JP2003208813A - Conductive fine grain and anisotropic conductive material - Google Patents

Conductive fine grain and anisotropic conductive material

Info

Publication number
JP2003208813A
JP2003208813A JP2002004811A JP2002004811A JP2003208813A JP 2003208813 A JP2003208813 A JP 2003208813A JP 2002004811 A JP2002004811 A JP 2002004811A JP 2002004811 A JP2002004811 A JP 2002004811A JP 2003208813 A JP2003208813 A JP 2003208813A
Authority
JP
Japan
Prior art keywords
fine particles
resin
coating layer
conductive
conductive fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002004811A
Other languages
Japanese (ja)
Other versions
JP3898510B2 (en
Inventor
Masahiro Takechi
昌裕 武智
Masaharu Yuzuriha
正春 棡葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002004811A priority Critical patent/JP3898510B2/en
Publication of JP2003208813A publication Critical patent/JP2003208813A/en
Application granted granted Critical
Publication of JP3898510B2 publication Critical patent/JP3898510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive fine grain having excellent adhesion of a metal coated layer to a fine resin grain, wherein the metal coated layer is not easily peeled off from the fine resin grain and broken by a compressive load, and the fine resin grain is not pressure-ruptured when crimping it. <P>SOLUTION: This conductive fine grain comprises the fine resin grain and the metal coated layer, and the fine resin grain comprises a fine core grain and a resin coated layer formed on the surface of the fine core grain. The resin coated layer contains a functional group having bonding ability with a metallic ion. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属被覆層と樹脂
微粒子の密着性が良好であり、圧縮荷重をかけても金属
被覆層が樹脂微粒子から剥離、破壊されにくく、かつ、
樹脂微粒子が圧着時に破壊されない導電性微粒子及び異
方性導電材料に関する。
TECHNICAL FIELD [0001] The present invention has good adhesion between a metal coating layer and resin fine particles, and the metal coating layer is less likely to be peeled or broken from the resin fine particles even when a compressive load is applied, and
The present invention relates to conductive fine particles and anisotropic conductive materials in which resin fine particles are not destroyed during pressure bonding.

【0002】[0002]

【従来の技術】導電性微粒子は、一般にバインダー樹脂
等に混合され、異方性導電フィルム、異方性導電ペース
ト、導電性接着剤、導電性粘着剤等の異方性導電材料に
おいて主要な構成材料として広く用いられている。これ
らの異方性導電材料は、例えば、液晶表示ディスプレ
イ、パーソナルコンピュータ、携帯電話等の電子機器に
おいて、基板同士を電気的に接続したり、半導体素子等
の小型部品と基板とを電気的に接続したりするために、
相対向する基板や電極端子の間に挟み込んで使用されて
いる。
2. Description of the Related Art Conductive fine particles are generally mixed with a binder resin or the like to form a major constituent in anisotropic conductive materials such as anisotropic conductive films, anisotropic conductive pastes, conductive adhesives and conductive adhesives. Widely used as a material. These anisotropic conductive materials electrically connect substrates to each other or electrically connect small components such as semiconductor elements to substrates in electronic devices such as liquid crystal displays, personal computers, and mobile phones. To do
It is used by being sandwiched between opposing substrates and electrode terminals.

【0003】従来、導電性微粒子としては、金、銀、ニ
ッケル等の金属粒子が用いられてきたが、比重が大き
く、形状も一定でないため、バインダー樹脂中に均一に
分散しないことがあり、導電材料の導電性にムラを生じ
させる原因となっていた。
Conventionally, metal particles such as gold, silver and nickel have been used as the conductive fine particles, but since they have a large specific gravity and their shapes are not constant, they may not be uniformly dispersed in the binder resin. This has caused unevenness in the conductivity of the material.

【0004】これに対して、特公平2−25431号公
報には、粒子径の均一なガラスビーズ、グラスファイバ
ー、プラスチックボール等の非導電性樹脂微粒子の表面
にニッケル等の金属によるメッキを施した導電性微粒子
が開示されている。しかしながら、これらのニッケルメ
ッキ等を施した導電性微粒子は、樹脂微粒子からメッキ
層が剥離しやすく、基板や電極端子に圧着した際に樹脂
微粒子とメッキ層との間で剥離が生じ、導電性が低下す
るという問題があった。
On the other hand, in Japanese Patent Publication No. 25431/1990, the surface of non-conductive resin fine particles such as glass beads, glass fibers and plastic balls having a uniform particle diameter is plated with a metal such as nickel. Conductive particles are disclosed. However, in these conductive fine particles plated with nickel or the like, the plating layer is easily peeled from the resin fine particles, and when pressure-bonded to the substrate or the electrode terminal, peeling occurs between the resin fine particles and the plating layer, so that the conductivity is reduced. There was a problem of lowering.

【0005】このような剥離の問題に対しては、一般に
酸化剤等を用いてエッチングし、樹脂微粒子の表面に微
小な凹凸を形成することにより、微小な凹凸とのアンカ
ー効果によるメッキ層との密着性の向上が図られてい
る。しかしながら、この方法では、エッチングの際に酸
化剤等に曝されるために、樹脂微粒子が脆化し、芯材に
必要な耐圧性能が劣化してしまうという問題があった。
To solve the problem of peeling, generally, etching is performed using an oxidizer or the like to form fine irregularities on the surface of the fine resin particles, so that the fine irregularities form an anchor effect with the plating layer. Adhesion is improved. However, this method has a problem that the resin fine particles are embrittled because they are exposed to an oxidizing agent or the like during etching, and the pressure resistance required for the core material deteriorates.

【0006】特公平6−89068号公報には、エッチ
ングすることなく微細孔を設けた樹脂微粒子に金属メッ
キ層を形成する方法が開示されている。この方法により
得られた導電性微粒子は、樹脂微粒子と金属メッキ層と
の間での剥離を生じにくいものであるが、樹脂微粒子の
深部まで微細孔が形成されるため、機械的強度が低くな
り、得られた導電材料を基板や電極端子に圧着した際に
破壊されやすいという問題があった。
Japanese Patent Publication No. 6-89068 discloses a method of forming a metal plating layer on resin fine particles having fine holes without etching. The conductive fine particles obtained by this method are less likely to cause peeling between the resin fine particles and the metal plating layer, but since the fine pores are formed deep in the resin fine particles, the mechanical strength becomes low. However, there is a problem that the obtained conductive material is easily broken when pressure-bonded to a substrate or an electrode terminal.

【0007】一方、特開平10−259253号公報に
は、カルボキシル基を含有するモノマーと多官能モノマ
ーとを共重合させてなる樹脂微粒子を用いた導電性微粒
子が開示されている。この導電性微粒子は、樹脂微粒子
の表面に多量のカルボキシル基を有することで樹脂微粒
子と金属メッキ層との間での剥離が生じにくいものであ
るが、カルボキシル基の濃度を樹脂微粒子の表面のみ高
くすることは困難であり、密着力の向上に限界があると
いう問題点があった。更に、カルボキシル基が樹脂微粒
子の深部まで存在することで、この導電性微粒子は、耐
圧性能の低下や膨潤等を生じ、得られた導電材料を基板
や電極端子に圧着した際に破壊されやすいという問題が
あった。
On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 10-259253 discloses conductive fine particles using resin fine particles obtained by copolymerizing a monomer containing a carboxyl group and a polyfunctional monomer. Since the conductive fine particles have a large amount of carboxyl groups on the surface of the resin fine particles, peeling between the resin fine particles and the metal plating layer is less likely to occur, but the carboxyl group concentration is increased only on the surface of the resin fine particles. However, there is a problem that there is a limit to the improvement of the adhesive force. Further, the presence of the carboxyl group in the deep part of the resin fine particles causes the conductive fine particles to have a decrease in pressure resistance performance, swelling, etc., and is easily broken when the obtained conductive material is pressure-bonded to a substrate or an electrode terminal. There was a problem.

【0008】近年の電子機器の急激な進歩に伴い、異方
性導電材料等の導電材料においても更なる信頼性の向上
が要求されているが、樹脂微粒子と金属メッキ層との間
での剥離、導電性微粒子の破壊により生じる導通性不良
や導通安定性不良を充分に防止できないという問題があ
った。
With the rapid progress of electronic equipment in recent years, further improvement in reliability is required for conductive materials such as anisotropic conductive materials, but peeling between resin fine particles and a metal plating layer is required. However, there is a problem in that it is not possible to sufficiently prevent poor electrical continuity and poor electrical continuity stability caused by destruction of the conductive fine particles.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記現状に
鑑み、金属被覆層と樹脂微粒子の密着性が良好であり、
圧縮荷重をかけても金属被覆層が樹脂微粒子から剥離、
破壊されにくく、かつ、樹脂微粒子が圧着時に破壊され
ない導電性微粒子を提供することを目的とするものであ
る。
In view of the above situation, the present invention provides good adhesion between the metal coating layer and the resin fine particles,
Even if a compressive load is applied, the metal coating layer separates from the resin particles,
It is an object of the present invention to provide conductive fine particles which are not easily broken and in which resin fine particles are not broken during pressure bonding.

【0010】[0010]

【課題を解決するための手段】本発明者らは、鋭意検討
した結果、芯材微粒子の表面に金属イオンとの結合能を
有する官能基を含有する樹脂被覆層を形成して得た樹脂
微粒子の表面に金属被覆層を設けることにより、樹脂微
粒子の機械的強度を低下させることなく樹脂微粒子と金
属被覆層との密着性を著しく向上できることを見出し、
本発明を完成させるに至った。
Means for Solving the Problems As a result of intensive investigations by the present inventors, resin fine particles obtained by forming a resin coating layer containing a functional group capable of binding with metal ions on the surface of core fine particles. By providing a metal coating layer on the surface of, it was found that the adhesion between the resin particles and the metal coating layer can be significantly improved without lowering the mechanical strength of the resin particles,
The present invention has been completed.

【0011】本発明は、樹脂微粒子と前記樹脂微粒子の
表面に形成された金属被覆層とからなる導電性微粒子で
あって、前記樹脂微粒子は、芯材微粒子と前記芯材微粒
子の表面に形成された樹脂被覆層とからなるものであ
り、前記樹脂被覆層は、金属イオンとの結合能を有する
官能基を含有するものである導電性微粒子である。以下
に本発明を詳述する。
The present invention is a conductive fine particle comprising resin fine particles and a metal coating layer formed on the surface of the resin fine particles, wherein the resin fine particles are formed on the core fine particles and the surfaces of the core fine particles. And a resin coating layer, wherein the resin coating layer is conductive fine particles containing a functional group capable of binding to metal ions. The present invention is described in detail below.

【0012】本発明の導電性微粒子は、樹脂微粒子と上
記樹脂微粒子の表面に形成された金属被覆層とからなる
ものである。
The conductive fine particles of the present invention are composed of resin fine particles and a metal coating layer formed on the surface of the resin fine particles.

【0013】上記樹脂微粒子は、芯材微粒子と上記芯材
微粒子の表面に形成された樹脂被覆層とからなるもので
ある。上記芯材微粒子としては特に限定されないが、有
機物からなるものが好適であり、例えば、ポリエチレ
ン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、
ポリ塩化ビニリデン、ポリプロピレン、ポリイソブチレ
ン、ポリブタジエン等のポリオレフィン;ポリメチルメ
タクリレート、ポリメチルアクリレート等のアクリル樹
脂;ポリアルキレンテレフタレート、ポリスルホン、ポ
リカーボネート、ポリアミド、フェノールホルムアルデ
ヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグア
ナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹
脂等からなるものが挙げられる。上記芯材微粒子は、例
えば、エチレン性不飽和基を有するモノマーを公知の方
法を用いて1種又は2種以上重合させることにより、任
意の粒子物性を得ることができる。
The resin fine particles are composed of core material fine particles and a resin coating layer formed on the surfaces of the core material fine particles. The core material fine particles are not particularly limited, but those made of an organic material are preferable, for example, polyethylene, polypropylene, polystyrene, polyvinyl chloride,
Polyvinylidene chloride, polypropylene, polyisobutylene, polybutadiene, and other polyolefins; polymethyl methacrylate, polymethyl acrylate, and other acrylic resins; polyalkylene terephthalates, polysulfones, polycarbonates, polyamides, phenol formaldehyde resins, melamine formaldehyde resins, benzoguanamine formaldehyde resins, urea formaldehyde An example is a resin. The core material fine particles can have desired particle physical properties, for example, by polymerizing one or more kinds of monomers having an ethylenically unsaturated group by a known method.

【0014】上記芯材微粒子の平均粒子径の好ましい下
限は0.5μm、上限は100μmである。0.5μm
未満であると、金属被覆層を形成する際に凝集が生じや
すく、得られる導電性微粒子が隣接電極間の短絡を引き
起こすことがある。100μmを超えると、得られる導
電性微粒子の金属被覆層が剥がれやすくなり導電材料の
信頼性が低下することがある。より好ましい下限は1μ
m、上限は20μmである。
The preferred lower limit of the average particle size of the core fine particles is 0.5 μm, and the upper limit thereof is 100 μm. 0.5 μm
When it is less than the above range, aggregation is likely to occur when the metal coating layer is formed, and the resulting conductive fine particles may cause a short circuit between adjacent electrodes. When it exceeds 100 μm, the metal coating layer of the obtained conductive fine particles is likely to be peeled off, and the reliability of the conductive material may be deteriorated. More preferable lower limit is 1μ
m, the upper limit is 20 μm.

【0015】上記芯材微粒子は、粒子径の変動係数が1
0%以下であることが好ましい。10%を超えると、得
られる導電性微粒子により相対向する電極間隔を任意に
制御することが困難になる。なお、上記変動係数は、粒
子径分布から得られる標準偏差を平均粒子径で除するこ
とにより求められるものである。
The core fine particles have a coefficient of variation of particle size of 1
It is preferably 0% or less. When it exceeds 10%, it becomes difficult to arbitrarily control the interval between electrodes facing each other by the obtained conductive fine particles. The above coefficient of variation is obtained by dividing the standard deviation obtained from the particle size distribution by the average particle size.

【0016】上記芯材微粒子としては圧縮時の物性が重
要であり、上記芯材微粒子の機械的強度の指標である1
0%K値の好ましい下限は1000MPa、上限は15
000MPaである。1000MPa未満であると、芯
材微粒子は、圧縮変形により破壊されやすく、得られる
導電性微粒子を導電材料として用いたときに機能を果た
さなくなることがある。15000MPaを超えると、
得られる導電性微粒子を導電材料として用いたときに電
極端子等を傷つけることがある。より好ましい下限は2
000MPa、上限は1万MPaである。なお、上記1
0%K値とは、下記式(1)より求められるものであ
り、具体的には、微小圧縮試験器(島津製作所社製、P
CT−200)を用い、圧縮速度2.6mN/秒、最大
試験荷重98mNの条件下で、直径50μmのダイアモ
ンド製円柱からなる平滑圧子端面により粒子を圧縮して
測定される。 10%K値(Pa)=2.1×103・F・S-3/2・R-1/2 (1) 式中、Fは粒子を10%圧縮変形したときの荷重値
(N)を表し、Sは粒子を10%圧縮変形したときの圧
縮変位(mm)を表し、Rは粒子の半径(mm)を表
す。
Physical properties at the time of compression are important as the core fine particles and are an index of the mechanical strength of the core fine particles 1.
The preferable lower limit of the 0% K value is 1000 MPa, and the upper limit is 15.
It is 000 MPa. When the pressure is less than 1000 MPa, the core material fine particles are easily broken by compressive deformation, and when the obtained conductive fine particles are used as a conductive material, they may not function. When it exceeds 15,000 MPa,
When the obtained conductive fine particles are used as a conductive material, the electrode terminals may be damaged. A more preferable lower limit is 2
000 MPa, the upper limit is 10,000 MPa. The above 1
The 0% K value is obtained from the following formula (1), and specifically, a micro compression tester (Plastic P, manufactured by Shimadzu Corporation)
CT-200) and the compression rate is 2.6 mN / sec and the maximum test load is 98 mN under the conditions that the particles are compressed by a smooth indenter end surface composed of a diamond cylinder having a diameter of 50 μm. 10% K value (Pa) = 2.1 × 10 3 · F · S −3/2 · R −1/2 (1) In the formula, F is a load value (N) when the particles are compressed and deformed by 10%. Represents the compressive displacement (mm) when the particle is compressed and deformed by 10%, and R represents the radius (mm) of the particle.

【0017】上記芯材微粒子は、9.8mNの荷重を負
荷して圧縮変形させたときの変形後の回復率が20%以
上であることが好ましい。20%未満であると、得られ
る導電性微粒子を圧縮したときに導電性微粒子が変形し
ても元に戻らないため接続不良を起こすことがある。よ
り好ましくは40%以上である。
It is preferable that the core fine particles have a recovery rate of 20% or more after deformation when they are compressed and deformed by applying a load of 9.8 mN. If it is less than 20%, the resulting conductive fine particles will not return to their original shape even when they are compressed when they are compressed, so that a connection failure may occur. More preferably, it is 40% or more.

【0018】上記芯材微粒子を得る方法としては特に限
定されないがエチレン性不飽和基を有するモノマーを重
合させて得る場合には、例えば、エチレン性不飽和基を
有するモノマーをラジカル重合開始剤の存在下で懸濁重
合する方法、種粒子にラジカル重合開始剤とともにエチ
レン性不飽和基を有するモノマーを吸収させて重合する
方法等が挙げられる。
The method for obtaining the fine particles of the core material is not particularly limited, but when it is obtained by polymerizing a monomer having an ethylenically unsaturated group, for example, a monomer having an ethylenically unsaturated group is present in the presence of a radical polymerization initiator. Examples thereof include a suspension polymerization method below and a method in which seed particles absorb a monomer having an ethylenically unsaturated group together with a radical polymerization initiator to perform polymerization.

【0019】上記エチレン性不飽和基を有するモノマー
としては、非架橋性のモノマーと架橋性のモノマーとが
あり、芯材微粒子全体に対して架橋性モノマーが5重量
%以上であることが好ましい。5重量%未満であると、
芯材微粒子の10%K値や回復率が低下し、圧着処理に
より導電性微粒子の破壊や永久変形を生じることがあ
る。より好ましくは20重量%以上である。
As the above-mentioned monomer having an ethylenically unsaturated group, there are a non-crosslinkable monomer and a crosslinkable monomer, and the crosslinkable monomer is preferably 5% by weight or more based on the whole core fine particles. When it is less than 5% by weight,
The 10% K value and recovery rate of the core fine particles may decrease, and the conductive fine particles may be destroyed or permanently deformed by the pressure bonding treatment. It is more preferably at least 20% by weight.

【0020】上記非架橋性のモノマーとしては特に限定
されず、例えば、スチレン、α−メチルスチレン等のス
チレン系モノマー;(メタ)アクリル酸、マレイン酸、
無水マレイン酸等のカルボキシル基含有モノマー;メチ
ル(メタ)アクリレート、エチル(メタ)アクリレー
ト、プロピル(メタ)アクリレート、ブチル(メタ)ア
クリレート、2−エチルヘキシル(メタ)アクリレー
ト、ラウリル(メタ)アクリレート、セチル(メタ)ア
クリレート、ステアリル(メタ)アクリレート、シクロ
ヘキシル(メタ)アクリレート、イソボルニル(メタ)
アクリレート等のアルキル(メタ)アクリレート類;2
−ヒドロキシエチル(メタ)アクリレート、グリセロー
ル(メタ)アクリレート、ポリオキシエチレン(メタ)
アクリレート、グリシジル(メタ)アクリレート等の酸
素原子含有(メタ)アクリレート類;(メタ)アクリロ
ニトリル等のニトリル含有モノマー;メチルビニルエー
テル、エチルビニルエーテル、プロピルビニルエーテル
等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウ
リン酸ビニル、ステアリン酸ビニル等の酸ビニルエステ
ル類;エチレン、プロピレン、イソプレン、ブタジエン
等の不飽和炭化水素;トリフルオロメチル(メタ)アク
リレート、ペンタフルオロエチル(メタ)アクリレー
ト、塩化ビニル、フッ化ビニル、クロルスチレン等のハ
ロゲン含有モノマー等が挙げられる。
The non-crosslinking monomer is not particularly limited, and examples thereof include styrene-based monomers such as styrene and α-methylstyrene; (meth) acrylic acid, maleic acid,
Carboxyl group-containing monomer such as maleic anhydride; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl ( (Meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth)
Alkyl (meth) acrylates such as acrylates; 2
-Hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth)
Oxygen atom-containing (meth) acrylates such as acrylate and glycidyl (meth) acrylate; nitrile-containing monomers such as (meth) acrylonitrile; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether; vinyl acetate, vinyl butyrate, vinyl laurate Acid vinyl esters such as vinyl stearate; unsaturated hydrocarbons such as ethylene, propylene, isoprene and butadiene; trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, chlorostyrene And halogen-containing monomers such as

【0021】上記架橋性のモノマーとしては特に限定さ
れず、例えば、テトラメチロールメタンテトラ(メタ)
アクリレート、テトラメチロールメタントリ(メタ)ア
クリレート、テトラメチロールメタンジ(メタ)アクリ
レート、トリメチロールプロパントリ(メタ)アクリレ
ート、ジペンタエリスリトールヘキサ(メタ)アクリレ
ート、ジペンタエリスリトールペンタ(メタ)アクリレ
ート、グリセロールトリ(メタ)アクリレート、グリセ
ロールジ(メタ)アクリレート、ポリエチレングリコー
ルジ(メタ)アクリレート、ポリプロピレングリコール
ジ(メタ)アクリレート等の多官能(メタ)アクリレー
ト類;γ―(メタ)アクリロキシプロピルトリメトキシ
シラン、トリメトキシシリルスチレン、ビニルトリメト
キシシラン等のシラン含有モノマー;トリアリル(イ
ソ)シアヌレート、トリアリルトリメリテート、ジビニ
ルベンゼン、ジアリルフタレート、ジアリルアクリルア
ミド、ジアリルエーテル等が挙げられる。
The crosslinkable monomer is not particularly limited, and examples thereof include tetramethylolmethanetetra (meth).
Acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri ( Polyfunctional (meth) acrylates such as (meth) acrylate, glycerol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate; γ- (meth) acryloxypropyltrimethoxysilane, trimethoxy Silane-containing monomers such as silylstyrene and vinyltrimethoxysilane; triallyl (iso) cyanurate, triallyl trimellitate, divinylbenzene, diari Phthalate, diallyl acrylamide, diallyl ether, and the like.

【0022】上記樹脂微粒子は、上記芯材微粒子と芯材
微粒子の表面に形成された樹脂被覆層とからなるもので
あり、上記樹脂被覆層は、金属イオンとの結合能を有す
る官能基を含有するものである。
The resin fine particles are composed of the core material fine particles and a resin coating layer formed on the surfaces of the core material fine particles, and the resin coating layer contains a functional group capable of binding with metal ions. To do.

【0023】上記金属イオンとの結合能を有する官能基
としては、金属イオンと配位結合やイオン結合等の結合
を形成する能力を有するものであれば特に限定されない
が、例えば、スルホン基、カルボキシル基、アミノ基、
アンモニウム基及びリン酸基からなる群より選ばれる少
なくとも1種を用いることが好ましい。なお、本明細書
において、アミノ基は、1級アミン、2級アミン、3級
アミン、イミン、アミド類、イミド類を含む。
The functional group capable of binding to the metal ion is not particularly limited as long as it has the ability to form a bond such as a coordinate bond or an ionic bond with the metal ion. For example, a sulfone group or a carboxyl group. Group, amino group,
It is preferable to use at least one selected from the group consisting of an ammonium group and a phosphoric acid group. In the present specification, the amino group includes primary amine, secondary amine, tertiary amine, imine, amides and imides.

【0024】上記樹脂被覆層の厚さの好ましい下限は
0.001μm、上限は1μmである。0.001μm
未満であると、金属被覆層との密着性が不充分となるこ
とがある。1μmを超えると、種々の圧縮時の物性を低
下させることがある。より好ましい下限は0.005μ
m、上限は0.2μmである。樹脂被覆層の厚さは、例
えば、樹脂被覆層を形成する前後における平均粒子径の
変化をコールターカウンタ等により測定することで求め
られる。
The preferred lower limit of the thickness of the resin coating layer is 0.001 μm, and the upper limit thereof is 1 μm. 0.001 μm
If it is less than the above range, the adhesion to the metal coating layer may be insufficient. When it exceeds 1 μm, various physical properties at the time of compression may be deteriorated. A more preferable lower limit is 0.005μ
m, the upper limit is 0.2 μm. The thickness of the resin coating layer can be obtained, for example, by measuring the change in average particle diameter before and after forming the resin coating layer with a Coulter counter or the like.

【0025】上記樹脂被覆層を芯材微粒子の表面に形成
する方法としては特に限定されず、例えば、金属イオン
との結合能を有する官能基を有し、かつ、エチレン性不
飽和基を有するモノマーを重合させて芯材微粒子の表面
に重合体を析出させる方法;上記官能基を含有するポリ
マー溶液に芯材微粒子を浸漬した後に濾取して乾燥する
方法;上記官能基を含有するポリマーと芯材微粒子とを
加熱溶融する方法;上記官能基を含有するポリマーと芯
材微粒子とを化学的に反応させる方法等の公知の方法が
挙げられる。なかでも、金属イオンとの結合能を有する
官能基を有し、かつ、エチレン性不飽和基を有するモノ
マーを重合させて芯材微粒子の表面に重合体を析出させ
る方法が好ましい。より好ましくは、金属イオンとの結
合能を有する官能基を有し、かつ、エチレン性不飽和基
を有するモノマーを芯材微粒子の表面にグラフト共重合
させて芯材微粒子の表面に重合体を析出させる方法であ
る。これにより、芯材微粒子と樹脂被覆層との密着性が
改善して物理的衝撃による樹脂被覆層の剥離脱落を防止
でき、芯材微粒子の表面を均一に隙間無く被覆すること
ができる。この場合、金属イオンとの結合能を有する官
能基を有し、かつ、エチレン性不飽和基を有するモノマ
ーを芯材微粒子の表面にグラフト共重合させて1%以上
のモノマーを芯材微粒子の構成分子の側鎖として形成さ
せることが好ましい。1%未満であると、芯材微粒子か
らの樹脂被覆層の剥離脱落が生じやすくなることがあ
る。この割合が高いほど、芯材微粒子からの樹脂被覆層
の剥離脱落を防止する効果が大きくなるので好ましい。
The method for forming the resin coating layer on the surface of the core material fine particles is not particularly limited, and examples thereof include a monomer having a functional group capable of binding to a metal ion and an ethylenically unsaturated group. To polymerize the polymer on the surface of the core material fine particles; a method of immersing the core material fine particles in the polymer solution containing the functional group, followed by filtration and drying; a polymer containing the functional group and the core Known methods such as a method of heating and melting the material fine particles; a method of chemically reacting the functional group-containing polymer with the core material fine particles can be mentioned. Among these, a method of polymerizing a monomer having a functional group capable of binding to a metal ion and having an ethylenically unsaturated group to deposit the polymer on the surface of the core material fine particles is preferable. More preferably, a monomer having a functional group capable of binding to a metal ion and having an ethylenically unsaturated group is graft-copolymerized on the surface of the core material fine particles to deposit a polymer on the surface of the core material fine particles. It is a method to let. As a result, the adhesion between the core material fine particles and the resin coating layer is improved, peeling off of the resin coating layer due to physical impact can be prevented, and the surface of the core material fine particles can be uniformly coated without gaps. In this case, a monomer having a functional group capable of binding to a metal ion and having an ethylenically unsaturated group is graft-copolymerized on the surface of the core fine particles to form 1% or more of the monomer in the core fine particles. It is preferably formed as a side chain of the molecule. If it is less than 1%, the resin coating layer may easily peel off from the core material fine particles. The higher the ratio, the greater the effect of preventing the resin coating layer from peeling off from the fine particles of the core material, which is preferable.

【0026】上記官能基がスルホン基であるモノマーと
しては、例えば、スチレンスルホン酸、メタリルスルホ
ン酸、2−アクリロイルアミノメチルプロパンスルホン
酸等が挙げられる。
Examples of the monomer whose functional group is a sulfone group include styrenesulfonic acid, methallylsulfonic acid, 2-acryloylaminomethylpropanesulfonic acid and the like.

【0027】上記官能基がカルボキシル基であるモノマ
ーとしては、例えば、(メタ)アクリル酸、クロトン
酸、フマル酸、マレイン酸、イタコン酸、2−(メタ)
アクリロイルオキシエチルコハク酸、2−(メタ)アク
リロイルオキシエチルフタル酸、2−(メタ)アクリロ
イルオキシエチルヘキサヒドロフタル酸、2−(メタ)
アクリロイルオキシエチルクエン酸等の有機酸と2−ヒ
ドロキエチル(メタ)アクリレートとのエステル等が挙
げられ、無水マレイン酸、無水イタコン酸等の酸無水物
も含まれる。
Examples of the monomer whose functional group is a carboxyl group include (meth) acrylic acid, crotonic acid, fumaric acid, maleic acid, itaconic acid, and 2- (meth) acrylic acid.
Acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl phthalic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth)
Examples thereof include esters of 2-hydroxyethyl (meth) acrylate with an organic acid such as acryloyloxyethyl citric acid, and acid anhydrides such as maleic anhydride and itaconic anhydride.

【0028】上記官能基がアミノ基又はアンモニウム基
であるモノマーとしては、例えば、ジメチルアミノエチ
ル(メタ)アクリレート、ジエチルアミノエチル(メ
タ)アクリレート等のアミノ基含有(メタ)アクリレー
ト類;(メタ)アクリルアミド、マレイミド、メチルマ
レイミド、フェニルマレイミド、N-ビニルアセトアミ
ド等のアミド・イミド類;N,N,N−トリメチル−N
−(2−メタクロイルオキシエチル)アンモニウムクロ
ライド、N,N,N−トリメチル−N−(2−ヒドロキ
シ−3−メタクロイルオキシプロピル)アンモニウムク
ロライド等の4級アンモニウム塩等が挙げられる。ま
た、例えば、グリシジル(メタ)アクリレートと1級ア
ミン又は2級アミンとを適当な触媒下で反応させたり、
2−ヒドロキシエチル(メタ)アクリレート等の活性水
素を有するモノマーとイソシアネート類等とを反応させ
たりすることにより上記官能基がアミノ基である任意の
モノマーを容易に合成できる。
Examples of the monomer whose functional group is an amino group or an ammonium group include amino group-containing (meth) acrylates such as dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate; (meth) acrylamide, Amide imides such as maleimide, methylmaleimide, phenylmaleimide and N-vinylacetamide; N, N, N-trimethyl-N
Examples thereof include quaternary ammonium salts such as-(2-methacryloyloxyethyl) ammonium chloride and N, N, N-trimethyl-N- (2-hydroxy-3-methacryloyloxypropyl) ammonium chloride. In addition, for example, glycidyl (meth) acrylate is reacted with a primary amine or a secondary amine under an appropriate catalyst,
By reacting a monomer having active hydrogen such as 2-hydroxyethyl (meth) acrylate with an isocyanate or the like, an arbitrary monomer whose functional group is an amino group can be easily synthesized.

【0029】上記官能基がリン酸基であるモノマーとし
ては、例えば、モノ(2−メタクリロイルオキシエチ
ル)アシッドホスフェート、モノ(2−アクリロイルオ
キシエチル)アシッドホスフェート等が挙げられる。
Examples of the monomer whose functional group is a phosphoric acid group include mono (2-methacryloyloxyethyl) acid phosphate and mono (2-acryloyloxyethyl) acid phosphate.

【0030】上記樹脂被覆層の形成に用いるモノマーと
しては、芯材微粒子の表面における上記官能基の量を制
御するために、上記官能基を有するモノマーのほかに、
上記官能基を有していないモノマーが混合されて使用さ
れてもよい。上記樹脂被覆層の形成に用いるモノマー全
量に対する上記官能基を有するモノマーの比率は1重量
%以上であることが好ましい。1重量%未満であると、
金属被覆層との充分な密着性を発揮できないことがあ
る。より好ましくは5重量%以上である。
As the monomer used for forming the resin coating layer, in addition to the monomer having the functional group, in order to control the amount of the functional group on the surface of the core material fine particles,
The monomers having no functional group may be mixed and used. The ratio of the monomer having the functional group to the total amount of the monomer used for forming the resin coating layer is preferably 1% by weight or more. When it is less than 1% by weight,
In some cases, sufficient adhesion with the metal coating layer may not be exhibited. It is more preferably at least 5% by weight.

【0031】上記金属イオンとの結合能を有する官能基
を有するモノマーと芯材微粒子の表面とをグラフト共重
合させて芯材微粒子の表面に重合体を析出させる方法と
しては特に限定されず、公知のグラフト共重合法が利用
できるが、最も一般的であり好適な方法としては、例え
ば、表面にエチレン性不飽和基やラジカル発生末端を導
入した芯材微粒子を上記モノマーとともに混合して上記
モノマーをグラフト共重合する方法が挙げられる。
The method of graft-copolymerizing the monomer having a functional group capable of binding to the metal ion and the surface of the core fine particles to deposit the polymer on the surface of the core fine particles is not particularly limited, and is known. Although the graft copolymerization method can be used, the most general and preferable method is, for example, mixing the above-mentioned monomer by mixing core material fine particles having an ethylenically unsaturated group or a radical-generating end introduced on the surface with the above-mentioned monomer. A method of graft copolymerization may be mentioned.

【0032】表面にエチレン性不飽和基やラジカル発生
末端を導入した芯材微粒子を得る方法としては、例え
ば、芯材微粒子を形成する際の重合反応を完結させずに
エチレン性不飽和基を一部残存させる方法、後処理によ
り芯材微粒子の表面にエチレン性不飽和基を導入する方
法等が挙げられる。
As a method for obtaining core material fine particles having an ethylenically unsaturated group or radical-generating end introduced on the surface thereof, for example, the ethylenically unsaturated group can be removed without completing the polymerization reaction when forming the core material fine particles. And a method of introducing an ethylenically unsaturated group into the surface of the core material fine particles by post-treatment.

【0033】上記後処理により芯材微粒子の表面にエチ
レン性不飽和基を導入する方法としては、例えば、活性
水素を有するモノマーを重合して表面に活性水素を有す
る芯材微粒子を得た後、芯材微粒子の表面の活性水素と
反応可能であって、かつ、エチレン性不飽和基を有する
化合物を反応させる方法等が挙げられる。上記活性水素
を有するモノマーとしては、例えば、水酸基、チオール
基、アミノ基、アルデヒド基、メルカプト基、シリル
基、シラノール基等の官能基を有するモノマーが挙げら
れる。上記活性水素と反応可能であって、かつ、エチレ
ン性不飽和基を有する化合物としては、例えば、2−
(メタ)クロイルオキシエチルイソシアネート、2−ア
クロイルオキシエチルイソシアネート、アリルイソシア
ネート等のイソシアネート基含有モノマー;グリシジル
(メタ)クリレート等のエポキシ基含有モノマー;γ―
(メタ)アクリロキシプロピルトリメトキシシラン、ト
リメトキシシリルスチレン、ビニルトリメトキシシラン
等のアルコキシル基含有モノマー;ビニルトリクロロシ
ラン等のクロロシラン類;(メタ)アクリル酸クロライ
ド等の酸クロライド等が挙げられる。
As a method of introducing an ethylenically unsaturated group to the surface of the core material fine particles by the above-mentioned post-treatment, for example, after polymerizing a monomer having active hydrogen to obtain core material fine particles having active hydrogen on the surface, Examples thereof include a method of reacting a compound which can react with active hydrogen on the surface of the core material fine particles and which has an ethylenically unsaturated group. Examples of the monomer having active hydrogen include monomers having a functional group such as a hydroxyl group, a thiol group, an amino group, an aldehyde group, a mercapto group, a silyl group and a silanol group. Examples of the compound capable of reacting with the active hydrogen and having an ethylenically unsaturated group include, for example, 2-
Isocyanate group-containing monomers such as (meth) cloyloxyethyl isocyanate, 2-acryloyloxyethyl isocyanate and allyl isocyanate; epoxy group-containing monomers such as glycidyl (meth) acrylate; γ-
Examples thereof include alkoxy group-containing monomers such as (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, and vinyltrimethoxysilane; chlorosilanes such as vinyltrichlorosilane; and acid chlorides such as (meth) acrylic acid chloride.

【0034】上記表面にラジカル発生末端を導入した芯
材微粒子を得る方法としては、例えば、活性水素を有す
る芯材微粒子モノマーを重合して表面に活性水素を有す
る芯材微粒子を得た後、酸化剤を反応させて、基材粒子
表面にラジカルを発生させる方法等が挙げられる。上記
還元性基を有する基材粒子を溶媒中に分散させ、樹脂被
覆層モノマー及びセリウム塩を添加し重合反応を行う。
この時重合系の反応速度を速めるために硝酸等の酸や塩
を添加して、pHを6以下に調整してもよい。上記酸化
剤としては、例えば、セリウム塩、過硫酸塩、過酸化水
素、ジメチルアニリン、過ヨウ素酸塩、過マンガン酸
塩、アルキルホウ素等が挙げられ、なかでも、4価のセ
リウム塩が好適である。上記4価のセリウム塩としては
特に限定されず、例えば、硫酸セリウム、硝酸セリウ
ム、硫酸セリウムアンモニウム、硝酸セリウムアンモニ
ウム、ピロリン酸セリウムアンモニウム、ヨウ化セリウ
ム等が挙げられる。
As a method for obtaining the core material fine particles having radical-generating terminals introduced on the surface, for example, a core material fine particle monomer having active hydrogen is polymerized to obtain core material fine particles having active hydrogen on the surface, followed by oxidation. Examples include a method of reacting an agent to generate radicals on the surface of the base particle. The base particles having the reducing group are dispersed in a solvent, and the resin coating layer monomer and cerium salt are added to carry out a polymerization reaction.
At this time, in order to accelerate the reaction rate of the polymerization system, an acid such as nitric acid or a salt may be added to adjust the pH to 6 or less. Examples of the oxidizing agent include cerium salt, persulfate, hydrogen peroxide, dimethylaniline, periodate, permanganate, alkylboron, and the like, and among them, a tetravalent cerium salt is preferable. is there. The tetravalent cerium salt is not particularly limited, and examples thereof include cerium sulfate, cerium nitrate, cerium ammonium sulfate, cerium ammonium nitrate, cerium ammonium pyrophosphate, and cerium iodide.

【0035】本発明の導電性微粒子は、上記樹脂被覆層
を有する樹脂微粒子の表面に導電性をもたらす金属被覆
層が形成されてなるものである。上記金属被覆層を形成
する金属としては特に限定されず、例えば、金、銀、
銅、プラチナ、パラジウム、ニッケル、ロジウム、ルテ
ニウム、コバルト、錫及びこれらの合金等が挙げられ
る。上記金属被覆層には、異なる金属からなる被覆層が
2層以上含まれていてもよい。貴金属からなる被覆層
は、導電性、耐食性を向上させるので好ましく、例え
ば、金属被覆層の最外層が金からなる被覆層であること
が好ましい。
The conductive fine particles of the present invention are obtained by forming a metal coating layer for providing conductivity on the surface of the resin fine particles having the resin coating layer. The metal forming the metal coating layer is not particularly limited, and for example, gold, silver,
Examples thereof include copper, platinum, palladium, nickel, rhodium, ruthenium, cobalt, tin and alloys thereof. The metal coating layer may include two or more coating layers made of different metals. The coating layer made of a noble metal is preferable because it improves conductivity and corrosion resistance. For example, the outermost layer of the metal coating layer is preferably a coating layer made of gold.

【0036】上記金属被覆層全体の厚さの好ましい下限
は0.005μm、上限は1μmである。0.005μ
m未満であると、金属被覆層としての充分な効果が得ら
れないことがある。1μmを超えると、粒子比重が大き
くなりすぎたり、樹脂微粒子の機械的強度や回復率等の
粒子物性の特性を損なったりすることがある。より好ま
しい下限は0.01μm、上限は0.3μmである。
The preferable lower limit of the total thickness of the metal coating layer is 0.005 μm, and the upper limit thereof is 1 μm. 0.005μ
When it is less than m, a sufficient effect as a metal coating layer may not be obtained. If it exceeds 1 μm, the specific gravity of the particles may become too large, or the physical properties of the particles such as the mechanical strength and recovery rate of the resin particles may be impaired. A more preferable lower limit is 0.01 μm and an upper limit is 0.3 μm.

【0037】上記金属被覆層が貴金属からなる場合にあ
っては、金属被覆層の厚さの好ましい下限は0.005
μm、上限は1μmである。0.005μm未満である
と、被覆ムラが生じ、被覆による充分な効果が得られな
いことがある。1μmを超えると、粒子比重が大きくな
りすぎバインダー等に分散する際に沈降や凝集を生じて
しまうことがある。より好ましい下限は0.01μm、
上限は0.5μmである。
When the metal coating layer is made of a noble metal, the preferable lower limit of the thickness of the metal coating layer is 0.005.
μm, the upper limit is 1 μm. If it is less than 0.005 μm, coating unevenness may occur, and a sufficient effect due to coating may not be obtained. If it exceeds 1 μm, the specific gravity of the particles becomes too large, and when dispersed in a binder or the like, sedimentation or aggregation may occur. A more preferable lower limit is 0.01 μm,
The upper limit is 0.5 μm.

【0038】上記金属被覆層を形成する方法としては特
に限定されず、例えば、物理的な金属蒸着法、化学的な
無電解メッキ法等の公知の方法により形成でき、なかで
も、被覆の均一性、被覆の密度、工程の簡便さ等から無
電解メッキ法が好適である。無電解メッキ法により形成
できる金属被覆層としては、例えば、金、銀、銅、プラ
チナ、パラジウム、ニッケル、ロジウム、ルテニウム、
コバルト、錫及びこれらの合金等の金属が挙げられ、な
かでも、ニッケルが広く汎用されている。なお、金によ
る被覆は無電解メッキ、置換メッキ、スパッタリング
等、既知の種々の方法を使用することができる。
The method for forming the above-mentioned metal coating layer is not particularly limited, and it can be formed by a known method such as a physical metal vapor deposition method or a chemical electroless plating method. The electroless plating method is preferable because of the density of the coating, the simplicity of the process, and the like. The metal coating layer that can be formed by the electroless plating method, for example, gold, silver, copper, platinum, palladium, nickel, rhodium, ruthenium,
Metals such as cobalt, tin and alloys thereof are mentioned, and nickel is widely used. For the coating with gold, various known methods such as electroless plating, displacement plating, and sputtering can be used.

【0039】以下、無電解ニッケルメッキを例にとって
金属被覆層を形成する方法について詳説する。上記無電
解ニッケルメッキとしては特に限定されず、一般的にエ
ッチング工程、触媒化工程、無電解メッキ工程から成り
立っている。本発明の導電性微粒子を製造する際には、
樹脂微粒子と金属被覆層との密着性がよいのでこの工程
を省略できる。なお、上記エッチング工程は、クロム
酸、硫酸一クロム酸混液、過マンガン酸溶液等の酸化
剤;塩酸、硫酸等の強酸;水酸化ナトリウム、水酸化カ
リウム等の強アルカリ溶液等を用いて樹脂微粒子の表面
に微小な凹凸を形成し、メッキ層の密着をよくするため
に行われるものである。
The method of forming the metal coating layer will be described in detail below by taking electroless nickel plating as an example. The electroless nickel plating is not particularly limited, and generally includes an etching step, a catalyzing step, and an electroless plating step. When producing the conductive fine particles of the present invention,
Since the adhesion between the resin fine particles and the metal coating layer is good, this step can be omitted. In the above etching step, resin fine particles are prepared by using an oxidizing agent such as chromic acid, a mixed solution of sulfuric acid and monochromic acid, a permanganate solution; a strong acid such as hydrochloric acid and sulfuric acid; a strong alkaline solution such as sodium hydroxide and potassium hydroxide. It is carried out in order to improve the adhesion of the plating layer by forming fine irregularities on the surface of the.

【0040】上記触媒化工程は、樹脂微粒子の表面に次
工程で行う無電解メッキの起点となりうる触媒層を形成
するものである。触媒層を形成する方法としては特に限
定されず、無電解メッキ用として市販されている触媒化
試薬を含めて種々の試薬を用いる方法により行うことが
でき、例えば、塩化パラジウムと塩化スズとからなる溶
液に、エッチングした樹脂微粒子を浸漬した後、硫酸、
塩酸等の酸や水酸化ナトリウム等のアルカリ溶液で活性
化してパラジウムを樹脂微粒子表面に析出させる方法;
硫酸パラジウム溶液にエッチングした樹脂微粒子を浸漬
した後、ジメチルアミンボラン等の還元剤を含む溶液で
活性化してパラジウムを樹脂微粒子表面に析出させる方
法等が挙げられる。
The above-mentioned catalyzation step is to form a catalyst layer on the surface of the resin fine particles which can be a starting point of electroless plating performed in the next step. The method for forming the catalyst layer is not particularly limited, and it can be performed by a method using various reagents including a catalyzing reagent that is commercially available for electroless plating. For example, it is composed of palladium chloride and tin chloride. After immersing the etched resin particles in the solution, sulfuric acid,
A method of activating palladium with an acid such as hydrochloric acid or an alkaline solution such as sodium hydroxide to deposit palladium on the surface of resin fine particles;
Examples include a method of immersing the etched resin fine particles in a palladium sulfate solution and then activating it with a solution containing a reducing agent such as dimethylamine borane to deposit palladium on the surface of the resin fine particles.

【0041】上記無電解メッキ工程は、触媒を付与した
樹脂微粒子を、次亜リン酸、ジメチルアミンボラン等の
還元剤の存在下でニッケル塩を含有する溶液中に浸漬
し、触媒を起点として樹脂微粒子の表面にニッケルを析
出させるものである。なお、金属メッキ層はニッケルが
主成分となるが、ニッケルと共に共析する他の金属が含
まれていてもよく、例えば、コバルト、銅、亜鉛、鉄、
マンガン、クロム、バナジウム、モリブデン、パラジウ
ム、錫、タングステン、レニウム等が挙げられる。
In the above electroless plating step, the resin fine particles to which the catalyst has been added are immersed in a solution containing a nickel salt in the presence of a reducing agent such as hypophosphorous acid or dimethylamine borane, and the catalyst is used as the starting point for the resin. Nickel is deposited on the surface of the fine particles. Although the metal plating layer has nickel as a main component, it may contain other metal that is co-deposited with nickel, for example, cobalt, copper, zinc, iron,
Examples thereof include manganese, chromium, vanadium, molybdenum, palladium, tin, tungsten, rhenium and the like.

【0042】本発明の導電性微粒子は、エッチング等の
表面化学処理を行うことなく樹脂微粒子と金属被覆層と
の間に強固の密着性を有するので、圧縮強度や圧縮後の
変形回復性能等の各種物性に優れ、圧着処理を行っても
樹脂微粒子の破壊や永久変形を来すことなく導通性を維
持することができる。本発明による樹脂微粒子と金属被
覆層との密着性向上については、如何にしてこのような
効果が発現するのかその詳細については明らかでない
が、樹脂微粒子と金属被覆層との界面において配位力や
イオン力等による様々な結合力が生じるためではないか
と考えられる。また、金属イオンとの結合能を有する官
能基が樹脂微粒子の表面にのみ存在するので、金属イオ
ンとの結合能を有する官能基が親水性の高い基であって
も、芯材微粒子の深部に至るまで存在する場合のよう
に、樹脂微粒子が膨潤等を発生して容積変化による金属
被覆層の破壊や機械的強度の低下を引き起こさない。ま
た、上記官能基の量を樹脂微粒子の表面において制御で
きるので、樹脂微粒子の圧縮時の各種物性を損なうこと
なく、金属被覆層との界面における被膜の密着性のみを
選択的に向上させることができる。
The conductive fine particles of the present invention have a strong adhesion between the resin fine particles and the metal coating layer without performing surface chemical treatment such as etching, so that the compression strength and the deformation recovery performance after compression can be improved. It is excellent in various physical properties, and it is possible to maintain electrical conductivity without causing damage or permanent deformation of the resin fine particles even when pressure-bonding treatment is performed. Regarding the improvement of the adhesiveness between the resin fine particles and the metal coating layer according to the present invention, it is not clear in detail how such an effect is exhibited. It is thought that this is because various binding forces due to ionic force or the like are generated. Further, since the functional group having the ability to bind to metal ions is present only on the surface of the resin fine particles, even if the functional group having the ability to bind to metal ions is a highly hydrophilic group, it may be present in the deep part of the core material fine particles. As in the case of existing up to the present, the resin fine particles do not cause swelling or the like to cause destruction of the metal coating layer or reduction of mechanical strength due to volume change. Further, since the amount of the functional group can be controlled on the surface of the resin fine particles, it is possible to selectively improve only the adhesion of the coating film at the interface with the metal coating layer without impairing various physical properties at the time of compression of the resin fine particles. it can.

【0043】本発明の導電性微粒子は、異方性導電材料
の構成材料として好適である。上記異方性導電材料とし
ては本発明の導電性微粒子を用いてなるものであれば特
に限定されず、さまざまな形態により相対向する基板同
士や電極端子同士を電気的に接続するものである。かか
る本発明の導電性微粒子を用いてなる異方性導電材料も
また本発明の1つである。
The conductive fine particles of the present invention are suitable as a constituent material of an anisotropic conductive material. The anisotropic conductive material is not particularly limited as long as it uses the conductive fine particles of the present invention, and electrically connects mutually opposing substrates or electrode terminals in various forms. An anisotropic conductive material using such conductive fine particles of the present invention is also one aspect of the present invention.

【0044】本発明の異方性導電材料を用いて電極同士
を電気的に接続する方法としては特に限定されず、例え
ば、絶縁性のバインダー樹脂中に本発明の導電性微粒子
を分散させて異方性導電接着剤を作製したうえで、この
異方性導電接着剤により接続する方法;絶縁性のバイン
ダー樹脂と導電性微粒子とを別々に使用して接続する方
法等が挙げられる。
The method of electrically connecting the electrodes using the anisotropic conductive material of the present invention is not particularly limited, and for example, the conductive fine particles of the present invention may be dispersed in an insulating binder resin to form different electrodes. Examples of the method include a method in which an anisotropic conductive adhesive is prepared and then connected using this anisotropic conductive adhesive; a method in which an insulating binder resin and conductive fine particles are separately used for connection.

【0045】上記バインダー樹脂としては特に限定され
ず、例えば、アクリレート樹脂、エチレン−酢酸ビニル
樹脂、スチレン−ブタジエンブロック共重合体等の熱可
塑性樹脂;グリシジル基を有するモノマーやオリゴマー
及びイソシアネート等の硬化剤との反応により得られる
硬化性樹脂組成物等の光や熱による硬化性樹脂組成物等
が挙げられる。
The binder resin is not particularly limited, and examples thereof include thermoplastic resins such as acrylate resins, ethylene-vinyl acetate resins and styrene-butadiene block copolymers; curing agents such as monomers and oligomers having glycidyl groups and isocyanates. Examples thereof include a curable resin composition obtained by a reaction with a curable resin composition and the like by light and heat.

【0046】上記異方性導電接着剤としては特に限定さ
れず、例えば、異方性導電フィルム、異方性導電ペース
ト、異方性導電インク等が挙げられる。上記異方性導電
フィルムは、例えば、異方性導電接着剤に溶媒を加えて
溶液状にし、この溶液を離型フィルム上に流し込んだ
後、溶媒を蒸発させて異方性導電接着剤を被膜状にする
ことにより得られる。得られた異方性導電フィルムは、
例えば、接着すべき電極上に配置され、配置された異方
性導電膜上に対向電極を重ね合わせ、加熱圧縮すること
により電極間の接続に使用される。
The anisotropic conductive adhesive is not particularly limited, and examples thereof include an anisotropic conductive film, an anisotropic conductive paste, and an anisotropic conductive ink. The anisotropic conductive film is, for example, a solvent is added to the anisotropic conductive adhesive to form a solution, the solution is poured onto a release film, and then the solvent is evaporated to coat the anisotropic conductive adhesive. It is obtained by shaping. The obtained anisotropic conductive film,
For example, it is used for connection between electrodes by arranging it on the electrodes to be adhered, superimposing a counter electrode on the arranged anisotropic conductive film, and compressing by heating.

【0047】上記異方性導電ペーストは、例えば、異方
性導電接着剤をペースト状にすることにより得られる。
得られた異方性導電ペーストは、例えば、適当なディス
ペンサーに入れられ、接続すべき電極上に所望の厚さに
塗工され、塗工された異方性導電ペースト上に対向電極
を重ね合わせ、加熱するとともに加圧して樹脂を硬化さ
せることにより、電極間の接続に使用される。
The above anisotropic conductive paste is obtained, for example, by forming an anisotropic conductive adhesive into a paste.
The obtained anisotropic conductive paste is, for example, placed in a suitable dispenser, coated to a desired thickness on the electrodes to be connected, and the counter electrode is superposed on the coated anisotropic conductive paste. It is used for connection between electrodes by heating and pressurizing to cure the resin.

【0048】上記異方性導電インクは、例えば、異方性
導電接着剤に溶媒を加えて印刷に適した粘度にすること
により得られる。得られた異方性導電インクは、例え
ば、接着すべき電極上にスクリーン印刷し、その溶媒を
蒸発させた後、印刷された異方性導電インクの上に対向
電極を重ね合わせ、加熱圧縮することにより電極間の接
続に使用される。
The above anisotropic conductive ink can be obtained, for example, by adding a solvent to the anisotropic conductive adhesive to obtain a viscosity suitable for printing. The obtained anisotropic conductive ink is, for example, screen-printed on the electrode to be adhered, after evaporating the solvent thereof, the counter electrode is superimposed on the printed anisotropic conductive ink and heated and compressed. Therefore, it is used for connection between electrodes.

【0049】上記異方性導電材料におけるフィルム膜
厚、塗工膜厚及び印刷膜厚は、含有する導電性微粒子の
平均粒子径と接続すべき電極の仕様とから計算し、接続
すべき電極間に導電性微粒子が挟持され、接続すべき電
極が形成された接合基板同士の空隙がバインダー樹脂層
により充分に満たされるよう設定することが好ましい。
The film thickness, coating thickness and print thickness of the anisotropic conductive material are calculated from the average particle diameter of the conductive fine particles contained and the specifications of the electrodes to be connected, and the distance between the electrodes to be connected is calculated. It is preferable to set such that the conductive fine particles are sandwiched between and the voids between the bonding substrates in which the electrodes to be connected are formed are sufficiently filled with the binder resin layer.

【0050】本発明の異方性導電材料は、高い導電性を
示すばかりでなく、加重圧縮した際にも金属被膜層が剥
離、破壊されず、相対向する電極基板間の電気的な接続
を確保することができる。また、経時安定性にも優れる
ので、長期間の使用においてもメッキ割れ等による導電
性の低下を来すことなく、電極基板間の電気的な接続を
堅持し信頼性の向上を図ることができる。
The anisotropic conductive material of the present invention not only exhibits high conductivity, but the metal coating layer is not peeled or destroyed even when it is subjected to load compression, so that electrical connection between opposing electrode substrates can be achieved. Can be secured. Further, since it is excellent in stability over time, it is possible to firmly maintain the electrical connection between the electrode substrates and improve the reliability without lowering the conductivity due to plating cracks or the like even after long-term use. .

【0051】[0051]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれらの実施例のみに限定されるも
のではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0052】(実施例1)平均粒子径が5.0μm、粒
子径の変動係数が4.9%、10%K値が4900MP
a、回復率が60%であり、ジビニルベンゼンを主成分
とし、表面に少量の水酸基を有する芯材微粒子(積水化
学工業社製、ミクロパールSP−205)10gを脱水
したテトラヒドロフラン(THF)100g中に超音波
洗浄機を用いて均一に分散させた。この分散液にトリエ
チルアミン10gを加えて60℃まで昇温し、メタクリ
ル酸クロライド10gを滴下した後3時間反応させた。
反応終了後、芯材微粒子を濾別し、THFとメタノール
で充分に洗浄して表面にエチレン性不飽和基を導入した
芯材微粒子を得た。
(Example 1) The average particle diameter is 5.0 μm, the variation coefficient of the particle diameter is 4.9%, and the 10% K value is 4900MP.
a, a recovery rate of 60%, divinylbenzene as a main component, and 10 g of core material fine particles (manufactured by Sekisui Chemical Co., Ltd., Micropearl SP-205) having a small amount of hydroxyl groups on the surface were dehydrated in 100 g of tetrahydrofuran (THF). Was uniformly dispersed using an ultrasonic cleaner. 10 g of triethylamine was added to this dispersion, the temperature was raised to 60 ° C., 10 g of methacrylic acid chloride was added dropwise, and the reaction was carried out for 3 hours.
After completion of the reaction, the core material fine particles were separated by filtration and thoroughly washed with THF and methanol to obtain core material fine particles having an ethylenically unsaturated group introduced on the surface.

【0053】得られた表面にエチレン性不飽和基を導入
した芯材微粒子をイソプロパノール(IPA)100g
に分散し、更にメタクリル酸20g、エチルメタクリレ
ート20g及びパーオクタ0(日本油脂社製)を添加
し、窒素雰囲気下、70℃で3時間重合させ、厚さ0.
04μmの樹脂被覆層を有する樹脂微粒子を得た。
100 g of isopropanol (IPA) was added as fine particles of core material having an ethylenically unsaturated group introduced on the obtained surface.
20 g of methacrylic acid, 20 g of ethyl methacrylate and Perocta 0 (manufactured by NOF CORPORATION) were added, and the mixture was polymerized at 70 ° C. for 3 hours in a nitrogen atmosphere to give a thickness of 0.
Resin fine particles having a resin coating layer of 04 μm were obtained.

【0054】得られた樹脂微粒子を、パラジウム−スズ
系触媒(シプレイ社製、キャタリスト44)を5重量%
含有する塩酸水溶液100mlに分散させた後、樹脂微
粒子を濾別し、更に10%塩酸溶液中に分散させパラジ
ウムを活性化させた。この樹脂微粒子を充分に水洗した
あと再度、蒸留水500mlを加えて充分に分散させて
懸濁液を得た。得られた懸濁液を50℃で攪拌しなが
ら、硫酸ニッケル6水和物50g/L、次亜リン酸ナト
リウム40g/L、クエン酸50g/LからなるpHを
7.5に調整した無電解メッキ液を徐々に添加して無電
解ニッケルメッキを行い、メッキによる金属被覆層が
0.1μmになった時点で無電解メッキ液の添加をや
め、導電性微粒子1を得た。なお、金属被覆層の厚みは
下記式(2)により計算した。 tNi(μm)=(ρP×WNi×D)/{6×ρNi×(100−WNi)} (2) ρP:樹脂微粒子の比重 ρNi:金属被覆層の比重 WNi:導電性微粒子中のニッケルの含有率(重量%) D:樹脂微粒子の平均粒子径(μm)
The obtained resin fine particles were mixed with 5% by weight of a palladium-tin catalyst (manufactured by Shipley, Catalyst 44).
After dispersing in 100 ml of the contained hydrochloric acid aqueous solution, the resin fine particles were filtered off and further dispersed in a 10% hydrochloric acid solution to activate palladium. After thoroughly washing the resin fine particles with water, 500 ml of distilled water was added again to disperse the resin fine particles sufficiently to obtain a suspension. While stirring the obtained suspension at 50 ° C., electrolysis was carried out by adjusting the pH of nickel sulfate hexahydrate 50 g / L, sodium hypophosphite 40 g / L, citric acid 50 g / L to 7.5. The plating solution was gradually added to carry out electroless nickel plating, and when the metal coating layer by plating became 0.1 μm, the addition of the electroless plating solution was stopped to obtain conductive fine particles 1. The thickness of the metal coating layer was calculated by the following formula (2). t Ni (μm) = (ρ P × W Ni × D) / {6 × ρ Ni × (100-W Ni )} (2) ρ P : Specific gravity of resin fine particles ρ Ni : Specific gravity of metal coating layer W Ni : Nickel content in conductive fine particles (% by weight) D: Average particle diameter of resin fine particles (μm)

【0055】得られた導電性微粒子1について、10%
K値、回復率、及び金属被覆層の密着性の測定を以下の
方法により実施した。この結果を表1に示した。
10% of the obtained conductive fine particles 1
The K value, the recovery rate, and the adhesion of the metal coating layer were measured by the following methods. The results are shown in Table 1.

【0056】(10%K値の測定)微小圧縮試験器(島
津製作所社製、PCT−200)を用い、圧縮速度2.
6mN/秒、最大試験荷重98mNの条件下で、直径5
0μmのダイアモンド製円柱からなる平滑圧子端面によ
り導電性微粒子1を圧縮してときの圧縮変位S(mm)
を測定し、下記式(1)により10%K値を算出した。 10%K値(Pa)=2.1×103・F・S-3/2・R-1/2 (1) 式中、Fは粒子を10%圧縮変形したときの荷重値
(N)を表し、Sは粒子を10%圧縮変形したときの圧
縮変位(mm)を表し、Rは粒子の半径(mm)を表
す。
(Measurement of 10% K value) Using a micro compression tester (PCT-200 manufactured by Shimadzu Corp.), a compression speed of 2.
Under conditions of 6 mN / sec and maximum test load of 98 mN, diameter 5
Compressive displacement S (mm) when the conductive fine particles 1 are compressed by a smooth indenter end surface made of a 0 μm diamond cylinder
Was measured and the 10% K value was calculated by the following formula (1). 10% K value (Pa) = 2.1 × 10 3 · F · S −3/2 · R −1/2 (1) In the formula, F is a load value (N) when the particles are compressed and deformed by 10%. Represents the compressive displacement (mm) when the particle is compressed and deformed by 10%, and R represents the radius (mm) of the particle.

【0057】(回復率の測定)微小圧縮試験器(島津製
作所社製、PCT−200)を用い、粒子を原点荷重値
0.98mNを経て荷重値9.8mNまで圧縮し、その
後徐々に負荷を取り除いた際の圧縮変位を測定し、下記
式(2)により回復率を算出した。 回復率(%)=(L1/L2)×100 (2) 式中、L1は原点荷重値の変位と最高荷重変位との差
(mm)を表し、L2は原点荷重値の変位と原点荷重復
帰時の変位との差(mm)を表す。
(Measurement of Recovery Rate) Using a micro compression tester (PCT-200 manufactured by Shimadzu Corporation), the particles were compressed to a load value of 9.8 mN through an origin load value of 0.98 mN, and then gradually loaded. The compression displacement when removed was measured, and the recovery rate was calculated by the following formula (2). Recovery rate (%) = (L1 / L2) × 100 (2) In the formula, L1 represents the difference (mm) between the displacement of the origin load value and the maximum load displacement, and L2 is the displacement of the origin load value and the origin load return. The difference (mm) from the time displacement is shown.

【0058】(金属被覆層の密着性の測定)導電性微粒
子1をエポキシ系接着剤(古川化工社製、SE−450
0)に5重量%の割合で混合し、ホモジナイザーで充分
に分散させて異方性導電接着剤Xを作製した。この異方
性導電接着剤Xにφ4.5μmのグラスファイバー(G
F)を5重量%の割合で加え、ホモジナイザーで充分に
分散させて異方性導電接着剤Yを作製した。これら2種
類の異方導電性接着剤それぞれについて、平坦なガラス
基板(5cm×5cm)上に0.1g量り取り、この上
から別の平坦なガラス基板(5cm×5cm)で挟み込
み10N/cm2の荷重をかけた後、ゴムハンマーで1
00回タッピングした。その後、光学顕微鏡にて導電性
微粒子を1視野当たり100個観察し、被覆の半分以上
が剥離又は破壊されている粒子数を計数した。これを任
意の視野10カ所で実施しその平均値を剥離比率として
求めた。なお、剥離比率が小さいほど金属被覆層の密着
性が高いことを示す。
(Measurement of Adhesion of Metal Covering Layer) The conductive fine particles 1 were coated with an epoxy adhesive (manufactured by Furukawa Chemical Co., SE-450).
0) was mixed at a ratio of 5% by weight and sufficiently dispersed by a homogenizer to prepare an anisotropic conductive adhesive X. This anisotropic conductive adhesive X has a glass fiber of φ4.5 μm (G
F) was added at a rate of 5% by weight and sufficiently dispersed by a homogenizer to prepare an anisotropic conductive adhesive Y. Each of these two kinds of anisotropic conductive adhesives was weighed on a flat glass substrate (5 cm x 5 cm) by 0.1 g, and sandwiched with another flat glass substrate (5 cm x 5 cm) from the top to 10 N / cm 2 After applying the load of 1 with a rubber hammer
I tapped it 00 times. After that, 100 conductive fine particles were observed per visual field with an optical microscope, and the number of particles in which more than half of the coating was peeled or destroyed was counted. This was performed at 10 arbitrary visual fields, and the average value was obtained as the peeling ratio. The smaller the peeling ratio, the higher the adhesion of the metal coating layer.

【0059】(実施例2)メタクリル酸の代わりにアク
リルアミドを用いたこと以外は実施例1と同様にして厚
さ0.03μmの樹脂被覆層を有する樹脂微粒子を得
た。この樹脂微粒子に実施例1と同様にして無電解メッ
キ処理を施し、導電性微粒子2を得た。得られた導電性
微粒子2について、実施例1と同様にして10%K値、
回復率、及び、金属被覆層の密着性の測定を実施し、そ
の結果を表1に示した。
Example 2 Resin fine particles having a resin coating layer with a thickness of 0.03 μm were obtained in the same manner as in Example 1 except that acrylamide was used instead of methacrylic acid. The resin fine particles were subjected to electroless plating treatment in the same manner as in Example 1 to obtain conductive fine particles 2. For the obtained conductive fine particles 2, in the same manner as in Example 1, a 10% K value,
The recovery rate and the adhesion of the metal coating layer were measured, and the results are shown in Table 1.

【0060】(実施例3)メタクリル酸の代わりにN,
N,N−トリメチル−N−(2−メタクロイルオキシエ
チル)アンモニウムクロライドを用いたこと以外は実施
例1と同様にして厚さ0.03μmの樹脂被覆層を有す
る樹脂微粒子を得た。この樹脂微粒子に実施例1と同様
にして無電解メッキ処理を施し、導電性微粒子3を得
た。得られた導電性微粒子3について、実施例1と同様
にして10%K値、回復率、及び、金属被覆層の密着性
の測定を実施し、その結果を表1に示した。
Example 3 Instead of methacrylic acid, N,
Resin particles having a resin coating layer with a thickness of 0.03 μm were obtained in the same manner as in Example 1 except that N, N-trimethyl-N- (2-methacryloyloxyethyl) ammonium chloride was used. The resin fine particles were subjected to electroless plating treatment in the same manner as in Example 1 to obtain conductive fine particles 3. For the obtained conductive fine particles 3, the 10% K value, the recovery rate, and the adhesion of the metal coating layer were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0061】(実施例4)実施例1で用いた芯材微粒子
(積水化学工業社製、ミクロパールSP−205)10
gを、超音波洗浄機を用いて蒸留水100g中に均一に
分散させた。この分散液にメタクリル酸20gを加えて
40℃まで昇温し、硝酸セリウムアンモニウム5gを溶
解した1N硝酸水溶液50mLを窒素雰囲気下で徐々に
滴下した後3時間反応させた。反応終了後、芯材微粒子
を濾別し、メタノールと蒸留水で充分に洗浄して厚さ
0.03μmの樹脂被覆層を有する樹脂微粒子を得た。
Example 4 Core fine particles (Micropearl SP-205 manufactured by Sekisui Chemical Co., Ltd.) used in Example 10
g was evenly dispersed in 100 g of distilled water using an ultrasonic cleaner. 20 g of methacrylic acid was added to this dispersion, the temperature was raised to 40 ° C., 50 mL of a 1N nitric acid aqueous solution in which 5 g of cerium ammonium nitrate was dissolved was gradually added dropwise under a nitrogen atmosphere, and then the reaction was carried out for 3 hours. After completion of the reaction, the core material fine particles were separated by filtration and sufficiently washed with methanol and distilled water to obtain resin fine particles having a resin coating layer with a thickness of 0.03 μm.

【0062】得られた樹脂微粒子を、硫酸パラジウムを
主成分とするネオガント834(アトテックジャパン社
製)を8重量%含有するパラジウム触媒化液100mL
に添加し、室温にて30分間攪拌した。この樹脂微粒子
を濾取、水洗した後、pH6.0に調整された0.5重
量%ジメチルアミンボラン液に添加し、パラジウムを活
性化させた。この樹脂微粒子に実施例1と同様にして無
電解メッキ処理を施し、導電性微粒子4を得た。得られ
た導電性微粒子4について、実施例1と同様にして10
%K値、回復率、及び、金属被覆層の密着性の測定を実
施し、その結果を表1に示した。
100 mL of a palladium catalyzed liquid containing 8% by weight of the obtained resin fine particles of Neogant 834 (manufactured by Atotech Japan Co., Ltd.) containing palladium sulfate as a main component.
And stirred for 30 minutes at room temperature. The resin fine particles were collected by filtration and washed with water, and then added to a 0.5 wt% dimethylamine borane solution adjusted to pH 6.0 to activate palladium. The resin fine particles were subjected to electroless plating treatment in the same manner as in Example 1 to obtain conductive fine particles 4. The conductive fine particles 4 thus obtained were processed in the same manner as in Example 1 to 10
The% K value, recovery rate, and adhesion of the metal coating layer were measured, and the results are shown in Table 1.

【0063】(実施例5)メタクリル酸の代わりにスチ
レンスルホン酸ナトリウムを用いたこと以外は実施例4
と同様にして厚さ0.02μmの樹脂被覆層を有する樹
脂微粒子を得た。この樹脂微粒子に実施例4と同様にし
て無電解メッキ処理を施し、導電性微粒子5を得た。得
られた導電性微粒子5について、実施例1と同様にして
10%K値、回復率、及び、金属被覆層の密着性の測定
を実施し、その結果を表1に示した。
Example 5 Example 4 except that sodium styrenesulfonate was used instead of methacrylic acid.
In the same manner as described above, resin fine particles having a resin coating layer having a thickness of 0.02 μm were obtained. The resin fine particles were subjected to electroless plating treatment in the same manner as in Example 4 to obtain conductive fine particles 5. For the obtained conductive fine particles 5, the 10% K value, the recovery rate, and the adhesion of the metal coating layer were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0064】(実施例6)メタクリル酸の代わりにモノ
(2−メタクロイルオキシエチル)リン酸ナトリウムを
用いたこと以外は実施例4と同様にして厚さ0.01μ
mの樹脂被覆層を有する樹脂微粒子を得た。この樹脂微
粒子に実施例4と同様にして無電解メッキ処理を施し、
導電性微粒子6を得た。得られた導電性微粒子6につい
て、実施例1と同様にして10%K値、回復率、及び、
金属被覆層の密着性の測定を実施し、その結果を表1に
示した。
Example 6 A film having a thickness of 0.01 μm was prepared in the same manner as in Example 4 except that sodium mono (2-methacryloyloxyethyl) phosphate was used instead of methacrylic acid.
Resin fine particles having a resin coating layer of m were obtained. The resin fine particles were subjected to electroless plating in the same manner as in Example 4,
The conductive fine particles 6 were obtained. For the obtained conductive fine particles 6, in the same manner as in Example 1, a 10% K value, a recovery rate, and
The adhesion of the metal coating layer was measured, and the results are shown in Table 1.

【0065】(比較例1)樹脂被覆層を形成させなかっ
た以外は実施例1と同様にして樹脂微粒子を作製し、こ
れに無電解メッキ処理を施し、導電性微粒子7を得た。
得られた導電性微粒子7について、実施例1と同様にし
て10%K値、回復率、及び、金属被覆層の密着性の測
定を実施し、その結果を表1に示した。
(Comparative Example 1) Resin fine particles were prepared in the same manner as in Example 1 except that the resin coating layer was not formed, and electroless plating was performed on the fine resin particles to obtain conductive fine particles 7.
With respect to the obtained conductive fine particles 7, the 10% K value, the recovery rate, and the adhesion of the metal coating layer were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0066】(比較例2)樹脂被覆層を形成させなかっ
た以外は実施例4と同様にして無電解メッキを行った
が、パラジウムが樹脂微粒子の表面から脱落してしま
い、無電解メッキ処理で金属被覆層を形成できなかっ
た。
(Comparative Example 2) Electroless plating was performed in the same manner as in Example 4 except that the resin coating layer was not formed. However, palladium fell off from the surface of the resin fine particles, and electroless plating was performed. The metal coating layer could not be formed.

【0067】(実施例7)ポリビニルアルコール(日本
合成化学工業社製、GH−20)の3重量%水溶液80
0重量部に、ジビニルベンゼン95重量部、2−ヒドロ
キシエチルメタクリレート5重量部、及び、過酸化ベン
ゾイル2重量部の混合液を加えてホモジナイザーにて撹
拌して粒度調整を行った。その後撹拌しながら窒素気流
下で80℃まで昇温し、15時間反応を行い、微粒子を
得た。得られた微粒子を熱イオン交換水及びメタノール
にて洗浄後、分級操作を行い、平均粒子径=4.8μ
m、CV値=5.0%の芯材微粒子を得た。得られた芯
材微粒子の10%K値及び回復率を実施例1の方法によ
り測定したところ、それぞれ4500MPa及び53%
であった。得られた芯材微粒子10gを脱水したTHF
100g中に超音波洗浄機を用いて均一に分散させた。
この分散液にジラウリン酸ジブチルスズ0.2gを加え
た後60℃まで昇温し、2−メタクロイルオキシエチル
イソシアネート10gを滴下した後3時間反応させた。
反応終了後、芯材微粒子を濾別し、THFで充分に洗浄
して表面にエチレン性不飽和基を導入した芯材微粒子を
得た。得られた表面にエチレン性不飽和基を導入した芯
材微粒子の表面に実施例1と同様にして厚さ0.04μ
mの樹脂被覆層を形成させ、樹脂微粒子を得た。得られ
た樹脂微粒子に実施例1と同様にして無電解メッキ処理
を施し、導電性微粒子8を得た。得られた導電性微粒子
8について、実施例1と同様にして10%K値、回復
率、及び、金属被覆層の密着性の測定を実施し、その結
果を表1に示した。
Example 7 A 3% by weight aqueous solution of polyvinyl alcohol (GH-20, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) 80
A mixed solution of 95 parts by weight of divinylbenzene, 5 parts by weight of 2-hydroxyethyl methacrylate, and 2 parts by weight of benzoyl peroxide was added to 0 part by weight, and the mixture was stirred with a homogenizer to adjust the particle size. Then, while stirring, the temperature was raised to 80 ° C. under a nitrogen stream and the reaction was performed for 15 hours to obtain fine particles. After washing the obtained fine particles with hot ion-exchanged water and methanol, a classification operation is performed to obtain an average particle diameter of 4.8 μm.
m, CV value = 5.0% of core material fine particles were obtained. When the 10% K value and the recovery rate of the obtained core material fine particles were measured by the method of Example 1, they were 4500 MPa and 53%, respectively.
Met. THF obtained by dehydrating 10 g of the obtained core material fine particles
It was uniformly dispersed in 100 g by using an ultrasonic cleaner.
To this dispersion was added 0.2 g of dibutyltin dilaurate, the temperature was raised to 60 ° C., 10 g of 2-methacryloyloxyethyl isocyanate was added dropwise, and the mixture was reacted for 3 hours.
After the completion of the reaction, the fine particles of the core material were separated by filtration and sufficiently washed with THF to obtain fine particles of the core material having an ethylenically unsaturated group introduced on the surface. In the same manner as in Example 1, the thickness of the obtained core material fine particles having an ethylenically unsaturated group introduced was 0.04 μm.
m resin coating layer was formed to obtain resin fine particles. The obtained resin fine particles were subjected to electroless plating treatment in the same manner as in Example 1 to obtain conductive fine particles 8. For the obtained conductive fine particles 8, the 10% K value, the recovery rate, and the adhesion of the metal coating layer were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0068】(比較例3)2−ヒドロキシエチルメタク
リレートの代わりにメタクリル酸を用いたこと以外は実
施例7と同様にして平均粒子径=4.8μm、CV値=
4.9%の芯材微粒子を得た。得られた芯材微粒子に樹
脂被覆層を形成させずに実施例1と同様にして無電解メ
ッキ処理を施し、導電性微粒子9を得た。得られた導電
性微粒子9について、実施例1と同様にして10%K
値、回復率、及び、金属被覆層の密着性の測定を実施
し、その結果を表1に示した。
Comparative Example 3 Average particle diameter = 4.8 μm, CV value = as in Example 7 except that methacrylic acid was used instead of 2-hydroxyethyl methacrylate.
4.9% of core material fine particles were obtained. Electroless plating treatment was performed on the obtained core material fine particles in the same manner as in Example 1 without forming a resin coating layer, to obtain conductive fine particles 9. The conductive fine particles 9 thus obtained were subjected to 10% K in the same manner as in Example 1.
The values, recovery rate, and adhesion of the metal coating layer were measured, and the results are shown in Table 1.

【0069】(比較例4)ジビニルベンゼン95重量
部、2−ヒドロキシエチルメタクリレート5重量部の代
わりにジビニルベンゼン70重量部、メタクリル酸30
重量部を用いたこと以外は実施例7と同様にして平均粒
子径=4.8μm、CV値=4.9%の芯材微粒子を得
た。得られた芯材微粒子に樹脂被覆層を形成させずに実
施例1と同様にして無電解メッキ処理を施し、導電性微
粒子10を得た。得られた導電性微粒子10について、
実施例1と同様にして10%K値、回復率、及び、金属
被覆層の密着性の測定を実施し、その結果を表1に示し
た。
Comparative Example 4 Instead of 95 parts by weight of divinylbenzene and 5 parts by weight of 2-hydroxyethyl methacrylate, 70 parts by weight of divinylbenzene and 30 parts of methacrylic acid were used.
Core material fine particles having an average particle diameter of 4.8 μm and a CV value of 4.9% were obtained in the same manner as in Example 7 except that parts by weight were used. The obtained core material fine particles were subjected to electroless plating in the same manner as in Example 1 without forming a resin coating layer, to obtain conductive fine particles 10. Regarding the obtained conductive fine particles 10,
The 10% K value, the recovery rate, and the adhesion of the metal coating layer were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0070】[0070]

【表1】 [Table 1]

【0071】(実施例8)シアン化金カリウム5.9g
(金換算量:4g)を含有する置換金メッキ液(日本高
純度化学社製、IM−GoldST)2000mLに、
実施例1で作製した導電性微粒子1を10g添加して、
攪拌しながら70℃、30分間反応させた。反応終了
後、導電性微粒子1を濾取、水洗し、アルコール置換し
た後、真空乾燥させ、金で被覆された導電性微粒子11
を得た。得られた導電性微粒子11をエポキシ樹脂に混
練し、混練物を硬化させた後、マイクロトームでスライ
スし、混練物の断面を透過型電子顕微鏡で観察したとこ
ろ、導電性微粒子11の表面が約0.04μmの金でほ
ぼ均一に被覆されていることが確認できた。なお、反応
終了後に置換金メッキ液中における金の濃度を測定した
ところ10ppm以下であった。
Example 8 Potassium gold cyanide 5.9 g
In 2000 mL of a displacement gold plating solution (IM-GoldST manufactured by Nippon Kojundo Chemical Co., Ltd.) containing (gold equivalent: 4 g),
10 g of the conductive fine particles 1 produced in Example 1 were added,
The mixture was reacted at 70 ° C. for 30 minutes while stirring. After the reaction is completed, the conductive fine particles 1 are filtered, washed with water, replaced with alcohol, and then dried in a vacuum, and the conductive fine particles 11 coated with gold are obtained.
Got The obtained conductive fine particles 11 were kneaded with an epoxy resin, the kneaded material was cured, and then sliced with a microtome, and the cross section of the kneaded material was observed with a transmission electron microscope. It was confirmed that it was almost uniformly covered with 0.04 μm of gold. After the reaction, the gold concentration in the displacement gold plating solution was measured and found to be 10 ppm or less.

【0072】(導電性変化の測定)微小圧縮電気抵抗測
定器(島津製作所社製、PCT−200改)を用いて導
電性微粒子11を圧縮しながら接触抵抗値を測定した。
圧縮変形が10%に達した時点で接触抵抗値が3Ω以下
である粒子20個について、引き続き平均粒子径の50
%まで徐々に圧縮していくと、その過程において突然抵
抗値が10Ω以上に増大する粒子が認められた。これら
の粒子を光学顕微鏡にて観察すると、金属被覆層のワレ
・剥離等の破壊が発生しており、これら導電被膜が破壊
された粒子数を導電性破壊数とした。この値が小さいほ
ど導電被覆層の密着性が優れていることを示す。また、
平均粒子径の50%まで圧縮したあと、光学顕微鏡にて
粒子が破壊されているかどうかを観察した。粒子の破壊
が発生している場合、導通性を維持していても、相対向
する電極間の間隔を保持できなくなる恐れがあり、導電
安定性に不良を来す恐れがあり好ましくない。結果を表
2に示した。
(Measurement of Change in Conductivity) The contact resistance value was measured while compressing the conductive fine particles 11 using a micro-compression electric resistance measuring device (manufactured by Shimadzu Corp., modified PCT-200).
About 20 particles having a contact resistance value of 3Ω or less at the time when the compressive deformation reaches 10%, the average particle size of 50 particles
When gradually compressed to 100%, particles whose resistance value suddenly increased to 10Ω or more were observed in the process. When these particles were observed with an optical microscope, breakage such as cracking or peeling of the metal coating layer occurred, and the number of particles in which these conductive coatings were broken was defined as the number of conductive breaks. The smaller this value is, the better the adhesion of the conductive coating layer is. Also,
After compression to 50% of the average particle size, it was observed with an optical microscope whether the particles were broken. When the particles are broken, the gap between the electrodes facing each other may not be maintained even if the conductivity is maintained, and the stability of the conductivity may be deteriorated, which is not preferable. The results are shown in Table 2.

【0073】(実施例9)実施例8と同様にして、実施
例2〜7で得られた導電性微粒子2〜6及び8について
も約0.04μmの金メッキをそれぞれ施し、導電性微
粒子12〜17を得た。得られた導電性微粒子につい
て、それぞれ実施例8と同様にして導電性変化の測定を
実施し、その結果を表2に示した。
(Example 9) In the same manner as in Example 8, the conductive fine particles 2 to 6 and 8 obtained in Examples 2 to 7 were each plated with about 0.04 μm of gold, and the conductive fine particles 12 to I got 17. With respect to the obtained conductive fine particles, the change in conductivity was measured in the same manner as in Example 8, and the results are shown in Table 2.

【0074】(比較例5)実施例8と同様にして、比較
例1、3及び4で得られた導電性微粒子7、9及び10
についても約0.04μmの金メッキをそれぞれ施し、
導電性微粒子18〜20を得た。得られた導電性微粒子
について、それそれ実施例8と同様にして導電性変化の
測定を実施し、その結果を表2に示した。
(Comparative Example 5) In the same manner as in Example 8, the conductive fine particles 7, 9 and 10 obtained in Comparative Examples 1, 3 and 4 were used.
About 0.04μm gold plating,
Conductive fine particles 18 to 20 were obtained. With respect to the obtained conductive fine particles, the change in conductivity was measured in the same manner as in Example 8, and the results are shown in Table 2.

【0075】[0075]

【表2】 [Table 2]

【0076】表1より、金属被覆層の密着性の評価にお
いて、実施例1〜7で得られた導電性微粒子1〜6及び
8は、比較例1及び3で得られた導電性微粒子7、9に
比べて剥離比率が小さいことがわかった。また、比較例
4で得られた導電性微粒子は、剥離比率は小さかったも
のの、10%K値及び回復率が極端に低下していた。表
2より、導電性変化の評価において、実施例8及び9で
得られた導電性微粒子11〜17は、比較例5で得られ
た導電性微粒子18〜20に比べて導通性破壊の発生が
少ないことがわかった。また、実施例8及び9の導電性
微粒子11〜17では、圧縮による粒子の破壊は発生し
なかったが、比較例5で得られた導電性微粒子20で
は、圧縮による粒子の破壊が発生しており、導通安定性
に不良を来すおそれがあった。
From Table 1, in the evaluation of the adhesion of the metal coating layer, the conductive fine particles 1 to 6 and 8 obtained in Examples 1 to 7 are the conductive fine particles 7 obtained in Comparative Examples 1 and 3, It was found that the peeling ratio was smaller than that of No. 9. Further, the conductive fine particles obtained in Comparative Example 4 had a small peeling ratio, but the 10% K value and the recovery ratio were extremely low. From Table 2, in the evaluation of the change in conductivity, the conductive fine particles 11 to 17 obtained in Examples 8 and 9 were more likely to cause conductive breakdown than the conductive fine particles 18 to 20 obtained in Comparative Example 5. Turned out to be few. Further, in the conductive fine particles 11 to 17 of Examples 8 and 9, the destruction of particles due to compression did not occur, but in the conductive fine particles 20 obtained in Comparative Example 5, the destruction of particles due to compression occurred. However, there is a possibility that conduction stability may be deteriorated.

【0077】[0077]

【発明の効果】本発明により、金属被覆層と樹脂微粒子
の密着性が良好であり、圧縮荷重により金属被覆層が樹
脂微粒子から剥離、破壊されにくく、かつ、樹脂微粒子
が圧着時に破壊しない導電性微粒子を得ることができ
る。
EFFECTS OF THE INVENTION According to the present invention, the adhesion between the metal coating layer and the resin fine particles is good, the metal coating layer is less likely to be peeled and broken from the resin fine particles by the compressive load, and the resin fine particles are not broken during the pressure bonding. Fine particles can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る導電性微粒子の一実施形態を示し
た模式図である。 1 芯材微粒子 2 金属イオンと結合能を有する官能基を含有する樹脂
被覆層 3 金属被覆層
FIG. 1 is a schematic view showing an embodiment of conductive fine particles according to the present invention. 1 Core Material Fine Particles 2 Resin Coating Layer Containing Functional Group Having Binding Ability to Metal Ion 3 Metal Coating Layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 樹脂微粒子と前記樹脂微粒子の表面に形
成された金属被覆層とからなる導電性微粒子であって、
前記樹脂微粒子は、芯材微粒子と前記芯材微粒子の表面
に形成された樹脂被覆層とからなるものであり、前記樹
脂被覆層は、金属イオンとの結合能を有する官能基を含
有するものであることを特徴とする導電性微粒子。
1. A conductive fine particle comprising resin fine particles and a metal coating layer formed on the surface of the resin fine particles,
The resin fine particles are composed of core material fine particles and a resin coating layer formed on the surfaces of the core material fine particles, and the resin coating layer contains a functional group capable of binding with metal ions. Conductive fine particles characterized by being present.
【請求項2】 樹脂被覆層は、芯材微粒子の表面にエチ
レン性不飽和基を有するモノマーをグラフト共重合させ
ることにより形成されたものであることを特徴とする請
求項1記載の導電性微粒子。
2. The conductive fine particles according to claim 1, wherein the resin coating layer is formed by graft-copolymerizing a monomer having an ethylenically unsaturated group on the surface of the core fine particles. .
【請求項3】 金属イオンとの結合能を有する官能基
は、スルホン基、カルボキシル基、アミノ基、アンモニ
ウム基及びリン酸基からなる群より選ばれる少なくとも
1種であることを特徴とする請求項1又は2記載の導電
性微粒子。
3. The functional group capable of binding to a metal ion is at least one selected from the group consisting of a sulfone group, a carboxyl group, an amino group, an ammonium group and a phosphoric acid group. 1. The conductive fine particles according to 1 or 2.
【請求項4】 芯材微粒子は、平均粒子径が0.5〜1
00μmであり、かつ、粒子径の変動係数が10%以下
であることを特徴とする請求項1、2又は3の導電性微
粒子。
4. The core material fine particles have an average particle diameter of 0.5 to 1.
The conductive fine particles according to claim 1, 2 or 3, wherein the conductive fine particles have a particle diameter variation coefficient of 100 μm and a particle diameter variation coefficient of 10% or less.
【請求項5】 請求項1、2、3又は4記載の導電性微
粒子を用いてなることを特徴とする異方性導電材料。
5. An anisotropic conductive material comprising the conductive fine particles according to claim 1, 2, 3 or 4.
JP2002004811A 2002-01-11 2002-01-11 Conductive fine particles and anisotropic conductive materials Expired - Fee Related JP3898510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002004811A JP3898510B2 (en) 2002-01-11 2002-01-11 Conductive fine particles and anisotropic conductive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002004811A JP3898510B2 (en) 2002-01-11 2002-01-11 Conductive fine particles and anisotropic conductive materials

Publications (2)

Publication Number Publication Date
JP2003208813A true JP2003208813A (en) 2003-07-25
JP3898510B2 JP3898510B2 (en) 2007-03-28

Family

ID=27644034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002004811A Expired - Fee Related JP3898510B2 (en) 2002-01-11 2002-01-11 Conductive fine particles and anisotropic conductive materials

Country Status (1)

Country Link
JP (1) JP3898510B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004172A1 (en) * 2003-07-07 2005-01-13 Sekisui Chemical Co., Ltd. Coated conductive particle, anisotropic conductive material, and conductive connection structure
JP2009170320A (en) * 2008-01-17 2009-07-30 Toda Kogyo Corp Conductive particle powder
JP2011108446A (en) * 2009-11-16 2011-06-02 Hitachi Chem Co Ltd Conductive particle, and method of manufacturing the same
WO2012023566A1 (en) * 2010-08-20 2012-02-23 三菱マテリアル株式会社 Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP2014026970A (en) * 2012-06-19 2014-02-06 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure
KR101462909B1 (en) 2006-09-29 2014-11-19 니폰 가가쿠 고교 가부시키가이샤 Conductive particles and method of preparing the same
CN111718449A (en) * 2020-07-02 2020-09-29 长春工业大学 Preparation method of polymer metal composite microspheres
CN111718444A (en) * 2020-06-30 2020-09-29 台州天舒新材料科技有限公司 Conductive microsphere for anisotropic conductive adhesive/film and preparation method thereof
CN112086221A (en) * 2020-09-17 2020-12-15 江西瑞顺超细铜线科技协同创新有限公司 Silver alloy copper wire and preparation method thereof
WO2021153567A1 (en) * 2020-01-31 2021-08-05 三井化学株式会社 Anisotropic conductive sheet, electrical inspection device, and electrical inspection method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004172A1 (en) * 2003-07-07 2005-01-13 Sekisui Chemical Co., Ltd. Coated conductive particle, anisotropic conductive material, and conductive connection structure
KR101462909B1 (en) 2006-09-29 2014-11-19 니폰 가가쿠 고교 가부시키가이샤 Conductive particles and method of preparing the same
US9093196B2 (en) 2006-09-29 2015-07-28 Nisshinbo Holdings, Inc. Conductive particles and method of preparing the same
JP2009170320A (en) * 2008-01-17 2009-07-30 Toda Kogyo Corp Conductive particle powder
JP2011108446A (en) * 2009-11-16 2011-06-02 Hitachi Chem Co Ltd Conductive particle, and method of manufacturing the same
US9093192B2 (en) 2010-08-20 2015-07-28 Mitsubishi Materials Corporation Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP5497183B2 (en) * 2010-08-20 2014-05-21 三菱マテリアル株式会社 Silver-coated spherical resin, production method thereof, anisotropic conductive adhesive containing silver-coated spherical resin, anisotropic conductive film, and conductive spacer
US20130140501A1 (en) * 2010-08-20 2013-06-06 Mitsubishi Materials Corporation Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
WO2012023566A1 (en) * 2010-08-20 2012-02-23 三菱マテリアル株式会社 Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP2014026970A (en) * 2012-06-19 2014-02-06 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure
WO2021153567A1 (en) * 2020-01-31 2021-08-05 三井化学株式会社 Anisotropic conductive sheet, electrical inspection device, and electrical inspection method
CN111718444A (en) * 2020-06-30 2020-09-29 台州天舒新材料科技有限公司 Conductive microsphere for anisotropic conductive adhesive/film and preparation method thereof
WO2022002278A1 (en) * 2020-06-30 2022-01-06 台州天舒新材料科技有限公司 Conductive microsphere for anisotropic conductive adhesive film and preparation method therefor
CN111718449A (en) * 2020-07-02 2020-09-29 长春工业大学 Preparation method of polymer metal composite microspheres
CN112086221A (en) * 2020-09-17 2020-12-15 江西瑞顺超细铜线科技协同创新有限公司 Silver alloy copper wire and preparation method thereof
CN112086221B (en) * 2020-09-17 2021-11-26 江西瑞顺超细铜线科技协同创新有限公司 Silver alloy copper wire and preparation method thereof

Also Published As

Publication number Publication date
JP3898510B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP4563110B2 (en) Method for producing conductive fine particles
US7291393B2 (en) Coated conductive particle coated conductive particle manufacturing method anisotropic conductive material and conductive connection structure
KR100650284B1 (en) Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
JP4052832B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
KR102095826B1 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP5368760B2 (en) Insulating coating conductive particles, anisotropic conductive material, and connection structure
WO2014007334A1 (en) Conductive particle, resin particle, conductive material, and connection structure
JP2009522716A (en) Conductive particles for anisotropic conductive connection
JP3898510B2 (en) Conductive fine particles and anisotropic conductive materials
JP4412669B2 (en) Coated conductive particles, conductive material, anisotropic conductive adhesive, and anisotropic conductive joint structure
JP3940638B2 (en) Conductive fine particles and method for producing conductive fine particles
JP4088137B2 (en) Conductive fine particles and anisotropic conductive materials
TW201841170A (en) Conductive particles, conductive material, and connection structure
JP2014026971A (en) Conductive particle, conductive material, and connection structure
CN112384994B (en) Coated particles
JP4832712B2 (en) Conductive fine particles and anisotropic conductive materials
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
JP4050086B2 (en) Conductive particles, conductive materials, and anisotropic conductive films
JP4113403B2 (en) Conductive fine particles, anisotropic conductive material, and method for producing conductive fine particles
TWI719054B (en) Method for manufacturing connection structure, conductive particles, conductive film, and connection structure
JP4714719B2 (en) Method for producing conductive fine particles
JP2005325383A (en) Method for producing electroconductive fine particle, electroconductive fine particle and anisotropic electroconductive material
JP2014026970A (en) Conductive particle, conductive material, and connection structure
WO2020009238A1 (en) Conductive particle with insulative particles, conductive material, and connecting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R151 Written notification of patent or utility model registration

Ref document number: 3898510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees