JP4693030B2 - Method for producing activated carbon - Google Patents

Method for producing activated carbon Download PDF

Info

Publication number
JP4693030B2
JP4693030B2 JP2004323314A JP2004323314A JP4693030B2 JP 4693030 B2 JP4693030 B2 JP 4693030B2 JP 2004323314 A JP2004323314 A JP 2004323314A JP 2004323314 A JP2004323314 A JP 2004323314A JP 4693030 B2 JP4693030 B2 JP 4693030B2
Authority
JP
Japan
Prior art keywords
activated carbon
activation
indole
exchange resin
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004323314A
Other languages
Japanese (ja)
Other versions
JP2006131461A (en
Inventor
裕幸 石川
祐輔 永田
祐作 阪田
明徳 武藤
富孝 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2004323314A priority Critical patent/JP4693030B2/en
Publication of JP2006131461A publication Critical patent/JP2006131461A/en
Application granted granted Critical
Publication of JP4693030B2 publication Critical patent/JP4693030B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、腎疾患の治療薬としての経口投与用吸着剤に用いられる活性炭及びその製造方法並びに該活性炭を含有する腎疾患治療薬に関する。   The present invention relates to activated carbon used for an orally administered adsorbent as a therapeutic agent for renal diseases, a method for producing the same, and a therapeutic agent for renal diseases containing the activated carbon.

慢性腎不全による透析患者数は年々増加し2003年末では約23万人であった。更に近年、糖尿病による合併症で腎不全になる割合が高まり、透析患者数はますます増加する傾向である。一方、透析導入に至った場合、費用面では年間一人当り500万円の医療費増加になる。このため国の財政面からも、透析患者数の増加は大きな問題となっている。現在、低蛋白質食事療法、血圧調整等、様々な治療が行われ、慢性腎不全の進行を抑制し、透析導入を遅延する試みがなされている。   The number of dialysis patients due to chronic renal failure increased year by year, and was about 230,000 at the end of 2003. Furthermore, in recent years, the rate of renal failure due to complications due to diabetes has increased, and the number of dialysis patients has been increasing. On the other hand, when dialysis is introduced, the cost increases by 5 million yen per person per year. For this reason, the increase in the number of dialysis patients has become a big problem from the national financial aspect. At present, various treatments such as a low protein diet and blood pressure adjustment are performed, and attempts are made to suppress the progression of chronic renal failure and delay the introduction of dialysis.

腎不全による***症状の進行で、人工透析導入に至るが、この腎不全病態での生体障害因子をuremic toxinと定義づけ、近年このuremic toxinの生体作用機構に関わる様々な医療研究がなされている。しかしながら、uremic toxinは複雑であり、多種類の物質が関与して毒性を示している場合が多く、断定することが困難とされている。このようななかで、丹羽ら(「***物質研究の現況‘98 第43回日本透析医学会カレントコンセプトより」;日本透析医学会雑誌 Vol31.No.12 1423−1429)、「腎不全の進行とインドキシル硫酸」;Annual Review 腎臓 Vol 2001 136−141)は、インドキシル硫酸がこのuremic toxinの一つであることを明らかにし、さらに経口吸着剤AST−120(商品名;クレメジン)の投与が血清中のインドキシル硫酸を低減することを見出し、結果として腎不全の進行を遅延する効果が期待された。丹羽らによれば、食事蛋白由来の一部が腸管において大腸菌などによってインドールに代謝され、その後腸管より体内に吸収される。さらにインドールは肝臓において硫酸抱合され、インドキシル硫酸が生成され、腎臓で***される。腎不全ではこの***経路が絶たれるために、結果として血中に蓄積する。経口投与されたAST−120は腸管内でインドキシル硫酸の前駆体であるインドールを吸着し、腸によるインドールの吸収を抑制して、肝臓によるインドキシル硫酸の生成が抑制され、インドキシル硫酸の血中濃度が低下する。   The progression of uremic symptoms due to renal failure leads to the introduction of artificial dialysis, but the biological disorder factor in this renal failure pathology is defined as uretic toxin, and in recent years various medical studies related to the biological action mechanism of uremic toxin have been made. Yes. However, uremic toxins are complex, and many types of substances are involved and often show toxicity, making it difficult to determine. Among them, Niwa et al. ("Current status of research on uremic substances '98 from the 43rd Japan Dialysis Medical Society Current Concept"; Japan Dialysis Medical Society Journal Vol. 31 No. 12 1423-1429), Indoxyl sulfate "; Annual Review Kidney Vol 2001 136-141) reveals that indoxyl sulfate is one of the uremic toxins, and administration of oral adsorbent AST-120 (trade name; Cremedin) As a result, it was expected to reduce the progression of renal failure. According to Niwa et al., A portion of dietary protein is metabolized into indole by Escherichia coli in the intestine and then absorbed into the body through the intestine. Furthermore, indole is sulfate conjugated in the liver, indoxyl sulfate is produced and excreted in the kidney. In renal failure, this excretion route is interrupted, resulting in accumulation in the blood. Orally administered AST-120 adsorbs indole, a precursor of indoxyl sulfate in the intestine, suppresses indole absorption by the intestine, suppresses indoxyl sulfate production by the liver, and indoxyl sulfate blood Medium concentration decreases.

実際、多数の臨床試験報告において、慢性腎不全患者へ投与することで人工透析への導入期間が明らかに延長され、腎不全患者に見られる血中のクレアチニンクリアランスが改善傾向を示している。(「慢性腎不全に対するクレメジンの透析導入遅延効果〜投与時期の検討」;日本透析医学学会雑誌Vol.37 8−33,2004,上田陽彦,柴原伸久,他、「糖尿病性腎不全に対するAST−120の効果」;Progress in Medicine Vol.18 No.3 483−487 1998,和田成雄,松室克義)   In fact, in many clinical trial reports, administration to chronic renal failure patients has clearly extended the period of introduction to artificial dialysis, and the blood creatinine clearance seen in renal failure patients shows a trend of improvement. ("Delay effect of cremedin on chronic renal failure-examination of administration time"; Journal of Japanese Society for Dialysis Medicine, Vol. 37 8-33, 2004, Yoshihiko Ueda, Nobuhisa Shibahara, et al., "AST-120 for diabetic renal failure Effect of; Progress in Medicine Vol.18 No.3 483-487 1998, Nadao Wada, Katsuyoshi Matsumuro)

また、該経口吸着剤(AST−120)の特徴としては、αアミラーゼ等の酵素類や生体に有用な物質を極力吸着しないことである。例えば、古くから解毒剤としている薬用炭では、インドールの吸着性能を有するが、αアミラーゼ等の酵素類及び分子量1万以上の高分子物質でも容易に吸着するため、常用としては服用することは困難であった。一方、AST−120は、「クレメジンカプセル200の薬物相互作用に関する検討」(基礎と臨床Vol.28 No.10 2873−288)によれば、従来にない特殊な製造方法により、αアミラーゼ等の酵素類や生体に有用な物質を極力吸着しないように調整された吸着剤である。   The oral adsorbent (AST-120) is characterized by not adsorbing enzymes such as α-amylase and substances useful for living bodies as much as possible. For example, medicinal charcoal, which has been used as an antidote for a long time, has indole adsorption performance, but easily adsorbs enzymes such as α-amylase and high molecular weight substances with a molecular weight of 10,000 or more. Met. On the other hand, AST-120 is an enzyme such as α-amylase produced by a special production method that has not been conventionally used, according to “Study on Drug Interaction of Cremedin Capsule 200” (Basic and Clinical Vol. 28 No. 10 2873-288). It is an adsorbent that has been adjusted so as not to adsorb as much as possible a substance useful for a kind or a living body.

他の経口投与用の吸着剤としては、特開昭56−73542号公報、又は特開2002−308785号公報に、多孔性の炭素質物質が開示されている。   As other adsorbents for oral administration, porous carbonaceous materials are disclosed in JP-A-56-73542 or JP-A-2002-308785.

「***物質研究の現況‘98第43回日本透析医学会カレントコンセプトより」;日本透析医学会雑誌Vol31.No.12 1423−1429)"Current status of research on uremic substances '98 from the 43rd Japan Dialysis Medical Society Current Concept"; No. 12 1423-1429) 「腎不全の進行とインドキシル硫酸」;Annual Review腎臓Vol 2001 136−141“Progress of renal failure and indoxyl sulfate”; Annual Review Kidney Vol 2001 2001-141 特開昭56−73542号公報JP-A-56-73542 特開2002−308785号公報JP 2002-308785 A 「クレメジンカプセル200の薬物相互作用に関する検討;基礎と臨床Vol.28 No.10 2873−288“Study on Drug Interaction of Cremedin Capsule 200; Basic and Clinical Vol.28 No.10 2873-288

AST−120を経口投与する場合、実際に効果が期待できる服用量は、臨床試験の結果から、1日に6g以上である。その場合、例えば、通常カプセルで服用するには1日に30カプセル以上の飲用せねばならない。ところが、慢性腎不全による飲料水量の制限があるため、効果が期待できる量服用することはかなり困難であった。「クレメジン服用に関する検討」(文献病院薬学;Vol.24 No.6 723−728,朝倉 他)では、水分の制限があるものの、服用患者の90%で服用量が多いと答えていた。   When AST-120 is administered orally, the dose that can actually be expected to be effective is 6 g or more per day based on the results of clinical trials. In that case, for example, in order to take a usual capsule, it is necessary to drink 30 capsules or more a day. However, since there is a restriction on the amount of drinking water due to chronic renal failure, it has been quite difficult to take an amount that can be expected to be effective. According to “Study on Cremedin” (literature hospital pharmacy; Vol.24 No.6 723-728, Asakura et al.), 90% of patients taking the drug said that the dose was high, although there was a restriction on water.

また、特開昭56−73542号公報、又は特開2002−308785号公報に記載されている多孔性の炭素質物質も、AST−120と同様、十分な効果を得るためには、服用量を多くしなければならなかった。   In addition, the porous carbonaceous material described in JP-A-56-73542 or JP-A-2002-308785 also requires a dose in order to obtain a sufficient effect as in AST-120. I had to do a lot.

そのため、経口投与用吸着剤用として、服用量が少なくても効果が期待できる活性炭、すなわち、単位体積当りのインドールの吸着量及び単位重量当りのインドールの吸着量のいずれもが多い活性炭が望まれている。   For this reason, activated carbon that can be expected to be effective even when the dose is small, that is, activated carbon with a large amount of indole adsorbed per unit volume and indole adsorbed per unit weight is desired for use as an adsorbent for oral administration. ing.

従って、本発明の課題は、単位体積当りのインドールの吸着量及び単位重量当りのインドールの吸着量が多く、且つ単位体積当りの酵素等の有用物質の吸着量が少ない活性炭及びその製造方法、並びに腎疾患患者の治療薬の服用量を少なくできる腎疾患治療薬を提供することにある。   Therefore, an object of the present invention is to provide activated carbon having a large amount of adsorbed indole per unit volume and a large amount of adsorbed indole per unit weight and a small amount of adsorbed useful substances such as enzymes per unit volume, and a method for producing the same, An object of the present invention is to provide a therapeutic agent for renal disease that can reduce the dose of the therapeutic agent for renal disease patients.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、(1)インドールの吸着性能と、細孔半径及び細孔容積の関係を検討したところ、特定の細孔、すなわち、1nm以下の細孔半径の細孔がインドールの吸着に効果的に関与すること、そして、(2)活性炭の細孔半径とその細孔容積、及び充填密度を特定の範囲とすることにより、単位体積当りのインドールの吸着量及び単位重量当りの吸着量が多くなること、(3)イオン交換樹脂等を原料に用いて得られる炭化物を、特定の賦活条件で賦活することにより、上記(2)の物性を有する活性炭を製造できること等を見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-described problems in the prior art, the present inventors have studied (1) the relationship between indole adsorption performance, pore radius, and pore volume. That is, pores having a pore radius of 1 nm or less are effectively involved in indole adsorption, and (2) the pore radius, pore volume, and packing density of activated carbon are in a specific range. By increasing the adsorption amount of indole per unit volume and the adsorption amount per unit weight, (3) by activating the carbide obtained by using an ion exchange resin or the like as a raw material under specific activation conditions, the above It discovered that the activated carbon which has the physical property of (2) etc. can be manufactured, and came to complete this invention.

すなわち、本発明は、イオン交換樹脂、イオン交換樹脂の熱処理物、ジビニルベンゼン共重合体、又はジビニルベンゼン共重合体の熱処理物を、不活性ガス雰囲気下で炭化処理し、炭化物を得る炭化処理工程、750〜1200℃で、水蒸気により該炭化物の賦活を行い、水蒸気賦活物を得る水蒸気賦活工程、及び800〜1200℃で、1〜6時間炭酸ガスにより該水蒸気賦活物の賦活を行い、活性炭を得る炭酸ガス賦活工程を有することを特徴とする活性炭の製造方法を提供するものである。 That is, the present invention is a carbonization treatment step in which a carbonized product is obtained by carbonizing an ion exchange resin, a heat-treated product of the ion-exchange resin, a divinylbenzene copolymer, or a heat-treated product of the divinylbenzene copolymer in an inert gas atmosphere. , at 750 to 1,200 ° C., subjected to activation of the carbide by vapor, as steam-activated Engineering obtaining steam activation thereof, and at 800 to 1200 ° C., subjected to activation of the water vapor activation was by 1-6 hours carbon dioxide, activated carbon It provides the manufacturing method of the activated carbon characterized by having the carbon dioxide activation process which obtains.

本発明の活性炭は、単位体積当りのインドールの吸着量及び単位重量当りのインドールの吸着量が多いので、服用量が少なくても、優れたインドール吸着効果を有し、且つ単位体積当りの酵素等の有用物質の吸着量が少ないので、経口投与用吸着剤用の活性炭として優れた効果を有する。また、本発明の活性炭の製造方法によれば、単位体積当りのインドールの吸着量及び単位重量当りのインドールの吸着量が多く、且つ単位体積当りの酵素等の有用物質の吸着量が少ない活性炭を製造することができる。また、本発明の腎疾患治療薬によれば、腎疾患患者の治療薬の服用量を少なくできる。   The activated carbon of the present invention has an indole adsorption amount per unit volume and an indole adsorption amount per unit weight, so that it has an excellent indole adsorption effect even when the dose is small, and an enzyme per unit volume, etc. Therefore, it has an excellent effect as activated carbon for adsorbents for oral administration. In addition, according to the method for producing activated carbon of the present invention, activated carbon having a large amount of indole adsorption per unit volume and a large amount of indole adsorption per unit weight and a small amount of useful substances such as enzymes per unit volume is adsorbed. Can be manufactured. Moreover, according to the therapeutic agent for renal disease of the present invention, the dose of the therapeutic agent for renal disease patients can be reduced.

本発明の活性炭は、細孔半径が1.0nm以下の細孔を有する活性炭である。本発明者らが鋭意検討を行ったところ、インドールの吸着に効果的に関与する細孔の細孔半径は、1.0nm以下であることがわかった。また、吸着を極力抑えたい酵素等の有用物質、例えば、アミラーゼは、分子量が100000、分子サイズが15〜25nmであるので、細孔半径が1.0nm以下の細孔は、アミラーゼ等を吸着しない。   The activated carbon of the present invention is activated carbon having pores having a pore radius of 1.0 nm or less. As a result of intensive studies by the present inventors, it has been found that the pore radius of pores that are effectively involved in indole adsorption is 1.0 nm or less. In addition, useful substances such as enzymes for which adsorption is to be suppressed as much as possible, for example, amylase has a molecular weight of 100,000 and a molecular size of 15 to 25 nm. Therefore, pores having a pore radius of 1.0 nm or less do not adsorb amylase or the like. .

該活性炭中の細孔半径が1.0nm以下の細孔の細孔容積は、1.0〜2.5ml/g、好ましくは1.5〜2.5ml/g、特に好ましくは1.7〜2.1ml/gである。そして、該1.0nm以下の細孔の細孔容積を、1.0〜2.5ml/gとすることにより、単位重量当りのインドールの吸着量が多くなる。該細孔容積が、1.0ml/g未満だとインドールが吸着される細孔が少なくなるので、単位重量当りのインドールの吸着量が少なく、また、2.5ml/gを超えると充填密度が低くなり過ぎるので、単位体積当りのインドールの吸着量が少なくなる。   The pore volume of pores having a pore radius of 1.0 nm or less in the activated carbon is 1.0 to 2.5 ml / g, preferably 1.5 to 2.5 ml / g, and particularly preferably 1.7 to 2.5 ml / g. 2.1 ml / g. And the adsorption amount of indole per unit weight increases by setting the pore volume of the pores of 1.0 nm or less to 1.0 to 2.5 ml / g. If the pore volume is less than 1.0 ml / g, the number of pores on which indole is adsorbed decreases, so that the amount of indole adsorbed per unit weight is small, and if it exceeds 2.5 ml / g, the packing density is reduced. Since it becomes too low, the amount of indole adsorbed per unit volume decreases.

また、該活性炭中の細孔半径が0.55nm以下の細孔の細孔容積は、特に制限されないが、好ましくは0.5〜2.5ml/g、特に好ましくは0.5〜2.0ml/g、更に好ましくは0.75〜1.5ml/gである。   The pore volume of pores having a pore radius of 0.55 nm or less in the activated carbon is not particularly limited, but is preferably 0.5 to 2.5 ml / g, particularly preferably 0.5 to 2.0 ml. / G, more preferably 0.75 to 1.5 ml / g.

また、該活性炭中の細孔半径が1.0nmを超える細孔の細孔容積は、特に制限されないが、好ましくは1.0ml/g以下、特に好ましくは0.5ml/g以下である。該細孔容積が1.0ml/gを超えると、アミラーゼ等の有用物質の吸着量が多くなり易い。   Further, the pore volume of pores having a pore radius exceeding 1.0 nm in the activated carbon is not particularly limited, but is preferably 1.0 ml / g or less, particularly preferably 0.5 ml / g or less. When the pore volume exceeds 1.0 ml / g, the amount of adsorption of useful substances such as amylase tends to increase.

該活性炭の充填密度は、0.3g/ml以上、好ましくは0.35〜0.6g/ml、特に好ましくは0.4〜0.5g/mlである。該活性炭の充填密度が、0.3g/mlより小さいと単位体積当りのインドールの吸着量が少ない。なお、充填密度とは、嵩密度とも呼ばれ、該活性炭の重量を、該活性炭の見かけ体積、すなわち、内部の細孔も含めた該活性炭の体積で除することにより求められる。   The packing density of the activated carbon is 0.3 g / ml or more, preferably 0.35 to 0.6 g / ml, particularly preferably 0.4 to 0.5 g / ml. When the packing density of the activated carbon is less than 0.3 g / ml, the amount of adsorbed indole per unit volume is small. The packing density is also called bulk density, and is obtained by dividing the weight of the activated carbon by the apparent volume of the activated carbon, that is, the volume of the activated carbon including internal pores.

該活性炭の平均粒径は、該活性炭が腸管から吸収されず且つ経口服用に支障がない程度の大きさであれば特に制限されないが、0.05〜1.0mmであることが、インドールの吸収速度が速い点で好ましく、特に好ましくは0.1〜0.5mmである。該活性炭の平均粒径が、0.05mm未満だと腸管で吸収され易くなり、また、1.0mmを超えるとインドールの吸収速度が遅くなるか、又はインドールが活性炭内部の細孔に吸着され難くなるので、単位体積当りの吸着量が少なくなり易い。   The average particle size of the activated carbon is not particularly limited as long as the activated carbon is not absorbed from the intestinal tract and does not hinder oral administration, but it is 0.05 to 1.0 mm. It is preferable at a point with a high speed, Most preferably, it is 0.1-0.5 mm. When the average particle diameter of the activated carbon is less than 0.05 mm, it is easily absorbed in the intestine, and when it exceeds 1.0 mm, the indole absorption rate is slow, or the indole is hardly adsorbed by the pores inside the activated carbon. Therefore, the amount of adsorption per unit volume tends to decrease.

該活性炭の単位体積当りのインドールの吸着量は、0.33〜0.7g/ml、好ましくは0.35〜0.7g/ml、特に好ましくは0.4〜0.7g/ml、更に好ましくは0.42〜0.7g/mlである。また、該活性炭の単位重量当りのインドールの吸着量は、0.7〜1.4g/g、好ましくは0.8〜1.4g/gである。   The adsorbed amount of indole per unit volume of the activated carbon is 0.33 to 0.7 g / ml, preferably 0.35 to 0.7 g / ml, particularly preferably 0.4 to 0.7 g / ml, more preferably Is 0.42-0.7 g / ml. Moreover, the adsorption amount of indole per unit weight of the activated carbon is 0.7 to 1.4 g / g, preferably 0.8 to 1.4 g / g.

該活性炭は、上述したように単位体積当りのインドールの吸着量及び単位重量当りのインドールの吸着量が多いので、服用量が少なくても、優れたインドールの吸着効果を示し、また、単位体積当りの酵素等の有用物質の吸着量が少ない。従って、該活性炭は、経口投与用吸着剤として好適に用いられる。   Since the activated carbon has a large amount of indole adsorbed per unit volume and indole adsorbed per unit weight as described above, it exhibits an excellent indole adsorption effect even when the dose is small. Adsorption amount of useful substances such as enzymes is small. Therefore, the activated carbon is suitably used as an adsorbent for oral administration.

本発明の第一の形態の活性炭の製造方法(以下、第一の製造方法とも記載する。)は、イオン交換樹脂、イオン交換樹脂の熱処理物、ジビニルベンゼン共重合体、又はジビニルベンゼン共重合体の熱処理物(以下、イオン交換樹脂等とも記載する。)を炭化し、炭化物を得る炭化処理工程、750〜1200℃で、該炭化物を水蒸気により賦活し、水蒸気賦活物(A)を得る水蒸気賦活工程(A)、該水蒸気賦活物(A)を炭酸ガスにより賦活し、活性炭を得る炭酸ガス賦活工程を有する。   The method for producing activated carbon according to the first aspect of the present invention (hereinafter also referred to as the first production method) includes an ion exchange resin, a heat-treated product of an ion exchange resin, a divinylbenzene copolymer, or a divinylbenzene copolymer. Carbonization process of carbonizing the heat-treated product (hereinafter also referred to as ion exchange resin, etc.) to obtain carbide, steam activation at 750 to 1200 ° C. to activate the carbide with steam to obtain a steam activated product (A) The step (A) has a carbon dioxide gas activation step of activating the water vapor activated product (A) with carbon dioxide to obtain activated carbon.

該イオン交換樹脂としては、特に制限されず、陽イオン交換樹脂又は陰イオン交換樹脂のいずれであってもよい。該陽イオン交換樹脂は、強酸性陽イオン交換樹脂又は弱酸性陽イオン交換樹脂のいずれでもよく、導入されているイオン交換基としては、例えば、スルホン酸基、カルボン酸基が挙げられ、また、該陰イオン交換樹脂は、強塩基性陰イオン交換樹脂又は弱塩基性陰イオン交換樹脂のいずれでもよく、導入されているイオン交換基としては、例えば、第四級アンモニウム塩基、第一級、第二級又は第三級アミノ基が挙げられる。これらのうち、スルホン酸基が導入されている強酸性陽イオン交換樹脂が、該水蒸気賦活工程又は炭酸ガス賦活工程での賦活処理中に、活性炭の形状が壊れ難い点で好ましい。   The ion exchange resin is not particularly limited, and may be either a cation exchange resin or an anion exchange resin. The cation exchange resin may be either a strong acid cation exchange resin or a weak acid cation exchange resin, and examples of the introduced ion exchange group include a sulfonic acid group and a carboxylic acid group. The anion exchange resin may be either a strong base anion exchange resin or a weak base anion exchange resin. Examples of the ion exchange group introduced include quaternary ammonium base, primary, Secondary or tertiary amino groups are mentioned. Of these, strongly acidic cation exchange resins into which sulfonic acid groups have been introduced are preferred in that the activated carbon is not easily broken during the activation treatment in the water vapor activation step or the carbon dioxide activation step.

該イオン交換樹脂のイオン交換基が導入されている樹脂は、(a)ジビニルベンゼンと、(b)スチレン、アクリル酸エステル及びメタクリル酸エステルから選ばれる1種又は2種以上との共重合体である。   The resin into which the ion exchange group of the ion exchange resin is introduced is a copolymer of (a) divinylbenzene and (b) one or more selected from styrene, acrylic ester and methacrylic ester. is there.

また、該イオン交換樹脂のイオン交換容量は、特に制限されないが、強酸性陽イオン交換樹脂ではNa形の時に、弱酸性陽イオン交換樹脂ではH形の時に、陰イオン交換樹脂ではCl形の時に、好ましくは0.4〜5.0mg当量/ml(湿潤樹脂)、特に好ましくは1.0〜2.5mg当量/ml(湿潤樹脂)である。また、該イオン交換樹脂の平均粒径は、特に制限されないが、好ましくは0.2〜1.0mm、特に好ましくは0.4〜0.8mmである。   The ion exchange capacity of the ion exchange resin is not particularly limited, but when the strongly acidic cation exchange resin is in the Na form, when the weak acid cation exchange resin is in the H form, and when the anion exchange resin is in the Cl form. , Preferably 0.4 to 5.0 mg equivalent / ml (wet resin), particularly preferably 1.0 to 2.5 mg equivalent / ml (wet resin). The average particle diameter of the ion exchange resin is not particularly limited, but is preferably 0.2 to 1.0 mm, particularly preferably 0.4 to 0.8 mm.

該イオン交換樹脂の熱処理物は、該イオン交換樹脂を、酸素含有ガス雰囲気下で熱処理することにより得られる。該酸素含有ガス中の酸素ガスの含有量は、0.5〜100体積%、好ましくは3〜22体積%である。また、該熱処理の温度は、200〜400℃である。該熱処理を行うことにより、該イオン交換樹脂が酸化物となり、該イオン交換樹脂中に強固な結合を形成する。従って、該炭化処理工程に用いる原料が、該イオン交換樹脂の熱処理物であることが、該水蒸気賦活工程又は該炭酸ガス賦活工程での賦活処理中に、活性炭の形状が壊れ難い点で好ましい。また、該熱処理の時間は、特に制限されないが、好ましくは1〜5時間である。   The heat-treated product of the ion exchange resin can be obtained by heat-treating the ion exchange resin in an oxygen-containing gas atmosphere. The content of oxygen gas in the oxygen-containing gas is 0.5 to 100% by volume, preferably 3 to 22% by volume. Moreover, the temperature of this heat processing is 200-400 degreeC. By performing the heat treatment, the ion exchange resin becomes an oxide, and a strong bond is formed in the ion exchange resin. Therefore, it is preferable that the raw material used for the carbonization treatment step is a heat-treated product of the ion exchange resin in that the activated carbon is not easily broken during the activation treatment in the water vapor activation step or the carbon dioxide activation step. The time for the heat treatment is not particularly limited, but is preferably 1 to 5 hours.

本発明において該ジビニルベンゼン共重合体とは、(a)ジビニルベンゼンと、(b)スチレン、アクリル酸エステル及びメタクリル酸エステルから選ばれる1種又は2種以上との共重合体である。   In the present invention, the divinylbenzene copolymer is a copolymer of (a) divinylbenzene and (b) one or more selected from styrene, acrylic acid ester and methacrylic acid ester.

また、該ジビニルベンゼン共重合体の平均粒径は、特に制限されないが、好ましくは0.2〜1.0mm、特に好ましくは0.4〜0.8mmである。   The average particle diameter of the divinylbenzene copolymer is not particularly limited, but is preferably 0.2 to 1.0 mm, particularly preferably 0.4 to 0.8 mm.

また、該ジビニルベンゼン共重合体中、原料由来による活性炭の細孔半径を考慮すると、細孔半径が10nmを超える細孔の細孔容積は、好ましくは1ml/g以下、特に好ましくは0.2〜0.8ml/gである。   In consideration of the pore radius of the activated carbon derived from the raw material in the divinylbenzene copolymer, the pore volume of pores having a pore radius exceeding 10 nm is preferably 1 ml / g or less, particularly preferably 0.2. ~ 0.8 ml / g.

該ジビニルベンゼン共重合体の熱処理物は、該イオン交換樹脂に代えて、該ジビニルベンゼン共重合体とする以外は、該イオン交換樹脂を熱処理し、該イオン交換樹脂の熱処理物を得る方法と同様の方法で得られる。   The heat-treated product of the divinylbenzene copolymer is the same as the method for obtaining a heat-treated product of the ion-exchange resin by heat-treating the ion-exchange resin except that the divinylbenzene copolymer is used instead of the ion-exchange resin. It is obtained by the method.

該炭化処理工程に係る不活性ガスとしては、特に制限されないが、例えば、窒素ガス、ヘリウムガス、アルゴンガス等が挙げられる。これらのうち、窒素ガスが、安価な点で好ましい。   Although it does not restrict | limit especially as an inert gas which concerns on this carbonization process process, For example, nitrogen gas, helium gas, argon gas etc. are mentioned. Of these, nitrogen gas is preferred because of its low cost.

該炭化処理工程を行う際の処理温度は、300〜800℃、好ましくは300〜700℃である。該処理温度が、300℃未満だと、炭化が起こり難く、また、800℃以上だと炭化物が分解し易い。また、該炭化処理を行う際の処理時間は、1時間以上、好ましくは2〜5時間である。   The processing temperature at the time of performing the carbonization step is 300 to 800 ° C, preferably 300 to 700 ° C. When the treatment temperature is less than 300 ° C., carbonization hardly occurs, and when it is 800 ° C. or more, the carbide is easily decomposed. Moreover, the processing time at the time of performing this carbonization process is 1 hour or more, Preferably it is 2 to 5 hours.

そして、該炭化処理工程を行うことにより、炭素構造が形成され、炭化物が得られる。   And a carbon structure is formed and a carbide | carbonized_material is obtained by performing this carbonization process process.

次いで、該炭化物を水蒸気により賦活する水蒸気賦活工程(A)を行う。該水蒸気賦活工程(A)を行う際の処理温度は、750〜1200℃であり、水蒸気による賦活化の反応速度が適切なので、細孔の制御がし易い点で、750〜900℃が好ましい。該処理温度が、750℃未満だと該活性炭の賦活が起こり難く、また、1200℃を超えると細孔半径が1nmを超える細孔が多数生成するため、活性炭にαアミラーゼ等の有用成分が吸着され易くなる。また、該水蒸気賦活工程(A)を行う際の処理時間は、特に制限されないが、好ましくは1〜6時間、特に好ましくは2〜4時間である。該処理時間が、1時間未満だと該炭化物の賦活が起こり難く、また、6時間を超えると細孔半径が1nmを超える細孔が多くなり易い。   Next, a steam activation step (A) for activating the carbide with steam is performed. The treatment temperature at the time of performing the water vapor activation step (A) is 750 to 1200 ° C., and since the reaction rate of activation with water vapor is appropriate, the temperature is preferably 750 to 900 ° C. in terms of easy control of the pores. When the treatment temperature is less than 750 ° C., activation of the activated carbon hardly occurs. When the treatment temperature exceeds 1200 ° C., many pores having a pore radius exceeding 1 nm are generated, so that useful components such as α-amylase are adsorbed on the activated carbon. It becomes easy to be done. In addition, the treatment time for performing the water vapor activation step (A) is not particularly limited, but is preferably 1 to 6 hours, and particularly preferably 2 to 4 hours. When the treatment time is less than 1 hour, activation of the carbide hardly occurs, and when it exceeds 6 hours, the number of pores having a pore radius exceeding 1 nm tends to increase.

該水蒸気賦活工程(A)を行うことにより、一般にメソ細孔と呼ばれる該炭化物の内部から表面に繋がる連通孔が形成され、更に、該メソ細孔の壁面に、一般にミクロ細孔と呼ばれる細孔が形成される。なお、IUPAC(国際純正及び応用化学連合)の定義に基づき、メソ細孔とは、平均径2〜50nmの細孔を言い、ミクロ細孔とは、平均径2nm以下の細孔を言う。   By performing the water vapor activation step (A), communication holes generally connected to the surface from the inside of the carbide called mesopores are formed, and pores generally called micropores are formed on the wall surfaces of the mesopores. Is formed. In addition, based on the definition of IUPAC (International Pure and Applied Chemistry Association), mesopores refer to pores having an average diameter of 2 to 50 nm, and micropores refer to pores having an average diameter of 2 nm or less.

次いで、該水蒸気賦活工程(A)により得られる該水蒸気賦活物(A)を、炭酸ガスで賦活する炭酸ガス賦活工程を行う。該炭酸ガス賦活工程を行う際の処理温度は、800〜1200℃、好ましくは850〜950℃である。該処理温度が、800℃未満だと該活性炭の賦活が起こり難く、また、1200℃を超えると細孔半径が1nmを超える細孔が多数生成するため、活性炭にαアミラーゼ等の有用成分が吸着され易くなる。また、該炭酸ガス賦活工程を行う際の処理時間は、特に制限されないが、好ましくは1〜30時間、特に好ましくは5〜20時間である。該処理時間が、1時間未満だと該炭化物の賦活が起こり難く、また、30時間を超えると、該活性炭の充填密度が低くなり易く、且つ長時間を要するので工業的にも非効率である。   Next, a carbon dioxide gas activation step of activating the water vapor activation product (A) obtained by the water vapor activation step (A) with carbon dioxide gas is performed. The processing temperature at the time of performing this carbon dioxide activation process is 800-1200 degreeC, Preferably it is 850-950 degreeC. When the treatment temperature is less than 800 ° C., activation of the activated carbon hardly occurs. When the treatment temperature exceeds 1200 ° C., many pores having a pore radius exceeding 1 nm are generated. Therefore, useful components such as α-amylase are adsorbed on the activated carbon. It becomes easy to be done. In addition, the treatment time for performing the carbon dioxide activation process is not particularly limited, but is preferably 1 to 30 hours, particularly preferably 5 to 20 hours. When the treatment time is less than 1 hour, the activation of the carbide hardly occurs. When the treatment time exceeds 30 hours, the packing density of the activated carbon tends to be low, and a long time is required, which is industrially inefficient. .

該水蒸気賦活工程(A)から該炭酸ガス賦活工程に移行するには、雰囲気を水蒸気から炭酸ガスに切替るが、該切替方法としては、特に制限されず、例えば、(i)炭酸ガスを雰囲気に導入しながら、水蒸気を排出する方法、(ii)水蒸気を窒素ガス等の不活性ガスで一旦パージした後、炭酸ガスを導入する方法、(iii)水蒸気ガス雰囲気炉と炭酸ガス雰囲気炉を設け、該炭化物を順に移動させる方法等が挙げられる。   In order to shift from the water vapor activation step (A) to the carbon dioxide activation step, the atmosphere is switched from water vapor to carbon dioxide, but the switching method is not particularly limited. For example, (i) (Ii) A method of introducing carbon dioxide after once purging water vapor with an inert gas such as nitrogen gas, and (iii) A steam gas atmosphere furnace and a carbon dioxide atmosphere furnace are provided. And a method of moving the carbides in order.

本発明者らは、該イオン交換樹脂等を炭化処理して得られる該炭化物を用いると、水蒸気による賦活では、メソ細孔の生成が速く、一方、炭酸ガスによる賦活では、メソ細孔は殆ど生成せず、ミクロ細孔が生成することを見出した。そして、本発明の第一の製造方法は、そのような水蒸気賦活及び炭酸ガス賦活の反応特性を利用したものであり、該水蒸気賦活工程(A)で、メソ細孔を多く形成させて、ミクロ細孔が形成される壁面の面積を多くし、次いで、該炭酸ガス賦活工程で、該メソ細孔に、インドールの吸着に効果的な1nm以下の細孔半径の細孔を形成させることにより、1nm以下の細孔半径の細孔を多数有する活性炭が製造される。   When the carbide obtained by carbonizing the ion exchange resin or the like is used, the present inventors generate mesopores quickly when activated with water vapor, whereas the mesopores are almost completely activated with carbon dioxide gas. It was found that micropores were generated without being generated. And the 1st manufacturing method of this invention utilizes the reaction characteristic of such water vapor activation and a carbon dioxide gas activation, and forms many mesopores in this water vapor activation process (A), and is microscopic. By increasing the area of the wall surface on which the pores are formed, and then, in the carbon dioxide gas activation step, by forming pores having a pore radius of 1 nm or less effective for indole adsorption in the mesopores, Activated carbon having a large number of pores having a pore radius of 1 nm or less is produced.

従って、該第一の製造方法は、前記本発明の活性炭の製造に、好適に用いられる。   Therefore, the first production method is suitably used for producing the activated carbon of the present invention.

次に、本発明の第二の形態の活性炭の製造方法(以下、第二の製造方法とも記載する。)について説明する。該第二の製造方法は、該イオン交換樹脂等を、不活性ガスの雰囲気下で炭化処理し、炭化物を得る炭化処理工程、及び750〜890℃で、水蒸気により該炭化物の賦活を行い、活性炭を得る水蒸気賦活工程(B)を有する。   Next, a method for producing activated carbon according to the second embodiment of the present invention (hereinafter also referred to as a second production method) will be described. In the second production method, the ion exchange resin or the like is carbonized in an inert gas atmosphere to obtain a carbide, and the carbide is activated with steam at 750 to 890 ° C. to obtain activated carbon. Having a water vapor activation step (B).

該炭化工程については、前記第一の製造方法と同様なので、その説明を省略する。   Since the carbonization step is the same as in the first manufacturing method, description thereof is omitted.

該水蒸気賦活工程(B)は、該炭化処理工程を行い得られる炭化物を、水蒸気により賦活する工程である。該水蒸気賦活工程(B)を行う際の温度は、750〜890℃、好ましくは820〜880℃、特に好ましくは830〜870℃、更に好ましくは840〜860℃である。該処理温度が、750℃未満だと該炭化物の賦活が起こり難く、また、890℃を超えると細孔半径が1nmを超える細孔が多数生成するため、活性炭に有用成分が吸着され易くなる。   The steam activation step (B) is a step of activating the carbide obtained by performing the carbonization treatment step with steam. The temperature at the time of performing this steam activation process (B) is 750-890 degreeC, Preferably it is 820-880 degreeC, Most preferably, it is 830-870 degreeC, More preferably, it is 840-860 degreeC. When the treatment temperature is less than 750 ° C., activation of the carbide hardly occurs. When the treatment temperature exceeds 890 ° C., many pores having a pore radius exceeding 1 nm are generated, and thus useful components are easily adsorbed on the activated carbon.

該水蒸気賦活工程(B)を行う際の処理時間は、3.5〜12時間、好ましくは4〜9時間である。該処理時間が、3.5時間未満だと該炭化物の賦活が起こり難く、また、12時間を超えると細孔半径が1nmを超える細孔が生成し易くなるとともに、工業的に非効率になる。   The treatment time for performing the water vapor activation step (B) is 3.5 to 12 hours, preferably 4 to 9 hours. When the treatment time is less than 3.5 hours, the activation of the carbide hardly occurs. When the treatment time is longer than 12 hours, pores having a pore radius exceeding 1 nm are likely to be generated and industrially inefficient. .

従来の水蒸気による賦活では、ミクロ細孔及びメソ細孔のいずれもが生成するが、ミクロ細孔よりメソ細孔の方が生成し易いので、メソ細孔が大きな活性炭しか得られなかった。そのため、従来の水蒸気賦活により得られる活性炭は、酵素等の有用物質を吸着し易くなるか、あるいは、メソ細孔が多くなり過ぎるために、得られる活性炭の充填密度が小さくなり、単位体積当りのインドールの吸着量が少なかった。   In the conventional activation with water vapor, both micropores and mesopores are generated, but since mesopores are easier to generate than micropores, only activated carbon with large mesopores was obtained. Therefore, the activated carbon obtained by the conventional steam activation is likely to adsorb useful substances such as enzymes, or the number of mesopores is excessive, so that the packing density of the obtained activated carbon becomes small and the per unit volume The amount of indole adsorbed was small.

ところが、本発明者らは、該イオン交換樹脂等を炭化処理して得られる該炭化物を、特定の温度範囲で水蒸気賦活を行うことにより、該メソ細孔の生成速度と、該マクロ細孔の生成速度を調整することができること、すなわち、従来に比べ、メソ細孔の形成量に対するミクロ細孔の形成量の比を多くできるという効果を奏すること、更には、特定の時間範囲で上記特定の温度範囲での水蒸気賦活を行うことにより、該効果が高まることを見出した。本発明の第二の製造方法は、このような水蒸気賦活での反応特性を利用したものであり、該水蒸気賦活工程(B)を行うことにより、インドールの吸着に効果的な1nm以下の細孔半径の細孔を多数有する活性炭を製造することができる。   However, the present inventors perform steam activation in a specific temperature range on the carbide obtained by carbonizing the ion exchange resin and the like, thereby generating the mesopore generation rate and the macropores. The production rate can be adjusted, that is, the ratio of the formation amount of micropores to the formation amount of mesopores can be increased as compared with the conventional case. It has been found that the effect is enhanced by performing steam activation in the temperature range. The second production method of the present invention utilizes such reaction characteristics in steam activation. By performing the steam activation step (B), pores of 1 nm or less effective for indole adsorption. Activated carbon having many radial pores can be produced.

従って、該第二の製造方法は、前記本発明の活性炭の製造に、好適に用いられる。また、該第二の製造方法により製造される活性炭は、単位体積当りの酵素等の有用物質の吸着量が少ない。   Accordingly, the second production method is suitably used for producing the activated carbon of the present invention. In addition, the activated carbon produced by the second production method has a small amount of adsorption of useful substances such as enzymes per unit volume.

本発明の腎疾患治療薬は、前記本発明の活性炭を含有する。該活性炭は、単位体積当りのインドールの吸着量及び単位重量当りのインドールの吸着量が多いので、該活性炭を含有する該腎疾患治療薬は、従来の治療薬に比べ、少量で効果を発揮することができる。従って、本発明の腎疾患治療薬によれば、患者の服用負担を軽減することができる。   The therapeutic agent for renal diseases of the present invention contains the activated carbon of the present invention. Since the activated carbon has a large amount of adsorbed indole per unit volume and adsorbed amount of indole per unit weight, the therapeutic agent for renal diseases containing the activated carbon is effective in a small amount as compared with conventional therapeutic agents. be able to. Therefore, according to the renal disease therapeutic drug of the present invention, the patient's burden can be reduced.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

参考例1)
(活性炭の製造)
市販されている強酸性陽イオン交換樹脂(Amberjet1006)を110℃で3時間乾燥し、次いでロータリキルン中で空気を送りながら1分間に3℃の割合で、室温から300℃まで昇温し、300℃で1時間保持して熱処理を行った。次いで空気送入を停止して、代わりに窒素ガスを送入し、窒素雰囲気下で、1分間に3℃の割合で600℃まで昇温して炭化を行った。次いで、窒素ガス送入を停止して、代りに水蒸気を送り、水蒸気雰囲気とし、1分間に8℃の割合で850℃まで昇温し、850℃で9時間保持して水蒸気賦活を行い、水蒸気賦活物を得た。該活性炭の平均粒径、充填密度、細孔容積の分析結果を表1に示す。
・強酸性陽イオン交換樹脂;Amberjet1006、ローム・アンド・ハース社製、平均粒径650μm、イオン交換容量2.5mg当量/ml(湿潤樹脂)
( Reference Example 1)
(Manufacture of activated carbon)
A commercially available strong acid cation exchange resin (Amberjet 1006) was dried at 110 ° C. for 3 hours, and then heated from room temperature to 300 ° C. at a rate of 3 ° C. per minute while sending air in a rotary kiln. Heat treatment was performed by holding at 1 ° C. for 1 hour. Next, air feeding was stopped, nitrogen gas was fed instead, and carbonization was performed by raising the temperature to 600 ° C. at a rate of 3 ° C. per minute in a nitrogen atmosphere. Next, the nitrogen gas feeding is stopped, steam is sent instead to make a steam atmosphere, the temperature is raised to 850 ° C. at a rate of 8 ° C. per minute, and the steam is activated by holding at 850 ° C. for 9 hours. An activation material was obtained. Table 1 shows the analysis results of the average particle diameter, packing density, and pore volume of the activated carbon.
Strong acid cation exchange resin: Amberjet 1006, manufactured by Rohm and Haas, average particle size 650 μm, ion exchange capacity 2.5 mg equivalent / ml (wet resin)

(インドール吸着試験)
インドール1000mgを正確に量り、1Lの純水に溶かし、1000mg/Lのインドール水溶液を調製した。上記活性炭を乾燥後、乾燥試料0.05gを正確に量り、共栓付き三角フラスコに採った。該インドール水溶液100mlを正確に測り採り、該乾燥試料の入った共栓付き三角フラスコに加え、37±1℃で1時間振り混ぜる。その後、フラスコの内容物を採取して試料溶液とした。そして、該試料溶液の吸光度の測定を270nmの波長で行った。該試料溶液の吸光度と検量線よりインドール残量を計算し、インドール吸着前後の濃度から、単位重量当りのインドールの吸着量及び単位体積当りのインドールの吸着量を算出した。その結果を表1に示す。
なお、検量線は、0、5、10、20、50、75mg/Lのインドール水溶液を調製し、270nmでの各吸光度を測定して、作成した。
(Indole adsorption test)
1000 mg of indole was accurately weighed and dissolved in 1 L of pure water to prepare a 1000 mg / L indole aqueous solution. After drying the activated carbon, 0.05 g of a dried sample was accurately weighed and taken in an Erlenmeyer flask with a stopper. Accurately measure 100 ml of the indole aqueous solution, add it to the conical flask with a stopper containing the dried sample, and shake at 37 ± 1 ° C. for 1 hour. Thereafter, the contents of the flask were collected to obtain a sample solution. Then, the absorbance of the sample solution was measured at a wavelength of 270 nm. The amount of indole remaining was calculated from the absorbance of the sample solution and the calibration curve, and the amount of indole adsorbed per unit weight and the amount of indole adsorbed per unit volume were calculated from the concentration before and after indole adsorption. The results are shown in Table 1.
A calibration curve was prepared by preparing 0, 5, 10, 20, 50, and 75 mg / L indole aqueous solutions and measuring each absorbance at 270 nm.

(αアミラーゼ吸着試験)
αアミラーゼを正確に0.1mg秤量し、pH7.4のリン酸塩緩衝液1000mLを加えて溶かして、0.1g/Lのαアミラーゼ水溶液を調製した。次いで、上記活性炭を乾燥後、乾燥試料0.125gを正確に量り、共栓付き三角フラスコに加え、次いで、該αアミラーゼ水溶液を50mL正確に採取し、共栓付き三角フラスコに加えて、37±1℃で3時間振とうする。その後、フラスコ内の内容物を採取して試料溶液とした。そして、該試料溶液の吸光度の測定を210nmの波長で行った。また、補正液としてはpH7.4のリン酸緩衝液を用い、同様に処理及び吸光度の測定を行った。該試料溶液及び補正液の吸光度から、検量線を用いて、αアミラーゼの残量を算出し、αアミラーゼ吸着前後の濃度から、単位重量当りのαアミラーゼ吸着量及び単位体積当りのαアミラーゼの吸着量を算出した。その結果を表1に示す。
なお、検量線は、pH7.4のリン酸緩衝液で、濃度が0、10、20、50、75mg/Lであるαアミラーゼ水溶液を調製して、210nmにおける吸光度を測定し、検量線を作成した。
(Α-amylase adsorption test)
0.1 mg of α-amylase was accurately weighed and 1000 mL of a phosphate buffer solution having a pH of 7.4 was added and dissolved to prepare a 0.1 g / L α-amylase aqueous solution. Next, after drying the activated carbon, 0.125 g of a dried sample is accurately weighed and added to an Erlenmeyer flask with a stopper, and then 50 mL of the α-amylase aqueous solution is accurately collected and added to the Erlenmeyer flask with a stopper. Shake for 3 hours at 1 ° C. Thereafter, the contents in the flask were collected to obtain a sample solution. Then, the absorbance of the sample solution was measured at a wavelength of 210 nm. Further, a phosphate buffer solution having a pH of 7.4 was used as a correction solution, and the treatment and absorbance were measured in the same manner. From the absorbance of the sample solution and the correction solution, the remaining amount of α-amylase is calculated using a calibration curve, and the amount of α-amylase adsorbed per unit weight and the amount of α-amylase adsorbed per unit volume are calculated from the concentration before and after α-amylase adsorption. The amount was calculated. The results are shown in Table 1.
The calibration curve was prepared by preparing an α-amylase aqueous solution with a pH 7.4 phosphate buffer solution with concentrations of 0, 10, 20, 50, and 75 mg / L, and measuring the absorbance at 210 nm. did.

参考例2)
(活性炭の製造)
強酸性陽イオン交換樹脂(Amberjet1006)の代わりに、強酸性陽イオン交換樹脂(XH2071)とし、850℃で9時間保持して水蒸気賦活を行うことに代え、850℃で4時間保持して水蒸気賦活を行うこと以外は、参考例1と同様の方法で行った。得られた活性炭の平均粒径、充填密度及び細孔容積を表1に示す。
・強酸性陽イオン交換樹脂(XH2071)、ローム・アンド・ハース社製、平均粒径643μm、イオン交換容量1.1mg当量/ml(湿潤樹脂)
( Reference Example 2)
(Manufacture of activated carbon)
Instead of strong acidic cation exchange resin (Amberjet 1006), strong acidic cation exchange resin (XH2071) was used, and instead of performing steam activation by holding at 850 ° C. for 9 hours, steam activation by holding at 850 ° C. for 4 hours The same method as in Reference Example 1 was carried out except that. Table 1 shows the average particle diameter, packing density, and pore volume of the obtained activated carbon.
Strong acid cation exchange resin (XH2071), manufactured by Rohm and Haas, average particle size of 643 μm, ion exchange capacity of 1.1 mg equivalent / ml (wet resin)

(インドール吸着試験及びαアミラーゼ吸着試験)
上記で得た活性炭を用いる以外は、参考例1と同様の方法で行った。その結果を表1に示す。
(Indole adsorption test and α-amylase adsorption test)
The same procedure as in Reference Example 1 was performed except that the activated carbon obtained above was used. The results are shown in Table 1.

参考例3)
(活性炭の製造)
強酸性陽イオン交換樹脂(Amberjet1006)の代わりに、強酸性陽イオン交換樹脂(XH2071)とし、850℃で9時間保持して水蒸気賦活を行うことに代え、850℃で5時間保持して水蒸気賦活を行うこと以外は、参考例1と同様の方法で行った。得られた活性炭の平均粒径、充填密度及び細孔容積を表1に示す。
( Reference Example 3)
(Manufacture of activated carbon)
Instead of strong acidic cation exchange resin (Amberjet 1006), strong acidic cation exchange resin (XH2071) was used, and instead of holding steam at 850 ° C. for 9 hours to perform steam activation, holding at 850 ° C. for 5 hours to activate steam The same method as in Reference Example 1 was carried out except that. Table 1 shows the average particle diameter, packing density, and pore volume of the obtained activated carbon.

(インドール吸着試験及びαアミラーゼ吸着試験)
上記で得た活性炭を用いる以外は、参考例1と同様の方法で行った。その結果を表1に示す。
(Indole adsorption test and α-amylase adsorption test)
The same procedure as in Reference Example 1 was performed except that the activated carbon obtained above was used. The results are shown in Table 1.

参考例4)
(活性炭の製造)
強酸性陽イオン交換樹脂(Amberjet1006)の代わりに、強酸性陽イオン交換樹脂(XH2071)とし、850℃で9時間保持して水蒸気賦活を行うことに代え、850℃で6時間保持して水蒸気賦活を行うこと以外は、参考例1と同様の方法で行った。得られた活性炭の平均粒径、充填密度及び細孔容積を表1に示す。
( Reference Example 4)
(Manufacture of activated carbon)
Instead of strong acid cation exchange resin (Amberjet 1006), strong acid cation exchange resin (XH2071) was used, and instead of holding steam at 850 ° C. for 9 hours to perform steam activation, holding at 850 ° C. for 6 hours to activate steam The same method as in Reference Example 1 was carried out except that. Table 1 shows the average particle diameter, packing density, and pore volume of the obtained activated carbon.

(インドール吸着試験及びαアミラーゼ吸着試験)
上記で得た活性炭を用いる以外は、参考例1と同様の方法で行った。その結果を表1に示す。
(Indole adsorption test and α-amylase adsorption test)
The same procedure as in Reference Example 1 was performed except that the activated carbon obtained above was used. The results are shown in Table 1.

(実施例
(活性炭の製造)
市販されている強酸性陽イオン交換樹脂(Amberjet1006)を110℃で3時間乾燥し、次いでロータリキルン中で空気を送りながら1分間に3℃の割合で、室温から300℃まで昇温し、300℃で1時間保持して熱処理を行った。次いで空気送入を停止して、代わりに窒素ガスを送入し、窒素雰囲気下で、1分間に3℃の割合で600℃まで昇温して炭化を行った。次いで、窒素ガス送入を停止して、代りに水蒸気を送り、水蒸気雰囲気とし、1分間に8℃の割合で850℃まで昇温し、850℃で4時間保持して水蒸気賦活を行い、水蒸気賦活物を得た。次いで、該水蒸気賦活物を室温まで冷却後、窒素雰囲気下で、室温より3℃/分の割合で900℃まで昇温し、次いで、二酸化炭素ガスを注入し、900℃で6時間保持して炭酸ガス賦活を行い活性炭を得た。該活性炭の平均粒径、充填密度、細孔容積の分析結果を表2に示す。
(Example 1 )
(Manufacture of activated carbon)
A commercially available strong acid cation exchange resin (Amberjet 1006) was dried at 110 ° C. for 3 hours, and then heated from room temperature to 300 ° C. at a rate of 3 ° C. per minute while sending air in a rotary kiln. Heat treatment was performed by holding at 1 ° C. for 1 hour. Next, air feeding was stopped, nitrogen gas was fed instead, and carbonization was performed by raising the temperature to 600 ° C. at a rate of 3 ° C. per minute in a nitrogen atmosphere. Next, the nitrogen gas feeding is stopped, steam is sent instead to make a steam atmosphere, the temperature is raised to 850 ° C. at a rate of 8 ° C. per minute, and kept at 850 ° C. for 4 hours to perform steam activation. An activation material was obtained. Next, after cooling the water vapor activation product to room temperature, the temperature was raised from room temperature to 900 ° C. at a rate of 3 ° C./min under a nitrogen atmosphere, and then carbon dioxide gas was injected and held at 900 ° C. for 6 hours. Carbon dioxide was activated to obtain activated carbon. Table 2 shows the analysis results of the average particle diameter, packing density, and pore volume of the activated carbon.

(インドール吸着試験及びαアミラーゼ吸着試験)
上記で得た活性炭を用いる以外は、参考例1と同様の方法で行った。その結果を表1に示す。
(Indole adsorption test and α-amylase adsorption test)
The same procedure as in Reference Example 1 was performed except that the activated carbon obtained above was used. The results are shown in Table 1.

参考例5
(活性炭の製造)
900℃で6時間保持して炭酸ガス賦活を行うことに代え、900℃で12時間保持して炭酸ガス賦活を行う以外は、実施例1と同様の方法で行った。得られた活性炭の平均粒径、充填密度、細孔容積の分析結果を表2に示す。
( Reference Example 5 )
(Manufacture of activated carbon)
It replaced with performing carbon dioxide gas activation by holding at 900 degreeC for 6 hours, and carried out by the method similar to Example 1 except performing carbon dioxide gas activation by hold | maintaining at 900 degreeC for 12 hours. Table 2 shows the analysis results of the average particle diameter, packing density, and pore volume of the obtained activated carbon.

(インドール吸着試験及びαアミラーゼ吸着試験)
上記で得た活性炭を用いる以外は、参考例1と同様の方法で行った。その結果を表1に示す。
(Indole adsorption test and α-amylase adsorption test)
The same procedure as in Reference Example 1 was performed except that the activated carbon obtained above was used. The results are shown in Table 1.

(比較例1)
(市販の経口投与用吸着剤の物性測定)
市販の経口投与用吸着剤(商品名クレメジン、呉羽化学社製)の平均粒径、充填密度、細孔容積の分析結果を表1に示す。
(インドール吸着試験及びαアミラーゼ吸着試験)
上記クレメジンを用いる以外は、参考例1と同様の方法で行った。その結果を表2に示す。
(Comparative Example 1)
(Measurement of physical properties of commercial adsorbents for oral administration)
Table 1 shows the results of analysis of the average particle diameter, packing density, and pore volume of a commercially available adsorbent for oral administration (trade name Cremedin, manufactured by Kureha Chemical Co., Ltd.).
(Indole adsorption test and α-amylase adsorption test)
The same procedure as in Reference Example 1 was carried out except that the above-mentioned cremedin was used. The results are shown in Table 2.

(参考例
強酸性陽イオン交換樹脂(Amberjet1006)の代わりに、合成吸着剤(XAD2000、ローム・アンド・ハース社製)とし、850℃で9時間保持して水蒸気賦活を行うことに代え、850℃で4時間保持して水蒸気賦活を行うこと以外は、参考例1と同様の方法で行った。得られた活性炭の平均粒径、充填密度及び細孔容積を表2に示す。
(Reference Example 6 )
Instead of strongly acidic cation exchange resin (Amberjet 1006), a synthetic adsorbent (XAD2000, manufactured by Rohm and Haas) was used, and the steam activation was carried out at 850 ° C. for 9 hours, instead of steam activation at 850 ° C. for 4 hours. The same method as in Reference Example 1 was performed except that the steam activation was carried out. Table 2 shows the average particle diameter, packing density, and pore volume of the obtained activated carbon.

Figure 0004693030
Figure 0004693030

Figure 0004693030
Figure 0004693030

実施例1及び参考例1〜4、6の活性炭は、比較例1に比べ、単位体積当りのインドールの吸着量及び単位重量当りのインドールの吸着量が多く、且つ単位体積当りのαアミラーゼの吸着量が少なかった。また、参考例5の活性炭は、比較例1に比べ、単位体積当りのαアミラーゼの吸着量は同程度であるものの、単位体積当りのインドールの吸着量及び単位重量当りのインドールの吸着量が多かった。 The activated carbons of Example 1 and Reference Examples 1 to 4 and 6 have higher indole adsorption amount per unit volume and indole adsorption amount per unit volume than in Comparative Example 1, and α-amylase adsorption per unit volume. The amount was small. In addition, although the activated carbon of Reference Example 5 has the same amount of α-amylase adsorption per unit volume as that of Comparative Example 1, it has a larger amount of indole adsorption per unit volume and indole adsorption per unit weight. It was.

Claims (1)

イオン交換樹脂、イオン交換樹脂の熱処理物、ジビニルベンゼン共重合体、又はジビニルベンゼン共重合体の熱処理物を、不活性ガス雰囲気下で炭化処理し、炭化物を得る炭化処理工程、750〜1200℃で、水蒸気により該炭化物の賦活を行い、水蒸気賦活物を得る水蒸気賦活工程、及び800〜1200℃で、1〜6時間炭酸ガスにより該水蒸気賦活物の賦活を行い、活性炭を得る炭酸ガス賦活工程を有することを特徴とする活性炭の製造方法。 Ion exchange resin, heat treated product of ion exchange resin, divinylbenzene copolymer, or heat treated product of divinylbenzene copolymer is carbonized in an inert gas atmosphere to obtain a carbide, 750 to 1200 ° C. performs activation of the carbide by vapor, as steam-activated Engineering obtaining steam activation thereof, and at 800 to 1200 ° C., subjected to activation of the water vapor activation was by 1-6 hours carbon dioxide, carbon dioxide gas activation to obtain an activated carbon A method for producing activated carbon, comprising:
JP2004323314A 2004-11-08 2004-11-08 Method for producing activated carbon Expired - Fee Related JP4693030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004323314A JP4693030B2 (en) 2004-11-08 2004-11-08 Method for producing activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004323314A JP4693030B2 (en) 2004-11-08 2004-11-08 Method for producing activated carbon

Publications (2)

Publication Number Publication Date
JP2006131461A JP2006131461A (en) 2006-05-25
JP4693030B2 true JP4693030B2 (en) 2011-06-01

Family

ID=36725336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004323314A Expired - Fee Related JP4693030B2 (en) 2004-11-08 2004-11-08 Method for producing activated carbon

Country Status (1)

Country Link
JP (1) JP4693030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110182797A (en) * 2019-03-19 2019-08-30 杭州电子科技大学 A kind of preparation method of the new modified absorbent charcoal material for capacitive deionization technology

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007050971B4 (en) * 2007-03-14 2014-12-31 BLüCHER GMBH Process for the preparation of high performance adsorbents based on activated carbon with high meso- and macroporosity, high performance adsorbents and their use
JP4268672B1 (en) * 2008-07-04 2009-05-27 旭有機材工業株式会社 Adsorbent for oral administration
WO2010086985A1 (en) * 2009-01-29 2010-08-05 旭有機材工業株式会社 Adsorbent for oral administration
US20120135534A1 (en) * 2009-05-29 2012-05-31 Mitsubishi Tanabe Pharma Corporation Adsorption test method of spherical carbon adsorbent
JP5985027B2 (en) * 2010-10-12 2016-09-06 フタムラ化学株式会社 Method for producing pharmaceutical adsorbent for oral administration
JP5984352B2 (en) * 2010-10-12 2016-09-06 フタムラ化学株式会社 Method for producing pharmaceutical adsorbent for oral administration
TW201440819A (en) 2013-02-22 2014-11-01 Kureha Corp Adsorbent for oral administration, and agent for treating renal or liver disease
TWI520751B (en) 2013-02-22 2016-02-11 吳羽股份有限公司 Adsorbent for oral administration, and agent for treating renal or liver disease
TWI607765B (en) * 2014-08-27 2017-12-11 Kureha Corp Adsorbents for oral administration, and nephropathy therapeutic agents and liver disease therapeutic agents
KR102506938B1 (en) * 2018-02-02 2023-03-07 현대자동차 주식회사 Method for manufacturing activated carbon
KR102370959B1 (en) * 2019-01-24 2022-03-07 한국화학연구원 Method of preparing resin-based activated carbon and the activated carbon thereby
JP7438897B2 (en) 2020-08-26 2024-02-27 フタムラ化学株式会社 Tablet type adsorbent for oral administration

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673542A (en) * 1979-11-22 1981-06-18 Kureha Chem Ind Co Ltd Adsorbent
JPH07232908A (en) * 1993-10-25 1995-09-05 Westvaco Corp Microporous activated carbon and its preparation
JPH07267619A (en) * 1994-03-31 1995-10-17 Sumitomo Heavy Ind Ltd Production of granular activated carbon
JPH0812312A (en) * 1994-06-23 1996-01-16 Hisashi Nakai Activated carbon using ion exchange resin as starting material and its production
JPH08208212A (en) * 1995-02-06 1996-08-13 Kurita Water Ind Ltd Production of activated carbon
JP2002119851A (en) * 2000-10-13 2002-04-23 Mitsubishi Kakoki Kaisha Ltd Carbon monoxide adsorbent and method of manufacturing for the same
JP2002128514A (en) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc Carbonaceous material, polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP2002308785A (en) * 2001-04-11 2002-10-23 Kureha Chem Ind Co Ltd Oral administration adsorbent
JP2003012316A (en) * 2001-07-02 2003-01-15 Kuraray Chem Corp Activated carbon and its manufacturing method
JP2003206121A (en) * 2002-01-08 2003-07-22 Osaka Gas Co Ltd Activated carbon and method for manufacturing the same
JP2004014762A (en) * 2002-06-06 2004-01-15 Jfe Chemical Corp Carbon material for electric double layered capacitor and its manufacturing method
JP2004244414A (en) * 2003-01-22 2004-09-02 Meruku Hoei Kk Medicamental adsorbent and method for producing the same
JP2005518279A (en) * 2002-02-25 2005-06-23 ジェンテックス コーポレーション Reactive-adsorbent protective material and methods of use (cross-reference of related applications) This patent application claims the priority date benefit of US Provisional Application 60 / 360,050, filed February 25,2002.

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673542A (en) * 1979-11-22 1981-06-18 Kureha Chem Ind Co Ltd Adsorbent
JPH07232908A (en) * 1993-10-25 1995-09-05 Westvaco Corp Microporous activated carbon and its preparation
JPH07267619A (en) * 1994-03-31 1995-10-17 Sumitomo Heavy Ind Ltd Production of granular activated carbon
JPH0812312A (en) * 1994-06-23 1996-01-16 Hisashi Nakai Activated carbon using ion exchange resin as starting material and its production
JPH08208212A (en) * 1995-02-06 1996-08-13 Kurita Water Ind Ltd Production of activated carbon
JP2002119851A (en) * 2000-10-13 2002-04-23 Mitsubishi Kakoki Kaisha Ltd Carbon monoxide adsorbent and method of manufacturing for the same
JP2002128514A (en) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc Carbonaceous material, polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP2002308785A (en) * 2001-04-11 2002-10-23 Kureha Chem Ind Co Ltd Oral administration adsorbent
JP2003012316A (en) * 2001-07-02 2003-01-15 Kuraray Chem Corp Activated carbon and its manufacturing method
JP2003206121A (en) * 2002-01-08 2003-07-22 Osaka Gas Co Ltd Activated carbon and method for manufacturing the same
JP2005518279A (en) * 2002-02-25 2005-06-23 ジェンテックス コーポレーション Reactive-adsorbent protective material and methods of use (cross-reference of related applications) This patent application claims the priority date benefit of US Provisional Application 60 / 360,050, filed February 25,2002.
JP2004014762A (en) * 2002-06-06 2004-01-15 Jfe Chemical Corp Carbon material for electric double layered capacitor and its manufacturing method
JP2004244414A (en) * 2003-01-22 2004-09-02 Meruku Hoei Kk Medicamental adsorbent and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110182797A (en) * 2019-03-19 2019-08-30 杭州电子科技大学 A kind of preparation method of the new modified absorbent charcoal material for capacitive deionization technology

Also Published As

Publication number Publication date
JP2006131461A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP4666467B2 (en) Activated carbon, method for producing the same, and therapeutic agent for renal liver disease
JP4693030B2 (en) Method for producing activated carbon
KR101890458B1 (en) Orally administered adsorbent
KR100680448B1 (en) Adsorbents for oral administration, remedies or preventives for kidney diseases and remedies or preventives for liver diseases
TWI404539B (en) Absorbing agent for medical use
JP2009539891A (en) Antibacterial carbon
WO2012050025A1 (en) Medical adsorbent and method for producing same
JP5352378B2 (en) Adsorbent for oral administration with excellent adsorption characteristics
JP2006273772A (en) Orally administered drug and method for producing the same
KR20050042263A (en) Adsorbents for oral administration
TWI607765B (en) Adsorbents for oral administration, and nephropathy therapeutic agents and liver disease therapeutic agents
JP5985027B2 (en) Method for producing pharmaceutical adsorbent for oral administration
KR20180039768A (en) Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease
JP4618409B2 (en) Oral uremic toxin adsorbent
KR101924201B1 (en) Medicinal adsorbent for oral administration with increased strength
TWI541029B (en) Can reduce the body of urine toxins adsorbent
WO2016046910A1 (en) Oral adsorbent and method for producing oral adsorbent
NZ623528B2 (en) Orally administered adsorbent
WO2010027090A1 (en) Therapeutic agent for uremia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees