JP2004003097A - Carbon fiber, process for producing the same and electrode for electric batteries - Google Patents

Carbon fiber, process for producing the same and electrode for electric batteries Download PDF

Info

Publication number
JP2004003097A
JP2004003097A JP2003122601A JP2003122601A JP2004003097A JP 2004003097 A JP2004003097 A JP 2004003097A JP 2003122601 A JP2003122601 A JP 2003122601A JP 2003122601 A JP2003122601 A JP 2003122601A JP 2004003097 A JP2004003097 A JP 2004003097A
Authority
JP
Japan
Prior art keywords
fine carbon
boron
carbon fiber
fiber
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003122601A
Other languages
Japanese (ja)
Inventor
Kunio Nishimura
西村 邦夫
Morinobu Endo
遠藤 守信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003122601A priority Critical patent/JP2004003097A/en
Publication of JP2004003097A publication Critical patent/JP2004003097A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To develop a fine carbon fiber having high crystallinity that has never been attained or having high electric conductivity and to provide high-performance electrodes for batteries by using the fine carbon fiber as a filler. <P>SOLUTION: The fine carbon fiber of high crystallinity has a fiber diameter of ≤1μm, a layer spacing d<SB>002</SB>of 0.335-0.342 nm measured by X-ray diffraction, satisfies d<SB>002</SB>< 0.3448-0.0028(log ϕ)(wherein ϕ is the diameter of the carbon fiber) and Lc of ≤ 40nm. Further, the fine carbon fiber is allowed to include boron inside the crystals. The boron-including fine carbon fiber is produced by using the fine carbon fiber produced through the vapor phase process, the arcing process, the laser process or the like as a starting material, admixing boron or a boron compound to the fine carbon fiber, compressing the mixture, preferably so that the bulk density may exceed 0.05 g/cm<SP>3</SP>, and finally subjecting the mixture to heat treatment at a temperature higher than 2,000°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属、樹脂、セラミック他の各種の材料に添加して、導電性や熱伝導性を改善するために使用するフィラー材として、またFED (フィルドエミッションディスプレー)用の電子放出素材として、更には各種電池の特性改善材料等のフィラー材として用いられる微細な炭素繊維(コイル状炭素繊維、気相法炭素繊維、ウィスカ状炭素繊維、延伸炭素繊維などの繊維状炭素を含む)及びその製造法に関する。また乾電池、Pb蓄電池、キャパシタや最近のLiイオン2次電池をはじめとする各種電池の正極または負極にこの微細な炭素繊維を添加して充放電容量の改善、極板の強度を改善した電池用電極に関する。
【0002】
【従来の技術】
本発明で言うところの「微細な炭素繊維」は、一般に炭化水素の熱分解による気相法で製造されている(特開平7−150419号公報、特開平5−321039号公報、特開昭60−215816号公報、特開昭61−70014号公報、特公平5−36521 号公報、特公平3−61768 号公報等) 。その繊維は、直径が通常0.01〜5μm程度である。しかし、径が0.01μm以上であれば、気相法の炭素繊維と同様の同心円状、年輪状の構造を持つカーボンナノチューブやカーボンナノファイバーも含まれる。
【0003】
微細な炭素繊維は金属、樹脂、セラミック等への充填材 (フィラー) としての用途が提案されている。特に近年小型の携帯電話、ビデオカメラ、ノート型パソコン等のポータブル機器の発展が著しく、それに使用する電源としてLiイオン2次電池(Li電池) をはじめとする小型の2次電池の需要が急激に伸びており、その電池のフィラーとしての用途が検討されている。
【0004】
Li電池の電極に使用される負極用の炭素材料は、通常各種のハードカーボン、メソフェーズカーボンマイクロビーズ (MCMB) 、メソフェーズピッチカーボンファイバー (MPCF) 、人造黒鉛、各種コークス、それに天然黒鉛等である。またこれらの負極材にピッチ系等の炭素繊維や気相法炭素繊維を添加することも提案されている。また正極には導電性付与剤として、黒鉛微粉やカーボンブラック等も用いられている。
【0005】
Li電池の負極は充放電の際リチウムイオンのインターカレーション (挿入) 及びデインターカレーション (放出) が行われる。黒鉛は層状構造をしており、反応物質(例えばLi) が層間を押し拡げ挿入する反応(インターカレーション)を生じやすい。その反応物質が層間に入った生成物を層間化合物(Graphite Intercalation Compounds) という。また、この層間化合物は反応物質を放出(デインターカレーション)して容易に元の黒鉛に戻る。微細な炭素繊維は導電性や、熱伝導性の優れた材料であり、かつインターカレーション能力を有するので、添加しても電池の容量を下げることはなく、負極材の添加剤として注目されている。
【0006】
Li電池の高容量化にはこのインターカレーション能力を上げることが第一である。インターカレーション能力を上げるには一般に炭素材料の黒鉛化度、即ち結晶性を高めることが必要となり、微細な炭素繊維についても同様である。
【0007】
鉛蓄電池の負極は元来導電性の悪い物質で構成されており、その負極の導電性を向上させるためカーボンブラック、黒鉛微粒子、炭素繊維等の炭素材料を添加することができ、この場合も導電性の高い結晶性のよいものが望まれている。このような炭素材料の結晶性を向上させるためには、通常、高温で処理する黒鉛化方法が用いられている。
【0008】
一方、平均繊維径が小さい、特に1μm以下のような微細な炭素繊維は、嵩密度が小さく充填性が上らないので、電極中にこの炭素繊維を大量に添加すると、電極密度が低下する。従って通常は20質量%以下、好ましくは10質量%以下しか添加されていない。そのためにこの繊維については結晶性を上げても大きな添加効果は期待できないと考えられ、このような微細な炭素繊維の結晶性を向上させようとする試みは、高温で熱処理する以外には検討されていない。そのために、従来使用されている微細な炭素繊維はX線回折法で求めた結晶層面間隔d002 は3.385Åより大きく、結晶性もあまり発達していない。
【0009】
また、高容量化の要求に伴い、大量の電流を充放電するため電極の電気抵抗の低い材料が要求されている。
【0010】
電極の抵抗値を下げるために、各種の導電付与材の添加が検討されているが、気相法炭素繊維を主とする繊維状物質のフィラーが有効であることが知られている。その理由は、
1)微細な繊維物質は 100以上のアスペクト比を持ち、導電パスが長いこと、
2)気相法炭素繊維は結晶性が良く、導電性に優れていること、
3)気相法炭素繊維自身も充放電能力を持ち、添加してもLi電池の容量の低下を起こさない、
等である。
【0011】
しかしながら、従来市販されている1μm以下の径を持つ微細繊維物質の導電性は 0.8g/cm の密度状態で評価した場合、粉体抵抗として0.01Ω・cmが限界であり、これより低い抵抗値を持つ材料は無かった。
【0012】
最近の電池の充放電容量の向上のため、負極材の結晶性を上げて容量を高めてくると、負極材だけでなく、更に添加材についても放電容量の高い材料が要求されるようになる。従って、その添加材のカーボン材料についても結晶性を上げることがどうしても必要になる。
【0013】
そこで、この微細な炭素繊維の結晶性を上げる必要に迫られ、3200℃の高温まで熱処理温度を上げて結晶性を向上させることを検討した。
【0014】
しかしながら、径が約0.15μm程度の微細な炭素繊維 (気相法炭素繊維) は3000℃以上の温度に加熱しても層面間隔d002 の格子定数は 0.3385nm よりも小さくすることは不可能であった。
【0015】
同時に、導電性についても、密度が 0.8g/cm の時の粉体抵抗として0.01Ω・cmが限界点であった。従ってより結晶が発達し低抵抗のものが求められている。
【0016】
その原因は気相法炭素繊維は繊維径が非常に細かいことに加えて同心円状の結晶で、中心部に中空状またはアモルファスな部分を有する特殊な構造であるためと考えられる。しかも繊維径が1ミクロン以下のように細くなると中心部に近くなればなるほど構造的に炭素の六角網目平面を小さい径で円筒状に捲き込むことは難しくなり、結晶化し難くなると考えられる。従って、d002 の値は繊維径に依存している。例えば、径が約0.15μmの繊維では 0.3385nm 、0.05μmでは 0.3400nm 、約0.02μmでは 0.3415nm 、約0.01μm以下では0.3420nmが限界であった。これより、約 0.15 μmの繊維ではd002 の層間距離は0.3385nm程度が限界で、3000℃以上に加熱処理してもd002 をこれより小さくすることは出来なかった。
【0017】
従って、結晶性を上げ、d002 を0.3385nmより小さくするためには熱処理だけでは不充分であり、別の方法も加えて結晶性を向上させる方法を開発する必要がある。
【0018】
【発明が解決しようとする課題】
本発明は、従来得られなかった高い結晶性を持つ、あるいは導電性のよい微細な炭素繊維を開発すること及びその繊維をフィラーとして、より性能の高い電池用電極を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明者は上記目的を達成するために先ず黒鉛化触媒(黒鉛化のための助剤あるいは添加物といわれる場合もある。以下、単に「黒鉛化触媒」あるいは「触媒」と言う。)に着目した。
【0020】
今まで、黒鉛化触媒を用いて、径が1μm以下の微細な炭素繊維の物性を制御する試みは、なされていない。また、このような特殊な結晶構造を持つ微細な炭素繊維が、黒鉛化触媒を用いる方法で、何処まで結晶性が向上できるか、またどのような特性を持った材料にできるか不明であった。
【0021】
次に触媒を用いて繊維を処理する方法について検討した。
【0022】
本発明はこれらの検討の結果到達したもので、基本的には以下の各項の発明からなる。
【0023】
(1)繊維径が1μm 以下であり、且つ、X線回折法で求めた炭素の層面間隔d002 が0.335 〜0.342nm ( さらには0.3354〜0.3420nm) の範囲内でありかつd002 <0.3448−0.0028(logφ) 、好ましくはd002 <0.3444−0.0028(logφ) 、より好ましくはd002 <0.3441−0.0028(logφ) (これらの式中、φは炭素繊維の直径である。)を満たし、結晶のC軸方向の厚さLcが 40nm 以下の微細な炭素繊維。
【0024】
(2)ラマンスペクトルのR値が 0.5以上、1580cm−1のスペクトルのピーク半値巾が20〜40cm−1であることを特徴とする(1)記載の微細な炭素繊維。
【0025】
(3)繊維径が1μm 以下であり、かつ、ホウ素を炭素繊維の結晶内に含有する微細な炭素繊維。
【0026】
(4)ホウ素を炭素繊維の結晶内に含有する(1)又は(2)記載の微細な炭素繊維。
【0027】
(5)ホウ素の含有量が 0.1〜3質量%である(3)又は(4)記載の微細な炭素繊維。
【0028】
(6)炭素繊維が直径0.01〜1μm、アスペクト比が10以上である(1)〜(5)記載の微細な炭素繊維。
【0029】
(7)密度 0.8g/cm に加圧したときの加圧方向に対して垂直方向の粉体抵抗が0.01Ω・cm以下である(6)記載の微細な炭素繊維。
【0030】
(8)炭素繊維が気相法により製造された炭素繊維である(1)〜(7)記載の微細な炭素繊維。
【0031】
(9)繊維径1μm 以下の微細な炭素繊維にホウ素またはホウ素化合物を添加し、そして、その微細な炭素繊維を2000℃以上の温度で熱処理することを特徴とする微細な炭素繊維の製造法。
【0032】
(10)繊維径1μm 以下の微細な炭素繊維にホウ素またはホウ素化合物を添加し、
その微細な炭素繊維の嵩密度を0.05g/cm 以上にし、そして
前記嵩密度を維持しながら前記微細な炭素繊維を2000℃以上の温度で熱処理することを特徴とする微細な炭素繊維の製造法。
【0033】
(11)ホウ素またはホウ素化合物の添加量がホウ素原子として炭素繊維に対し、 0.1〜10質量%である(9)又は(10)記載の微細な炭素繊維の製造法。
【0034】
(12)ホウ素またはホウ素化合物を添加する微細な炭素繊維が直径0.01〜1μm、アスペクト比10以上の炭素繊維である(9)〜(11)記載の微細な炭素繊維の製造法。
【0035】
(13)ホウ素またはホウ素化合物を添加する微細な炭素繊維が気相法による炭素繊維である(9)〜(12)記載の微細な炭素繊維の製造法。
【0036】
(14)ホウ素またはホウ素化合物を添加する前記熱処理前の前記微細な炭素繊維が、気相法で成長後に熱処理を施された焼成品である(13)記載の微細な炭素繊維の製造法。
【0037】
(15)ホウ素またはホウ素化合物を添加する前記熱処理前の前記微細な炭素繊維が、気相法で成長後に熱処理を施されていない未焼成品である(13)記載の微細な炭素繊維の製造法。
【0038】
(16)上記(1)〜(8)記載の微細な炭素繊維を含む電池用電極。
【0039】
【発明の実施の形態】
本発明の微細な炭素繊維は結晶性が良く、X線回折で求めた炭素結晶の層面間隔d002 が0.335 〜0.342nm であり、結晶面のC軸方向の厚さLcは 400nm以下、より好ましくは32nm以下である。
【0040】
図1は、本発明者らが微細な炭素繊維について、ホウ素処理をしないものとホウ素処理をしたものについて、層間距離d002 を測定し、繊維径の関数として表したグラフである。ホウ素処理をしないものは、d002 =0.3448−0.0028(logφ) (式中、φは炭素繊維の直径である。)で表される層間距離d002 より大きいが、ホウ素処理したものはこの式で表される層間距離d002 より実質的に小さくなっている。従って、本発明の微細な炭素繊維は、d002 <0.3448−0.0028(logφ) 、好ましくはd002 <0.3444−0.0028(logφ) 、より好ましくはd002 <0.3441−0.0028(logφ) (これらの式中、φは炭素繊維の直径である。)で表される層間距離d002 を有すると規定することができる。
【0041】
なお、本発明者らの検討では、ホウ素処理なしでは図1に示した炭素結晶の層面間隔d002 =0.3448−0.0028(logφ) より小さくすることはできなかったが、仮にホウ素処理なしでそのような小さいd002 を実現できたとしても、それは特殊な処理によるかあるいは厳しい条件の実現または制御によってのみ可能にされるものであろうから、本発明に従いホウ素処理することにより本発明の範囲内の小さい層面間隔d002 を有する微細な炭素繊維を容易に得ることができることの発明としての意義が失われるものではない。
【0042】
また本発明の微細な炭素繊維として、ホウ素を含有する炭素繊維を挙げることができる。炭素繊維中のホウ素は炭素(グラファイト)の結晶中、結晶層間に存在し、また結晶粒界に、あるいは不純物として存在する。
【0043】
本発明の結晶内にホウ素を含有する炭素繊維は、新規なものであり、d002 及びLcの値が上記の範囲に限定されないものであるが、望ましくはホウ素を含有し、かつd002 及びLcの値が上記の範囲のものである。
【0044】
ホウ素を含有し、かつd002 及びLcの値が上記の範囲の繊維は、ラマン吸収スペクトルのR値(1580cm−1の吸収強度IGと1360cm−1の吸収強度IDの比R=ID/IG) を 0.5以上、かつまた、1580cm−1のスペクトルのピーク半値巾が20〜40cm−1と小さくすることができる。
【0045】
これらの繊維は径(直径)が好ましくは0.01〜1μm、アスペクト比は繊維としての機能をもたせるために10以上が好ましく、さらに好ましくは50以上である。
【0046】
繊維径が0.01μm未満だと繊維の強度が弱く、電池用の電極や樹脂等のフィラーとして使用した場合に繊維の切断等が多くなり、繊維としての機能が損なわれ易い。一方繊維は、フィラーとしての添加率(質量%)を一定とした場合、太くなるとそれだけ繊維の本数が減ることになり、フィラーとしての繊維の機能が十分発揮されない。また例えば電池用の負極材としての炭素電極には黒鉛の粒が含まれているが、繊維が太いと、この粒子間に繊維が入りにくい。また繊維径が1μmより太くなると繊維自体の生産性が著しく低下するので、工業的にコストが高くなる。これらのことから繊維径は1μm以下が好ましい。
【0047】
繊維の長さは特に制限なく、その下限はアスペクト比(繊維長さ/繊維の直径)の下限から定まる長さが好ましい。繊維の長さは、長すぎると繊維の絡み合い等によりフィラーとしての分散性に問題が生じるので、上限は 400μmが好ましく、さらに好ましくは 100μmである。従って例えばアスペクト比が50以上の場合、繊維径が0.01μmでは繊維長さは 0.5μm以上、径が 0.1μmでは長さは5μm以上が好ましい。その上限はいずれも好ましくは 400μm、さらに好ましくは 100μmである。
【0048】
本発明の上記した高結晶性の微細な炭素繊維は、微細な炭素繊維をホウ素化合物の存在下で熱処理することにより製造することができる。理論に拘束されることを意図しないが、このような熱処理によれば、ホウ素は炭素繊維中に取り込まれ、その触媒的な作用により、本発明の高結晶性の微細な炭素繊維が製造されるものと考えられる。
【0049】
高結晶化に効果的な微細な炭素繊維中のホウ素の含有量は、一般的には 0.1〜3質量%、好ましくは 0.2〜3質量%である。しかし、ホウ素は熱処理における繊維の結晶化の際に繊維中に存在すればよく、高結晶化した後、得られた高結晶性の繊維をさらに高温で処理する等により、ホウ素が揮散し、添加量よりも濃度が低くなってもかまわない。
【0050】
次に本発明の微細な炭素繊維の製造法について説明する。
(出発原料としての炭素繊維)
本発明の製造法において出発原料とする炭素繊維は、ベンゼン等の有機化合物の熱分解により気相で成長させた微細な炭素繊維を用いることができる。例えば前記した特開平7−150419号公報、特開平5−321039号公報、特開昭60−215816号公報、特開昭61−70014号公報、特公平5−36521 号公報、特公平3−61768 号公報等の方法で製造することができる。また、繊維径が0.01μm以上であれば、同じ年輪構造をもつカーボンナノチューブやカーボンナノファイバーと呼ばれる微細な繊維状物質も使用できる。従って、アーク放電法やレーザー法等によって製造される多重構造のカーボンナノチューブ、カーボンナノファイバー等についても使用できる。
【0051】
気相成長法による微細な炭素繊維の製法について簡単に述べると、シードとなる遷移金属又はその化合物、例えば、鉄、ニッケル、コバルトなどの金属超微粉、又はフェロセンなどに基づく超微粒子を用い、基板上にこれらのシードの超微粉又は超微粒子を形成し、これに炭素原料と任意に水素などのキャリアガスを気相で供給し、高温下で分解させるもので、超微粉又は超微粒子をシードとして繊維径0.01μm〜1μm 程度あるいはそれ以上の微細な炭素繊維が成長するものである。シードの形成方法としては、基板(加熱炉の内壁を基板としてもよい)上にシード粒子分散液あるいはシード源溶液を塗布し乾燥して形成する方法、フェロセンなどを吹きつけて形成する方法、またフェロセン等を用いて鉄やその化合物の微粒子を流動状態において生成させる方法などがあり、このようにシードは基板表面上に形成するほか、流動床としてもよい。
【0052】
また、上記のように気相成長法で生成した微細な炭素繊維は、そのままでは、反応して取出されたアズグローンの表面に反応と同時に生成したタール分や低沸点成分が多量に吸着しており、また活性の高い鉄の微粒子が存在するので、これらに対処するために熱処理に供したものでもよい。
【0053】
しかし、本発明者の検討によれば、この微細な炭素繊維は、熱処理だけでは充分な結晶性の向上が望めないことがわかった。そこで高結晶化の触媒(助剤、添加物)について検討した。触媒としてはB,Al,Be,Si等が考えられるが、ホウ素(B)が特に有効であった。通常の炭素材についてはホウ素を添加して熱処理し、結晶性を高めることは種々検討されている。(「炭素」 1996, No. 172, 89〜94頁、特開平3−245458号公報、特開平5−251080号公報、特開平5−266880号公報、特開平7−73898 号公報、特開平8−31422 号公報、特開平8−306359号公報、特開平9−63584 号公報、特開平9−63585 号公報) 。
【0054】
しかし、径が1μm以下の微細な気相法炭素繊維に対して、ホウ素を導入して、特性を改善した例は今までにない。その理由は以下に示すように繊維が特殊な構造を持ち、通常の炭素材料と同様の触媒効果が期待できないと考えられたからである。
【0055】
すなわち、気相法炭素繊維は、繊維の切断面の結晶構造が同心円状に発達した長葱状の繊維である。繊維の長さは、製造条件によって異なるが、例えば0.01〜1μm程度の径の繊維では単繊維だけでなく枝別れした繊維も多く存在するので明確には規定し難いが、直線部分を走査型電子顕微鏡で測定した限りでは、平均が少なくとも5μm以上あるものがほとんどである。また、この繊維は長繊維に加えて枝分れした微細な繊維を含むために、長い繊維はもちろんのこと、5μm程度の短い繊維であっても、少なくとも大きさが10μm以上、場合によっては 100μm以上の大きなフロック状になり易い。従って、集合体としての嵩密度は小さく0.05g/cm 以下、通常は0.01g/cm 以下である。しかもフロック状の立体構造を持っている。
【0056】
気相法炭素繊維は、このように通常の炭素繊維と異なる特異な組織を有するので、黒鉛化触媒との接触が難しく、均一にホウ素化し難いと考えられる。
【0057】
また、微細な炭素繊維では、繊維径が微細になればなる程、特にその中心付近で、炭素結晶層が湾曲してしまい、炭素結晶の層間距離を小さくして結晶性を高めた場合に、微細な炭素繊維を維持することができるかどうか、逆に言うと、微細な炭素繊維の結晶性をホウ素でさらに高めることが可能であるかどうかという疑問もあった。
【0058】
しかしながら、本発明者らは、鋭意検討した結果、気相法で製造した微細な炭素繊維においても、ホウ素を触媒(助剤)として用いて炭素繊維の高結晶化を実現することができた。
【0059】
本発明によれば、ホウ素をドーピングするためには、原料の微細な炭素繊維としてドーピングしやすい、あまり結晶の発達していない、低温熱処理品例えば1500℃以下で熱処理された繊維を用いるか、より好ましくは熱処理していない(アズグロウン)状態の炭素繊維を用いることが好適である。熱処理していない繊維であってもホウ素の触媒を用いた処理(ホウ素化処理)の時に、最終的には黒鉛化温度まで加熱処理されるので、結晶の未発達のものでも十分使用できる。2000℃以上、好ましくは2300℃以上の温度で黒鉛化処理された繊維を用いることもできなくはないが、エネルギーの削減の面から考えれば何ら前もって黒鉛化しておく必要はなく、むしろ熱処理していないものを用いて黒鉛化と同時に触媒作用を働かせる方が好ましい。
【0060】
原料の微細な繊維としては取扱いやすくするため、予め解砕、粉砕したものを用いることはできるが、解砕、粉砕はホウ素またはホウ素化合物との混合ができる程度で十分である。すなわち、ホウ素化処理した後でも最終的には解砕、粉砕、分級等のフィラー化処理をするので、ホウ素化処理の前にフィラー等としての適正な長さにしなくても良い。気相成長法で一般的に得られる太さ(径)0.01〜1μm程度、長さ 0.5〜400 μm程度の炭素繊維をそのまま用いることができる。これらはフロック状になっていてもよい。また、原料繊維は熱処理したものでもよいが、熱処理温度は1500℃以下とすることが好ましい。
(ホウ素またはホウ素化合物)
ホウ素化処理に使用するホウ素またはホウ素化合物は、特に限定されないが、次のような物性のものが適する。ホウ素化処理は2000℃以上の温度で行われるので、少なくとも2000℃に達する前に分解等によっても蒸発しない物質、例えば、元素状ホウ素、B,HBO, BC,BNその他のホウ素化合物を使用するのがよい。
【0061】
炭素にホウ素をドーピングできる量は、一般的には3質量%以下である。従って配合時のホウ素またはホウ素化合物の添加量は、反応率を考慮して炭素量に対してホウ素原子換算で10質量%以下で十分である。ホウ素の使用量が多いと処理コストが高くなるだけでなく、熱処理の段階で、溶融燒結し易く、固まったり、繊維表面を被覆し、電気抵抗を上昇させるなどフィラー特性が失われることがある。
【0062】
微細な炭素繊維(繊維径1μm 以下)は3次元の立体構造を持ち、フロック状を形成し易いだけでなく、嵩密度が極めて小さく空隙率が非常に大きい。しかも添加するホウ素量は10質量%以下、好ましくは5質量%以下と少ないので、単に両者を混合しただけでは両者を均一に接触させることは難しい。
【0063】
ホウ素の導入反応を効率よく行うには繊維とホウ素またはホウ素化合物をよく混合し、できるだけ均一に接触させる。そのためには、ホウ素またはホウ素化合物の粒子はできるだけ粒径の小さいものを使用する。また、粒子が大きいと部分的に高濃度領域が発生することになり、固結化の原因になりかねない。具体的には粒度は平均粒径で 100μm以下、好ましくは50μm以下、より好ましくは20μm以下である。
【0064】
また、硼酸等を用いる場合は水溶液として添加し、予め水分を蒸発させる方法や加熱過程で水分を蒸発する方法も用いることができる。水溶液を均一に混合すれば水分蒸発後はホウ素化合物を繊維表面に均一に付着させることができる。
【0065】
気相法による微細な炭素繊維は先に述べたように、嵩密度が小さく、製造されたままの集合体では約0.01g/cm 以下、またこれを熱処理し、解砕、粉砕し、分級した通常品でも0.02〜0.08g/cm 程度である。従って本微細な炭素繊維は多くの空隙率を持つので、これを熱処理するには非常に容量の大きな熱処理炉が必要で設備コストが高くなるだけでなく、生産性も悪い。従って、通常の炭素材料の場合と異なり、効率的な方法でホウ素を導入する方法を開発する必要がある。
【0066】
また、ホウ素の導入反応を効率よく反応させるには、炭素とホウ素の接触を十分に保持する必要がある。そのためには、両者を均質に混合し、十分接触させるようにする。また熱処理の過程で両者が分離し、濃度の偏りが起きないようにする。
【0067】
そのため、繊維とホウ素またはホウ素化合物を均一に混合し、そのまま熱処理することもできるが、好ましくは、高密度化し、且つその状態をできるだけ維持(固定化)して熱処理する。その好ましい方法として、本発明では熱処理前に、両原料を混合した後、混合物に圧力を加えて圧縮し、高密度化して固定化する。
【0068】
まず、繊維とホウ素またはホウ素化合物の混合は、均一性が保持できればいずれの方法でも良い。混合機としては、市販の混合機の何れでもよいが、微細な炭素繊維はフロック状になり易いので、これを解砕するためにチョッパー付きのヘンシェルミキサータイプのものであればより好ましい。使用する原料繊維は先に述べたように製造されたままのものでも、その繊維の1500℃以下の温度での処理品でもよい。ただ、経済的にも、性能的にも製造されたままのものを混合する方法が好ましい。
【0069】
炭素繊維とホウ素またはホウ素化合物の混合物を高密度化し、両者が分離しないように固定化する方法としては、成形法、造粒法、あるいは、混合物を坩堝にいれて一定の形状に圧縮して、詰め込む方法等何れの方法でも良い。また成形法の場合、成形体の形状は円柱状、板状や直方体等何れの形状でもよい。
【0070】
高密度化し、固定された混合物の嵩密度は0.05g/cm 以上、好ましくは0.06g/cm 以上である。
【0071】
混合物を圧縮して成形体とした後、圧力を開放すると多少容積が膨らみ、嵩密度が下がることもあるが、その場合は圧縮時の嵩密度を圧力開放後の固定化の嵩密度が0.05g/cm 以上になるようにする。また繊維を容器に入れる場合も、処理効率を上げるために、加圧板等を用いて嵩密度が0.05g/cm 以上になるように圧縮したり、また圧縮したまま熱処理することもできる。
【0072】
このようにしてホウ素またはホウ素化合物を添加し、かつ嵩密度を高めた繊維は次に熱処理する。
【0073】
ホウ素を炭素の結晶内に導入するために必要な処理温度は2000℃以上、好ましくは2300℃以上である。処理温度が2000℃に満たないとホウ素と炭素との反応性が悪く、ホウ素の導入が難しい。また、ホウ素の導入を一層促進し、かつ炭素の結晶性を向上させ、特に径が約 0.15 μm程度の繊維でd002 を 0.3385nm 以下にするには2300℃以上に保つことが好ましい。熱処理温度の上限は特に制限はないが、装置等の制限から3200℃程度である。
【0074】
使用する熱処理炉は2000℃以上、好ましくは2300℃以上の目的とする温度が保持できる炉であればよく、通常の、アチソン炉、抵抗炉、高周波炉他の何れの装置でもよい。また、場合によっては、粉体または成形体に直接通電して加熱する方法も使用できる。
【0075】
熱処理の雰囲気は非酸化性の雰囲気、好ましくはアルゴン等の希ガス雰囲気が必要である。熱処理の時間は、生産性の面からは出来るだけ、短い方が好ましい。特に長時間加熱していると、燒結しかたまってくるので、製品収率も悪化する。従って、成形体等の中心部の温度が目標温度に達した後、1時間以下の保持時間で十分である。
【0076】
この処理によって本発明の炭素繊維のd002 をはじめて0.3420nm以下にでき、結晶性を向上させることができた。ところがLc(X線解析法による炭素の結晶性のC軸方向の層の厚さ)は 40nm 以下、さらに好ましくは32nm以下にとどまり、Bを添加しない熱処理品とあまり変らないことが明らかとなった。通常の易黒鉛化性炭素材料は、黒鉛化したd002 が小さくなると、Lcは大きくなるのが通例であるが、本発明の 0.2μm程度の繊維の場合にはLcは大きくならず、 40nm 以下であり、Bを添加しない場合と同等であった。すなわち、d002 は小さくなるが、Lcは大きく変化しないところが特徴である。
【0077】
また、通常の気相法炭素繊維は加熱に従ってラマンスペクトルの1580cm−1のピークが高くなり、1360cm−1のピークが減少し、すなわちR値は小さくなり、黒鉛化とともに最終的に 0.1〜0.2 程度まで下がるが、本発明のホウ素処理品では、R値が 0.5以上、 0.7〜0.8 程度であった。
【0078】
更に、1580cm−1のピークが高くなると共に、その半値巾は20〜40cm−1までに狭くなった。
【0079】
これら、d002 の減少、1580cm−1のピークの高まりに従い、導電性も向上が見られ、0.01Ω・cm以下、具体的には 0.003Ω・cmの値が得られた。
【0080】
さて圧縮成形等をして高密度化した繊維は熱処理すると、一部分が焼結し、通常品と同様にブロック状になっている。従って、そのままでは電極等に添加したり、電子放出能材に使用することは出来ないので成形体を解砕し、フィラー材として適する形態にしなければならない。
【0081】
そのため、このブロックを、解砕、粉砕、分級してフィラー材として適するように処理をすると同時に、非繊維物を分離する。その際に粉砕し過ぎるとフィラー性能が低下し、また粉砕が不十分だと電極材との混合がうまくいかず、添加効果が出ない。
【0082】
フィラーとして望ましい形態にするためには、熱処理後のブロック状のものを先ず、2mm以下の大きさに解砕し、更に粉砕機で粉砕する。解砕機としては通常使用されるアイスクラッシャーやロートプレックス等の解砕機が使用できる。粉砕機としては、衝撃型の粉砕機のパルペライザーや自由粉砕機、また、ミクロジェット等の粉砕機が使用出来る。非繊維物を分離する分級は気流分級等で行うことが出来る。粉砕分級条件は、粉砕機の種類や、操作条件によって異なるが、フィラー特性を発揮させるためには、繊維の長さが5〜400 μmの範囲にするのが好ましい。アスペクト比は好ましくは10以上、さらに好ましくは50以上である。
【0083】
この繊維を粉砕分級後の嵩密度で表すと 0.001g/cm 以上で 0.2g/cm 以下、好ましくは、 0.005g/cm 以上で0.15g/cm 以下、更に好ましくは0.01g/cm 以上で 0.1g/cm 以下である。嵩密度が 0.2g/cm 以上になると、太さによっては繊維の長さが5μm以下のように短くなりフィラー効果が低下する。また 0.001g/cm より小さいと繊維が径によっては 400μmを超えるような長いものとなり、フィラーとしての詰まりが悪くなる。嵩密度は容器に繊維を充填し、振動させ、体積がほぼ一定に達したときの体積と質量から求めたタッピング嵩密度である。
【0084】
本発明の微細な炭素繊維は、電池用電極に添加し、電池の性能を向上することが出来る。電池としては、リチウム電池、鉛蓄電池、ポリマー電池、乾電池等の電極板の導電性を向上したり、インターカレーション能力を必要とする電池を上げることが出来る。本発明の微細な炭素繊維は、結晶性が優れ、導電性が良いので、これらの電池の導電性を高めることが出来るばかりでなく、リチウム電池では負極用炭素材料としてのインターカレーション能力が大きいので充放電容量を増加することが出来る。特にd002 が3.3420nm以下、Lcが 40nm 以下の微細な炭素繊維は上記の効果が大きいが、ホウ素含有の炭素繊維はd002 及びLcの値が上記の範囲外であっても、ホウ素を含有しない微細な炭素繊維に比べて結晶性がよく導電性が高いので、上記の用途に使用することができる。
【0085】
電極中への微細な炭素繊維の添加量は、 0.1質量%以上で20質量%以下の範囲が好ましい。添加量が20質量%より大きくなると電極中の炭素の充填密度が小さくなり、電池にしたときの充放電容量が低下する。また、 0.1質量%より少なくなると添加効果が少ない。
【0086】
微細な炭素繊維を添加して電極とするには、例えばリチウム電池の負極は、黒鉛粉末やメソフューズカーボンマイクロビーズ (MCMB) 等が用いられるが、これに微細な炭素繊維及びバインダーを添加し、充分に混練して繊維が出来るだけ均一に分散するようにする。
【0087】
【実施例】
以下実施例により具体的に説明し、また電極のフィラーとしての効果を明らかにする。
【0088】
微細な炭素繊維の高結晶化
(実施例1)
出発原料である微細な炭素繊維は、遷移金属を含有する有機化合物の存在のもとにベンゼンを熱分解する公知の方法(例えば特開平7−150419号公報) で得た気相法炭素繊維をさらに1200℃で熱処理した。このフロック状に集合した繊維を解砕し、嵩密度を0.02g/cm 、繊維の長さを10〜100 μmとした。繊維の太さ(径)は大部分が 0.5μm以下 (SEM 写真で観察した平均的な径は 0.1〜0.2 μm) であった。この繊維のX線回折による層面間隔d002 は3.3407nm、Lcは5.6nm であった。
【0089】
この繊維2.88kgに平均粒径15μmのBC 粉末を 120g添加し、ヘンシェルミキサーで充分に混合した。この混合物を容量50リットルの円筒状の黒鉛ルツボに詰め込み、圧縮して嵩密度を 0.075g/cm とした。黒鉛製の加圧板で圧縮したまま蓋をし、アチソン炉に入れて加熱処理をした。このときの温度は2900℃であり、2900℃になってからの加熱時間は、60分間である。
【0090】
加熱処理後冷却し、坩堝より繊維を取り出し、約2mm程度に粗解砕した後バンタムミルで粉砕し、その後非繊維状物を気流分級で分離した。
【0091】
得られた繊維の太さは変わらないが、長さは5〜30μmで、嵩密度は0.04g/cm であった。この繊維のホウ素含有量、X線回折によるd002 、Lcの値を表1に示す。BC を添加しないで上記と同様2900℃で加熱処理した炭素繊維を表1の比較例1に示す。
【0092】
(実施例2)
実施例1と同様にして得た炭素繊維を解砕し、次いで粉砕して嵩密度を0.05g/cm とした。この時の繊維の長さは大部分10〜50μm、太さはSEM 写真で観察した平均的な径で0.06μmであった。この繊維 150gに平均粒径10μmのBC 6gを添加し、ヘンシェルミキサーで充分に混合した。この混合物をシリンダー状の成形機に装入し、加圧して直径 150mmの円柱体に成形した。成形後の嵩密度は0.087g/cm であった。
【0093】
この成形体を黒鉛を発熱体とした黒鉛化炉に入れてアルゴン気流中、2800℃で60分間加熱処理した。
【0094】
加熱処理後、成形体を取出し、乳鉢で簡単に2mm以下に解砕した。さらにバンタムミルで粉砕し、気流分級して、得られたBドープ品の嵩密度は 0.046g/cm であった。この時の繊維の長さは大部分5〜20μmであった。
【0095】
この繊維のホウ素含有量、X線回折によるd002 、Lcの値を表1に示す。BC を添加しないで上記と同様2800℃で加熱処理した炭素繊維を表1の比較例2に示す。
【0096】
(実施例3)
出発原料である微細な炭素繊維は、実施例1同様遷移金属を含有する有機化合物の存在のもとにベンゼンを熱分解する公知の方法で得た、この炭素繊維を熱処理せずそのまま解砕し、嵩密度を0.01g/cm とした。繊維の太さは、大部分が0.13μm以下であった。この繊維 200gに平均粒径19μmのBC 8gを添加し、ヘンシェルミキサーで十分に混合した。この混合物をシリンダー状の成形機に装入し、加圧して直径 150mmの円柱体に成形した。成形後の嵩密度は、0.07g/cm であった。
【0097】
この成形体を黒鉛を発熱体とした黒鉛炉に入れてアルゴン気流中、2800℃で60分加熱処理した。
【0098】
加熱処理後、成形体を取り出し、乳鉢で簡単に2mm以下に解砕した。さらにバンタムミルで粉砕し、気流分級して、得られたホウ素ドープ品の嵩密度は0.03g/cm であった。
【0099】
この繊維のホウ素含有量、X線回折によるd002 、Lcの値を表1に示す。BC を添加しないで上記と同様2800℃で加熱処理した炭素繊維を表1の比較例3に示す。
【0100】
【表1】

Figure 2004003097
【0101】
(実施例4)
実施例1と同様にして得た炭素繊維を解砕し、次いで粉砕して嵩密度を0.02g/cm とした。この時の繊維の長さは大部分10〜50μm、太さは平均で約0.04μmであった。この繊維3000gに平均粒径15μmの BC 120gを添加し、ヘンシェルミキサーで充分に混合した。この混合物を内径 100mm、内長さ 150mmの黒鉛るつぼに88g詰め込んだ。その時の嵩密度は0.08g/cm であった。
【0102】
このるつぼに蓋をしてカーボン抵抗炉に入れてアルゴン気流中、2800℃で60分間加熱処理した。
【0103】
加熱処理後、成形体を取出し、乳鉢で簡単に2mm以下に解砕した。さらにバンタムミルで粉砕し、気流分級して、得られたホウ素(B)ドープ品の嵩密度は0.04g/cm であった。また、ホウ素の分析結果から、繊維の結晶中に1.02%のホウ素が導入されたことがわかった。同様に表1にd002 、Lcの測定値を示す( d002=0.3395nm、Lc=25.4nm)。なお、同様の工程にてBC を添加しないものについてのd002 、Lcの値を表1の比較例4に示す( d002=0.3405nm、Lc=21.6nm)。
【0104】
次ぎに、得られたファイバーの粉体抵抗を測定した。測定方法は、本発明者の開発した次に示す方法である。
【0105】
本測定セルは、図2に示すように10mm×50mm角で深さが 100mmのセル4と押し込みのための圧縮ロッド2及び受け器3からなる。セルに一定量の粉体を入れ、上部から圧縮ロッド2に圧力をかけ粉体を圧縮していく。
【0106】
そして、圧力と体積を測定しながら、順次加圧方向と垂直の方向に設置された電極1から電流 100mAを流し、受け器から出た2つの測定端子6の10mm間の電圧(E)Vを読み、以下の式から抵抗値(R)Ω・cmを計算する。
【0107】
R=E/100  (Ω・cm)
粉体抵抗は密度によって異なるので、その評価は一定密度の値で比較する。本測定では、粉体密度が 0.8g/cm の時の値で比較する。
【0108】
この結果を表2に示す。
【0109】
このときの生成物のd002 を測定した結果、0.3395nmで、Lcは 25.4nm であった。
【0110】
なお、参考のため同様の工程にてBC を添加しないものについての抵抗値を表2の比較例9に示す。
【0111】
(実施例5)
実施例1と同様の製造による気相法炭素繊維で実施例4より径の大きい 0.2μmのものを1300℃で熱処理し解砕して嵩密度を0.05g/ccとした。この繊維 150gに平均粒径10μmのBC 6gをヘンシェルミキサーへ投入し、混合した。この粉体を内径が 150φ×400mm のシリンダーと加圧装置を用いて 150φ×100mm の円柱体に成型した。この時の嵩密度は 0.030g/cm であったが、これをシリンダー内に詰めこむことによって、0.08g/cm まで圧縮した。
【0112】
この成型体を黒鉛ヒーターを発熱体とした黒鉛化炉に入れてアルゴン雰囲気中で昇温速度15℃/min で加熱処理した。この時の加熱温度は2800℃であった。
【0113】
熱処理後、繊維を取り出し、乳鉢にて軽く4mm以下に解砕した。更にバンタムミルで粉砕、分級後の嵩密度は0.03g/cm であった。また、ホウ素の分析結果から繊維の結晶中に0.93%のホウ素が導入できたことがわかった。
【0114】
得られた粉体の抵抗を表2に示す。
【0115】
同時に実施例5のd002 を合わせて示すが、実施例4と同様の低下が見られた。また、Lcは、29.9nmであった。なお、参考のため同様の工程にてBC を添加しないものについてのd002 、Lcを表1の比較例5に示す。
【0116】
【表2】
Figure 2004003097
【0117】
フィラー効果の確認
(実施例6)
本繊維を負極用炭素材に添加したときの粉体抵抗が、本当に低下できるかを検討するため、市販の黒鉛粒子(平均10μm)に実施例4の本発明品を添加し、添加量と粉体抵抗の関係を測定し求めた。また比較例3のBの添加されていない繊維を添加したときの添加量と粉体抵抗の関係を測定し求めた。
【0118】
繊維を添加しないとき、3%添加、5%添加、10%添加のときの各々の抵抗値を表3に示す。なお、粉体抵抗の測定方法は、実施例4と同様であるが、測定にあたっての嵩密度は、電極と同等の密度で比較したほうが好ましいので、 1.5g/cm の密度のときの抵抗値である。
【0119】
次に上記の繊維のリチウム電池の電極としての実施例を示す。
【0120】
(実施例7)
まず、繊維自体(100%) で電極を構成し、本発明の繊維による効果を調べた。
【0121】
上記実施例1,2及び3、比較例1,2及び3の繊維にPVDF (ポリビニリデンフルオライト) を3質量%添加し、ニッケルメッシュ上に圧着して作用極(負極)とし、Li金属を対象極として電池の性能を測定した。電解液は1モルのLiPF を溶解したエチレンカーボネイト (EC) 及びジエチルカーボネイト (DEC)の両者の配合比が体積比で1:1の溶媒を用いた。電池の評価時の電流密度は 0.2mA/gとした。
【0122】
これらの電池の放電容量を測定した結果を表4に示す。
【0123】
次ぎにこの繊維を添加した電極の実施例を示す。
【0124】
(実施例8)
電極の負極材となる炭素材料には、ピッチコークスを3000℃で熱処理した平均粒径16μmの黒鉛化粒子を用いた。この黒鉛化粒子は熱処理の際にホウ素を添加したもの(GB) と、ホウ素を添加しないもの (G1) を使用した。GBのホウ素含有量は0.98質量%である。
【0125】
極板は、これらのGB又はG1の単独、及びGB又はG1に実施例1又は比較例1の繊維をそれぞれ5質量%添加したものに、3質量%のPVDFを添加してスラリー化し、ニッケルメッシュ上に圧着して作製した。電解液、対象極及び電流密度は前記例と同様とした。放電容量の測定結果を表4に示す。参考例1及び2は上記のGB,G1を単独で電極を構成したものである。表中の放電容量の計算値はG1またはGB95質量%の放電容量と炭素繊維5質量%の放電容量をその比率に従って加成的に合算したものである。
【0126】
【表3】
Figure 2004003097
【0127】
【表4】
Figure 2004003097
【0128】
表4からわかるように負極材となる炭素材料に微細な炭素繊維を添加し、リチウム電池の電極(負極)とすると放電容量が負極材及び微細な炭素繊維自体のもつ放電容量から計算した値より高いことが判明した。特に微細な炭素繊維としてホウ素を添加し、高温で処理し、結晶性を高めた繊維の場合特にこの効果が高い。すなわち、負極材の炭素材料にホウ素含有の微細な炭素繊維を添加すると、理由は定かでないが、明らかに相乗効果があり、特に高結晶性の微細な炭素繊維の場合顕著な相乗効果があることが判明した。
【0129】
【発明の効果】
本発明は微細な炭素繊維であって、従来得られなかった高結晶性の炭素繊維及びホウ素を含有する炭素繊維である。高結晶性であるために導電性や熱伝導性に優れ、樹脂、セラミックス、金属等のフィラーとして優れたものである。
【0130】
特に電池やキャパシタの電極のフィラーとして添加すると微細であるために添加量が少なくても分散効率が高く、大きな効果が得られる。また、本発明の微細な炭素繊維はリチウムイオンのインターカレーション能力が大きく、少ない添加量でも放電容量を高めることができる。
【図面の簡単な説明】
【図1】微細炭素繊維の繊維径とグラファイト結晶の層間距離との関係を示すグラフである。
【図2】本発明の粉体抵抗を測定する装置の断面図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is intended to be used as a filler material to be added to various materials such as metals, resins, and ceramics to improve conductivity and thermal conductivity, and as an electron emission material for FED (filled emission display). Furthermore, fine carbon fiber (including fibrous carbon such as coiled carbon fiber, vapor grown carbon fiber, whisker-like carbon fiber, and drawn carbon fiber) used as a filler material such as a material for improving the characteristics of various batteries and the production thereof About the law. For batteries with improved charge / discharge capacity and electrode plate strength by adding this fine carbon fiber to the positive or negative electrode of various batteries including dry batteries, Pb storage batteries, capacitors and recent Li-ion secondary batteries. Electrodes.
[0002]
[Prior art]
The "fine carbon fibers" referred to in the present invention are generally produced by a gas phase method by pyrolysis of hydrocarbons (JP-A-7-150419, JP-A-5-321039, and JP-A-60-16039). JP-A-215816, JP-A-61-70014, JP-B-5-3652152, JP-B-3-617683−, etc.) 等. The fibers usually have a diameter of about 0.01 to 5 μm. However, when the diameter is 0.01 μm or more, carbon nanotubes and carbon nanofibers having a concentric or annual ring-shaped structure similar to carbon fibers produced by a vapor phase method are also included.
[0003]
Use of fine carbon fibers as a filler for metals, resins, ceramics and the like has been proposed. Particularly, in recent years, the development of portable devices such as small mobile phones, video cameras, and notebook computers has been remarkable, and the demand for small secondary batteries such as Li-ion secondary batteries (Li batteries) as power sources for use therein has increased sharply. It is growing and its use as a filler for batteries is being studied.
[0004]
The carbon material for the negative electrode used for the electrode of the Li battery is usually various kinds of hard carbon, mesophase carbon microbeads (MCMB), mesophase pitch carbon fiber (MPCF), artificial graphite, various cokes, natural graphite, and the like. It has also been proposed to add pitch-based carbon fibers or vapor-grown carbon fibers to these negative electrode materials. For the positive electrode, graphite fine powder, carbon black, or the like is used as a conductivity imparting agent.
[0005]
The lithium battery negative electrode undergoes lithium ion intercalation {(insertion)} and deintercalation {(release)} during charge and discharge. Graphite has a layered structure, and is liable to cause a reaction (intercalation) in which a reactant (eg, Li) Li pushes and expands between layers. The product in which the reactant enters the interlayer is called an interlayer compound (Graphite {Intercalation} Compounds)}. In addition, the intercalation compound releases a reactant (deintercalation) and easily returns to the original graphite. Fine carbon fiber is a material with excellent electrical conductivity and thermal conductivity, and has an intercalation ability, so even if added, it does not reduce the capacity of the battery, and is attracting attention as an additive for the negative electrode material. I have.
[0006]
To increase the capacity of the Li battery, it is first necessary to increase the intercalation ability. To increase the intercalation ability, it is generally necessary to increase the degree of graphitization of the carbon material, that is, the crystallinity, and the same applies to fine carbon fibers.
[0007]
The negative electrode of a lead-acid battery is originally composed of a substance having poor conductivity. To improve the conductivity of the negative electrode, carbon materials such as carbon black, graphite fine particles, and carbon fibers can be added. A material having high crystallinity and high crystallinity is desired. In order to improve the crystallinity of such a carbon material, a graphitization method of processing at a high temperature is usually used.
[0008]
On the other hand, fine carbon fibers having a small average fiber diameter, particularly 1 μm or less, have a low bulk density and do not have a high filling property. Therefore, if a large amount of this carbon fiber is added to the electrode, the electrode density will decrease. Therefore, usually only 20% by mass or less, preferably 10% by mass or less is added. For this reason, it is considered that a large addition effect cannot be expected even if the crystallinity of this fiber is increased, and attempts to improve the crystallinity of such fine carbon fiber have been studied except for heat treatment at a high temperature. Not. Therefore, the fine carbon fiber conventionally used is a crystal layer spacing d obtained by an X-ray diffraction method.002大 き く is larger than 3.385 °, and the crystallinity is not much developed.
[0009]
Further, with the demand for higher capacity, a material having a low electric resistance of the electrode is required to charge and discharge a large amount of current.
[0010]
In order to reduce the resistance value of the electrode, the addition of various conductivity-imparting materials has been studied. However, it is known that a filler of a fibrous substance mainly composed of vapor grown carbon fiber is effective. The reason is,
1) Fine fiber material has an aspect ratio of $ 100 or more and long conductive path;
2) The vapor grown carbon fiber has good crystallinity and excellent conductivity.
3) The vapor-grown carbon fiber itself also has a charge / discharge ability, and does not cause a decrease in the capacity of the Li battery even when added.
And so on.
[0011]
However, the conductivity of a conventionally available fine fiber material having a diameter of 1 μm or less is about 0.8 g / cm.3When evaluated in the density state of, the limit of the powder resistance was 0.01 Ω · cm, and there was no material having a lower resistance value.
[0012]
If the capacity is increased by increasing the crystallinity of the negative electrode material to improve the charge / discharge capacity of recent batteries, a material having a high discharge capacity is required not only for the negative electrode material but also for the additive material. . Therefore, it is absolutely necessary to increase the crystallinity of the carbon material as the additive.
[0013]
Therefore, the need to increase the crystallinity of the fine carbon fiber was pressed, and the study was made to increase the heat treatment temperature to a high temperature of 3200 ° C. to improve the crystallinity.
[0014]
However, fine carbon fibers having a diameter of about 0.15 μm {(vapor-grown carbon fibers)} have a layer spacing d even when heated to a temperature of 3000 ° C. or more.002It was impossible to make the lattice constant of smaller than {0.3385 nm}.
[0015]
At the same time, regarding the conductivity, the density is about 0.8 g / cm.3In the case of, the limit point was 0.01 Ω · cm as the powder resistance. Therefore, a crystal having more developed and low resistance is required.
[0016]
The cause is considered to be that the vapor grown carbon fiber has a very fine fiber diameter and a special structure having concentric crystals and a hollow or amorphous portion at the center. Moreover, it is considered that as the fiber diameter becomes thinner such as 1 micron or less, the closer to the center, the more difficult it is to structurally wind the hexagonal mesh plane of carbon into a cylindrical shape with a small diameter, and the more difficult it becomes to crystallize. Therefore, d002The value of depends on the fiber diameter. For example, the limit is {0.3385 nm} for fibers having a diameter of about 0.15 μm, {0.3400 nm} for 0.05 μm, {0.3415 nm} for about 0.02 μm, and 0.3420 nm for about 0.01 μm or less. Thus, for a fiber of about {0.15} μm, d002The interlayer distance of is limited to about 0.3385 nm, and even if heat treatment is performed at 3000 ° C. or more, d002Could not be made smaller.
[0017]
Therefore, the crystallinity is increased and d002In order to make 充分 smaller than 0.3385 nm, heat treatment alone is not sufficient, and it is necessary to develop a method for improving crystallinity by adding another method.
[0018]
[Problems to be solved by the invention]
An object of the present invention is to develop a fine carbon fiber having a high crystallinity, or a good conductivity, which has not been obtained conventionally, and an object of the present invention to provide a higher performance battery electrode using the fiber as a filler. .
[0019]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor first focuses on a graphitization catalyst (sometimes referred to as an auxiliary or additive for graphitization; hereinafter, simply referred to as "graphitization catalyst" or "catalyst"). did.
[0020]
Until now, no attempt has been made to control the physical properties of fine carbon fibers having a diameter of 1 μm or less using a graphitization catalyst. In addition, it was unclear to what extent fine carbon fibers having such a special crystal structure could be improved in crystallinity by a method using a graphitization catalyst, and to what kind of properties the material could be made. .
[0021]
Next, a method of treating fibers using a catalyst was examined.
[0022]
The present invention has been achieved as a result of these studies, and basically includes the inventions of the following items.
[0023]
(1) The fiber diameter is 1 μm or less, and the carbon layer spacing d determined by the X-ray diffraction method002{Is in the range of 0.335 to 0.342 nm (and even 0.3354 to 0.3420 nm)} and d002{<0.3448-0.0028 (log φ)}, preferably d002{<0.3444-0.0028 (log φ)}, more preferably d002Fine carbon fiber that satisfies {<0.3441-0.0028 (log φ)} (where φ is the diameter of the carbon fiber) and has a crystal L-axis thickness Lc of {40 nm} or less.
[0024]
(2) R value of Raman spectrum is 0.5 or more, 1580 cm-1The peak half width of the spectrum is 20 to 40 cm.-1(1) The fine carbon fiber according to (1),
[0025]
(3) Fine carbon fibers having a fiber diameter of 1 μm or less and containing boron in the crystal of the carbon fibers.
[0026]
(4) The fine carbon fiber according to (1) or (2), wherein boron is contained in the crystal of the carbon fiber.
[0027]
(5) The fine carbon fiber according to (3) or (4), wherein the content of boron is 0.1 to 3% by mass.
[0028]
(6) The fine carbon fiber according to (1) to (5), wherein the carbon fiber has a diameter of 0.01 to 1 μm and an aspect ratio of 10 or more.
[0029]
(7) Density 0.8 g / cm3(6) The fine carbon fiber according to (6), wherein the powder resistance in the direction perpendicular to the pressing direction when pressed is 0.01 Ω · cm or less.
[0030]
(8) The fine carbon fibers according to (1) to (7), wherein the carbon fibers are carbon fibers produced by a vapor phase method.
[0031]
(9) A method for producing fine carbon fibers, comprising adding boron or a boron compound to fine carbon fibers having a fiber diameter of 1 μm or less, and heat-treating the fine carbon fibers at a temperature of 2000 ° C. or more.
[0032]
(10) Boron or a boron compound is added to fine carbon fibers having a fiber diameter of 1 μm or less,
The bulk density of the fine carbon fiber is 0.05 g / cm3And more
A method for producing fine carbon fibers, wherein the fine carbon fibers are heat-treated at a temperature of 2000 ° C. or more while maintaining the bulk density.
[0033]
(11) The method for producing fine carbon fibers according to (9) or (10), wherein the amount of boron or boron compound added is about 0.1 to 10% by mass based on carbon fibers as boron atoms.
[0034]
(12) The method for producing fine carbon fibers according to (9) to (11), wherein the fine carbon fibers to which boron or the boron compound is added are carbon fibers having a diameter of 0.01 to 1 μm and an aspect ratio of 10 or more.
[0035]
(13) The method for producing fine carbon fibers according to any one of (9) to (12), wherein the fine carbon fibers to which boron or a boron compound is added are carbon fibers obtained by a vapor phase method.
[0036]
(14) The method for producing fine carbon fibers according to (13), wherein the fine carbon fibers before the heat treatment to which boron or a boron compound is added are fired products subjected to a heat treatment after growth by a vapor phase method.
[0037]
(15) The method for producing fine carbon fibers according to (13), wherein the fine carbon fibers before the heat treatment to which boron or a boron compound is added are unfired products that have not been subjected to a heat treatment after growth by a vapor phase method. .
[0038]
(16) An electrode for a battery containing the fine carbon fibers according to (1) to (8).
[0039]
BEST MODE FOR CARRYING OUT THE INVENTION
The fine carbon fiber of the present invention has good crystallinity, and the layer spacing d of the carbon crystal determined by X-ray diffraction is d.002Is 0.335 to 0.342 nm, and the thickness Lc of the crystal plane in the C-axis direction is 400 nm or less, more preferably 32 nm or less.
[0040]
FIG. 1 shows the interlayer distance d between the fine carbon fibers which were not subjected to boron treatment and those which were subjected to boron treatment.002Fig. 7 is a graph showing measured as a function of fiber diameter. Those without boron treatment are d002層 間 = 0.3448−0.0028 (log φ) (where φ is the diameter of the carbon fiber), the interlayer distance d represented by002Is larger than, but the one treated with boron is the interlayer distance d002Substantially smaller. Therefore, the fine carbon fiber of the present invention has d002{<0.3448-0.0028 (log φ)}, preferably d002{<0.3444-0.0028 (log φ)}, more preferably d002{<0.3441-0.0028 (log φ)} (where φ is the diameter of the carbon fiber), the interlayer distance d represented by002.
[0041]
In addition, in the study of the present inventors, without boron treatment, the layer spacing d of the carbon crystal shown in FIG.002= 0.3448-0.0028 (log φ) could not be made smaller, but supposedly such a small d without boron treatment002Even if could be realized, it would only be possible by special treatment or by realization or control of severe conditions, so that by boron treatment according to the present invention, a small interlayer spacing d within the scope of the present invention is achieved.002The meaning of the invention that fine carbon fibers having can be easily obtained is not lost.
[0042]
The fine carbon fibers of the present invention include carbon fibers containing boron. Boron in carbon fibers is present in the crystal of carbon (graphite), between crystal layers, and at a grain boundary or as an impurity.
[0043]
The carbon fibers containing boron in the crystals of the present invention are novel and have d002The values of and Lc are not limited to the above ranges, but preferably contain boron and d002The values of and Lc are in the above ranges.
[0044]
Containing boron and d002The fibers having the values of and Lc in the above ranges have an R value (1580 cm) in the Raman absorption spectrum.-1Absorption intensity IG and 1360cm-1Ratio of the absorption intensity ID of R = ID / IG)} is not less than 0.5 and 1580 cm-1The peak half width of the spectrum is 20 to 40 cm.-1And can be reduced.
[0045]
These fibers preferably have a diameter (diameter) of 0.01 to 1 μm, and the aspect ratio is preferably 10 or more, and more preferably 50 or more, in order to have a function as a fiber.
[0046]
When the fiber diameter is less than 0.01 μm, the strength of the fiber is weak, and when used as a filler for a battery electrode or a resin, the fiber is frequently cut or the like, and the function as the fiber is easily impaired. On the other hand, when the addition rate (mass%) of the fiber as the filler is constant, the number of fibers decreases as the thickness increases, and the function of the fiber as the filler is not sufficiently exhibited. Further, for example, a carbon electrode as a negative electrode material for a battery contains graphite particles. However, if the fibers are thick, it is difficult for fibers to enter between the particles. On the other hand, if the fiber diameter is larger than 1 μm, the productivity of the fiber itself is remarkably reduced, so that the cost is increased industrially. For these reasons, the fiber diameter is preferably 1 μm or less.
[0047]
The length of the fiber is not particularly limited, and the lower limit is preferably a length determined from the lower limit of the aspect ratio (fiber length / fiber diameter). If the length of the fibers is too long, problems may occur in the dispersibility as a filler due to entanglement of the fibers, etc., so the upper limit is preferably 400 μm, and more preferably 100 μm. Therefore, for example, when the aspect ratio is 50 or more, the fiber length is preferably 0.5 μm or more when the fiber diameter is 0.01 μm, and the length is 5 μm or more when the diameter is 0.1 μm. Each of the upper limits is preferably 400 μm, and more preferably 100 μm.
[0048]
The highly crystalline fine carbon fiber of the present invention can be produced by heat-treating the fine carbon fiber in the presence of a boron compound. Without intending to be bound by theory, according to such a heat treatment, boron is incorporated into the carbon fiber, and its catalytic action produces the highly crystalline fine carbon fiber of the present invention. It is considered.
[0049]
The content of boron in the fine carbon fibers effective for high crystallization is generally 0.1 to 3% by mass, preferably 0.2 to 3% by mass. However, boron only needs to be present in the fiber when the fiber is crystallized in the heat treatment, and after high crystallization, the resulting highly crystalline fiber is further processed at a higher temperature, and the boron is volatilized and added. The concentration may be lower than the amount.
[0050]
Next, the method for producing fine carbon fibers of the present invention will be described.
(Carbon fiber as starting material)
In the production method of the present invention, fine carbon fibers grown in the gas phase by thermal decomposition of an organic compound such as benzene can be used as the starting carbon fibers. For example, JP-A-7-150419, JP-A-5-321039, JP-A-60-215816, JP-A-61-70014, JP-B-5-365215−, and JP-B-3-61768 described above. Can be manufactured by the method disclosed in Japanese Patent Application Laid-Open No. H10-209, etc. If the fiber diameter is 0.01 μm or more, fine fibrous substances called carbon nanotubes and carbon nanofibers having the same annual ring structure can be used. Accordingly, carbon nanotubes, carbon nanofibers, and the like having a multi-structure manufactured by an arc discharge method, a laser method, or the like can be used.
[0051]
To briefly describe the method for producing fine carbon fibers by vapor phase growth, a transition metal or a compound thereof as a seed, for example, iron, nickel, metal ultrafine powder such as cobalt, or ultrafine particles based on ferrocene or the like, using a substrate Ultrafine powder or ultrafine particles of these seeds are formed on top, and a carbon material and optionally a carrier gas such as hydrogen are supplied in the gas phase and decomposed at high temperature, and the ultrafine powder or ultrafine particles are used as seeds. Fine carbon fibers having a fiber diameter of about 0.01 μm to 1 μm or more grow. As a method for forming the seed, a method of applying and drying a seed particle dispersion or a seed source solution on a substrate (the inner wall of a heating furnace may be used as a substrate), a method of spraying ferrocene, or the like, There is a method in which fine particles of iron or its compound are generated in a fluidized state using ferrocene or the like. In this way, the seed may be formed on the surface of the substrate or may be a fluidized bed.
[0052]
In addition, as described above, the fine carbon fibers produced by the vapor phase growth method, as it is, a large amount of tar components and low boiling components generated at the same time as the reaction are adsorbed on the surface of the as-grown that has been removed by reaction. In addition, since iron particles having high activity exist, they may be subjected to a heat treatment to cope with these.
[0053]
However, according to the study of the present inventors, it has been found that this fine carbon fiber cannot be sufficiently improved in crystallinity only by heat treatment. Then, a catalyst (auxiliary agent, additive) for high crystallization was examined. As the catalyst, B, Al, Be, Si and the like can be considered, but boron (B) was particularly effective. Various studies have been made to increase the crystallinity of ordinary carbon materials by adding boron to the heat treatment. ("Carbon", 1996, No. 172, pp. 89-94, JP-A-3-245458, JP-A-5-251080, JP-A-5-266880, JP-A-7-73898}, JP-A-7-838. JP-A-31422, JP-A-8-306359, JP-A-9-63584, and JP-A-9-63585).
[0054]
However, there is no example in which boron is introduced into fine vapor-grown carbon fibers having a diameter of 1 μm or less to improve the characteristics. The reason is that the fiber has a special structure as shown below, and it is considered that a catalytic effect similar to that of a normal carbon material cannot be expected.
[0055]
That is, the vapor grown carbon fiber is an onion-like fiber in which the crystal structure of the cut surface of the fiber has developed concentrically. The length of the fiber varies depending on the manufacturing conditions. For example, in the case of a fiber having a diameter of about 0.01 to 1 μm, not only a single fiber but also a large number of branched fibers are present. Most of them have an average of at least 5 μm as measured by a scanning electron microscope. In addition, since this fiber contains a branched fine fiber in addition to a long fiber, even a short fiber of about 5 μm as well as a long fiber has a size of at least 10 μm or more, and in some cases 100 μm Such large flocks tend to be formed. Therefore, the bulk density as an aggregate is small, 0.05 g / cm.3Or less, usually 0.01 g / cm3It is below. Moreover, it has a flocked three-dimensional structure.
[0056]
Since the vapor grown carbon fiber has a unique structure different from ordinary carbon fiber, it is considered that it is difficult to contact with the graphitization catalyst and it is difficult to uniformly boronize the carbon fiber.
[0057]
In the case of fine carbon fibers, as the fiber diameter becomes finer, especially near the center thereof, the carbon crystal layer is curved, and when the interlayer distance of the carbon crystal is reduced to increase the crystallinity, There were also questions about whether fine carbon fibers could be maintained, or conversely, whether the crystallinity of the fine carbon fibers could be further enhanced with boron.
[0058]
However, as a result of intensive studies, the present inventors have succeeded in achieving high crystallization of carbon fibers using boron as a catalyst (auxiliary agent) even in fine carbon fibers produced by a gas phase method.
[0059]
According to the present invention, in order to dope boron, a low-temperature heat-treated product which is easy to dope as a raw material fine carbon fiber, has less crystal growth, and is heat-treated at 1500 ° C. or lower, is used. It is preferable to use a carbon fiber that has not been heat-treated (as grown). Even fibers that have not been heat-treated are finally heated to the graphitization temperature during the treatment using a boron catalyst (boronation treatment), so that even undeveloped crystals can be used. It is not impossible to use fibers that have been graphitized at a temperature of 2000 ° C. or higher, preferably 2300 ° C. or higher, but it is not necessary to graphitize in advance from the viewpoint of energy reduction, and it is rather heat-treated. It is preferable to use a non-existent material to act as a catalyst simultaneously with graphitization.
[0060]
As fine fibers of the raw material, crushed and pulverized fibers can be used in advance for easy handling, but crushing and pulverization are sufficient as long as they can be mixed with boron or a boron compound. That is, even after the boration treatment, filler treatment such as pulverization, pulverization, and classification is finally performed. Therefore, the length of the filler or the like does not have to be appropriate before the boration treatment. Carbon fibers having a thickness (diameter) of about 0.01 to 1 μm and a length of about 0.5 to 400 μm generally obtained by a vapor phase growth method can be used as they are. These may be flocked. The raw fiber may be a heat-treated fiber, but the heat treatment temperature is preferably 1500 ° C. or lower.
(Boron or boron compound)
The boron or boron compound used for the boration treatment is not particularly limited, but those having the following physical properties are suitable. Since the boration treatment is performed at a temperature of 2000 ° C. or higher, a substance which does not evaporate even by decomposition or the like before reaching at least 2000 ° C., for example, elemental boron, B2O3, H3BO4, B4C, BN and other boron compounds are preferably used.
[0061]
The amount of carbon that can be doped with boron is generally 3% by mass or less. Therefore, the addition amount of boron or boron compound at the time of blending is sufficient to be not more than 10% by mass in terms of boron atoms with respect to the carbon amount in consideration of the reaction rate. If the amount of boron used is large, not only does the processing cost increase, but also in the heat treatment stage, filler properties are lost, such as easy melting and sintering, hardening, covering the fiber surface and increasing electrical resistance.
[0062]
Fine carbon fibers (fiber diameter of 1 μm or less) have a three-dimensional structure and are easy to form a floc shape, and have a very small bulk density and a very large porosity. Moreover, since the amount of boron to be added is as small as 10% by mass or less, preferably 5% by mass or less, it is difficult to uniformly contact both by simply mixing both.
[0063]
In order to carry out the boron introduction reaction efficiently, the fiber and boron or boron compound are mixed well and brought into contact as uniformly as possible. For this purpose, the particles of boron or boron compound should be as small as possible. In addition, if the particles are large, a high-concentration region is partially generated, which may cause solidification. More specifically, the average particle size is about 100 μm or less, preferably 50 μm or less, more preferably 20 μm or less.
[0064]
When boric acid or the like is used, a method of adding water as an aqueous solution and evaporating water in advance or a method of evaporating water in a heating process can be used. If the aqueous solution is uniformly mixed, the boron compound can be uniformly adhered to the fiber surface after water evaporation.
[0065]
As described above, the fine carbon fiber obtained by the vapor phase method has a low bulk density, and is about 0.01 g / cm in an as-manufactured aggregate.3Hereinafter, the heat-treated, crushed, crushed, and classified ordinary product is 0.02 to 0.08 g / cm.3About. Therefore, since the fine carbon fiber has a large porosity, a heat treatment furnace having a very large capacity is required to heat-treat the fine carbon fiber, so that not only the equipment cost is increased but also productivity is poor. Therefore, it is necessary to develop a method for introducing boron in an efficient manner, unlike the case of ordinary carbon materials.
[0066]
Further, in order to efficiently react the boron introduction reaction, it is necessary to sufficiently maintain the contact between carbon and boron. For that purpose, both are mixed homogeneously and brought into sufficient contact. In addition, the two are separated during the heat treatment so that the concentration is not biased.
[0067]
Therefore, the fiber and boron or the boron compound can be uniformly mixed and heat-treated as it is, but preferably, heat treatment is performed while densifying and maintaining (fixing) the state as much as possible. As a preferred method, in the present invention, before the heat treatment, the two raw materials are mixed, and then the mixture is compressed by applying pressure, and the mixture is densified and fixed.
[0068]
First, mixing of the fiber and boron or boron compound may be performed by any method as long as uniformity can be maintained. As the mixer, any of commercially available mixers may be used. However, since fine carbon fibers tend to form flocs, it is more preferable to use a Henschel mixer type with a chopper for crushing the fine fibers. The raw material fibers used may be as-produced fibers as described above, or the fibers may be processed at a temperature of 1500 ° C. or lower. However, a method of mixing as-produced products economically and in terms of performance is preferred.
[0069]
As a method of densifying the mixture of carbon fiber and boron or boron compound, and fixing them so that they are not separated, molding method, granulation method, or compressing the mixture into a crucible into a certain shape, Any method such as a packing method may be used. In the case of the molding method, the shape of the molded body may be any of a columnar shape, a plate shape, a rectangular parallelepiped shape, and the like.
[0070]
The bulk density of the densified and fixed mixture is 0.05 g / cm3Or more, preferably 0.06 g / cm3Or more.
[0071]
When the pressure is released after the mixture is compressed to form a molded body, the volume is slightly increased, and the bulk density may be reduced. In this case, the bulk density at the time of compression is reduced to 0. 05g / cm3に す る to be more than. Also, when fibers are put in a container, the bulk density is 0.05 g / cm using a pressure plate or the like in order to increase the processing efficiency.3圧 縮 It can be compressed so as to be more than or heat-treated while being compressed.
[0072]
The fiber thus added with boron or boron compound and having increased bulk density is then heat treated.
[0073]
The processing temperature required to introduce boron into the carbon crystal is 2000 ° C. or higher, preferably 2300 ° C. or higher. If the treatment temperature is lower than 2000 ° C., the reactivity between boron and carbon is poor, and it is difficult to introduce boron. Further, the introduction of boron is further promoted and the crystallinity of carbon is improved, and in particular, the fiber having a diameter of about {0.15} μm is d002In order to reduce に to {0.3385 nm} or less, it is preferable to keep the temperature at 2300 ° C. or more. The upper limit of the heat treatment temperature is not particularly limited, but is about 3200 ° C. due to the limitation of the apparatus and the like.
[0074]
The heat treatment furnace to be used may be any furnace capable of maintaining a target temperature of 2000 ° C. or higher, preferably 2300 ° C. or higher, and may be any of ordinary devices such as an Acheson furnace, a resistance furnace, and a high frequency furnace. In some cases, a method in which the powder or the molded body is directly energized and heated may be used.
[0075]
The atmosphere for the heat treatment needs to be a non-oxidizing atmosphere, preferably a rare gas atmosphere such as argon. The heat treatment time is preferably as short as possible from the viewpoint of productivity. In particular, when heating is performed for a long time, sintering is accumulated, and the product yield is also deteriorated. Therefore, a holding time of one hour or less is sufficient after the temperature at the center of the molded body or the like reaches the target temperature.
[0076]
By this treatment, d of the carbon fiber of the present invention is obtained.002For the first time, the thickness could be reduced to 0.3420 nm or less, and the crystallinity could be improved. However, Lc (the thickness of the layer of carbon crystallinity in the C-axis direction according to the X-ray analysis method) was {40 nm} or less, more preferably 32 nm or less, and it became clear that it was not much different from the heat-treated product to which B was not added. . A typical graphitizable carbon material is graphitized d002As becomes smaller, Lc usually becomes larger. However, in the case of the fiber of about 0.2 μm according to the present invention, Lc does not become larger and is not more than {40 nm}, which is equivalent to the case where B is not added. That is, d002Is small, but Lc is not largely changed.
[0077]
In addition, a normal vapor grown carbon fiber has a Raman spectrum of 1580 cm according to heating.-1The peak of 1360cm-1Is reduced, that is, the R value decreases, and finally decreases to about {0.1 to 0.2} with graphitization. However, in the boron-treated product of the present invention, the R value is {0.5 or more, It was about 0.8 mm.
[0078]
In addition, 1580cm-1And the half width is 20 to 40 cm-1Narrowed by.
[0079]
These, d002Reduction, 1580cm-1, The conductivity was also improved, and a value of 0.01 Ω · cm or less, specifically, a value of 0.003 Ω · cm was obtained.
[0080]
Now, when the fiber which has been densified by compression molding or the like is heat-treated, a part of the fiber is sintered and becomes a block shape like a normal product. Therefore, it cannot be added to an electrode or the like as it is or cannot be used as an electron emission material, so the molded body must be crushed to have a form suitable as a filler material.
[0081]
Therefore, this block is crushed, pulverized, classified and treated so as to be suitable as a filler material, and at the same time, non-fibrous materials are separated. At that time, if the pulverization is excessive, the filler performance is deteriorated. If the pulverization is insufficient, the mixing with the electrode material does not work well, and the addition effect is not obtained.
[0082]
In order to obtain a desirable form as a filler, a block-like material after heat treatment is first crushed into a size of 2 mm or less, and further crushed by a crusher. As the crusher, a commonly used crusher such as an ice crusher or a rotoplex can be used. As a pulverizer, a pulverizer or a free pulverizer of an impact type pulverizer, or a pulverizer such as a micro jet can be used. Classification for separating non-fiber materials can be performed by airflow classification or the like. The conditions for the pulverization and classification vary depending on the type of the pulverizer and the operating conditions, but in order to exhibit the filler properties, the fiber length is preferably in the range of 5 to 400 μm. The aspect ratio is preferably 10 or more, more preferably 50 or more.
[0083]
This fiber was expressed as a bulk density after pulverization and classification of $ 0.001 g / cm.30.2g / cm for more than3Or less, preferably, 0.005 g / cm30.15g / cm over3Or less, more preferably 0.01 g / cm30.1g / cm over3It is below. Bulk density is $ 0.2g / cm3If it is more than, the fiber length will be as short as 5 μm or less depending on the thickness, and the filler effect will be reduced. $ 0.001g / cm3If the diameter is smaller than, the fiber becomes too long depending on the diameter, exceeding 400 μm, and the clogging as a filler becomes worse. The bulk density is a tapping bulk density determined from a volume and a mass when a fiber is filled in a container, vibrated, and the volume is almost constant.
[0084]
The fine carbon fiber of the present invention can be added to a battery electrode to improve battery performance. Examples of the battery include a lithium battery, a lead storage battery, a polymer battery, a dry battery, and the like, in which the conductivity of an electrode plate is improved, or a battery that requires an intercalation ability can be used. The fine carbon fiber of the present invention has excellent crystallinity and good conductivity, so that not only can the conductivity of these batteries be increased, but also the lithium battery has a large intercalation ability as a carbon material for a negative electrode. Therefore, the charge / discharge capacity can be increased. Especially d002Fine carbon fibers with of 3.3420 nm or less and Lc of {40 nm} or less have the above effect, but boron-containing carbon fibers have d002Even when the values of and Lc are out of the above ranges, they can be used for the above applications because they have good crystallinity and high conductivity as compared with fine carbon fibers containing no boron.
[0085]
The amount of the fine carbon fibers added to the electrode is preferably in the range of 0.1% by mass to 20% by mass. When the addition amount is more than 20% by mass, the packing density of carbon in the electrode decreases, and the charge / discharge capacity of the battery decreases. On the other hand, if it is less than 0.1% by mass, the effect of addition is small.
[0086]
In order to form an electrode by adding fine carbon fibers, for example, for the negative electrode of a lithium battery, graphite powder or meso-fuse carbon microbeads (MCMB) is used, and fine carbon fibers and a binder are added thereto, Mix well so that the fibers are dispersed as uniformly as possible.
[0087]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, and the effect of the filler as an electrode will be clarified.
[0088]
High crystallization of fine carbon fiber
(Example 1)
Fine carbon fiber as a starting material is obtained by vapor-phase carbon fiber obtained by a known method of thermally decomposing benzene in the presence of an organic compound containing a transition metal (for example, JP-A-7-150419). Further, heat treatment was performed at 1200 ° C. The fibers aggregated in a floc shape are crushed to obtain a bulk density of 0.02 g / cm.3, The length of the fiber was 10 to 100 μm. Most of the thickness (diameter) of the fiber was {0.5 μm or less} (the average diameter observed in a SEM photograph was {0.1 to 0.2 μm}}. Layer spacing d by X-ray diffraction of this fiber002Was 3.3407 nm and Lc was 5.6 nm.
[0089]
2.88 kg of this fiber has B having an average particle size of 15 μm.4120 g of C powder was added and thoroughly mixed with a Henschel mixer. The mixture is packed in a cylindrical graphite crucible having a capacity of 50 liters and compressed to a bulk density of 0.075 g / cm.3And the. The lid was kept compressed with a graphite pressing plate, and placed in an Acheson furnace for heat treatment. The temperature at this time is 2900 ° C., and the heating time after reaching 2900 ° C. is 60 minutes.
[0090]
After the heat treatment, the mixture was cooled, the fiber was taken out of the crucible, roughly crushed to about 2 mm, crushed by a bantam mill, and then non-fibrous materials were separated by air classification.
[0091]
Although the thickness of the obtained fiber does not change, the length is 5 to 30 μm and the bulk density is 0.04 g / cm.3 Met. Boron content of this fiber, d by X-ray diffraction002Table 1 shows the values of and Lc. B4Comparative Example 1 in Table 1 shows carbon fibers heat-treated at 2900 ° C. in the same manner as described above without adding C.
[0092]
(Example 2)
The carbon fiber obtained in the same manner as in Example 1 was crushed and then crushed to obtain a bulk density of 0.05 g / cm.3And the. At this time, the length of the fiber was mostly 10 to 50 μm, and the thickness was 0.06 μm as an average diameter observed in a SEM photograph. A fiber having an average particle size of 10 μm B4C 6 g was added and mixed thoroughly with a Henschel mixer. This mixture was charged into a cylindrical molding machine and pressed to form a cylindrical body having a diameter of about 150 mm. The bulk density after molding is 0.087 g / cm3 Met.
[0093]
This molded body was placed in a graphitization furnace using graphite as a heating element and heat-treated at 2800 ° C. for 60 minutes in an argon stream.
[0094]
After the heat treatment, the molded body was taken out and easily crushed to 2 mm or less in a mortar. Further, the mixture was pulverized with a bantam mill and subjected to air classification, and the bulk density of the obtained B-doped product was 0.046 g / cm.3 Met. The fiber length at this time was mostly 5 to 20 μm.
[0095]
Boron content of this fiber, d by X-ray diffraction002Table 1 shows the values of and Lc. B4Comparative Example 2 in Table 1 shows the carbon fibers heat-treated at 2800 ° C. in the same manner as described above without adding C.
[0096]
(Example 3)
The fine carbon fiber as a starting material was obtained by a known method of thermally decomposing benzene in the presence of an organic compound containing a transition metal in the same manner as in Example 1. This carbon fiber was directly crushed without heat treatment. , Bulk density 0.01 g / cm3And the. Most of the fibers had a thickness of 0.13 μm or less. 200 g of this fiber has an average particle size of 19 μm B4C 8 g was added and mixed thoroughly with a Henschel mixer. This mixture was charged into a cylindrical molding machine and pressed to form a cylindrical body having a diameter of about 150 mm. The bulk density after molding is 0.07 g / cm3 Met.
[0097]
The molded body was placed in a graphite furnace using graphite as a heating element and heat-treated at 2800 ° C. for 60 minutes in an argon stream.
[0098]
After the heat treatment, the molded body was taken out and easily crushed to 2 mm or less in a mortar. The powder was further pulverized with a bantam mill and subjected to air classification, and the bulk density of the obtained boron-doped product was 0.03 g / cm.3 Met.
[0099]
Boron content of this fiber, d by X-ray diffraction002Table 1 shows the values of and Lc. B4Comparative Example 3 in Table 1 shows carbon fibers which were heat-treated at 2800 ° C. in the same manner as described above without adding C.
[0100]
[Table 1]
Figure 2004003097
[0101]
(Example 4)
The carbon fiber obtained in the same manner as in Example 1 was crushed and then crushed to obtain a bulk density of 0.02 g / cm.3And the. The length of the fiber at this time was mostly 10 to 50 μm, and the thickness was about 0.04 μm on average. 3000 g of this fiber has an average particle size of 15 μm ΔB4C 120 g was added and mixed thoroughly with a Henschel mixer. 88 g of this mixture was packed in a graphite crucible having an inner diameter of 100 mm and an inner length of 150 mm. The bulk density at that time is 0.08 g / cm3 Met.
[0102]
The crucible was capped and placed in a carbon resistance furnace and heat-treated at 2800 ° C. for 60 minutes in an argon stream.
[0103]
After the heat treatment, the molded body was taken out and easily crushed to 2 mm or less in a mortar. The powder was further pulverized by a bantam mill and subjected to air classification, and the bulk density of the obtained boron (B) -doped product was 0.04 g / cm.3 Met. In addition, the analysis result of boron showed that 1.02% of boron was introduced into the crystal of the fiber. Similarly, Table 1 shows d002測定 and Lc indicate measured values (d002= 0.3395 nm, Lc = 25.4 nm). In the same process, B4D for those without C002The values of and Lc are shown in Comparative Example 4 of Table 1 (d002= 0.3405 nm, Lc = 21.6 nm).
[0104]
Next, the powder resistance of the obtained fiber was measured. The measurement method is the following method developed by the present inventors.
[0105]
As shown in FIG. 2, the measurement cell includes a cell 4 having a size of 10 mm × 50 mm and a depth of about 100 mm, a compression rod 2 for pushing, and a receiver 3. A certain amount of powder is put into the cell, and pressure is applied to the compression rod 2 from above to compress the powder.
[0106]
Then, while measuring the pressure and the volume, a current of about 100 mA is passed from the electrode 1 sequentially installed in the direction perpendicular to the pressing direction, and the voltage (E) V between 10 mm of the two measurement terminals 6 coming out of the receiver is measured. The resistance value (R) Ω · cm is calculated from the following equation.
[0107]
R = E / 100 (Ωcm)
Since the powder resistance varies depending on the density, the evaluation is made using a constant density value. In this measurement, the powder density was 0.8 g / cm3Compare with the value at the time of.
[0108]
Table 2 shows the results.
[0109]
D of the product at this time002As a result of measuring, it was 0.3395 nm and Lc was {25.4 nm}.
[0110]
For reference, B4The resistance values of the samples without C are shown in Comparative Example 9 of Table 2.
[0111]
(Example 5)
Vapor-grown carbon fiber produced by the same method as in Example 1 and having a diameter of 0.2 μm larger than that of Example 4 was heat-treated at 1300 ° C. and crushed to have a bulk density of 0.05 g / cc. A fiber having an average particle size of 10 μm B4C 6 g was put into a Henschel mixer and mixed. This powder was formed into a {150 φ × 100 mm} column using a cylinder with an inner diameter of {150 φ × 400 mm} and a pressurizing device. The bulk density at this time is $ 0.030 g / cm3Was packed in a cylinder to obtain 0.08 g / cm3Compressed to.
[0112]
The molded body was placed in a graphitization furnace using a graphite heater as a heating element, and heat-treated at a heating rate of 15 ° C./min in an argon atmosphere. The heating temperature at this time was 2800 ° C.
[0113]
After the heat treatment, the fiber was taken out and lightly crushed in a mortar to 4 mm or less. Furthermore, the bulk density after pulverization and classification with a bantam mill is 0.03 g / cm.3 Met. In addition, it was found from the results of boron analysis that 0.93% of boron could be introduced into the fiber crystals.
[0114]
Table 2 shows the resistance of the obtained powder.
[0115]
At the same time, d of Example 5002Also indicated by, the same decrease as in Example 4 was observed. Lc was 29.9 nm. For reference, B4D for those without C002And Lc are shown in Comparative Example 5 of Table 1.
[0116]
[Table 2]
Figure 2004003097
[0117]
Confirmation of filler effect
(Example 6)
In order to investigate whether the powder resistance when the present fiber was added to the carbon material for the negative electrode can be really reduced, the product of the present invention of Example 4 was added to commercially available graphite particles (average 10 μm), The relationship between body resistances was measured and determined. In addition, the relationship between the amount of addition of the fiber of Comparative Example 3 to which B was not added and the powder resistance was measured and determined.
[0118]
Table 3 shows the respective resistance values when 3%, 5% and 10% were added when no fiber was added. The method for measuring the powder resistance is the same as that in Example 4, but the bulk density in the measurement is preferably 1.5 g / cm because it is preferable to compare the bulk density with the electrode.3This is the resistance value at the density of.
[0119]
Next, examples of the above-described fiber as an electrode of a lithium battery will be described.
[0120]
(Example 7)
First, an electrode was composed of the fiber itself (100%), and the effect of the fiber of the present invention was examined.
[0121]
3% by mass of PVDF (polyvinylidene fluorite) was added to the fibers of Examples 1, 2 and 3, and Comparative Examples 1, 2 and 3, and pressed on a nickel mesh to form a working electrode (negative electrode). The performance of the battery was measured as a target electrode. The electrolyte is 1 mol of LiPF6A solvent in which the mixing ratio of ethylene carbonate {(EC)} and diethyl carbonate {(DEC) in which {} was dissolved was 1: 1 by volume was used. The current density at the time of evaluation of the battery was 0.2 mA / g.
[0122]
Table 4 shows the results of measuring the discharge capacities of these batteries.
[0123]
Next, an example of an electrode to which this fiber is added will be described.
[0124]
(Example 8)
Graphitized particles having an average particle diameter of 16 μm obtained by heat-treating pitch coke at 3000 ° C. were used as the carbon material serving as the negative electrode material of the electrode. As the graphitized particles, those to which boron was added during the heat treatment (GB)} and those to which boron was not added {(G1)} were used. The boron content of GB is 0.98% by mass.
[0125]
The electrode plate is made of a slurry obtained by adding 3% by mass of PVDF to 5% by mass of each of GB or G1 and the fiber of Example 1 or Comparative Example 1 to GB or G1 to form a slurry. It was fabricated by pressing on top. The electrolyte, the target electrode, and the current density were the same as in the above example. Table 4 shows the measurement results of the discharge capacity. In Reference Examples 1 and 2, the above-mentioned GB and G1 are individually constituted as electrodes. The calculated value of the discharge capacity in the table is the sum of the discharge capacity of 95% by mass of G1 or GB and the discharge capacity of 5% by mass of the carbon fibers in addition according to the ratio.
[0126]
[Table 3]
Figure 2004003097
[0127]
[Table 4]
Figure 2004003097
[0128]
As can be seen from Table 4, when a fine carbon fiber is added to a carbon material serving as a negative electrode material and the electrode (anode) of a lithium battery is used, the discharge capacity is calculated from the value calculated from the discharge capacity of the negative electrode material and the fine carbon fiber itself. Turned out to be high. This effect is particularly high in the case of fibers added with boron as fine carbon fibers and treated at a high temperature to increase the crystallinity. In other words, when boron-containing fine carbon fibers are added to the carbon material of the negative electrode material, the reason is not clear, but there is a clear synergistic effect, and especially in the case of highly crystalline fine carbon fibers, there is a remarkable synergistic effect. There was found.
[0129]
【The invention's effect】
The present invention is a fine carbon fiber, which is a highly crystalline carbon fiber and a boron-containing carbon fiber which have not been obtained conventionally. Because of its high crystallinity, it has excellent conductivity and thermal conductivity, and is excellent as a filler for resins, ceramics, metals and the like.
[0130]
In particular, when added as a filler for an electrode of a battery or a capacitor, it is fine, so that even if the amount is small, the dispersion efficiency is high and a great effect can be obtained. Moreover, the fine carbon fiber of the present invention has a large lithium ion intercalation ability, and can increase the discharge capacity even with a small addition amount.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the fiber diameter of fine carbon fibers and the interlayer distance between graphite crystals.
FIG. 2 is a sectional view of an apparatus for measuring powder resistance according to the present invention.

Claims (24)

繊維径が1μm 以下であり、且つ、X線回折法で求めた炭素の層面間隔d002 が 0.335〜0.342nm の範囲内でありかつd002 <0.3448−0.0028(logφ) (式中、φは炭素繊維の直径である。)を満たし、結晶のC軸方向の厚さLcが 40nm 以下の微細な炭素繊維。The fiber diameter is 1 μm or less, the carbon layer spacing d 002 determined by X-ray diffraction is in the range of 0.335 to 0.342 nm, and d 002 <0.3448-0.0028 (log φ). (In the formula, φ is a diameter of the carbon fiber.) A fine carbon fiber satisfying a thickness Lc of the crystal in the C-axis direction of 40 nm or less. 炭素の層面間隔d002 がd002 <0.3444−0.0028(logφ) を満たす請求項1記載の微細な炭素繊維。2. The fine carbon fiber according to claim 1, wherein a layer spacing d 002 of carbon satisfies d 002 <0.3444-0.0028 (logφ). 3. ラマンスペクトルのR値が 0.5以上、1580cm−1のスペクトルのピーク半値巾が20〜40cm−1であることを特徴とする請求項1の微細な炭素繊維。R value of Raman spectrum is 0.5 or more, fine carbon fiber according to claim 1, wherein the peak half width of the spectrum of 1580 cm -1 is 20 to 40 cm -1. 繊維径が1μm 以下であり、かつ、ホウ素を炭素繊維の結晶内に含有する微細な炭素繊維。A fine carbon fiber having a fiber diameter of 1 μm or less and containing boron in a crystal of the carbon fiber. ホウ素を炭素繊維の結晶内に含有する請求項1〜3のいずれかに記載の微細な炭素繊維。The fine carbon fiber according to any one of claims 1 to 3, wherein boron is contained in the crystal of the carbon fiber. ホウ素の含有量が 0.1〜3質量%である請求項5記載の微細な炭素繊維。The fine carbon fiber according to claim 5, wherein the content of boron is $ 0.1 to 3% by mass. 炭素繊維が直径0.01〜1μm、アスペクト比が10以上である請求項5記載の微細な炭素繊維。The fine carbon fiber according to claim 5, wherein the carbon fiber has a diameter of 0.01 to 1 µm and an aspect ratio of 10 or more. 密度 0.8g/cm に加圧したときの加圧方向に対して垂直方向の粉体抵抗が0.01Ω・cm以下である請求項7記載の微細な炭素繊維。Fine carbon fiber according to claim 7, wherein the powder resistivity in a vertical direction is less than 0.01 Ohm · cm with respect to the pressing direction when pressurized to a density 0.8 g / cm 3. 炭素繊維が気相法により製造された炭素繊維である請求項5記載の微細な炭素繊維。The fine carbon fiber according to claim 5, wherein the carbon fiber is a carbon fiber produced by a gas phase method. 繊維径1μm 以下の微細な炭素繊維にホウ素またはホウ素化合物を添加し、そして、その微細な炭素繊維を2000℃以上の温度で熱処理することを特徴とする微細な炭素繊維の製造法。A method for producing fine carbon fibers, comprising adding boron or a boron compound to fine carbon fibers having a fiber diameter of 1 μm or less, and heat treating the fine carbon fibers at a temperature of 2000 ° C. or more. 繊維径1μm 以下の微細な炭素繊維にホウ素またはホウ素化合物を添加し、
その微細な炭素繊維の嵩密度を0.05g/cm 以上にし、そして
前記嵩密度を維持しながら前記微細な炭素繊維を2000℃以上の温度で熱処理することを特徴とする微細な炭素繊維の製造法。
Boron or boron compound is added to fine carbon fiber having a fiber diameter of 1 μm or less,
The fine carbon fiber has a bulk density of 0.05 g / cm 3 or more, and is heat-treated at a temperature of 2000 ° C. or more while maintaining the bulk density. Manufacturing method.
ホウ素またはホウ素化合物の添加量がホウ素原子として炭素繊維に対し、 0.1〜10質量%である請求項10または11記載の微細な炭素繊維の製造法。The method for producing fine carbon fibers according to claim 10 or 11, wherein the amount of boron or boron compound added is about 0.1 to 10% by mass based on carbon fibers as boron atoms. ホウ素またはホウ素化合物を添加する微細な炭素繊維が直径0.01〜1μm、アスペクト比10以上の炭素繊維である請求項12記載の微細な炭素繊維の製造法。The method for producing fine carbon fibers according to claim 12, wherein the fine carbon fibers to which boron or the boron compound is added are carbon fibers having a diameter of 0.01 to 1 m and an aspect ratio of 10 or more. ホウ素またはホウ素化合物を添加する微細な炭素繊維が気相法による炭素繊維である請求項13記載の微細な炭素繊維の製造法。14. The method for producing fine carbon fibers according to claim 13, wherein the fine carbon fibers to which boron or a boron compound is added are carbon fibers obtained by a vapor phase method. ホウ素またはホウ素化合物を添加する前記熱処理前の前記微細な炭素繊維が、気相法で成長後に熱処理を施された焼成品である請求項14記載の微細な炭素繊維の製造法。The method for producing fine carbon fibers according to claim 14, wherein the fine carbon fibers before the heat treatment to which boron or a boron compound is added are fired products subjected to a heat treatment after growth by a vapor phase method. ホウ素またはホウ素化合物を添加する前記熱処理前の前記微細な炭素繊維が、気相法で成長後に熱処理を施されていない未焼成品である請求項14記載の微細な炭素繊維の製造法。The method for producing fine carbon fibers according to claim 14, wherein the fine carbon fibers before the heat treatment to which boron or a boron compound is added are unfired products that have not been subjected to a heat treatment after growth by a vapor phase method. 請求項1〜3のいずれかに記載の微細な炭素繊維を含む電池用電極。An electrode for a battery, comprising the fine carbon fiber according to claim 1. 請求項5記載の微細な炭素繊維を含む電池用電極。An electrode for a battery comprising the fine carbon fiber according to claim 5. 請求項6または7記載の微細な炭素繊維を含む電池用電極。An electrode for a battery, comprising the fine carbon fiber according to claim 6. 請求項8または9記載の微細な炭素繊維を含む電池用電極。An electrode for a battery, comprising the fine carbon fiber according to claim 8. 微細な炭素繊維の含有量が 0.1〜20質量%である請求項17記載の電池用電極。The battery electrode according to claim 17, wherein the content of the fine carbon fibers is 0.1 to 20% by mass. 微細な炭素繊維の含有量が 0.1〜20質量%である請求項18記載の電池用電極。The battery electrode according to claim 18, wherein the content of the fine carbon fibers is 0.1 to 20% by mass. 微細な炭素繊維の含有量が 0.1〜20質量%である請求項19記載の電池用電極。20. The battery electrode according to claim 19, wherein the content of the fine carbon fibers is 0.1 to 20% by mass. 微細な炭素繊維の含有量が 0.1〜20質量%である請求項20記載の電池用電極。The battery electrode according to claim 20, wherein the content of the fine carbon fibers is 0.1 to 20% by mass.
JP2003122601A 1999-03-25 2003-04-25 Carbon fiber, process for producing the same and electrode for electric batteries Pending JP2004003097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122601A JP2004003097A (en) 1999-03-25 2003-04-25 Carbon fiber, process for producing the same and electrode for electric batteries

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8126099 1999-03-25
US14526699P 1999-07-26 1999-07-26
JP30786799 1999-10-29
JP2003122601A JP2004003097A (en) 1999-03-25 2003-04-25 Carbon fiber, process for producing the same and electrode for electric batteries

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000608813A Division JP3461805B2 (en) 1999-03-25 2000-03-24 Carbon fiber, method for producing the same, and battery electrode

Publications (1)

Publication Number Publication Date
JP2004003097A true JP2004003097A (en) 2004-01-08

Family

ID=30449441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122601A Pending JP2004003097A (en) 1999-03-25 2003-04-25 Carbon fiber, process for producing the same and electrode for electric batteries

Country Status (1)

Country Link
JP (1) JP2004003097A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088658A1 (en) * 2004-03-10 2005-09-22 Power Systems Co., Ltd. Power storage element and electrical double-layer capacitor
WO2005095687A1 (en) * 2004-03-31 2005-10-13 Bussan Nanotech Research Institute Inc. Microscopic carbon fiber with a variety of structures
JP2006032070A (en) * 2004-07-14 2006-02-02 Kri Inc Nonaqueous secondary battery
WO2006025555A1 (en) * 2004-08-31 2006-03-09 Showa Denko K.K. Electrically conductive composites with resin and vgcf, production process, and use thereof
JP2006140142A (en) * 2004-10-15 2006-06-01 Showa Denko Kk Conductive paste, its manufacturing method and usage
WO2006082708A1 (en) * 2005-02-04 2006-08-10 Nec Corporation Secondary cell positive electrode, manufacturing method thereof, and secondary cell
JP2006327878A (en) * 2005-05-26 2006-12-07 Mitsubishi Materials Corp Carbon nanofiber dispersion, its dispersant, and composition
JP2006339587A (en) * 2005-06-06 2006-12-14 Kuraray Co Ltd Manufacturing method of polarizable electrode, screening method of polarizable electrode and electric double layer capacitor, as well as carbonaceous material
WO2007004728A1 (en) * 2005-07-04 2007-01-11 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
JP2007048907A (en) * 2005-08-09 2007-02-22 National Institute For Materials Science Electric double layer capacitor electrode and capacitor using same
WO2007066673A1 (en) * 2005-12-05 2007-06-14 Showa Denko K.K. Graphite material, carbon material for battery electrode and battery
JP2007153661A (en) * 2005-12-05 2007-06-21 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
JP2007172901A (en) * 2005-12-20 2007-07-05 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
JP2007169106A (en) * 2005-12-21 2007-07-05 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
WO2007083831A1 (en) * 2006-01-20 2007-07-26 Showa Denko K.K. Platelet-type slit vapor-grown carbon fiber and process for production thereof
US7700064B2 (en) 2004-03-11 2010-04-20 Teijin Limited Carbon fiber
JP2010114042A (en) * 2008-11-10 2010-05-20 Nec Corp Secondary battery, and manufacturing method thereof
JP2012121792A (en) * 2010-11-16 2012-06-28 Alps Electric Co Ltd Method for producing boron-containing carbon material and boron-containing carbon material
JP2014216115A (en) * 2013-04-24 2014-11-17 株式会社Gsユアサ Negative electrode plate for lead-acid battery, liquid type lead-acid battery using the same, and method of manufacturing lead-acid battery
CN115074866A (en) * 2016-02-05 2022-09-20 帝人株式会社 Carbon fiber aggregate and method for producing same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088658A1 (en) * 2004-03-10 2005-09-22 Power Systems Co., Ltd. Power storage element and electrical double-layer capacitor
US7626804B2 (en) 2004-03-10 2009-12-01 Masaki Yoshio Power storage element and electric double layer capacitor
US7700064B2 (en) 2004-03-11 2010-04-20 Teijin Limited Carbon fiber
WO2005095687A1 (en) * 2004-03-31 2005-10-13 Bussan Nanotech Research Institute Inc. Microscopic carbon fiber with a variety of structures
JP2006032070A (en) * 2004-07-14 2006-02-02 Kri Inc Nonaqueous secondary battery
WO2006025555A1 (en) * 2004-08-31 2006-03-09 Showa Denko K.K. Electrically conductive composites with resin and vgcf, production process, and use thereof
JP2006140142A (en) * 2004-10-15 2006-06-01 Showa Denko Kk Conductive paste, its manufacturing method and usage
JPWO2006082708A1 (en) * 2005-02-04 2008-06-26 日本電気株式会社 Positive electrode for secondary battery, method for producing the same, and secondary battery
WO2006082708A1 (en) * 2005-02-04 2006-08-10 Nec Corporation Secondary cell positive electrode, manufacturing method thereof, and secondary cell
JP2006327878A (en) * 2005-05-26 2006-12-07 Mitsubishi Materials Corp Carbon nanofiber dispersion, its dispersant, and composition
JP2006339587A (en) * 2005-06-06 2006-12-14 Kuraray Co Ltd Manufacturing method of polarizable electrode, screening method of polarizable electrode and electric double layer capacitor, as well as carbonaceous material
JP4694271B2 (en) * 2005-06-06 2011-06-08 株式会社クラレ Polarized electrode manufacturing method, polarizable electrode, electric double layer capacitor, and carbonaceous material selection method
WO2007004728A1 (en) * 2005-07-04 2007-01-11 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
US9276257B2 (en) 2005-07-04 2016-03-01 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
US8685362B2 (en) 2005-07-04 2014-04-01 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
US8003257B2 (en) 2005-07-04 2011-08-23 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
JP2007048907A (en) * 2005-08-09 2007-02-22 National Institute For Materials Science Electric double layer capacitor electrode and capacitor using same
US8080228B2 (en) 2005-12-05 2011-12-20 Showa Denka K.K. Graphite material, carbon material for battery electrode, and battery
US8747800B2 (en) 2005-12-05 2014-06-10 Show A Denko K.K. Graphite material, carbon material for battery electrode, and battery
WO2007066673A1 (en) * 2005-12-05 2007-06-14 Showa Denko K.K. Graphite material, carbon material for battery electrode and battery
KR101391217B1 (en) 2005-12-05 2014-05-07 쇼와 덴코 가부시키가이샤 Graphite material, carbon material for battery electrode and battery
JP2007153661A (en) * 2005-12-05 2007-06-21 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
KR101348226B1 (en) * 2005-12-05 2014-01-07 쇼와 덴코 가부시키가이샤 Graphite material, carbon material for battery electrode and battery
JP2007172901A (en) * 2005-12-20 2007-07-05 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
JP2007169106A (en) * 2005-12-21 2007-07-05 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
JP5036564B2 (en) * 2006-01-20 2012-09-26 昭和電工株式会社 Method for producing platelet-type slit vapor-grown carbon fiber
WO2007083831A1 (en) * 2006-01-20 2007-07-26 Showa Denko K.K. Platelet-type slit vapor-grown carbon fiber and process for production thereof
JP2010114042A (en) * 2008-11-10 2010-05-20 Nec Corp Secondary battery, and manufacturing method thereof
JP2012121792A (en) * 2010-11-16 2012-06-28 Alps Electric Co Ltd Method for producing boron-containing carbon material and boron-containing carbon material
JP2014216115A (en) * 2013-04-24 2014-11-17 株式会社Gsユアサ Negative electrode plate for lead-acid battery, liquid type lead-acid battery using the same, and method of manufacturing lead-acid battery
CN115074866A (en) * 2016-02-05 2022-09-20 帝人株式会社 Carbon fiber aggregate and method for producing same

Similar Documents

Publication Publication Date Title
JP3461805B2 (en) Carbon fiber, method for producing the same, and battery electrode
JP2004003097A (en) Carbon fiber, process for producing the same and electrode for electric batteries
US7608366B2 (en) Nonaqueous electrolytic secondary battery and method of producing anode material thereof
CN110098399B (en) Method for producing composite and negative electrode material for lithium ion battery
US8974968B2 (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
JP5225690B2 (en) Composite graphite particles and lithium secondary battery using the same
KR100590123B1 (en) Graphite Powders Suited for Negative Electrode Material of Lithium Ion Secondary Battery
KR20180015251A (en) Negative electrode material for lithium ion battery and its use
JP2001102049A (en) Non-aqueous electrolyte secondary battery
TW200828659A (en) Carbon material for lithium-ion secondary battery anode, carbon material for low crystallinity carbon-impregnation lithium-ion secondary battery anode, anode electrode plate, and lithium-ion secondary battery
KR101667125B1 (en) Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4403327B2 (en) Graphite powder for negative electrode of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2005019399A (en) Negative pole material for lithium ion secondary battery and its producing method, negative pole for lithium ion secondary battery and lithium ion secondary battery
JPH0831422A (en) Carbon material for negative electrode of lithium secondary battery and manufacture thereof
KR20200073208A (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, paste for negative electrode, negative electrode sheet and lithium ion secondary battery
JPH0927344A (en) Nonaqueous electrolyte secondary battery
JP2003020527A (en) Carbon fiber, method for producing the same and use thereof
KR20020070842A (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
KR100301351B1 (en) Graphite material for negative electrode of lithium-ion secondary battery and manufacturing method thereof
JP2005032571A (en) Graphite particle for nonaqueous electrolytic solution secondary battery negative electrode and its production method, nonaqueous electrolytic solution secondary battery negative electrode and nonaqueous electrolytic solution secondary battery
JPH09320590A (en) Lithium ton secondary battery negative electrode material and its manufacture
KR20220087143A (en) Negative electrode material for lithium ion secondary battery, preparation method thereof, and lithium ion secondary battery comprising same
JP3939842B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material
KR20010076586A (en) Negative active material for lithium secondary battery and method of preparing same
JP2004134295A (en) Nonaqueous electrolyte battery