSPにより処理してSカーブ信号を生成する。
【0032】
シフト波形総和部9により生成されたSカーブ信号22はSカーブ計測部10に入力される。Sカーブ計測部10はSカーブ信号22のゼロクロスポイント23の時刻を折り返しデータ17の受信タイミングとして計測する。図4はSカーブ信号22のゼロクロスポイント23と受信タイミングとの関係を示す信号波形図である。図4に示すように、Sカーブ信号22のゼロクロスポイント23の検出タイミングが折り返しデータ17の受信タイミングとなり、実施の形態1による測距装置1によれば、Sカーブ信号22のゼロクロスポイント23の検出が容易かつ正確となるので、折り返しデータ17の受信タイミングを正確に検出することができる。Sカーブ計測部10により計測されたSカーブ信号22のゼロクロスポイント23のタイミングは受信タイミング情報として距離算出部11に出力される。
【0033】
距離算出部11には送信側のサンプリング処理部4において算出した送信タイミング情報が入力されており、距離算出部11はこの送信タイミング情報とSカーブ計測部10により計測されたSカーブ信号22のゼロクロスポイント23のタイミング情報、すなわり受信タイミングの情報とに基づいて被測距装置2までの電波伝搬時間(Td)を算出する。また、距離算出部11には被測距装置2において遅延させた折り返しデータの遅延時間が与えられており、この遅延時間により電波伝搬時間(Td)を校正する。そして、この校正された電波伝搬時間(Td)に光速Cを乗じ、さらに1/2を乗じることにより測距装置1から被測距装置2までの距離が算出される。
【0034】
このように、実施の形態1による測距装置1によれば、受信タイミングとなる折り返しデータの基準とするゼロクロスポイント(cr5)のタイミングをSカーブ計測部10により正確に計測することができるので、Sカーブ計測部10により計測したSカーブ信号22のゼロクロスポイント23のタイミング情報に基づいて測距装置1から被測距装置2までの距離を正確に算出することができる。図5は測距装置1により算出した電波伝搬時間(Td)を説明するための信号波形図である。図5に示すように、測距装置1と被測距装置2との間における電波伝搬時間(Td)は、測距装置1において送受信された測距用データの基準とするゼロクロスポイント(cr5)の時間差となるので、測距装置1において受信された折り返しデータの基準とするゼロクロスポイント(cr5)を正確に計測することにより正確な電波伝搬時間(Td)を算出することができる。
【0035】
なお、実施の形態1による測距装置1では、送信側のサンプリング処理部4において測距用データの各ゼロクロスポイント間隔情報を算出する際にゼロクロスポイント(cr5)を基準としているが、ゼロクロスポイント(cr1)を基準として算出してもよい。この場合、ゼロクロスポイント(cr1)に基づき送信タイミングが算出される。
【0036】
また、実施の形態1による被測距装置2では、折り返し処理が復調部13の処理後において実施されているが、無線部12における無線周波数段階や中間周波数段階で折り返し処理を実施してもよい。この場合、復調部13と変調部16による遅延の影響を除くことができるが、送信出力レベルを自動調整して出力させることが必要である。
【0037】
実施の形態2.
次に、図1に示すような測距装置の測距精度を向上させる手法について図6を用いて説明する。実施の形態1による測距装置においては、シフト波形総和部9の総和処理によって生成されたSカーブ信号22に基づいて測距装置による受信した折り返しデータの受信タイミングを算出するようにしたので、従来方式のようにPN符号のチップ速度を上げなくても、サンプリング処理部4,8の計測精度を上げることによって測距精度を向上させることができる。図6はサンプリング処理部のサンプリング速度とSカーブ信号22のゼロクロスポイント23の計測誤差との関係を示す信号波形図である。図6(b)に示すように、サンプリング処理部4,8のサンプリング速度を上げてサンプリング処理部4,8のサンプリング間隔を狭くすればSカーブ信号22のゼロクロスポイント23の計測誤差を小さくすることができ、測距装置の測距精度を向上させることができる。また、PN符号のチップ速度を上げる必要がないため変調帯域幅が広がるという問題もなく、周波数の有効利用を図ることができる。
【0038】
なお、従来方式であるPN系列の相関処理を実施して電波伝搬時間を計測するという方法では、サンプリング処理部4,8のサンプリング速度を上げても電波伝搬時間(Td)の計測精度を向上させることにはつながらず、このようにサンプリング処理部4,8の計測精度を上げることによって測距精度を向上させる手法は実施の形態1による測距装置のような測距原理を使用する場合において有効である。
【0039】
実施の形態3.
次に実施の形態3による測距装置について図7を用いて説明する。図7は実施の形態4による測距装置及び被測距装置を示すブロック構成図である。図7において、1bは測距装置、2bは被測距装置であり、実施の形態3による測距システムは被測距装置2bが複数となるような場合を想定したものである。なお、これら測距装置1b及び被測距装置2bの具体的な構成については説明を省略するが、それぞれ図1に示すように構成されている。但し、測距装置1bは各被測距装置2bに応じて異なるデータ系列の測距用データを使用する。これにより被測距装置2bが複数となるような場合においてもこれら各被測距装置2bまでの距離を正確に算出することができる。
【0040】
実施の形態4.
なお、上記実施の形態による測距装置1,1bにおいては、データ生成部3により生成する測距用データとして任意のパターンのデータ系列を使用したが、PNデータ系列等の擬似雑音符号を使用してもよい。このような擬似雑音符号を測距用データとして使用することにより、隣接する他のシステムに対する干渉の影響を抑制することができる。また、測距用データにおけるゼロクロスポイントの数を増やすため、1,0パターンのデータ系列を使用することも可能である。1,0パターンのデータ系列を使用することにより、さらに耐雑音性能を向上させることができる。
【0041】
実施の形態5.
最後に、図1に示すような測距装置及び被測距装置を適用した測距システムの例について図8を用いて説明する。図8は列車と駅ホーム間の距離を測定する測距システムを示すシステム概念図である。図8おいては、25は列車、26は線路、27は駅ホームであり、図中、同一符号は同一又は相当部分を示す。図8に示すように、例えば、駅ホーム27側に図1に示すような測距装置1、列車25側に図1に示すような被測距装置2をそれぞれ配置することにより、列車25が駅ホーム27に進入した際の列車25と駅ホーム27との間の距離を正確に求めることができる。なお、これらの配置を逆にして測距装置1を列車25側に配置しても同様である。また、無線信号の送受信に基づいて距離を算出するので、列車25が駅ホーム27に進入してから所定位置において停車するまでの各距離を連続的に計測することができる。
【0042】
【発明の効果】
以上のように、この発明によれば、複数のゼロクロスポイントを有する測距用データを送受信し、被測距装置に送信した測距用データのゼロクロスポイント間隔情報に応じて被測距装置から折り返し送信された測距用データの位相をシフトさせ、これら位相の異なる複数の測距用データを総和処理するので、測距用データのゼロクロスポイントが一点に集約して、急峻な波形のSカーブ信号を得ることができ、ゼロクロスポイントの波形が雑音重畳により歪んでいても、このSカーブ信号のゼロクロスポイントを検出することにより正確な電波伝搬時間を計測することができ、耐雑音特性に優れる一方、変調帯域幅による制約を受けることなく測距精度を大幅に向上させることができる。
【図面の簡単な説明】
【図1】実施の形態1による測距装置及び被測距装置を示すブロック構成図である。
【図2】測距装置1のデータ生成部3により生成される測距用データの例を示す信号波形図である。
【図3】測距装置1のシフト波形総和部9による総和処理の内容を説明するための信号波形図である。
【図4】Sカーブ信号18のゼロクロスポイント19と受信タイミングとの関係を示す信号波形図である。
【図5】測距装置1により算出した電波伝搬時間(Td)を説明するための信号波形図である。
【図6】実施の形態2による測距装置を説明するためのサンプリング処理部のサンプリング速度とSカーブ信号18のゼロクロスポイントの計測誤差との関係を示す信号波形図である。
【図7】実施の形態3による測距装置及び被測距装置を示すブロック構成図である。
【図8】実施の形態5による測距システムを示すシステム概念図である。
【図9】従来方式(第2の方法)による問題点を説明するための相関波形図及びこれに対応したスペクトル波形図である。
【符号の説明】
1,1b 測距装置、2,2b 被測距装置、3 データ生成部、
4 送信側のサンプリング処理部、6、12 無線部、
8 受信側のサンプリング処理部、
9 シフト波形総和部、10 Sカーブ計測部、11 距離算出部、
14 遅延処理部、15 折り返し処理部、
25 列車、27 駅ホーム。

Claims (8)

  1. 複数のゼロクロスポイントを有する測距用データを送受信し、この測距用データの送信タイミングと被測距側から折り返し送信された前記測距データの受信タイミングとの時間差から前記被測距側までの距離を算出する測距装置において、前記被測距側から折り返し送信された測距データの位相を前記被測距装置に送信した測距用データのゼロクロスポイントの間隔に応じてシフトさせ、これら位相の異なる複数の測距用データを総和処理して生成したSカーブ信号のゼロクロスポイントの検出タイミングに基づいて前記被測距側までの距離を算出する手段とを備えたことを特徴とする測距装置。
  2. 複数のゼロクロスポイントを有する測距用データを送受信し、この測距用データの送信タイミングと被測距側から折り返し送信された前記測距データの受信タイミングとの時間差から前記被測距側までの距離を算出する測距装置において、前記被測距側に送信する測距用データのゼロクロスポイントを計測し、基準とするゼロクロスポイントから他のゼロクロスポイントまでの各時間差を算出する手段と、前記被測距側から折り返し送信された前記測距データの位相を前記時間差に応じてそれぞれシフトさせ、これら位相の異なる複数の測距用データを総和処理してSカーブ信号を生成させる手段と、前記Sカーブ信号のゼロクロスポイントの検出タイミングに基づいて前記被測距側までの距離を算出する手段とを備えたことを特徴とする測距装置。
  3. 前記測距用データは、PNデータ系列であることを特徴とする請求項1又は請求項2記載の測距装置。
  4. 前記測距用データは、1,0パターンのデータ系列であることを特徴とする請求項1又は請求項2記載の測距装置。
  5. 擬似雑音符号のデータ系列を生成するデータ生成部と、このデータ生成部から出力された前記データ系列の各ゼロクロスポイントを計測し、基準とするゼロクロスポイントから他のゼロクロスポイントまでの各時間差を算出するサンプリング処理部と、前記データ系列を変調して被測距装置に送信し、前記被測距装置から折り返し送信された折り返し信号を復調して受信データ系列を復元する無線部と、この無線部により復元された前記受信データ系列の位相を前記サンプリング処理部により算出した前記時間差に応じてそれぞれシフトさせ、これら位相の異なる複数の受信データ系列を総和処理してSカーブ信号を生成するシフト波形総和部と、このシフト波形総和部により生成されたSカーブ信号のゼロクロスポイントを計測するSカーブ計測部と、このSカーブ計測部により計測された前記Sカーブ信号のゼロクロスポイントの検出タイミングに基づいて前記被測距装置までの距離を算出する距離算出部とを備えたことを特徴とする測距装置。
  6. 前記被測距装置が複数設けられ、これら複数の被測距装置それぞれに異なるデータ系列の測距用データを送受信するようにしたことを特徴とする請求項5記載の測距装置
  7. 測距装置を駅ホーム側、被測距装置を車両側にそれぞれ設け、前記駅ホームの所定位置から前記駅ホームに進入した前記車両までの距離を算出する測距システムにおいて、前記測距装置は、前記車両側に送信する測距用データの各ゼロクロスポイントを計測し、基準とするゼロクロスポイントから他のゼロクロスポイントまでの各時間差を算出する手段と、前記車両側の被測距装置から折り返し送信された前記測距データの位相を前記時間差に応じてそれぞれシフトさせ、これら位相の異なる複数の測距用データを総和処理してSカーブ信号を生成させる手段と、前記Sカーブ信号のゼロクロスポイントに基づいて前記車両までの距離を算出する手段とを備えたことを特徴とする測距システム。
  8. 前記被測距装置は、無線周波数又は中間周波数の段階で前記測距用データの折り返し処理を行うことを特徴とする請求項7記載の測距システム。
JP2002280955A 2002-09-26 2002-09-26 測距システム Expired - Fee Related JP3800157B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002280955A JP3800157B2 (ja) 2002-09-26 2002-09-26 測距システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280955A JP3800157B2 (ja) 2002-09-26 2002-09-26 測距システム

Publications (2)

Publication Number Publication Date
JP2004117166A true JP2004117166A (ja) 2004-04-15
JP3800157B2 JP3800157B2 (ja) 2006-07-26

Family

ID=32275528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280955A Expired - Fee Related JP3800157B2 (ja) 2002-09-26 2002-09-26 測距システム

Country Status (1)

Country Link
JP (1) JP3800157B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013117758A1 (de) * 2012-02-10 2013-08-15 Bombardier Transportation Gmbh Vermessung von abständen eines schienenfahrzeugs zu seitlich des schienenfahrzeugs angeordneten gegenständen
JP2018136135A (ja) * 2017-02-20 2018-08-30 沖電気工業株式会社 測距装置
JP2020134480A (ja) * 2019-02-26 2020-08-31 セイコーエプソン株式会社 超音波計測装置、及び超音波計測方法
WO2022247593A1 (zh) * 2021-05-28 2022-12-01 华为技术有限公司 测距方法和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013117758A1 (de) * 2012-02-10 2013-08-15 Bombardier Transportation Gmbh Vermessung von abständen eines schienenfahrzeugs zu seitlich des schienenfahrzeugs angeordneten gegenständen
JP2018136135A (ja) * 2017-02-20 2018-08-30 沖電気工業株式会社 測距装置
JP2020134480A (ja) * 2019-02-26 2020-08-31 セイコーエプソン株式会社 超音波計測装置、及び超音波計測方法
JP7298186B2 (ja) 2019-02-26 2023-06-27 セイコーエプソン株式会社 超音波計測装置、及び超音波計測方法
WO2022247593A1 (zh) * 2021-05-28 2022-12-01 华为技术有限公司 测距方法和装置

Also Published As

Publication number Publication date
JP3800157B2 (ja) 2006-07-26

Similar Documents

Publication Publication Date Title
US10142133B2 (en) Successive signal interference mitigation
JP5535024B2 (ja) レーダ装置
US7564400B2 (en) Spread spectrum radar apparatus
US7529551B2 (en) Ranging and positioning system, ranging and positioning method, and radio communication apparatus
JP4854003B2 (ja) 測距システム
JP5861059B2 (ja) レーダ装置
WO2011102130A1 (ja) 超音波測定方法および超音波測定装置
JP3998601B2 (ja) パルスレーダ装置
US7148841B2 (en) Radar device
JP2661534B2 (ja) スペクトラム拡散受信方法及び受信機
US6820031B1 (en) Method and device for distance detection
JP7460968B2 (ja) 運転支援装置、車両および運転支援方法
CN106918822A (zh) 计算用于解析副载波跟踪模糊度的非模糊鉴别器的gnss接收器
JP4771875B2 (ja) 無線周波信号源の位置標定装置
RU2474835C1 (ru) Корреляционно-фазовый пеленгатор
JP4750660B2 (ja) 受信装置及び測位システム並びに測位方法
JP5188204B2 (ja) 測距通信装置
JP3800157B2 (ja) 測距システム
JP2001036429A (ja) 擬似雑音符号位相検出装置
JP4460698B2 (ja) 測距方法および装置
JP3399879B2 (ja) 車間距離計測方法
JP3973047B2 (ja) パルスレーダ装置
JP2011128144A (ja) 無線測位装置
JP4019640B2 (ja) Cwレーダ装置
JP2003287567A (ja) スペクトル拡散測距通信装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees