JP2003313304A - Conductive fine particle, its manufacturing method and bonding material for electronic component - Google Patents

Conductive fine particle, its manufacturing method and bonding material for electronic component

Info

Publication number
JP2003313304A
JP2003313304A JP2002119610A JP2002119610A JP2003313304A JP 2003313304 A JP2003313304 A JP 2003313304A JP 2002119610 A JP2002119610 A JP 2002119610A JP 2002119610 A JP2002119610 A JP 2002119610A JP 2003313304 A JP2003313304 A JP 2003313304A
Authority
JP
Japan
Prior art keywords
conductive fine
fine particles
conductive
particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002119610A
Other languages
Japanese (ja)
Inventor
Shinya Uenoyama
伸也 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002119610A priority Critical patent/JP2003313304A/en
Publication of JP2003313304A publication Critical patent/JP2003313304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a conductive fine particle which has excellent contact resistance and connection reliability and is usable as a conductive material for a conductive adhesive for mounting a micro element, an anisotropic conductive adhesive or a conductive connective structure body and to provide a method of manufacturing the conductive fine particle and a bonding material for an electronic component. <P>SOLUTION: The conductive fine particle is composed of a base material particle and a conductive layer formed on the surface of the base material particle. The base material particle has a shell layer containing a polymer of a divinylbenzene-ethylvinylbenzene mixture. The conductive fine particle has a compressive modulus of 2.5×10<SP>9</SP>N/m<SP>2</SP>or below, a compressive deformation recovery of 30% or more and a fracture distortion of 30% or more when the particle diameter is deformed by 10%. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、優れた接続抵抗及
び接続信頼性を有し、マイクロ素子実装用導電接着剤、
異方導電接着剤、導電接続構造体等における導電材料と
して用いることのできる導電性微粒子、導電性微粒子の
製造方法、及び、電子部品の接合材料に関する。
TECHNICAL FIELD The present invention relates to a conductive adhesive for mounting micro devices, which has excellent connection resistance and connection reliability.
The present invention relates to conductive fine particles that can be used as a conductive material in an anisotropic conductive adhesive, a conductive connection structure, etc., a method for producing conductive fine particles, and a bonding material for electronic components.

【0002】[0002]

【従来の技術】エレクトロニクスの実装分野では、微細
電極間を導電接続する方法として、導電性微粒子とバイ
ンダー樹脂とを混合した導電性ペーストを微細電極間に
充填する方法が行われている。従来、導電性ペーストに
用いる導電性微粒子としては、金、銀、ニッケル等の金
属粒子が用いられていた。しかし、このような金属粒子
は形状が不均一であり、また、バインダー樹脂に比べて
比重が大きいためにバインダー樹脂中に均一に分散させ
ることが困難であるという問題があった。
2. Description of the Related Art In the field of electronics packaging, a method of filling a space between fine electrodes with a conductive paste in which conductive fine particles and a binder resin are mixed has been used as a method for electrically connecting fine electrodes. Heretofore, metal particles such as gold, silver and nickel have been used as the conductive fine particles used for the conductive paste. However, such metal particles have a non-uniform shape and have a problem that it is difficult to disperse them uniformly in the binder resin because they have a larger specific gravity than the binder resin.

【0003】これに対して、特開昭59−2815号公
報には、粒子径が比較的揃ったガラスビーズ、シリカビ
ーズ、グラスファイバー等の粒子の表面に、金属メッキ
層を設けた導電性微粒子が開示されている。しかしなが
ら、これらの導電性微粒子は、その中心部分の粒子が硬
すぎるために圧縮変形しにくく、これらの導電性微粒子
を用いて電極間を接続しようとしても、導電性微粒子と
電極表面との接続面積が広がらず、接触抵抗を低減させ
ることが困難であった。
On the other hand, in Japanese Patent Laid-Open No. 59-2815, conductive fine particles in which a metal plating layer is provided on the surface of particles such as glass beads, silica beads, and glass fibers having relatively uniform particle diameters. Is disclosed. However, these conductive fine particles are hard to be compressed and deformed because the particles in the central portion thereof are too hard, and even if an attempt is made to connect the electrodes using these conductive fine particles, the connection area between the conductive fine particles and the electrode surface is Was not spread and it was difficult to reduce the contact resistance.

【0004】特開昭62−185749号公報及び特開
平1−225776号公報には、基材粒子としてポリフ
ェニレンスルフィド樹脂粒子やフェノール樹脂粒子等を
用いた導電性微粒子が開示されている。しかしながら、
このような合成樹脂粒子を基材粒子として用いた導電性
微粒子は、圧縮変形後の変形回復率に乏しいため、これ
らの導電性微粒子を電極間に挟み圧縮荷重をかけて接続
を行うと、圧縮荷重を取り除いても導電性微粒子の変形
が回復せずに導電性微粒子と電極表面との界面にわずか
な隙間が形成され、接触不良を起こすという問題があっ
た。
JP-A-62-185749 and JP-A1-225776 disclose electroconductive fine particles using polyphenylene sulfide resin particles or phenol resin particles as base material particles. However,
Since the conductive fine particles using such synthetic resin particles as the base particles have poor deformation recovery rate after compressive deformation, when the conductive fine particles are sandwiched between the electrodes and a compressive load is applied to make connection, the compressed particles are compressed. Even if the load is removed, the deformation of the conductive fine particles is not recovered, and a slight gap is formed at the interface between the conductive fine particles and the electrode surface, causing a problem of poor contact.

【0005】特公平5−19241号公報には、スチレ
ンを主成分とする軟質な低密度架橋体を基材粒子とし
て、その表面に導電性材料を被覆した導電性微粒子が開
示されている。しかしながら、このような軟質基材の導
電性微粒子も、圧縮変形後の変形回復率が10%以下と
小さく、しかも時間経過とともに復元力が低下するた
め、電極間の接続に用いても、時間経過とともに接続抵
抗が大きくなり接続信頼性に欠けるという問題があっ
た。
Japanese Patent Publication No. 5-19241 discloses conductive fine particles in which a soft low-density crosslinked product containing styrene as a main component is used as a base particle, and the surface thereof is coated with a conductive material. However, even such conductive fine particles of a soft base material have a small deformation recovery rate after compression deformation of 10% or less, and their restoring force decreases with the passage of time. At the same time, there is a problem that the connection resistance increases and the connection reliability is poor.

【0006】更に、特願平11−118196号には、
粒子直径が10%変位したときの圧縮弾性率及び圧縮変
形回復率を規定した基材粒子の表面に導電層が形成され
てなる導電性微粒子が開示されている。この導電性微粒
子を用いれば、上述の導電性微粒子と電極表面との接続
面積の問題や圧縮変形後の変形回復性の問題を解決する
ことができる。しかしながら、この導電性微粒子は、製
造時、詳しくはメッキ加工時にアルカリ性媒体により基
材粒子が浸食されやすく、メッキ剥がれや割れが生じや
すいという問題があった。
Further, in Japanese Patent Application No. 11-118196,
Disclosed is conductive fine particles in which a conductive layer is formed on the surface of base particles that define the compression elastic modulus and the compression deformation recovery rate when the particle diameter is displaced by 10%. By using the conductive fine particles, it is possible to solve the above-mentioned problem of the connection area between the conductive fine particles and the electrode surface and the problem of deformation recovery after compression deformation. However, the conductive fine particles have a problem that the base particles are likely to be eroded by the alkaline medium at the time of manufacturing, specifically, the plating process, and the plating is likely to be peeled off or cracked.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記現状に
鑑み、優れた接続抵抗及び接続信頼性を有し、マイクロ
素子実装用導電接着剤、異方導電接着剤、導電接続構造
体等における導電材料として用いることのできる導電性
微粒子、導電性微粒子の製造方法、及び、電子部品の接
合材料を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above situation, the present invention provides a conductive adhesive, an anisotropic conductive adhesive, a conductive connection structure, etc. for mounting a micro device, which has excellent connection resistance and connection reliability. An object of the present invention is to provide conductive fine particles that can be used as a conductive material, a method for producing conductive fine particles, and a bonding material for electronic components.

【0008】[0008]

【課題を解決するための手段】本発明は、基材粒子と前
記基材粒子の表面に形成された導電層とからなる導電性
微粒子であって、前記基材粒子は、ジビニルベンゼン−
エチルビニルベンゼン混合物を単量体の一部として用い
た重合体であり、粒子直径の10%が変位したときの圧
縮弾性率が2.5×109N/m2以下、圧縮変形回復率
が30%以上、かつ、破壊歪みが30%以上であること
導電性微粒子である。以下に本発明を詳述する。
The present invention is a conductive fine particle comprising a base particle and a conductive layer formed on the surface of the base particle, wherein the base particle is divinylbenzene-
It is a polymer using an ethyl vinyl benzene mixture as a part of the monomer, and has a compression elastic modulus of 2.5 × 10 9 N / m 2 or less when the particle diameter is displaced by 10% and a compression deformation recovery rate. The conductive fine particles have a breaking strain of 30% or more and 30% or more. The present invention is described in detail below.

【0009】本発明の導電性微粒子は、基材粒子と上記
基材粒子の表面に形成された導電層とからなる。上記基
材粒子は、ジビニルベンゼン−エチルビニルベンゼン混
合物を単量体の一部として用いた重合体である。これに
より、上記基材粒子は耐アルカリ性が向上し、メッキ加
工時にアルカリ性媒体により浸食されることがなく、メ
ッキ剥がれや割れが生じにくい導電性微粒子を得ること
ができる。
The conductive fine particles of the present invention are composed of base particles and a conductive layer formed on the surface of the base particles. The base particles are a polymer using a divinylbenzene-ethylvinylbenzene mixture as a part of the monomer. As a result, the base particles have improved alkali resistance, are not corroded by an alkaline medium during plating, and can be obtained as conductive fine particles in which plating peeling or cracking does not easily occur.

【0010】上記基材粒子は、粒子直径の10%が変位
したときの圧縮弾性率(以下、10%K値ともいう)が
2.5×109N/m2以下である。2.5×109N/
2を超えると、得られた導電性微粒子を用いて電極間
を接続したとき導電性微粒子と電極表面との接続面積が
広がらず接触抵抗を低減させることができなかったり、
力学的強度が高すぎて基板を傷つけたり貫通してしまっ
たりする。好ましくは1.5×109N/m2以下であ
る。10%K値の下限については特に限定されないが、
あまり低すぎると目的に適さないため、常温で形態を保
持できる程度の強度があることが好ましい。
The base particles have a compressive elastic modulus (hereinafter, also referred to as 10% K value) of 2.5 × 10 9 N / m 2 or less when 10% of the particle diameter is displaced. 2.5 x 10 9 N /
When it exceeds m 2 , when the electrodes are connected using the obtained conductive fine particles, the contact area between the conductive fine particles and the electrode surface is not widened and the contact resistance cannot be reduced, or
The mechanical strength is so high that it damages or penetrates the substrate. It is preferably 1.5 × 10 9 N / m 2 or less. The lower limit of the 10% K value is not particularly limited,
If it is too low, it is not suitable for the purpose. Therefore, it is preferable that the strength is such that the shape can be maintained at room temperature.

【0011】なお、上記10%K値とは、微小圧縮試験
機(例えば、島津製作所社製「PCT−200」等)を
用いてダイアモンド製の直径50μmの円柱の平滑端面
で、微粒子を圧縮速度0.27g/秒、最大試験荷重1
0gで圧縮し、下記式により求められる値である。 K=(3/√2)・F・S-3/2・R-1/2 式中、Fは微粒子の10%圧縮変形における荷重値(k
g)を表し、Sは微粒子の10%圧縮変形における圧縮
変位(mm)を表し、Rは微粒子の半径(mm)を表
す。
The above 10% K value means a micro compression test.
Machine (for example, "PCT-200" manufactured by Shimadzu Corporation)
Using diamond smooth end face of 50μm diameter cylinder
At a compression rate of 0.27 g / sec, maximum test load of 1
It is a value calculated by the following formula after compression with 0 g. K = (3 / √2) ・ F ・ S-3/2・ R-1/2 In the formula, F is a load value (k in 10% compression deformation of fine particles).
g), where S is compression at 10% compression deformation of fine particles
Displacement (mm), R represents fine particle radius (mm)
You

【0012】上記基材粒子は、圧縮変形回復率が30%
以上である。30%未満であると、得られる導電性微粒
子の弾力性が低下し、電極間の接続に用いたときの接続
信頼性が低下する。なお、上記圧縮変形回復率とは、微
小圧縮試験機(例えば、島津製作所社製「PCT−20
0」等)を用いて、微粒子を反転荷重値9.8mNまで
圧縮した後、荷重を減らして行くときの、荷重値と圧縮
変位との関係を測定して得られる値であり、荷重を除く
際の終点を原点荷重値0.98mNとし、負荷及び除負
荷における圧縮速度を0.284mN/秒として測定し
たときに、反転の点までの変位(L1)と、反転の点か
ら原点荷重値をとる点までの変位(L2)との比(L1
/L2)を%として表した値である。
The base particles have a compression deformation recovery rate of 30%.
That is all. When it is less than 30%, the elasticity of the obtained conductive fine particles is lowered, and the connection reliability when used for the connection between the electrodes is lowered. The compression deformation recovery rate means a micro compression tester (for example, "PCT-20" manufactured by Shimadzu Corporation).
0 ") is used to compress the fine particles to a reversal load value of 9.8 mN and then reduce the load, and the value is obtained by measuring the relationship between the load value and the compression displacement, excluding the load. When the end point at that time was set to the origin load value of 0.98 mN and the compression speed under load and unloading was measured at 0.284 mN / sec, the displacement (L1) to the reversal point and the origin load value from the reversal point were calculated. Ratio (L1) to displacement (L2) up to the point
/ L2) is a value expressed as%.

【0013】上記基材微粒子は、破壊歪みが30%以上
である。30%未満であると、基材粒子にメッキを施し
た導電性微粒子を電極間に挟み圧縮した場合に、容易に
基材粒子が破損し、電極間の接続不良が生じる。なお、
上記破壊歪みとは、圧縮変位をL1、基材粒子の粒子径
をL2とした場合に、(L1/L2)を%として表した値
である。
The base fine particles have a breaking strain of 30% or more. When it is less than 30%, when the conductive fine particles plated on the base material particles are sandwiched between the electrodes and compressed, the base material particles are easily damaged and a connection failure between the electrodes occurs. In addition,
The breaking strain is a value in which (L 1 / L 2 ) is expressed as% when the compressive displacement is L 1 and the particle diameter of the base material particles is L 2 .

【0014】また、上記基材粒子は、標準偏差を粒子径
で割った値であるCV値は15%以下であることが好ま
しい。15%を超えると、得られる導電性微粒子の接続
信頼性が低下することがある。より好ましくは10%以
下、更に好ましくは7%以下である。
The CV value, which is the value obtained by dividing the standard deviation by the particle size, of the above-mentioned base particles is preferably 15% or less. If it exceeds 15%, the connection reliability of the obtained conductive fine particles may decrease. It is more preferably 10% or less, still more preferably 7% or less.

【0015】上記基材粒子を作製する方法としては特に
限定されず、例えば、乳化重合、懸濁重合、シード重
合、分散重合、分散シード重合等の重合法による方法;
高分子保護剤を用いる方法;界面活性剤を用いる方法等
が挙げられる。なかでも、シード重合法は、分級による
粒子径分布の均一化という工程を必要としないことから
生産性が高く好適である。
The method for producing the above-mentioned base particles is not particularly limited, and examples thereof include polymerization methods such as emulsion polymerization, suspension polymerization, seed polymerization, dispersion polymerization, and dispersion seed polymerization;
A method using a polymer protective agent; a method using a surfactant and the like can be mentioned. Among them, the seed polymerization method is suitable for high productivity because it does not require the step of uniformizing the particle size distribution by classification.

【0016】シード重合法による上記基材粒子の作製方
法としては特に限定されないが、水中に分散した重合体
シード粒子にジビニルベンゼン−エチルビニルベンゼン
混合物を含有するエチレン性不飽和単量体及び油溶性重
合開始剤を吸着させた後、上記エチレン性不飽和単量体
を重合する方法が好ましい。
The method for producing the above-mentioned base particles by the seed polymerization method is not particularly limited, but the polymer seed particles dispersed in water contain an ethylenically unsaturated monomer containing a divinylbenzene-ethylvinylbenzene mixture and an oil-soluble monomer. A method of adsorbing the polymerization initiator and then polymerizing the ethylenically unsaturated monomer is preferable.

【0017】上記重合体シード粒子としては、上述の力
学的性質を達成できるものであれば特に限定されず、例
えば、スチレン、αーメチルスチレン、p−メチルスチ
レン、pークロロスチレン、クロロメチルスチレン等の
スチレン誘導体;塩化ビニル;酢酸ビニル、プロピオン
酸ビニル等のビニルエステル類;アクリロニトリル等の
不飽和ニトリル類;(メタ)アクリル酸メチル、(メ
タ)アクリル酸エチル、(メタ)アクリル酸ブチル、
(メタ)アクリル酸2−エチルヘキシル、(メタ)アク
リル酸ステアリル、エチレングリコール(メタ)アクリ
レート、トリフルオロエチル(メタ)アクリレート、ペ
ンタフルオロプロピル(メタ)アクリレート、シクロヘ
キシル(メタ)アクリレート等の(メタ)アクリル酸エ
ステル誘導体等の重合性単量体を重合した重合体からな
るもの等が挙げられる。なかでも、シード重合時に重合
体シード粒子とシード重合時の重合体との相分離が起こ
るのを抑えるために、シード重合時の単量体成分に近い
ものを用いることが好ましく、粒子径分布の点からスチ
レン及びその誘導体等が好ましく用いられる。
The polymer seed particles are not particularly limited as long as they can achieve the above-mentioned mechanical properties, and for example, styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene and chloromethylstyrene. Vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate; unsaturated nitriles such as acrylonitrile; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate,
(Meth) acryl such as 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, ethylene glycol (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, cyclohexyl (meth) acrylate Examples thereof include those made of a polymer obtained by polymerizing a polymerizable monomer such as an acid ester derivative. Among them, in order to suppress the phase separation between the polymer seed particles and the polymer at the time of seed polymerization during seed polymerization, it is preferable to use one close to the monomer component at the time of seed polymerization. From the viewpoint, styrene and its derivatives are preferably used.

【0018】上記重合体シード粒子の重量平均分子量の
好ましい下限は1000、上限は2万である。1000
未満であると、現実的には合成が困難で、粒子径分布が
大きくなり、2万を超えると、シード重合時の重合体と
の相分離が顕著に起こって力学的強度が低下することが
ある。
The preferred lower limit of the weight average molecular weight of the polymer seed particles is 1,000, and the upper limit thereof is 20,000. 1000
If it is less than 1, the synthesis is difficult in practice, and the particle size distribution becomes large, and if it exceeds 20,000, phase separation from the polymer during seed polymerization may occur remarkably and mechanical strength may decrease. is there.

【0019】上記エチレン性不飽和単量体としては、ビ
ニル基を2個以上有する架橋性の重合性単量体と非架橋
性の重合性単量体とが挙げられる。上記ビニル基を2個
以上有する架橋性の重合性単量体としては特に限定され
ず、例えば、ジビニルベンゼン、ジビニルビフェニル、
ジビニルナフタレン、ポリエチレングリコールジ(メ
タ)アクリレート、1,6−ヘキサンジオールジ(メ
タ)アクリレート、ネオペンチルグリコールジ(メタ)
アクリレート、トリメチロールプロパントリ(メタ)ア
クリレート、テトラメチロールメタントリ(メタ)アク
リレート、テトラメチロールプロパンテトラ(メタ)ア
クリレート、ジアリルフタレート及びその異性体、トリ
アリルイソシアヌレート及びその誘導体等が挙げられ
る。
Examples of the ethylenically unsaturated monomer include crosslinkable polymerizable monomers having two or more vinyl groups and non-crosslinkable polymerizable monomers. The crosslinkable polymerizable monomer having two or more vinyl groups is not particularly limited, and examples thereof include divinylbenzene, divinylbiphenyl,
Divinylnaphthalene, polyethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth)
Examples thereof include acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, diallyl phthalate and its isomers, triallyl isocyanurate and its derivatives.

【0020】上記非架橋性の重合性単量体としては特に
限定されず、例えば、スチレン、α−メチルスチレン、
p−メチルスチレン、p−クロロスチレン、クロロメチ
ルスチレン等のスチレン誘導体;塩化ビニル;酢酸ビニ
ル、プロピオン酸ビニル等のビニルエステル類;アクリ
ロニトリル等の不飽和ニトリル類;(メタ)アクリル酸
メチル、(メタ)アクリル酸エチル、(メタ)アクリル
酸ブチル、(メタ)アクリル酸2−エチルヘキシル、
(メタ)アクリル酸ステアリル、エチレングリコール
(メタ)アクリレート、トリフルオロエチル(メタ)ア
クリレート、ペンタフルオロプロピル(メタ)アクリレ
ート、シクロヘキシル(メタ)アクリレート等の(メ
タ)アクリル酸エステル誘導体等が挙げられる。これら
の重合性単量体は、単独で使用してもよく、2種類以上
を併用してもよい。
The non-crosslinkable polymerizable monomer is not particularly limited, and examples thereof include styrene, α-methylstyrene,
Styrene derivatives such as p-methylstyrene, p-chlorostyrene and chloromethylstyrene; vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate; unsaturated nitriles such as acrylonitrile; methyl (meth) acrylate; ) Ethyl acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate,
Examples include (meth) acrylic acid ester derivatives such as stearyl (meth) acrylate, ethylene glycol (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, and cyclohexyl (meth) acrylate. These polymerizable monomers may be used alone or in combination of two or more.

【0021】なかでも、ジビニルベンゼン−エチルビニ
ルベンゼン混合物を含有する。ただし、ジビニルベンゼ
ン−エチルビニルベンゼン混合物の含有量は30重量%
以下であることが好ましい。30重量%を超えると、得
られる導電性微粒子が硬くなり過ぎて、柔らかい材料を
傷つけたり、貫通したりしてしまうことがある。
Among others, it contains a divinylbenzene-ethylvinylbenzene mixture. However, the content of divinylbenzene-ethylvinylbenzene mixture is 30% by weight.
The following is preferable. If it exceeds 30% by weight, the resulting conductive fine particles may become too hard and may damage or penetrate a soft material.

【0022】上記エチレン性不飽和単量体の重合体シー
ド粒子1重量部に対しする好ましい吸収量の下限は10
重量部、上限は500重量部である。10重量部未満で
あると、相分離の影響がでて不均一な微粒子となること
があり、500重量部を超えると、吸収しきれない重合
性単量体が発生し、粒子径分布が増大したり、粒子同士
の凝集が発生したりすることがある。
The lower limit of the preferable absorption amount per 1 part by weight of the polymer seed particles of the ethylenically unsaturated monomer is 10
The upper limit is 500 parts by weight. If it is less than 10 parts by weight, the effect of phase separation may be exerted to form non-uniform fine particles, and if it exceeds 500 parts by weight, polymerizable monomers that cannot be completely absorbed are generated and the particle size distribution increases. Or particles may aggregate with each other.

【0023】上記油溶性重合開始剤としては特に限定さ
れず、例えば、過酸化ベンゾイル、過酸化ラウロイル、
オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化
ベンゾイル、3,5,5−トリメチルヘキサノイルパー
オキサイド、t−ブチルパーオキシ−2−エチルヘキサ
ノエート、ジ−t−ブチルパーオキサイド等の有機過酸
化物;アゾビスイソブチロニトリル、アゾビスシクロヘ
キサカルボニトリル、アゾビス(2,4−ジメチルバレ
ロニトリル)等のアゾ系化合物等が挙げられる。上記油
溶性重合開始剤の使用量は、通常、単量体の合計100
重量部に対して下限は0.1重量部、上限は3重量部で
ある。
The oil-soluble polymerization initiator is not particularly limited, and examples thereof include benzoyl peroxide, lauroyl peroxide,
Organic peroxides such as benzoyl orthochloroperoxide, benzoyl orthomethoxyperoxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2-ethylhexanoate and di-t-butylperoxide; Examples thereof include azo compounds such as azobisisobutyronitrile, azobiscyclohexacarbonitrile, and azobis (2,4-dimethylvaleronitrile). The amount of the oil-soluble polymerization initiator used is usually 100 in total of the monomers.
The lower limit is 0.1 parts by weight and the upper limit is 3 parts by weight with respect to parts by weight.

【0024】また、上記シード重合に際しては、必要に
応じて界面活性剤、分散安定剤等を用いてもよい。上記
界面活性剤としては、媒体中に可溶の高分子、ノニオン
性又はイオン性の界面活性剤等を適宜使用することがで
きる。上記分散安定剤としては、通常、媒体に可溶の高
分子が用いられ、例えば、ポリビニルアルコール、ポリ
ビニルピロリドン等が挙げられる。上記分散安定剤の配
合量の好ましい下限は重合性単量体100重量部に対し
て0.01重量部、上限は0.02重量部である。これ
らは単独で用いられてもよいし、2種類以上が併用され
てもよい。
In the above seed polymerization, a surfactant, a dispersion stabilizer or the like may be used if necessary. As the above-mentioned surfactant, a polymer soluble in a medium, a nonionic or ionic surfactant, and the like can be appropriately used. As the dispersion stabilizer, a polymer soluble in a medium is usually used, and examples thereof include polyvinyl alcohol and polyvinylpyrrolidone. The preferable lower limit of the amount of the dispersion stabilizer blended is 0.01 part by weight, and the upper limit thereof is 0.02 part by weight, relative to 100 parts by weight of the polymerizable monomer. These may be used alone or in combination of two or more.

【0025】シード重合法による上記基材粒子の作製方
法としては、具体的には例えば、水中に分散した重合体
シード粒子に、エチレン性不飽和単量体からなる水性エ
マルジョンと油溶性重合開始剤からなる水性エマルジョ
ンとを添加し、重合体シード粒子にエチレン性不飽和単
量体と油溶性重合開始剤とを吸着させた後、温度を上昇
させてエチレン性不飽和単量体を重合する方法が好まし
い。
As a method for producing the above-mentioned base particles by the seed polymerization method, specifically, for example, polymer seed particles dispersed in water, an aqueous emulsion comprising an ethylenically unsaturated monomer and an oil-soluble polymerization initiator are used. A method of polymerizing the ethylenically unsaturated monomer by increasing the temperature after adsorbing the ethylenically unsaturated monomer and the oil-soluble polymerization initiator on the polymer seed particles Is preferred.

【0026】本発明の導電性微粒子は、上記基材粒子の
表面に導電層を有するものである。上記導電層に使用さ
れる金属としては特に限定されず、例えば、ニッケル、
金、銀、銅、コバルト及びこれらを主成分とする合金等
が挙げられる。上記導電層の厚さの好ましい下限は0.
02μm、上限は5μmである。0.02未満である
と、所望の導電性が得られないことがあり、5μmを超
えると、導電性微粒子を一対の電極間に挟んで両電極を
加圧する際に、導電性微粒子の柔軟性が有効に発現され
にくくなったり、導電性微粒子同士の凝集が起こりやす
くなったりする。より好ましい下限は0.3μm、上限
は2μm、更に好ましい下限は0.5μm、上限は1μ
mである。
The conductive fine particles of the present invention have a conductive layer on the surface of the base particles. The metal used for the conductive layer is not particularly limited, for example, nickel,
Examples thereof include gold, silver, copper, cobalt and alloys containing these as main components. The preferable lower limit of the thickness of the conductive layer is 0.
02 μm, the upper limit is 5 μm. If it is less than 0.02, the desired conductivity may not be obtained, and if it exceeds 5 μm, the flexibility of the conductive fine particles is obtained when the conductive fine particles are sandwiched between a pair of electrodes and both electrodes are pressed. Is difficult to be effectively expressed, or the conductive fine particles are easily aggregated with each other. A more preferable lower limit is 0.3 μm, an upper limit is 2 μm, a still more preferable lower limit is 0.5 μm, and an upper limit is 1 μm.
m.

【0027】上記導電層を形成する方法としては特に限
定されず、例えば、無電解メッキによる方法、金属微粉
を単独又はバインダーに混ぜ合わせて得られるペースト
をコーティングする方法;真空蒸着、イオンプレーティ
ング、イオンスパッタリング等の物理的蒸着方法等が挙
げられる。なかでも、無電解メッキ法が好適である。
The method for forming the conductive layer is not particularly limited, and examples thereof include a method by electroless plating, a method of coating a paste obtained by mixing fine metal powder alone or with a binder; vacuum deposition, ion plating, A physical vapor deposition method such as ion sputtering may be used. Of these, the electroless plating method is preferable.

【0028】上記無電解メッキ法としては、例えば、金
置換メッキ法が挙げられる。上記金置換メッキ法の作業
工程は、エッチング工程、アクチベーション工程、化学
ニッケルメッキ工程及び金置換メッキ工程に分けられ
る。上記エッチング工程は、基材粒子の表面に触媒を付
着させるための凹凸を形成させる工程であり、エッチン
グ液としては、カセイソーダ水溶液等が挙げられる。上
記アクチベーション工程は、エッチングされた基材粒子
の表面に触媒層を形成させるとともに、この触媒層を活
性化させるための工程である。上記化学ニッケルメッキ
工程は、触媒層が形成された基材粒子表面に、更に金属
ニッケル層を形成させる工程である。上記金置換メッキ
工程は、上記ニッケルにより被覆された微粒子を金シア
ン化カリウム溶液中に入れ、昇温させながらニッケルを
溶出させ、基材粒子表面に金を析出させる工程である。
Examples of the electroless plating method include a gold displacement plating method. The working process of the gold displacement plating method is divided into an etching process, an activation process, a chemical nickel plating process and a gold displacement plating process. The etching step is a step of forming irregularities for attaching a catalyst on the surface of the base material particles, and examples of the etching liquid include caustic soda aqueous solution. The activation step is a step for forming a catalyst layer on the surface of the etched base material particles and activating the catalyst layer. The chemical nickel plating step is a step of further forming a metallic nickel layer on the surface of the base particle on which the catalyst layer is formed. The gold displacement plating step is a step in which the fine particles coated with nickel are placed in a gold potassium cyanide solution and nickel is eluted while the temperature is raised to deposit gold on the surface of the base material particles.

【0029】本発明の導電性微粒子は、特定の10%K
値、圧縮変形回復率及び破壊歪みを有することから、電
極間の接続に用いた場合に基板を傷つけたり、貫通する
ことがなく、高精度のギャップ保持性や接続信頼性を得
ることができる。更に、基材粒子がジビニルベンゼン−
エチルビニルベンゼン混合物を単量体の一部として用い
た重合体であることから、耐アルカリ性が向上してお
り、アルカリ浴を用いるメッキ加工の際に基材粒子の浸
食が防がれ、浸食に伴って起こるメッキ剥がれ、割れを
防ぐことができる。
The conductive fine particles of the present invention have a specific content of 10% K.
Since it has a value, a compression deformation recovery rate, and a breaking strain, it does not damage or penetrate the substrate when it is used for connection between electrodes, and highly accurate gap retention and connection reliability can be obtained. Further, the base particles are divinylbenzene-
Since it is a polymer that uses a mixture of ethyl vinyl benzene as a part of the monomer, it has improved alkali resistance and prevents erosion of the base particles during plating using an alkaline bath. It is possible to prevent the peeling and cracking of the plating that accompanies it.

【0030】本発明の導電性微粒子を用いてなる、電子
部品の接合材料もまた、本発明の1つである。かかる電
子部品の接合材料としては、例えば、導電性ペースト、
異方性導電膜等が挙げられる。なかでも、本発明の導電
性微粒子を用いてなる異方性導電膜を用いれば、導通の
信頼性やギャップ精度に非常に優れた電子部品の接続を
行うことができる。
A bonding material for electronic parts using the conductive fine particles of the present invention is also one aspect of the present invention. As a bonding material for such electronic components, for example, a conductive paste,
An anisotropic conductive film etc. are mentioned. Among them, if the anisotropic conductive film using the conductive fine particles of the present invention is used, it is possible to connect the electronic components with excellent conduction reliability and gap accuracy.

【0031】[0031]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0032】(実施例1)セパラブルフラスコにイオン
交換水2500g、スチレン250g、オクチルメルカ
プタン50g、塩化ナトリウム0.5gを入れ攪拌しつ
つ窒素導入を行った。その後、温度を70℃まで上げ、
過酸化カリウム2.5gを添加し24時間反応を行うこ
とにより、重合体シード粒子を得た。
Example 1 2500 g of ion-exchanged water, 250 g of styrene, 50 g of octyl mercaptan and 0.5 g of sodium chloride were placed in a separable flask, and nitrogen was introduced with stirring. Then raise the temperature to 70 ° C,
Polymer seed particles were obtained by adding 2.5 g of potassium peroxide and reacting for 24 hours.

【0033】得られた重合体シード粒子5gに、イオン
交換水500g、ポリビニルアルコール5%水溶液10
0gを加え超音波分散させた後、セパラブルフラスコに
入れて均一に攪拌を行った。別に、ジビニルベンゼン−
ビニルエチルベンゼン混合物38g、テトラメチレング
リコールジアクリレート154gを、過酸化ベンゾイル
2.6g、ラウリル硫酸トリエタノールアミン10g、
エタノール130gを添加したイオン交換水1000g
に加え、混合して乳化液を調製した。この乳化液を数回
に分けてセパラブルフラスコに加え12時間攪拌を行っ
た。その後、更にポリビニルアルコール5%水溶液50
0gを加え窒素ガスを導入し85℃、9時間の条件で反
応を行い、基材粒子を得た。
5 g of the obtained polymer seed particles, 500 g of ion-exchanged water, and 10% aqueous solution of polyvinyl alcohol 5%
After 0 g was added and ultrasonically dispersed, the mixture was placed in a separable flask and uniformly stirred. Separately, divinylbenzene-
38 g of vinylethylbenzene mixture, 154 g of tetramethylene glycol diacrylate, 2.6 g of benzoyl peroxide, 10 g of triethanolamine lauryl sulfate,
1000 g of ion-exchanged water added with 130 g of ethanol
In addition, the mixture was mixed to prepare an emulsion. This emulsion was divided into several times and added to a separable flask and stirred for 12 hours. After that, polyvinyl alcohol 5% aqueous solution 50
0 g was added, nitrogen gas was introduced, and the reaction was performed at 85 ° C. for 9 hours to obtain base particles.

【0034】得られた基材粒子を洗浄し、乾燥させた
後、無電解メッキ法により、ニッケル層、金層の二層構
造の導電層を設けて、導電性微粒子を作製した。
The obtained base particles were washed and dried, and then a conductive layer having a two-layer structure of a nickel layer and a gold layer was provided by electroless plating to prepare conductive fine particles.

【0035】得られた導電性微粒子について、下記の方
法によりメッキ剥がれ、メッキ割れの割合、10%K
値、圧縮変形回復率、及び、破壊歪みを測定した。結果
を表1に示した。
With respect to the obtained conductive fine particles, the rate of plating peeling and plating cracking by the following method: 10% K
The value, the compression deformation recovery rate, and the fracture strain were measured. The results are shown in Table 1.

【0036】(1)メッキ剥がれ、メッキ割れの割合 走査型電子顕微鏡を用い、1万倍の倍率で導電性微粒子
表面を観察し、10万個の導電性微粒子中のメッキ剥が
れ、メッキ割れを調べてその割合を算出した。
(1) Ratio of plating peeling and plating cracking Using a scanning electron microscope, the surface of the conductive fine particles was observed at a magnification of 10,000 times, and the peeling and plating cracking of 100,000 conductive fine particles were examined. The ratio was calculated.

【0037】(2)10%K値の測定 微小圧縮試験機(PCT−200、島津製作所社製)を
用いてダイアモンド製の直径50μmの円柱の平滑端面
で、導電性微粒子を圧縮速度0.27g/秒、最大試験
荷重10gで圧縮し、下記式により求めた。 K=(3/√2)・F・S-3/2・R-1/2 式中、Fは導電性微粒子の10%圧縮変形における荷重
値(kg)を表し、Sは導電性微粒子の10%圧縮変形
における圧縮変位(mm)を表し、Rは導電性微粒子の
半径(mm)を表す。
(2) Measurement of 10% K value Micro compression tester (PCT-200, manufactured by Shimadzu Corporation)
Using diamond smooth end face of 50μm diameter cylinder
The conductive particles are compressed at a compression rate of 0.27 g / sec and the maximum test
It was compressed with a load of 10 g and determined by the following formula. K = (3 / √2) ・ F ・ S-3/2・ R-1/2 In the formula, F is the load at 10% compressive deformation of the conductive particles.
Represents the value (kg), and S is 10% compression deformation of conductive particles.
Represents the compressive displacement (mm), and R is the conductive fine particle
Indicates a radius (mm).

【0038】(3)圧縮変形回復率の測定 微小圧縮試験機(島津製作所社製「PCT−200」)
を用いて、微粒子を反転荷重値9.8mNまで圧縮した
後、荷重を減らして行くときの、荷重値と圧縮変位との
関係を、荷重を除く際の終点を原点荷重値0.98mN
とし、負荷及び除負荷における圧縮速度を0.284m
N/秒として測定したときに、反転の点までの変位(L
1)と、反転の点から原点荷重値をとる点までの変位
(L2)との比(L1/L2)を%として表したものを
圧縮変形回復率とした。
(3) Measurement of compression deformation recovery rate Micro compression tester ("PCT-200" manufactured by Shimadzu Corporation)
After compressing the fine particles to a reversal load value of 9.8 mN by using, the relationship between the load value and the compression displacement when the load is reduced, and the end point when the load is removed is the origin load value of 0.98 mN.
And the compression speed at load and unload is 0.284m
When measured as N / sec, the displacement (L
The ratio (L1 / L2) between 1) and the displacement (L2) from the point of reversal to the point where the origin load value is taken was expressed as%, and was defined as the compression deformation recovery rate.

【0039】(4)破壊歪みの測定 微小圧縮試験機(島津製作所社製「PCT−200」)
を用いて、微粒子を破壊するまで圧縮し、そのときの変
位である圧縮変位をL1とし、粒子径をL2としたとき、
1とL2の比(L1/L2)を%として表したものを破壊
歪みとした。
(4) Measurement of fracture strain Micro compression tester ("PCT-200" manufactured by Shimadzu Corporation)
When the fine particles are compressed until they are broken and the compression displacement, which is the displacement at that time, is L 1 and the particle diameter is L 2 ,
The fracture strain was defined as the ratio (L 1 / L 2 ) of L 1 and L 2 expressed as%.

【0040】(実施例2)基材粒子を表1に示した組成
とした以外は実施例1と同様にして、導電性微粒子を作
製し、評価を行った。結果を表1に示した。
(Example 2) Conductive fine particles were prepared and evaluated in the same manner as in Example 1 except that the base particles had the composition shown in Table 1. The results are shown in Table 1.

【0041】(比較例1)基材粒子を表1に示した組成
とした以外は実施例1と同様にして、導電性微粒子を作
製し、評価を行った。結果を表1に示した。
Comparative Example 1 Conductive fine particles were prepared and evaluated in the same manner as in Example 1 except that the base particles had the composition shown in Table 1. The results are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】本発明によれば、優れた接続抵抗及び接
続信頼性を有し、マイクロ素子実装用導電接着剤、異方
導電接着剤、導電接続構造体等における導電材料として
用いることのできる導電性微粒子、導電性微粒子の製造
方法、及び、電子部品の接合材料を提供できる。
According to the present invention, it has excellent connection resistance and connection reliability and can be used as a conductive material in conductive adhesives for mounting micro devices, anisotropic conductive adhesives, conductive connection structures and the like. Provided are conductive fine particles, a method for producing conductive fine particles, and a bonding material for electronic components.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09J 201/00 C09J 201/00 C08L 25:02 C08L 25:02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C09J 201/00 C09J 201/00 C08L 25:02 C08L 25:02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基材粒子と前記基材粒子の表面に形成さ
れた導電層とからなる導電性微粒子であって、前記基材
粒子は、ジビニルベンゼン−エチルビニルベンゼン混合
物を単量体の一部として用いた重合体であり、粒子直径
の10%が変位したときの圧縮弾性率が2.5×109
N/m2以下、圧縮変形回復率が30%以上、かつ、破
壊歪みが30%以上であることを特徴とする導電性微粒
子。
1. A conductive fine particle comprising a base particle and a conductive layer formed on the surface of the base particle, wherein the base particle comprises a divinylbenzene-ethylvinylbenzene mixture as a monomer. The polymer used as a part has a compression modulus of 2.5 × 10 9 when 10% of the particle diameter is displaced.
N / m 2 or less, a compression deformation recovery rate of 30% or more, and a breaking strain of 30% or more, conductive fine particles.
【請求項2】 基材粒子は、粒子径のCV値が15%以
下であることを特徴とする請求項1記載の導電性微粒
子。
2. The conductive fine particles according to claim 1, wherein the base particles have a CV value of particle diameter of 15% or less.
【請求項3】 請求項1又は2記載の導電性微粒子を製
造する方法であって、少なくとも、水中に分散した重量
平均分子量が1000〜2万の重合体シード粒子1重量
部に対して、ジビニルベンゼン−エチルビニルベンゼン
混合物を含有するエチレン性不飽和単量体10〜500
重量部及び油溶性重合開始剤を吸着させた後、前記エチ
レン性不飽和単量体を重合することにより基材粒子を作
製する工程を有することを特徴とする導電性微粒子の製
造方法。
3. The method for producing the conductive fine particles according to claim 1 or 2, wherein at least 1 part by weight of polymer seed particles having a weight average molecular weight of 1000 to 20,000 dispersed in water is added to divinyl. 10-500 ethylenically unsaturated monomer containing benzene-ethyl vinyl benzene mixture
A method for producing electrically conductive fine particles, which comprises a step of producing base particles by polymerizing the ethylenically unsaturated monomer after adsorbing parts by weight and an oil-soluble polymerization initiator.
【請求項4】 請求項1又は2記載の導電性微粒子を用
いてなることを特徴とする電子部品の接合材料。
4. A bonding material for electronic parts, comprising the conductive fine particles according to claim 1.
JP2002119610A 2002-04-22 2002-04-22 Conductive fine particle, its manufacturing method and bonding material for electronic component Pending JP2003313304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002119610A JP2003313304A (en) 2002-04-22 2002-04-22 Conductive fine particle, its manufacturing method and bonding material for electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002119610A JP2003313304A (en) 2002-04-22 2002-04-22 Conductive fine particle, its manufacturing method and bonding material for electronic component

Publications (1)

Publication Number Publication Date
JP2003313304A true JP2003313304A (en) 2003-11-06

Family

ID=29536123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002119610A Pending JP2003313304A (en) 2002-04-22 2002-04-22 Conductive fine particle, its manufacturing method and bonding material for electronic component

Country Status (1)

Country Link
JP (1) JP2003313304A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100650284B1 (en) 2005-02-22 2006-11-27 제일모직주식회사 Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
JP2006339101A (en) * 2005-06-06 2006-12-14 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and connection structure
KR100815471B1 (en) 2006-12-26 2008-03-20 제일모직주식회사 Polymer resin particles and conductive particles containing the same for anisotropic conductive packaging applications
JP2008521963A (en) * 2004-12-16 2008-06-26 チェイル インダストリーズ インコーポレイテッド Polymer resin fine particles, conductive fine particles, and anisotropic conductive connecting material containing the same
JP2012064350A (en) * 2010-09-14 2012-03-29 Sekisui Chem Co Ltd Connection structure
JP2012190560A (en) * 2011-03-08 2012-10-04 Nippon Shokubai Co Ltd Conductive particulate, and anisotropic conductive material using the same
JP2013075993A (en) * 2011-09-30 2013-04-25 Sekisui Plastics Co Ltd Thermoresponsive resin particle and method for production thereof
KR20140043305A (en) 2011-07-28 2014-04-09 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material and connection structure
JP2014123456A (en) * 2012-12-20 2014-07-03 Nippon Shokubai Co Ltd Conductive fine particle and anisotropic conductive material using the same
JP2014127467A (en) * 2012-12-26 2014-07-07 Dokusan High Metal Co Ltd Conductive particle and conductive material containing conductive particle
US8828543B2 (en) 2005-07-05 2014-09-09 Cheil Industries Inc. Conductive particles comprising complex metal layer with density gradient, method for preparing the particles, and anisotropic conductive adhesive composition comprising the particles
KR20150035531A (en) 2012-07-05 2015-04-06 세키스이가가쿠 고교가부시키가이샤 Conductive particle, resin particle, conductive material, and connection structure
WO2015105120A1 (en) * 2014-01-08 2015-07-16 積水化学工業株式会社 Conductive particles for back contact solar cell modules, conductive material, and solar cell module
US9093196B2 (en) 2006-09-29 2015-07-28 Nisshinbo Holdings, Inc. Conductive particles and method of preparing the same
EP3222212A4 (en) * 2014-11-17 2018-08-29 Sekisui Plastics Co., Ltd. Pad for electrodes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102102A (en) * 1986-10-18 1988-05-07 ジェイエスアール株式会社 Conducting polymer particle
JP2000109508A (en) * 1998-10-07 2000-04-18 Sekisui Chem Co Ltd Production of crosslinked microparticle, spacer for liquid crystal display element and liquid crystal display element
JP2001216841A (en) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd Conductive partiulates and conductive connecting fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102102A (en) * 1986-10-18 1988-05-07 ジェイエスアール株式会社 Conducting polymer particle
JP2000109508A (en) * 1998-10-07 2000-04-18 Sekisui Chem Co Ltd Production of crosslinked microparticle, spacer for liquid crystal display element and liquid crystal display element
JP2001216841A (en) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd Conductive partiulates and conductive connecting fabric

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521963A (en) * 2004-12-16 2008-06-26 チェイル インダストリーズ インコーポレイテッド Polymer resin fine particles, conductive fine particles, and anisotropic conductive connecting material containing the same
US8129023B2 (en) 2004-12-16 2012-03-06 Cheil Industries Inc. Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
US7851063B2 (en) 2005-02-22 2010-12-14 Cheil Industries Inc. Polymer particles and conductive particles having enhanced conducting properties, and anisotropic conductive packaging materials containing the same
KR100650284B1 (en) 2005-02-22 2006-11-27 제일모직주식회사 Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
JP2006339101A (en) * 2005-06-06 2006-12-14 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and connection structure
JP4674119B2 (en) * 2005-06-06 2011-04-20 積水化学工業株式会社 Conductive fine particles, anisotropic conductive material, and connection structure
US8828543B2 (en) 2005-07-05 2014-09-09 Cheil Industries Inc. Conductive particles comprising complex metal layer with density gradient, method for preparing the particles, and anisotropic conductive adhesive composition comprising the particles
US9093196B2 (en) 2006-09-29 2015-07-28 Nisshinbo Holdings, Inc. Conductive particles and method of preparing the same
KR100815471B1 (en) 2006-12-26 2008-03-20 제일모직주식회사 Polymer resin particles and conductive particles containing the same for anisotropic conductive packaging applications
JP2012064350A (en) * 2010-09-14 2012-03-29 Sekisui Chem Co Ltd Connection structure
JP2012190560A (en) * 2011-03-08 2012-10-04 Nippon Shokubai Co Ltd Conductive particulate, and anisotropic conductive material using the same
KR20140043305A (en) 2011-07-28 2014-04-09 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material and connection structure
JP2013075993A (en) * 2011-09-30 2013-04-25 Sekisui Plastics Co Ltd Thermoresponsive resin particle and method for production thereof
KR20150035531A (en) 2012-07-05 2015-04-06 세키스이가가쿠 고교가부시키가이샤 Conductive particle, resin particle, conductive material, and connection structure
KR20200033983A (en) 2012-07-05 2020-03-30 세키스이가가쿠 고교가부시키가이샤 Conductive particle, resin particle, conductive material, and connection structure
JP2014123456A (en) * 2012-12-20 2014-07-03 Nippon Shokubai Co Ltd Conductive fine particle and anisotropic conductive material using the same
JP2014127467A (en) * 2012-12-26 2014-07-07 Dokusan High Metal Co Ltd Conductive particle and conductive material containing conductive particle
WO2015105120A1 (en) * 2014-01-08 2015-07-16 積水化学工業株式会社 Conductive particles for back contact solar cell modules, conductive material, and solar cell module
CN105917418A (en) * 2014-01-08 2016-08-31 积水化学工业株式会社 Conductive particles for back contact solar cell modules, conductive material, and solar cell module
CN105917418B (en) * 2014-01-08 2018-02-13 积水化学工业株式会社 Back contact solar battery module electroconductive particle, conductive material and solar module
EP3222212A4 (en) * 2014-11-17 2018-08-29 Sekisui Plastics Co., Ltd. Pad for electrodes
US10307103B2 (en) 2014-11-17 2019-06-04 Sekisui Plastics Co., Ltd. Pad for electrodes

Similar Documents

Publication Publication Date Title
KR100650284B1 (en) Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
KR100667374B1 (en) Polymer Particles for Anisotropic Conductive Packaging Materials, Conductive Particles and an Anisotropic Conductive Packaging Materials Containing the Same
JP4920698B2 (en) Conductive particles for anisotropic conductive connection
JP2003313304A (en) Conductive fine particle, its manufacturing method and bonding material for electronic component
JP3739232B2 (en) Polymer fine particles and manufacturing method thereof, spacer for liquid crystal display element, conductive fine particles
JP2007184278A (en) Method of manufacturing conductive metal-coated particulate and its manufactured product
JP2001216841A (en) Conductive partiulates and conductive connecting fabric
JP3587398B2 (en) Conductive particles and anisotropic conductive adhesive
JP4902853B2 (en) Resin fine particles and conductive fine particles
JP4278374B2 (en) Conductive fine particles, method for producing conductive fine particles, and conductive material
JP4088137B2 (en) Conductive fine particles and anisotropic conductive materials
JPH0689069B2 (en) Conductive microsphere
JPH08225625A (en) Elastic microparticle, its production, and elastic conductive microparticle
JP2006196411A (en) Conductive fine particle and anisotropic conductive material
JP2003208813A (en) Conductive fine grain and anisotropic conductive material
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
JP2005327509A (en) Conductive fine particle and anisotropic conductive material
JP3427967B2 (en) Metal-coated fine particles and conductive material containing the same
JP2000309715A (en) Polymer microparticle and conductive microparticle
JP3317714B2 (en) Method for producing crosslinked polymer fine particles
KR101534841B1 (en) Bump-type conductive microspheres and an anisotropic conductive film comprising the same
JPH0689068B2 (en) Method for producing conductive microspheres
JP4674119B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP3766123B2 (en) Conductive connection method between electrodes and conductive fine particles
JP2001151894A (en) Electroconductive fine particle and electroconductive joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080625