JP4902853B2 - Resin fine particles and conductive fine particles - Google Patents

Resin fine particles and conductive fine particles Download PDF

Info

Publication number
JP4902853B2
JP4902853B2 JP2006235830A JP2006235830A JP4902853B2 JP 4902853 B2 JP4902853 B2 JP 4902853B2 JP 2006235830 A JP2006235830 A JP 2006235830A JP 2006235830 A JP2006235830 A JP 2006235830A JP 4902853 B2 JP4902853 B2 JP 4902853B2
Authority
JP
Japan
Prior art keywords
fine particles
resin
particles
conductive
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006235830A
Other languages
Japanese (ja)
Other versions
JP2008059914A (en
Inventor
哲也 木村
功作 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayakawa Rubber Co Ltd
Original Assignee
Hayakawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Rubber Co Ltd filed Critical Hayakawa Rubber Co Ltd
Priority to JP2006235830A priority Critical patent/JP4902853B2/en
Publication of JP2008059914A publication Critical patent/JP2008059914A/en
Application granted granted Critical
Publication of JP4902853B2 publication Critical patent/JP4902853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、マイクロ素子実装用の異方性導電接着剤に用いられ得る導電性微粒子、特にその基材としての樹脂微粒子に関する。   The present invention relates to conductive fine particles that can be used in anisotropic conductive adhesives for mounting microelements, and particularly to resin fine particles as a base material thereof.

異方性導電接着剤は、ベースをなす接着剤樹脂中に導電性微粒子が単分散されたものであり、電極端子の間に挟まれて厚さ方向に加圧された状態で、導電性微粒子が該端子間の電気的接続を実現する。すなわち、異方性導電接着剤は、端子面同士の物理的接続を行うと同時に、対応する端子間の電気的接続を行うものである。   An anisotropic conductive adhesive is a conductive fine particle in which conductive fine particles are monodispersed in a base adhesive resin and sandwiched between electrode terminals and pressed in the thickness direction. Realizes an electrical connection between the terminals. That is, the anisotropic conductive adhesive performs physical connection between the terminal surfaces and at the same time makes electrical connection between corresponding terminals.

異方性導電接着剤は、一般には、フィルム又はペースト等の状態で、すなわち、異方導電性フィルム(ACF)や異方導電ペースト(ACP)、又は異方性導電インク(ACI)等として供給されている。べースをなす接着剤には、エポキシ樹脂等の熱硬化性樹脂が用いられている。   Anisotropic conductive adhesive is generally supplied in the form of a film or paste, that is, as an anisotropic conductive film (ACF), anisotropic conductive paste (ACP), or anisotropic conductive ink (ACI), etc. Has been. A thermosetting resin such as an epoxy resin is used as the base adhesive.

異方性導電接着剤は、液晶表示装置(LCD)やプラズマディスプレイ装置(PDP)といった平面表示装置や駆動回路基板等において、表示パネル上や基板上の端子部と外部接続端子との接続や、パネル面又は基板面へのICチップの実装等に用いられている。異方性導電接着剤を用いて、ICチップのパネル面への表面実装(COG; Chip On Glass)や、基板面への表面実装(COB; Chip On Board、COF; Chip On Flexibleboard)、及び半導体表面実装パッケージ等が実現されている。例えば、液晶表示パネル本体とフレキシブル接続基板(FPC)やTCP(Tape Carrier Package: TABとも呼ばれる)との間の接続に用いられる場合、フレキシブル基板の端子部が、テープ状異方性導電接着材を介して、パネル本体周辺部の端子部に貼り付けられる。この貼り付けの際には、対応する端子同士が接続する様に精密な位置合わせが行われると共に、導電性接着材の配置箇所全体にわたって加熱・圧着が行われる。   Anisotropic conductive adhesive is used in flat display devices such as liquid crystal display devices (LCD) and plasma display devices (PDP) and drive circuit boards. Used for mounting IC chips on panel surfaces or substrate surfaces. Using anisotropic conductive adhesive, surface mounting (COG; Chip On Glass) on the panel surface of IC chip, surface mounting (COB; Chip On Board, COF; Chip On Flexibleboard) on the substrate surface, and semiconductor Surface mount packages and the like are realized. For example, when used for connection between a liquid crystal display panel body and a flexible connection substrate (FPC) or TCP (also called Tape Carrier Package: TAB), the terminal portion of the flexible substrate is made of a tape-like anisotropic conductive adhesive. To the terminal portion around the panel body. At the time of this pasting, precise positioning is performed so that the corresponding terminals are connected to each other, and heating and pressure bonding are performed over the entire place where the conductive adhesive is disposed.

異方性導電接着剤用の導電微粒子には、金属のみからなる球状の粒子も用いられているが、樹脂微粒子に金属層を被覆したものが、微細端子間の接続等に広く用いられている。この金属層を被覆した樹脂微粒子は、実装時、一般に、150℃以上の高温下、約15〜20kgf(約147.10〜196.133N、1kgf=約9.80665Nとして換算。)/cm2の圧力で圧着される。この圧力を受けて電極端子の間に挟まれて厚さ方向に加圧された微粒子は、適度に変形し、該端子と出来るだけ広い面積で常時接触している必要があり、これにより、接続抵抗値を低減し、又、導電信頼性を向上した接続が可能となる。   Spherical particles made of only metal are used as conductive fine particles for anisotropic conductive adhesives, but resin fine particles coated with a metal layer are widely used for connection between fine terminals. . The resin fine particles coated with the metal layer are generally crimped at a temperature of about 15 to 20 kgf (converted as about 147.10 to 196.133 N, 1 kgf = about 9.80665 N) / cm2 at a high temperature of 150 ° C. or higher. . The fine particles sandwiched between the electrode terminals under pressure and pressed in the thickness direction must be appropriately deformed and always in contact with the terminals in as wide an area as possible. Connection with reduced resistance value and improved conduction reliability is possible.

圧縮試験において40%歪ませるのに必要な荷重の規定をした導電性微粒子(例えば、特許文献1参照)、又、10%変形した時のK値の値を規定した導電性微粒子(例えば、特許文献2参照)が知られている。
特開2001-216840号公報 特開2001-216841号公報
Conductive fine particles that define the load required to strain 40% in the compression test (see, for example, Patent Document 1), and conductive fine particles that define the K value when deformed by 10% (for example, patents) Reference 2) is known.
JP 2001-216840 Japanese Patent Laid-Open No. 2001-216841

しかしながら、本発明者の研究によれば、従来の樹脂微粒子では、硬過ぎて接続面積が充分に得られなかったり、電極を傷付けたりし、又、単に柔らかい為に、初期の接続面積は得られるものの、外部環境の変化により生じる接続部の変化(温度による膨張収縮等)に追従出来る弾性的な変形をするものが無く、2つの電極間の導通抵抗が次第に上昇し断線する等、導通状態が不安定になる事が分った。   However, according to the research of the present inventor, the conventional resin fine particles are too hard to obtain a sufficient connection area, scratch the electrodes, or are simply soft, so that the initial connection area can be obtained. However, there is no elastic deformation that can follow changes in the connection part (expansion and shrinkage due to temperature, etc.) caused by changes in the external environment, and the conduction state between the two electrodes gradually increases and breaks, such as disconnection. I found it unstable.

又、上記の40%歪ませるのに必要な荷重やK値は、初期の粒子の強度を規定するものであり、製品を作る場合のものである。製品として組み込まれ、使い続ける場合の信頼性を維持する指針にはなり得ない。   Further, the load and K value required for the 40% strain described above define the strength of the initial particles, and are for making a product. It cannot be used as a guideline for maintaining reliability when it is incorporated as a product and continues to be used.

本発明は、上記に鑑み、新しい種類の樹脂微粒子を得、かかる樹脂微粒子に導電層を被覆し、マイクロ素子実装において、適度の柔軟性を有し、安定した導通を維持出来る導電性微粒子を得、これを用いた異方性導電接着剤を提供する事を目的とする。   In view of the above, the present invention obtains a new type of resin fine particles, covers the resin fine particles with a conductive layer, and obtains conductive fine particles that have moderate flexibility and can maintain stable conduction in micro device mounting. An object of the present invention is to provide an anisotropic conductive adhesive using the same.

2つの電極間に配置される導電性微粒子用の樹脂微粒子であって、
上記樹脂微粒子は、単官能単量体と2官能単量体とを共重合してなるものであり、負荷除荷試験において、0.145gf/sec×9.80665N/1000gf(N/秒)(約1.42196mN/秒)の荷重負荷速度により微粒子を圧縮して、下記式(1):
P=7/96×d2×9.80665(N)/1000(gf) ・・・(1)
[式中、dは微粒子の個数平均粒子径(μm)であり、P(N)(gf×9.80665N/1000gf)は、小数点以下2桁目を四捨五入した値である。]
で表される荷重値P(N)に達したときに50%以上、好ましくは50%以上80%以下の圧縮率を有し、かつ、微粒子を20回繰り返し圧縮したときの圧縮率の割合が1回目の圧縮率の80%以上、好ましくは80%以上100%以下であり、10%以下のCv値を有する樹脂微粒子を用いる事により、導電性微粒子における上記問題点を解決出来る事を見出し、本発明に至った。
Resin fine particles for conductive fine particles disposed between two electrodes,
The resin fine particles are obtained by copolymerizing a monofunctional monomer and a bifunctional monomer. In the load unloading test, 0.145 gf / sec × 9.80665 N / 1000 gf (N / sec) (about 1.42196) mN / sec), the fine particles are compressed at a load rate of the following formula (1):
P = 7/96 × d2 × 9.80665 (N) / 1000 (gf) (1)
[Wherein d is the number average particle diameter (μm) of the fine particles, and P (N) (gf × 9.80665N / 1000 gf) is a value obtained by rounding off the second decimal place. ]
50% or more, preferably 50% or more and 80% or less compression ratio when the load value P (N) represented by the following formula is satisfied, and the ratio of the compression ratio when the fine particles are repeatedly compressed 20 times first compression ratio of 80% or higher, preferably Ri der 100% or less than 80% by using a resin fine particles having the following Cv value of 10% can solve the above problems in the conductive fine particles The present invention has been reached.

本発明によれば、樹脂微粒子は、圧縮された場合にも適度に変形し、圧力を取り去ると適度に回復する。この為、これを基材とした導電性微粒子において、2つの電極間にこの導電性微粒子を配置し、加圧した場合、周囲の温度変化等によって電極の間隔や加圧力に変動があっても、導電性粒子が追従して十分に変形するので、2つの電極間で安定した導通を維持する事が出来る。   According to the present invention, the resin fine particles are appropriately deformed even when compressed, and recover moderately when the pressure is removed. For this reason, in the conductive fine particles based on this, when the conductive fine particles are placed between two electrodes and pressed, even if the distance between the electrodes and the applied pressure fluctuate due to changes in ambient temperature, etc. Since the conductive particles follow and sufficiently deform, stable conduction between the two electrodes can be maintained.

以下に本発明を詳述する。   The present invention is described in detail below.

本発明は、マイクロ素子実装において、安定した導通を維持させるという目的を、導電性微粒子について、接続面積を十分に確保させつつ適度な柔軟性を発揮させ、環境の変化により生じる接続部の変化に追従出来る弾性的な変形を可能にする事で、電極を傷付けたりする事なく実現させた。   The present invention aims to maintain stable continuity in micro-element mounting, and for conductive fine particles, to provide appropriate flexibility while sufficiently securing the connection area, and to change the connection portion caused by environmental changes. By enabling elastic deformation that can follow, it was realized without damaging the electrode.

樹脂微粒子は、負荷除荷試験において、荷重負荷速度0.145gf/secにより圧縮して、下記式(1):
P=7/96*d2 ・・・(1)
[式中、*は乗記号(×)であり、dは微粒子の粒子径(μm)であり、P(gf)は小数点以下2桁目を四捨五入した値である。]
で表される荷重値P(gf)に達したときの圧縮率が50%以上あり、かつ、同一の粒子を20回繰り返し圧縮したときの圧縮率の割合が1回目の圧縮率の80%以上である。又、上述の樹脂微粒子の物性は、樹脂微粒子の表面に通常の導電層を被覆して導電性微粒子とした場合にも保たれる。
In the load unloading test, the resin fine particles are compressed at a load load speed of 0.145 gf / sec, and the following formula (1):
P = 7/96 * d2 (1)
[In the formula, * is a multiplication symbol (×), d is the particle size (μm) of fine particles, and P (gf) is a value obtained by rounding off the second decimal place. ]
The compression ratio when the load value P (gf) represented by is reached is 50% or more, and the ratio of the compression ratio when the same particle is repeatedly compressed 20 times is 80% or more of the first compression ratio It is. The physical properties of the resin fine particles described above are maintained even when the surface of the resin fine particles is coated with a normal conductive layer to form conductive fine particles.

好適例において、樹脂微粒子、好ましくは、導電性微粒子は、1~10μmの個数平均粒子径の範囲に入る。ここで、個数平均粒子径は、得られる平均粒子径から見て、それより粒子径が小さな粒子の数と、それより粒子径が大きな粒子の数の割合が同一になる粒子径である。又、粒子分布においては、偏差係数、すなわちCv値が10%以下である。   In a preferred example, the resin fine particles, preferably the conductive fine particles fall within the range of the number average particle diameter of 1 to 10 μm. Here, the number average particle diameter is a particle diameter in which the ratio of the number of particles having a smaller particle diameter is equal to the number of particles having a larger particle diameter than the average particle diameter obtained. In the particle distribution, the deviation coefficient, that is, the Cv value is 10% or less.

樹脂微粒子には、公知の手段により導電層を被覆し、導電性微粒子を得る事が出来る。そして、この導電性微粒子を使用する事により、加圧硬化時に十分な接触面積と導電性が得られ、電極を傷付ける事が無く、更に外部環境の変化によっても安定した信頼性の高い導通が得られる。かかる導電性微粒子は、導電性接着剤、異方性導電接着剤等として提供させる。   The fine resin particles can be coated with a conductive layer by known means to obtain conductive fine particles. By using these conductive fine particles, sufficient contact area and conductivity can be obtained at the time of pressure curing, without damaging the electrodes, and stable and reliable continuity even with changes in the external environment. It is done. Such conductive fine particles are provided as a conductive adhesive, an anisotropic conductive adhesive, or the like.

樹脂微粒子の試験方法、特に負荷除荷試験方法について、以下に示す。   The test method for resin fine particles, particularly the load unloading test method, is shown below.

例えば、平滑表面を有する鋼板の上に、樹脂微粒子を散布し、これを微小圧縮試験機(島津製作所製、MCTM-200)の試料台に乗せて、顕微鏡により適当な粒子径の1個の粒子を選ぶ。次に、20℃の室温において、荷重負荷速度(荷重印加速度ともいう。)0.145gf/secで、荷重値(最大試験荷重ともいう。)P(gf)に達する条件下に、ダイヤモンド製の直径50μmの円柱の平滑端面において樹脂微粒子を圧縮し、荷重値がP(gf)に達した時点で、同速度で負荷を取り除く。   For example, resin fine particles are dispersed on a steel plate having a smooth surface, and this is placed on a sample stage of a micro compression tester (manufactured by Shimadzu Corporation, MCTM-200), and one particle having an appropriate particle size is observed with a microscope. Select. Next, at a room temperature of 20 ° C., the diameter of the diamond made under the condition that the load value (also referred to as load application speed) 0.145 gf / sec and the load value (also referred to as maximum test load) P (gf) is reached. The resin fine particles are compressed on the smooth end surface of a 50 μm cylinder, and when the load value reaches P (gf), the load is removed at the same speed.

ここで、荷重値P(gf)は、次式(1)で求められる値である。   Here, the load value P (gf) is a value obtained by the following equation (1).

P=7/96*d2 ・・・(1)
[式中、dは前記微粒子の粒子径、好ましくは個数平均粒子径(μm)であり、Pは小数点以下2桁目を四捨五入した値である。]
なお、本試験で用いる原点荷重値は0(gf)である。この負荷除荷試験を20回繰り返し、初期の圧縮率と20回目の圧縮率を測定する事により、以下の条件が得られる。
P = 7/96 * d2 (1)
[Wherein, d is the particle diameter of the fine particles, preferably the number average particle diameter (μm), and P is a value obtained by rounding off the second decimal place. ]
The origin load value used in this test is 0 (gf). By repeating this unloading test 20 times and measuring the initial compression rate and the 20th compression rate, the following conditions are obtained.

樹脂微粒子は、負荷除荷試験において、荷重負荷速度0.145gf/secにより圧縮して荷重値がP(gf)に達したときの圧縮率が50%以上あり、かつ、同一の粒子を20回繰り返し圧縮したときの圧縮率の割合が1回目の圧縮率の80%以上である。   Resin fine particles have a compression rate of 50% or more when the load value reaches P (gf) by compressing at a load load rate of 0.145 gf / sec in the load unloading test, and the same particles are repeated 20 times. The ratio of the compression ratio when compressed is 80% or more of the first compression ratio.

電極端子間の接続には、通常、電極端子間に高い圧着力(通常、15〜20kg/cm2)が加わる条件で接続を行っている。又、圧着時には、一般的には、150℃以上の温度がかかる。しかしながら、このような温度条件下、圧着力が強過ぎると、間隙の狭い電極端子間においては、従来の金属メッキ樹脂粒子では、塑性変形したり、破壊したりしてしまい、復元力が発生せずに、接続不良になるおそれがある。又、当然、圧着力が弱過ぎると、間隙の広い電極端子間においては、バインダー樹脂が集中して流出したりして、金属メッキ樹脂粒子と電極端子間のバインダー樹脂が排除されず接続不良になるおそれがある。   For the connection between the electrode terminals, the connection is usually performed under the condition that a high pressure bonding force (usually 15 to 20 kg / cm 2) is applied between the electrode terminals. In general, a temperature of 150 ° C. or higher is applied during pressure bonding. However, if the crimping force is too strong under such temperature conditions, the conventional metal plating resin particles may be plastically deformed or broken between the electrode terminals with a narrow gap, and a restoring force is generated. Otherwise, connection failure may occur. Of course, if the crimping force is too weak, the binder resin concentrates and flows out between the electrode terminals with a wide gap, and the binder resin between the metal plating resin particles and the electrode terminals is not excluded, resulting in poor connection. There is a risk.

導電性微粒子は、導通性能を得る為に、上下の端子との接触面積を充分に得る必要があり、通常は、40%(好ましくは50%)以上圧縮した状態で用いられる。その為の適度な変形を得る為の荷重値P(gf)と粒子径の関係を経験的に得る事が出来た。すなわち、負荷除荷試験において、荷重負荷速度0.145gf/secにより圧縮して、下記式(1):
P=7/96*d2 ・・・(1)
[式中、dは前記微粒子の粒子径(μm)であり、P(gf)は、小数点以下2桁目を四捨五入した値である。]
で表される荷重値がP(gf)に達したときの圧縮率が50%以上必要であった。
The conductive fine particles need to have a sufficient contact area with the upper and lower terminals in order to obtain conduction performance, and are usually used in a compressed state of 40% (preferably 50%) or more. The relationship between the load value P (gf) and the particle size for obtaining an appropriate deformation for this purpose was obtained empirically. That is, in the load unloading test, it is compressed at a load load speed of 0.145 gf / sec, and the following formula (1):
P = 7/96 * d2 (1)
[Wherein d is the particle diameter (μm) of the fine particles, and P (gf) is a value obtained by rounding off the second decimal place. ]
When the load value represented by P reaches P (gf), the compression ratio needs to be 50% or more.

又、接続抵抗値の低減化や導電信頼性の向上の為には、基材微粒子が樹脂微粒子であって、適度な柔軟性があり、電極を圧着する時に導電性微粒子として弾性的に変形する事が必要であり、又それにより粒子が壊れ難くなる。導電性微粒子が硬い場合、定荷重での圧縮率が50%未満になると、電極端子間の接合の際に、加わる圧力により容易に変形せず、その結果として、端子に対する接触面積が充分に得られず、接続抵抗値が高くなる事がある。又、硬い為、圧着時の圧力で電極を破壊してしまうおそれがあった。なお、この初期圧縮率は、概して、90%以下であり、ある程度の圧縮は必要だからである。また、50%未満では硬過ぎるため、異方性導電接着剤等の導電性微粒子として機能し難い。したがって、好ましくは50%以上90%以下、より好ましくは55%以上70%以下等である。   Also, in order to reduce the connection resistance value and improve the conductivity reliability, the substrate fine particles are resin fine particles and have an appropriate flexibility and elastically deform as conductive fine particles when the electrodes are crimped. Things are necessary and the particles are less likely to break. When the conductive fine particles are hard, if the compressibility at a constant load is less than 50%, the electrode terminals are not easily deformed by the applied pressure, and as a result, a sufficient contact area with the terminals can be obtained. The connection resistance value may increase. Moreover, since it was hard, there was a possibility that the electrode might be destroyed by the pressure during pressure bonding. This initial compression rate is generally 90% or less, and a certain amount of compression is necessary. Moreover, since it is too hard at less than 50%, it is difficult to function as conductive fine particles such as anisotropic conductive adhesive. Therefore, it is preferably 50% or more and 90% or less, more preferably 55% or more and 70% or less.

さらに、樹脂微粒子は、荷重値がP(gf)に達したときの圧縮率が50%以上あると同時に、繰り返し圧縮したときの圧縮率の割合が1回目の圧縮率の80%以上である。同一の粒子を20回繰り返し圧縮したときの圧縮率が1回目の圧縮率に対する割合(%)としては、例えば、1回目の圧縮率が50%であり、同一の粒子を20回繰り返し圧縮したときの圧縮率の収束値が40%であった場合、次の様に計算される。   Further, the resin fine particles have a compression ratio of 50% or more when the load value reaches P (gf), and at the same time, the ratio of the compression ratio when repeatedly compressed is 80% or more of the first compression ratio. As a ratio (%) of the compression rate when the same particles are repeatedly compressed 20 times with respect to the compression rate of the first time (%), for example, when the first compression rate is 50% and the same particles are repeatedly compressed 20 times When the convergence value of the compression ratio is 40%, it is calculated as follows.

同一の粒子を20回繰り返し圧縮した時の圧縮率が1回目の圧縮率に対する割合(%)=同一の粒子を20回繰り返し圧縮した時の圧縮率の収束値/1回目の圧縮率×100=40/50×100=80(%)。   The compression ratio when the same particles are repeatedly compressed 20 times (%) with respect to the compression ratio of the first time (%) = Convergence value of the compression ratio when the same particles are repeatedly compressed 20 times / 1 compression ratio × 100 = 40/50 × 100 = 80 (%).

初期の圧縮率は、微小圧縮試験機に付帯の光学顕微鏡で所定の粒子径dを測定し、この粒子1つに荷重値P(gf)を加えたときの粒子径の変形量を所定の粒子径dで割り100 %を乗じた値として得る事が出来る。次に、2回目以降の圧縮率は、粒子径を初期の粒子径dとし、初期に圧縮した同一粒子に荷重値P(gf)を加えたときのその試験回数の粒子径の変形量を所定の粒子径dで割り100 %を乗じた値として得る事が出来る。   The initial compression ratio is determined by measuring the predetermined particle diameter d with an optical microscope attached to a micro compression tester and applying the load value P (gf) to one of these particles. Divided by the diameter d and multiplied by 100% can be obtained. Next, the compression ratio for the second and subsequent times is defined as the initial particle diameter d, and the amount of deformation of the particle diameter for the number of tests when the load value P (gf) is applied to the same initially compressed particle It can be obtained by dividing by the particle diameter d and multiplying by 100%.

負荷除荷試験とは、定荷重圧縮を行い、粒子に歪みを生じさせ、除荷した時の回復性を調べるものである。これを繰り返すと、1回目の定荷重圧縮により発生した変形の内、塑性変形した部分はほとんどが瞬時に回復出来ず、弾性変形した部分のみが回復する。2回目以降も瞬時に回復出来ない塑性変形部分は残るが、その割合は大幅に減り、弾性変形部分に近づき(変化過程)、20回目(10回目以降)には一定の値に収束する。又、このとき、弾性率が低く、変形に追従出来なくなったものは、圧砕してしまう。なお、測定値を安定にするため、圧縮試験と次の圧縮試験との間隔は5秒から10秒の間が好ましい。   In the load unloading test, constant load compression is performed, the particles are distorted, and the recoverability when unloading is examined. When this is repeated, most of the plastically deformed portion of the deformation generated by the first constant load compression cannot be instantaneously recovered, and only the elastically deformed portion recovers. The plastic deformation part that cannot be recovered instantaneously remains after the second time, but the ratio decreases greatly, approaches the elastic deformation part (change process), and converges to a constant value at the 20th time (after the 10th time). Also, at this time, those having a low elastic modulus and unable to follow the deformation will be crushed. In order to stabilize the measured value, the interval between the compression test and the next compression test is preferably between 5 seconds and 10 seconds.

この圧縮率の変化割合は、上述のように、1回目の圧縮率の80%以上であるが、概して、80%以上100%以下、好ましくは80%以上90%以下である。   As described above, the change rate of the compression rate is 80% or more of the first compression rate, but is generally 80% or more and 100% or less, preferably 80% or more and 90% or less.

樹脂微粒子又は導電性微粒子は、上記の条件をクリアーした弾性体であり、圧縮された場合にも、適度に変形し、圧力を取り去ると、適度に回復する。この為、2つの電極間にこの導電性微粒子を配置し加圧した場合、周囲の温度変化等によって電極の間隔や加圧力に変動があっても、導電性粒子が追従して変形するので、2つの電極間で安定した導通を維持する事が出来る。   The resin fine particles or the conductive fine particles are elastic bodies that satisfy the above-described conditions, and even when compressed, the resin fine particles or the conductive fine particles are appropriately deformed, and are appropriately recovered when the pressure is removed. For this reason, when this conductive fine particle is placed between two electrodes and pressurized, the conductive particle follows and deforms even if there are fluctuations in the electrode spacing and pressure due to changes in ambient temperature, etc. Stable conduction can be maintained between the two electrodes.

導電性微粒子は、概して、球状であり、粒子径が1μm〜10μmの範囲内であり、粒子径の変動係数(Cv値)は10%以下である。ここで、平均粒子径(μm)や、偏差係数、すなわちCv値(=標準偏差/平均粒子径*100、単位%)は、微粒子300個の電子顕微鏡観察により得られた値を用いる事が出来る。   The conductive fine particles are generally spherical, have a particle diameter in the range of 1 μm to 10 μm, and have a coefficient of variation (Cv value) of 10% or less. Here, as the average particle diameter (μm) and the deviation coefficient, that is, the Cv value (= standard deviation / average particle diameter * 100, unit%), values obtained by observing 300 fine particles can be used. .

近年、電極の高ピッチ化が進み、電極間の間隙がより一層狭くなっている傾向にある。その為、電極の間隙に対し、導電性微粒子の粒子径が大き過ぎる場合には、同電極内での接続が生じ易くなり、それにより、リーク現象が起こり、不良となる。したがって、導電性微粒子の粒子径は、1〜10μmの範囲、更に好ましくは、1〜5μm、特に好ましくは、2〜4μmの範囲である。近年は、4μm以下の微粒子化の傾向が更に強い。   In recent years, the pitch of electrodes has increased, and the gap between the electrodes tends to become even narrower. For this reason, if the particle diameter of the conductive fine particles is too large with respect to the gap between the electrodes, connection within the same electrode is likely to occur, thereby causing a leak phenomenon and failure. Therefore, the particle diameter of the conductive fine particles is in the range of 1 to 10 μm, more preferably 1 to 5 μm, and particularly preferably 2 to 4 μm. In recent years, the tendency to make fine particles of 4 μm or less is even stronger.

次に、導電性微粒子としてのCv値は、10%以下であり、好ましくは、6%以下、特に好ましくは、2〜5%である。導電性微粒子のCv値が10%を超えると、得られる導電性微粒子と電極との接触面積にバラツキが生じ易くなり、又、粒子径の大きい粒子により電極間の間隙が支配され易くなり、導通に関与しない粒子の絶対数が増加する。これに対し、導電性微粒子が、10%以下のCv値を有すれば、導通に関与する粒子数を多くする事が出来、導通抵抗を小さくする事が出来る。又、多くの粒子で2電極間の導通を確保する事が出来るので、接続信頼性も高くする事が出来る。   Next, the Cv value as the conductive fine particles is 10% or less, preferably 6% or less, particularly preferably 2 to 5%. When the Cv value of the conductive fine particles exceeds 10%, the contact area between the obtained conductive fine particles and the electrode is likely to vary, and the gap between the electrodes is likely to be dominated by the particles having a large particle diameter. The absolute number of particles not involved in the increase. On the other hand, if the conductive fine particles have a Cv value of 10% or less, the number of particles involved in conduction can be increased, and conduction resistance can be reduced. In addition, since the connection between the two electrodes can be ensured with a large number of particles, the connection reliability can be increased.

樹脂微粒子を得る方法は特に限定されず、例えば、乳化重合、懸濁重合、シード重合、分散重合、分散シード重合等の重合法による方法が挙げられる。   The method for obtaining the resin fine particles is not particularly limited, and examples thereof include a method using a polymerization method such as emulsion polymerization, suspension polymerization, seed polymerization, dispersion polymerization, and dispersion seed polymerization.

樹脂微粒子の種類としては、上述の諸条件を満たすものであれば良く、特に制限されないが、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン等のオレフィン系樹脂; ポリスチレン等のスチレン系樹脂; ポリ塩化ビニル、ポリ塩化ビニリデン等の塩化ビニル系樹脂; ポリメチル(メタ)アクリレート等のアクリル系樹脂; ポリブタジエン、ポリイソプレン等の共役ジエン系樹脂; フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等の縮合系樹脂; ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド等からなる樹脂微粒子が挙げられ、中でも、微粒子として必要な任意の機械的強度や弾性回復率等の物性を有する樹脂微粒子を得易い事から、エチレン性不飽和基を有する重合性単量体の1種類もしくは2種類以上を(共)重合させて得られる樹脂からなる樹脂微粒子が好適に用いられる。これらの樹脂微粒子は単独で用いられても良いし、2種類以上が併用されても良い。なお、上記の(メタ)アクリレートは、アクリレート又はメタクリレートを意味し、上記(共)重合は単独重合又は共重合を意味する。   The type of resin fine particles is not particularly limited as long as the above-mentioned various conditions are satisfied. For example, olefinic resins such as polyethylene, polypropylene, polyisobutylene; styrene resins such as polystyrene; polyvinyl chloride, poly Vinyl chloride resins such as vinylidene chloride; Acrylic resins such as polymethyl (meth) acrylate; Conjugated diene resins such as polybutadiene and polyisoprene; Condensation systems such as phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin Resin; Resin fine particles composed of polyalkylene terephthalate, polysulfone, polycarbonate, polyamide, etc. are mentioned. Among them, resin fine particles having physical properties such as arbitrary mechanical strength and elastic recovery required as fine particles Since it easier to obtain, and the one or two or more kinds of polymerizable monomer having an ethylenically unsaturated group (co) resin fine particles comprising resins obtained by polymerizing is preferably used. These resin fine particles may be used alone or in combination of two or more. The above (meth) acrylate means acrylate or methacrylate, and the above (co) polymerization means homopolymerization or copolymerization.

エチレン性不飽和基を有する重合性単量体を重合させて樹脂微粒子を得る場合、非架橋性単量体と架橋性単量体とを併用して共重合させる事により、樹脂微粒子を得る事が好ましい。架橋性単量体を併用する事によって、得られる樹脂微粒子のゲル分率が向上して、樹脂微粒子ひいては導電性微粒子の機械的強度、弾性回復率、耐熱性等がより一層優れたものとなる。   When polymerizing a polymerizable monomer having an ethylenically unsaturated group to obtain resin fine particles, resin fine particles can be obtained by copolymerizing a non-crosslinkable monomer and a crosslinkable monomer together. Is preferred. By using a crosslinkable monomer in combination, the gel fraction of the resin fine particles obtained is improved, and the mechanical strength, elastic recovery rate, heat resistance, etc. of the resin fine particles and thus the conductive fine particles are further improved. .

非架橋性単量体としては、特に制限されないが、例えば、スチレン、α-メチルスチレン、β-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,4-ジメチルスチレン、3,5-ジメチルスチレン、2,4,5-トリメチルスチレン、2,4,6-トリメチルスチレン、p-(n-ブチル)スチレン、p-(t-ブチル)スチレン、p-(n-ヘキシル)スチレン、p-(n-オクチル)スチレン、p-(n-ドデシル)スチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロルスチレン、クロルメチルスチレン、3,4-ジクロルスチレン、等のスチレン系単量体; アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、等のカルボン酸系単量体; メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、等のアルキル(メタ)アクリレート系単量体; 2-ヒドロキシルエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート、等の酸素原子含有(メタ)アクリレート系単量体; アクリロニトリル、メタクリロニトリル、等の不飽和ニトリル系単量体; メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、等のビニルエーテル系単量体; 酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、等のビニルエステル系単量体; エチレン、プロピレン、イソプレン、ブタジエン、等の不飽和炭化水素系単量体; 塩化ビニル、フッ化ビニル、トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、等のハロゲン基含有単量体等が挙げられる。これらの非架橋性単量体は、単独で用いられても良いし、2種類以上が併用されても良い。   The non-crosslinkable monomer is not particularly limited. For example, styrene, α-methylstyrene, β-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-ethylstyrene, 2, 4-dimethylstyrene, 2,5-dimethylstyrene, 3,4-dimethylstyrene, 3,5-dimethylstyrene, 2,4,5-trimethylstyrene, 2,4,6-trimethylstyrene, p- (n-butyl ) Styrene, p- (t-butyl) styrene, p- (n-hexyl) styrene, p- (n-octyl) styrene, p- (n-dodecyl) styrene, p-methoxystyrene, p-phenylstyrene, p -Styrene monomers such as chlorostyrene, chloromethylstyrene, 3,4-dichlorostyrene; Carboxylic monomers such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride; methyl (meth) Acrylate, ethyl (meth) acrylate, propyl (meth) Alkyl (such as acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, etc. (Meth) acrylate monomers; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, and other oxygen atom-containing (meth) acrylate monomers ; Unsaturated nitrile monomers such as acrylonitrile and methacrylonitrile; Vinyl ether monomers such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; Vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate, etc. Bi Unsaturated hydrocarbon monomers such as ethylene, propylene, isoprene and butadiene; vinyl chloride, vinyl fluoride, trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, etc. And halogen group-containing monomers. These non-crosslinkable monomers may be used alone or in combination of two or more.

又、架橋性単量体としては、特に制限されないが、例えば、ジビニルベンゼン、ジビニルトルエン、等の多官能ビニル系単量体; テトラメチレンジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレンオキシドジ(メタ)アクリレート、テトラエチレンオキシド(メタ)アクリレート、1,6-ヘキサンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリメテロールプロパントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリジ(メタ)アクリレート、等の多官能(メタ)アクリレート; ビニルトリメトキシシラン、トリメトキシシリルスチレン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、等のシラン含有系単量体; トリアリルイソシアヌレート、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、等のアリル基含有系単量体、1,3-ブタジエン、イソプレン等の共役ジエン系単量体等が挙げられる。   In addition, the crosslinkable monomer is not particularly limited. For example, polyfunctional vinyl monomers such as divinylbenzene and divinyltoluene; tetramethylene di (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene Glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethylene oxide di (meth) acrylate, tetraethylene oxide (meth) acrylate, 1,6-hexane di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1, 9-nonanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, tetramethylo Polyfunctional (meth) acrylates such as propanetetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol di (meth) acrylate, glycerol tridi (meth) acrylate; vinyltrimethoxysilane, trimethoxysilylstyrene, γ -(Meth) acryloxypropyltrimethoxysilane and other silane-containing monomers; triallyl isocyanurate, diallyl phthalate, diallyl acrylamide, diallyl ether and other allyl group-containing monomers, 1,3-butadiene, Examples thereof include conjugated diene monomers such as isoprene.

これらの架橋性単量体は、単独で用いられても良いし、2種類以上が併用されても良い。非架橋性単量体と架橋性単量体とを併用する場合の架橋性単量体の使用量は、特に限定されるものではないが、架橋性単量体5重量%以上を含有する事が好ましく、より一層好ましくは架橋性単量体20重量%以上、特に好ましくは、60〜98重量%を含有する事である。架橋性単量体の使用量が5重量%未満であると、得られる樹脂微粒子のゲル分率が十分に向上せず、粘着性が現れたり、熱可塑性の性質が強くなったりする傾向がある。   These crosslinkable monomers may be used alone or in combination of two or more. The amount of the crosslinkable monomer used when the non-crosslinkable monomer and the crosslinkable monomer are used in combination is not particularly limited, but should contain 5% by weight or more of the crosslinkable monomer. More preferably, it contains 20% by weight or more of the crosslinkable monomer, and particularly preferably 60 to 98% by weight. If the amount of the crosslinkable monomer used is less than 5% by weight, the gel fraction of the resulting resin fine particles is not sufficiently improved, and there is a tendency that stickiness appears or the thermoplastic properties become strong. .

上記樹脂微粒子の製造に際しては、必要に応じて、重合開始剤、高分子保護剤(保護コロイド)、分散安定剤、膨潤助剤、連鎖移動剤、粘度調整剤、着色剤(染料や顔料)、消泡剤等の各種添加剤の1種類もしくは2種類以上が用いられても良い。   In producing the resin fine particles, if necessary, a polymerization initiator, a polymer protective agent (protective colloid), a dispersion stabilizer, a swelling aid, a chain transfer agent, a viscosity modifier, a colorant (dye or pigment), One kind or two or more kinds of various additives such as an antifoaming agent may be used.

重合開始剤としては、特に制限されないが、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサカルボニトリル、アゾビス(2,4-ジメチルバレロニトリル)、等のアゾ系化合物; 過酸化ベンゾイル、過酸化ラウロイル、オルソクロル過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド、等の有機過酸化物、等が挙げられる。これらの重合開始剤は、単独で用いても良いし、2種類以上が併用されても良い。このような重合開始剤としては、重合開始剤のうち、60重量%以上、好ましくは、70重量%以上、更に好ましくは80〜100重量%の範囲であるアゾ系化合物が用いられる。このような硬化は、所望の性能の微粒子を得易い。   The polymerization initiator is not particularly limited. For example, azo compounds such as azobisisobutyronitrile, azobiscyclohexacarbonitrile, azobis (2,4-dimethylvaleronitrile); benzoyl peroxide, peroxide Organic peroxides such as lauroyl, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy 2-ethylhexanoate, di-t-butyl peroxide Thing, etc. are mentioned. These polymerization initiators may be used alone or in combination of two or more. As such a polymerization initiator, among the polymerization initiators, an azo compound having a range of 60% by weight or more, preferably 70% by weight or more, more preferably 80 to 100% by weight is used. Such curing facilitates obtaining fine particles with desired performance.

上記重合開始剤の使用量は、特に制限されないが、前記重合性単量体の合計量100重量部に対して、重合開始剤0.1〜10重量部である事が好ましい。重合性単量体の合計量100重量部に対する重合開始剤の使用量が0.1重量部未満であると、重合反応が円滑に進行しない事があり、逆に重合性単量体の合計量100重量部に対する重合開始剤の使用量が10重量部を超えると、得られる樹脂微粒子の重合度(分子量)が低くなり過ぎて、樹脂微粒子ひいては導電性微粒子の機械的強度や耐熱性が不十分となる事がある。特に好ましくは、0.5〜5重量部である。   The amount of the polymerization initiator used is not particularly limited, but is preferably 0.1 to 10 parts by weight of the polymerization initiator with respect to 100 parts by weight of the total amount of the polymerizable monomers. When the amount of the polymerization initiator used is less than 0.1 parts by weight relative to 100 parts by weight of the total amount of polymerizable monomers, the polymerization reaction may not proceed smoothly. When the amount of the polymerization initiator used relative to 10 parts exceeds 10 parts by weight, the degree of polymerization (molecular weight) of the resin fine particles obtained becomes too low, and the mechanical strength and heat resistance of the resin fine particles and thus the conductive fine particles become insufficient. There is a thing. Particularly preferred is 0.5 to 5 parts by weight.

高分子保護剤を用いる事が出来る。高分子保護剤(保護コロイド)としては、特に制限されないが、例えば、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシエチルセルロース、等の水溶性高分子が挙げられる。これらの高分子保護剤(保護コロイド)は、単独で用いられても良いし、2種類以上が併用されても良い。   A polymer protective agent can be used. The polymer protective agent (protective colloid) is not particularly limited, and examples thereof include water-soluble polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and hydroxyethyl cellulose. These polymer protective agents (protective colloids) may be used alone or in combination of two or more.

分散安定剤を用いる事が出来る。分散安定剤としては、特に制限されないが、例えば、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩、等の陰イオン性界面活性剤: 脂肪族アミン塩、脂肪族4級アンモニウム塩等の陽イオン性界面活性剤; カルボキシベタイン、スルホベタイン、アミノカルボン酸塩、イミダゾリン誘導体等の両性界面活性剤; エーテル型、エーテルエステル型、エステル型、含窒素型等の非イオン性界面活性剤等が挙げられる。これらの分散安定剤は、単独で用いられても良いし、2種類以上が併用されても良い。   A dispersion stabilizer can be used. The dispersion stabilizer is not particularly limited, but examples thereof include anionic surfactants such as carboxylate, sulfonate, sulfate ester salt, phosphate ester salt, etc .: aliphatic amine salt, aliphatic quaternary ammonium salt Cationic surfactants such as: Amphoteric surfactants such as carboxybetaine, sulfobetaine, aminocarboxylate and imidazoline derivatives; Nonionic surfactants such as ether type, ether ester type, ester type and nitrogen-containing type Etc. These dispersion stabilizers may be used alone or in combination of two or more.

膨潤助剤を用いる事が出来る。膨潤助剤としては、シード重合法又は、分散シード重合法において、シード粒子(種粒子)への吸着又は吸収を促進させ得るものであれば良く、特に制限されないが、例えば、エタノール等のアルコール類やイソアミル等が挙げられる。これらの膨潤助剤は、単独で用いられても良いし、2種類以上が併用されても良い。   A swelling aid can be used. The swelling auxiliary agent is not particularly limited as long as it can promote the adsorption or absorption to the seed particles (seed particles) in the seed polymerization method or the dispersion seed polymerization method, and examples thereof include alcohols such as ethanol. And isoamyl. These swelling aids may be used alone or in combination of two or more.

連鎖移動剤を用いる事が出来る。連鎖移動剤としては、特に制限されないが、例えば、アルキルメルカプタン等のメルカプタン系化合物等が挙げられる。これらの連鎖移動剤は、単独で用いられても良いし、2種類以上が併用されても良い。   Chain transfer agents can be used. The chain transfer agent is not particularly limited, and examples thereof include mercaptan compounds such as alkyl mercaptans. These chain transfer agents may be used alone or in combination of two or more.

次に、上記樹脂微粒子の表面に形成される導電層は、導電性材料からなるものである。上記導電性材料としては、Ni、Cu、Au、Ag、Pd、In、等の金属を用いる事が出来る。導電層の厚さは、好ましくは、50〜10000Å、更に好ましくは、500〜2000Åである。   Next, the conductive layer formed on the surface of the resin fine particles is made of a conductive material. As the conductive material, metals such as Ni, Cu, Au, Ag, Pd, and In can be used. The thickness of the conductive layer is preferably 50 to 10,000 mm, more preferably 500 to 2000 mm.

樹脂微粒子の表面に導電層を形成する方法としては、特に制限されず、例えば、無電解メッキ、蒸着、スパッタリング、イオンプレーティング、物理的な乾式又は湿式コーティング等を用いる事が出来、公知の手法で行う事が出来る。好適例では、公知の無電解メッキ手法により樹脂粒子にNi層及びAu層を形成し、導電性粒子とした。   The method of forming the conductive layer on the surface of the resin fine particles is not particularly limited, and for example, electroless plating, vapor deposition, sputtering, ion plating, physical dry or wet coating, etc. can be used, and a known method It can be done with. In a preferred example, a Ni layer and an Au layer were formed on the resin particles by a known electroless plating technique to obtain conductive particles.

導電性微粒子は、導電性接着剤、好ましくは異方性導電接着剤中の導電性物質として用いられ、導通加工された製品を使い続ける場合に、環境の温度変化により硬化したエポキシ及び接着基材が膨張と収縮とを繰り返しても、その度重なる変化に対しても、導通の信頼性を維持する事が出来る。   Conductive fine particles are used as conductive materials in conductive adhesives, preferably anisotropic conductive adhesives, and epoxy and adhesive substrates that are cured by changes in environmental temperature when using continually processed products Even if expansion and contraction are repeated, the reliability of conduction can be maintained even with repeated changes.

導電性微粒子は、導電性接着剤、好ましくは、異方性導電接着剤中の導電性物質として用いられる。導電性接着剤中の接着剤成分は、特に制限されないが、公知の種々の接着成分、エポキシ樹脂等の熱硬化性樹脂等を含む事が出来る。   The conductive fine particles are used as a conductive substance in a conductive adhesive, preferably an anisotropic conductive adhesive. The adhesive component in the conductive adhesive is not particularly limited, but may include various known adhesive components, thermosetting resins such as epoxy resins, and the like.

以下に、実施例を掲げて本発明を更に詳しく説明するが、本発明はこれらの実施例のみに制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(実施例1)
予め、ビーカーに単量体として、1,6-ヘキサンジオール20重量部、n-ラウリルアクリレート1重量部及び重合開始剤としてのアゾビスイソブチロニトリル0.2重量部を入れ、均一に混合し、単量体溶液を準備する。
(Example 1)
In advance, 20 parts by weight of 1,6-hexanediol, 1 part by weight of n-lauryl acrylate and 0.2 parts by weight of azobisisobutyronitrile as a polymerization initiator are placed in a beaker as monomers, and mixed uniformly. Prepare a meter solution.

別に、セパラブルフラスコ反応器に、ポリビニルアルコール(日本合成化学製)の5%水溶液20重量部を入れ、これに前記の単量体溶液を加え、よく撹拌した後、イオン交換水を120重量部加える。   Separately, in a separable flask reactor, put 20 parts by weight of a 5% aqueous solution of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical), add the monomer solution to this, and after stirring well, 120 parts by weight of ion-exchanged water Add.

次に、この溶液を撹拌しながら、窒素気流下、80℃で18時間反応を行う。得られる微粒子を熱水で洗浄し、その後、分級操作を行い、平均粒子径3.8μm、Cv値4.8%の樹脂粒子を得る。   Next, while stirring this solution, the reaction is carried out at 80 ° C. for 18 hours under a nitrogen stream. The obtained fine particles are washed with hot water, and then classified to obtain resin particles having an average particle diameter of 3.8 μm and a Cv value of 4.8%.

この樹脂粒子にメッキ処理を行い、ニッケル層750Å、金層300Åの導電性微粒子を得る。得られる導電性微粒子からの任意の300ヶの粒子について、電子顕微鏡で粒子径を測定し、平均粒子径及び粒子径分布を求める。得られる値を表1に示す。   The resin particles are plated to obtain conductive fine particles having a nickel layer of 750 mm and a gold layer of 300 mm. About arbitrary 300 particles from the obtained electroconductive fine particles, a particle diameter is measured with an electron microscope, and an average particle diameter and particle diameter distribution are calculated | required. The values obtained are shown in Table 1.

(実施例2)
実施例1と同様の組成で同様に重合反応等を行い、分級操作により平均粒子径6.1μm、Cv値4.2%の樹脂粒子を得る。この樹脂粒子にメッキ処理を行い、ニッケル層800Å、金層350Åの導電性微粒子を得る。得られる導電性微粒子からの任意の300ヶの粒子について、電子顕微鏡で粒子径を測定し、平均粒子径及び粒子径分布を求める。得られる値を表1に示す。
(Example 2)
A polymerization reaction or the like is performed in the same manner as in Example 1, and classification is performed to obtain resin particles having an average particle size of 6.1 μm and a Cv value of 4.2%. The resin particles are plated to obtain conductive fine particles having a nickel layer of 800 mm and a gold layer of 350 mm. About arbitrary 300 particles from the obtained electroconductive fine particles, a particle diameter is measured with an electron microscope, and an average particle diameter and particle diameter distribution are calculated | required. The values obtained are shown in Table 1.

(実施例3)
実施例1と同様の組成で同様に重合反応等を行い、分級操作により平均粒子径10μm、Cv値4.1%の樹脂粒子を得る。この樹脂粒子にメッキ処理を行い、ニッケル層900Å、金層400Åの導電性微粒子を得る。得られる導電性微粒子からの任意の300ヶの粒子について、電子顕微鏡で粒子径を測定し、平均粒子径及び粒子径分布を求める。得られる値を表1に示す。
(Example 3)
A polymerization reaction and the like are performed in the same manner as in Example 1, and resin particles having an average particle diameter of 10 μm and a Cv value of 4.1% are obtained by classification. The resin particles are plated to obtain conductive fine particles having a nickel layer of 900 mm and a gold layer of 400 mm. About arbitrary 300 particles from the obtained electroconductive fine particles, a particle diameter is measured with an electron microscope, and an average particle diameter and particle diameter distribution are calculated | required. The values obtained are shown in Table 1.

(実施例4)
予め、ビーカーに単量体として1,6-ヘキサンジオール20重量部、n-ラウリルアクリレート0.2重量部及び重合開始剤としてのアゾビスイソブチロニトリル0.2重量部を入れ、均一に混合し、単量体溶液を準備する。別に、セパラブルフラスコ反応器に、ポリビニルアルコール(日本合成化学製)の5%水溶液20重量部を入れ、これに前記の単量体溶液を加え、よく撹拌した後、イオン交換水を120重量部加える。次に、この溶液を撹拌しながら、窒素気流下、80℃で18時間反応を行う。得られる微粒子を熱水で洗浄し、その後、分級操作を行い、平均粒子径4.0μm、Cv値4.6%の樹脂粒子を得る。この樹脂粒子にメッキ処理を行い、ニッケル層750Å、金層300Åの導電性微粒子を得る。得られる導電性微粒子からの任意の300ヶの粒子について、電子顕微鏡で粒子径を測定し、平均粒子径及び粒子径分布を求める。得られる値を表1に示す。
(Example 4)
In advance, put 20 parts by weight of 1,6-hexanediol as a monomer, 0.2 parts by weight of n-lauryl acrylate and 0.2 parts by weight of azobisisobutyronitrile as a polymerization initiator in a beaker, and mix uniformly. Prepare body solution. Separately, in a separable flask reactor, put 20 parts by weight of a 5% aqueous solution of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical), add the monomer solution to this, and after stirring well, 120 parts by weight of ion-exchanged water Add. Next, while stirring this solution, the reaction is carried out at 80 ° C. for 18 hours under a nitrogen stream. The obtained fine particles are washed with hot water, and then classified to obtain resin particles having an average particle diameter of 4.0 μm and a Cv value of 4.6%. The resin particles are plated to obtain conductive fine particles having a nickel layer of 750 mm and a gold layer of 300 mm. About arbitrary 300 particles from the obtained electroconductive fine particles, a particle diameter is measured with an electron microscope, and an average particle diameter and particle diameter distribution are calculated | required. The values obtained are shown in Table 1.

(実施例5)
実施例4と同様の組成で同様に重合反応等を行い、分級操作により平均粒子径5.9μm、Cv値4.5%の樹脂粒子を得る。この樹脂粒子にメッキ処理を行い、ニッケル層780Å、金層320Åの導電性微粒子を得る。得られる導電性微粒子からの任意の300ヶの粒子について、電子顕微鏡で粒子径を測定し、平均粒子径及び粒子径分布を求める。得られる値を表1に示す。
(Example 5)
A polymerization reaction or the like is carried out in the same manner as in Example 4, and resin particles having an average particle diameter of 5.9 μm and a Cv value of 4.5% are obtained by classification. The resin particles are plated to obtain conductive fine particles having a nickel layer of 780 mm and a gold layer of 320 mm. About arbitrary 300 particles from the obtained electroconductive fine particles, a particle diameter is measured with an electron microscope, and an average particle diameter and particle diameter distribution are calculated | required. The values obtained are shown in Table 1.

(実施例6)
実施例1において、単量体として、1,6-ヘキサンジオールの代わりにポリエチレングリコール200ジアクリレートの20重量部と、n-ラウリルアクリレート1重量部の代わりにブチルアクリレートの5重量部とを用い、重合開始剤として、アゾビスイソブチロニトリル0.12重量部及びパーオキシエステルの0.08重量部を用い、実施例1と同様に単量体溶液を準備し、同様にポリビニルアルコールとの反応等を行い、分級操作により平均粒子径5.0μm、Cv値3.6%の樹脂粒子を得る。この樹脂粒子にメッキ処理を行って、ニッケル層800Å、金層200Åの導電性微粒子を得る。得られる導電性微粒子からの任意の300ヶの粒子について、電子顕微鏡で粒子径を測定し、平均粒子径及び粒子径分布を求める。得られる値を表1に示す。
(Example 6)
In Example 1, as a monomer, 20 parts by weight of polyethylene glycol 200 diacrylate instead of 1,6-hexanediol, and 5 parts by weight of butyl acrylate instead of 1 part by weight of n-lauryl acrylate, As a polymerization initiator, using 0.12 parts by weight of azobisisobutyronitrile and 0.08 parts by weight of peroxyester, preparing a monomer solution in the same manner as in Example 1, similarly performing reaction with polyvinyl alcohol, etc. By classification, resin particles having an average particle size of 5.0 μm and a Cv value of 3.6% are obtained. The resin particles are plated to obtain conductive fine particles having a nickel layer of 800 mm and a gold layer of 200 mm. About arbitrary 300 particles from the obtained electroconductive fine particles, a particle diameter is measured with an electron microscope, and an average particle diameter and particle diameter distribution are calculated | required. The values obtained are shown in Table 1.

(実施例7)
実施例6において、単量体として、ポリエチレングリコール200ジアクリレートの代わりに1,9-ノナンジオールジアクリレートの20重量部と、ブチルアクリレート5重量部の代わりに2-エチルヘキシルアクリレートの0.6重量部とを用い、実施例6と同様に単量体溶液を準備し、同様にポリビニルアルコールとの反応等を行い、分級操作により平均粒子径4.0μm、Cv値4.2%の樹脂粒子を得る。この樹脂粒子にメッキ処理を行い、ニッケル層750Å、金層200Åの導電性微粒子を得る。得られる導電性微粒子からの任意の300ヶの粒子について、電子顕微鏡で粒子径を測定し、平均粒子径及び粒子径分布を求める。得られる値を表1に示す。
(Example 7)
In Example 6, as monomers, 20 parts by weight of 1,9-nonanediol diacrylate instead of polyethylene glycol 200 diacrylate and 0.6 parts by weight of 2-ethylhexyl acrylate instead of 5 parts by weight of butyl acrylate In the same manner as in Example 6, a monomer solution is prepared, similarly reacted with polyvinyl alcohol, and the like, and resin particles having an average particle size of 4.0 μm and a Cv value of 4.2% are obtained by classification. The resin particles are plated to obtain conductive fine particles having a nickel layer of 750 mm and a gold layer of 200 mm. About arbitrary 300 particles from the obtained electroconductive fine particles, a particle diameter is measured with an electron microscope, and an average particle diameter and particle diameter distribution are calculated | required. The values obtained are shown in Table 1.

(比較例1)
予め、ビーカーに単量体としてのトリメチロールプロパントリアクリレート20重量部及び重合開始剤として過酸化ベンゾイル0.2重量部を入れ、均一に混合し、単量体溶液を準備する。別に、セパラブルフラスコ反応器に、ポリビニルアルコール(日本合成化学製)の5%水溶液20重量部を入れ、これに前記の単量体溶液を加えよく撹拌した後、イオン交換水を120重量部加える。次に、この溶液を撹拌しながら、窒素気流下、80℃で18時間反応を行う。得られる微粒子を熱水で洗浄し、その後、分級操作を行い、平均粒子径4μm、Cv値4.5%の樹脂粒子を得る。この樹脂粒子にメッキ処理を行い、ニッケル層800Å、金層300Åの導電性微粒子を得る。得られる導電性微粒子からの任意の300ヶの粒子について、電子顕微鏡で粒子径を測定し、平均粒子径及び粒子径分布を求める。得られる値を表1に示す。
(Comparative Example 1)
In advance, 20 parts by weight of trimethylolpropane triacrylate as a monomer and 0.2 parts by weight of benzoyl peroxide as a polymerization initiator are placed in a beaker and mixed uniformly to prepare a monomer solution. Separately, in a separable flask reactor, 20 parts by weight of a 5% aqueous solution of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical) is added, and after adding the above monomer solution and stirring well, 120 parts by weight of ion exchange water is added. . Next, while stirring this solution, the reaction is carried out at 80 ° C. for 18 hours under a nitrogen stream. The obtained fine particles are washed with hot water, and then classified to obtain resin particles having an average particle diameter of 4 μm and a Cv value of 4.5%. The resin particles are plated to obtain conductive fine particles having a nickel layer of 800 mm and a gold layer of 300 mm. About arbitrary 300 particles from the obtained electroconductive fine particles, a particle diameter is measured with an electron microscope, and an average particle diameter and particle diameter distribution are calculated | required. The values obtained are shown in Table 1.

(比較例2)
単量体としてイソボルニルアクリレートを用いる以外は、比較例1と同様に重合反応を行う。得られる微粒子を熱水で洗浄し、その後、分級操作を行い、平均粒子径4μm、Cv値4.8%の樹脂粒子を得る。この樹脂粒子にメッキ処理を行い、ニッケル層760Å、金層320Åの導電性微粒子を得る。得られる導電性微粒子からの任意の300ヶの粒子について、電子顕微鏡で粒子径を測定し、平均粒子径及び粒子径分布を求める。得られる値を表1に示す。
(Comparative Example 2)
The polymerization reaction is carried out in the same manner as in Comparative Example 1 except that isobornyl acrylate is used as the monomer. The obtained fine particles are washed with hot water, and then subjected to a classification operation to obtain resin particles having an average particle diameter of 4 μm and a Cv value of 4.8%. The resin particles are plated to obtain conductive fine particles of a nickel layer 760 mm and a gold layer 320 mm. About arbitrary 300 particles from the obtained electroconductive fine particles, a particle diameter is measured with an electron microscope, and an average particle diameter and particle diameter distribution are calculated | required. The values obtained are shown in Table 1.

(比較例3)
予め、ビーカーに数平均分子量2000のウレタンアクリレートオリゴマー紫光2000B(日本合成化学製)7重量部と単量体としての1,6-ヘキサンジオールジアクリレート14重量部及び重合開始剤としての過酸化ベンゾイル0.2重量部を入れ、均一に混合し、単量体溶液を準備する。別に、セパラブルフラスコ反応器に、ポリビニルアルコール(日本合成化学製)の5%水溶液20重量部を入れ、これに前記の単量体溶液を加え、よく撹拌した後、イオン交換水を120重量部加える。次に、この溶液を撹拌しながら、窒素気流下、80℃で18時間反応を行う。得られる微粒子を熱水で洗浄し、その後、分級操作を行い、平均粒子径9.6μm、Cv値4.6%の樹脂粒子を得る。この樹脂粒子にメッキ処理を行い、ニッケル層800Å、金層300Åの導電性微粒子を得る。得られる導電性微粒子からの任意の300ヶの粒子について、電子顕微鏡で粒子径を測定し、平均粒子径及び粒子径分布を求める。得られる値を表1に示す。
(Comparative Example 3)
In advance, in a beaker, 7 parts by weight of urethane acrylate oligomer with a number average molecular weight of 2000, purple light 2000B (manufactured by Nippon Gosei Kagaku), 14 parts by weight of 1,6-hexanediol diacrylate as a monomer, and benzoyl peroxide 0.2 as a polymerization initiator A weight part is put and mixed uniformly to prepare a monomer solution. Separately, in a separable flask reactor, put 20 parts by weight of a 5% aqueous solution of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical), add the monomer solution to this, and after stirring well, 120 parts by weight of ion-exchanged water Add. Next, while stirring this solution, the reaction is carried out at 80 ° C. for 18 hours under a nitrogen stream. The obtained fine particles are washed with hot water, and then subjected to a classification operation to obtain resin particles having an average particle size of 9.6 μm and a Cv value of 4.6%. The resin particles are plated to obtain conductive fine particles having a nickel layer of 800 mm and a gold layer of 300 mm. About arbitrary 300 particles from the obtained electroconductive fine particles, a particle diameter is measured with an electron microscope, and an average particle diameter and particle diameter distribution are calculated | required. The values obtained are shown in Table 1.

(比較例4)
実施例1と同様の操作により、重合反応を行う。得られる微粒子を熱水で洗浄し、その後、分級操作を行い、平均粒子径4.0μm、Cv値11.2%の樹脂粒子を得る。この樹脂粒子にメッキ処理を行い、ニッケル層750Å、金層300Åの導電性微粒子を得る。得られる導電性微粒子からの任意の300ヶの粒子について、電子顕微鏡で粒子径を測定し、平均粒子径及び粒子径分布を求める。得られる値を表1に示す。
(Comparative Example 4)
The polymerization reaction is carried out in the same manner as in Example 1. The obtained fine particles are washed with hot water, and then subjected to a classification operation to obtain resin particles having an average particle diameter of 4.0 μm and a Cv value of 11.2%. The resin particles are plated to obtain conductive fine particles having a nickel layer of 750 mm and a gold layer of 300 mm. About arbitrary 300 particles from the obtained electroconductive fine particles, a particle diameter is measured with an electron microscope, and an average particle diameter and particle diameter distribution are calculated | required. The values obtained are shown in Table 1.

(評価)
実施例1〜7及び比較例1〜4で得られる導電性微粒子について、下記の評価を行う。
(Evaluation)
The following evaluation is performed on the conductive fine particles obtained in Examples 1 to 7 and Comparative Examples 1 to 4.

[1](負荷除荷繰り返し試験)
島津製作所製の微小圧縮試験機(PCTM200)を用いて、負荷除荷試験及びその繰り返し試験を行い、圧縮率(%)、及び同一の粒子を20回繰り返し圧縮した時の圧縮率が1回目の圧縮率に対する割合(%)を求める。
[1] (Load unloading repeated test)
Using a small compression tester (PCTM200) manufactured by Shimadzu Corporation, a load unloading test and its repeated test were performed, and the compression rate (%) and the compression rate when the same particles were compressed 20 times were the first The ratio (%) to the compression rate is obtained.

試験結果を表1に示す。なお、表中、同一の粒子を20回繰り返し圧縮した時の圧縮率が1回目の圧縮率に対する割合(%)を、「1回目の圧縮率に対する割合(%)」と略記した。   The test results are shown in Table 1. In the table, the ratio (%) of the compression ratio when the same particle was repeatedly compressed 20 times to the first compression ratio was abbreviated as “ratio (%) to the first compression ratio”.

[2](導通信頼性試験)
エポキシ樹脂70重量部とトルエン30重量部とを均一に混合し、得られる導電性微粒子を7重量部混合分散させる。次いで、導電性微粒子分散溶液をPET製の片面離型処理フィルム上にアプリケーターにて一定厚みに塗布し、トルエンを蒸発させ、異方性導電膜を作製する。膜厚は30μmである。
[2] (Continuity reliability test)
70 parts by weight of epoxy resin and 30 parts by weight of toluene are mixed uniformly, and 7 parts by weight of the resulting conductive fine particles are mixed and dispersed. Next, the conductive fine particle dispersion is applied on a PET single-sided release film with a constant thickness using an applicator, and toluene is evaporated to prepare an anisotropic conductive film. The film thickness is 30 μm.

ガラス基板上に形成されたITO電極(0.2mmピッチ)に、得られる異方性導電膜を貼付ける。この上に、別のガラス基板のITO電極(電極間0.2mmピッチ)を重ね合わせ、プレス機により15kgf/cm2の圧力を掛けながら、15℃、30分間加熱圧着して試験片を得る。   The obtained anisotropic conductive film is attached to the ITO electrodes (0.2 mm pitch) formed on the glass substrate. On top of this, ITO electrodes (0.2 mm pitch between electrodes) on another glass substrate are superposed, and a test piece is obtained by thermocompression bonding at 15 ° C. for 30 minutes while applying a pressure of 15 kgf / cm 2 with a press.

この試験片について、高温側150℃*2時間保持、及び低温側-20℃*2時間保持を1サイクルとした温度サイクル試験を30サイクル処理で行い、処理前後について、ITO電極間の電気抵抗値(Ω)を測定する。   This test piece was subjected to a 30-cycle temperature cycle test with a high temperature side of 150 ° C * 2 hours and a low temperature side of -20 ° C * 2 hours held in one cycle, and the electrical resistance value between the ITO electrodes before and after the treatment. Measure (Ω).

試験結果を表1に示す。   The test results are shown in Table 1.

Figure 0004902853
Figure 0004902853

表1に示すように、実施例1〜7において、微粒子は、その表面に金属層をメッキしても所定の物性を有し、異方性導電膜における導電性微粒子として極めて良好な導通安定性を示す。   As shown in Table 1, in Examples 1 to 7, the fine particles have predetermined physical properties even when a metal layer is plated on the surface, and extremely good conduction stability as conductive fine particles in the anisotropic conductive film. Indicates.

本発明の微粒子は、圧縮された場合にも適度に変形し、圧力を取り去ると適度に回復する。この為、かかる微粒子を導電性微粒子として、2つの電極間に配置し加圧した場合、周囲の温度変化等によって電極の間隔や加圧力に変動があっても、導電性粒子が追従して変形するので、2つの電極間で安定した導通を維持する事が出来、導電性接着剤等の導電性物質として非常に有用である。   The fine particles of the present invention are appropriately deformed even when compressed, and recover moderately when the pressure is removed. Therefore, when such fine particles are placed between two electrodes as conductive fine particles and pressed, the conductive particles follow and deform even if there are fluctuations in the distance between electrodes and the applied pressure due to changes in ambient temperature, etc. Therefore, stable conduction between the two electrodes can be maintained, which is very useful as a conductive substance such as a conductive adhesive.

Claims (4)

2つの電極間に配置される導電性微粒子用の樹脂微粒子であって、
上記樹脂微粒子は、単官能単量体と2官能単量体とを共重合してなるものであり、負荷除荷試験において、1.42196mN/秒の荷重負荷速度により微粒子を圧縮して、下記式(1):
P=7/96×d2×9.80665/1000 ・・・(1)
[式中、dは微粒子の個数平均粒子径(μm)であり、P(N)は、小数点以下2桁目を四捨五入した値である。]
で表される荷重値P(N)に達したときに50%以上の圧縮率を有し、かつ、微粒子を20回繰り返し圧縮したときの圧縮率の割合が1回目の圧縮率の80%以上であり、
上記微粒子が10%以下のCv値を有する、樹脂微粒子。
Resin fine particles for conductive fine particles disposed between two electrodes,
The resin fine particles are obtained by copolymerization of a monofunctional monomer and a bifunctional monomer. In the load unloading test, the fine particles are compressed at a load load rate of 1.42196 mN / sec. (1):
P = 7/96 × d2 × 9.80665 / 1000 (1)
[Wherein, d is the number average particle diameter (μm) of fine particles, and P (N) is a value obtained by rounding off the second digit after the decimal point. ]
It has a compression ratio of 50% or more when the load value P (N) represented by is reached, and the ratio of the compression ratio when the fine particles are repeatedly compressed 20 times is 80% or more of the first compression ratio. der is,
Resin fine particles, wherein the fine particles have a Cv value of 10% or less .
重合開始剤として60重量%以上のアゾ系化合物が用いられる、請求項1の樹脂微粒子。   2. The resin fine particles according to claim 1, wherein 60% by weight or more of an azo compound is used as a polymerization initiator. 微粒子が1μmから10μmまでの範囲内の個数平均粒子径を有する、請求項1又は2の樹脂微粒子。   3. The resin fine particles according to claim 1 or 2, wherein the fine particles have a number average particle diameter in a range of 1 μm to 10 μm. 基材としての樹脂微粒子と前記樹脂微粒子の表面上の導電層とを備え、異方性導電接着剤のために用いる導電性微粒子であって、樹脂微粒子が請求項1〜3のいずれか一項の樹脂微粒子である、導電性微粒子。 A conductive fine particle comprising resin fine particles as a substrate and a conductive layer on the surface of the resin fine particles, and used for an anisotropic conductive adhesive, wherein the resin fine particles are any one of claims 1 to 3. Conductive fine particles which are resin fine particles.
JP2006235830A 2006-08-31 2006-08-31 Resin fine particles and conductive fine particles Active JP4902853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235830A JP4902853B2 (en) 2006-08-31 2006-08-31 Resin fine particles and conductive fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235830A JP4902853B2 (en) 2006-08-31 2006-08-31 Resin fine particles and conductive fine particles

Publications (2)

Publication Number Publication Date
JP2008059914A JP2008059914A (en) 2008-03-13
JP4902853B2 true JP4902853B2 (en) 2012-03-21

Family

ID=39242405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235830A Active JP4902853B2 (en) 2006-08-31 2006-08-31 Resin fine particles and conductive fine particles

Country Status (1)

Country Link
JP (1) JP4902853B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584468B2 (en) * 2008-07-31 2014-09-03 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP5509592B2 (en) * 2008-12-26 2014-06-04 日産自動車株式会社 Bipolar secondary battery
JP6018831B2 (en) * 2011-08-05 2016-11-02 積水化学工業株式会社 Manufacturing method of bonded structure
CN110187566A (en) * 2019-05-10 2019-08-30 深圳市华星光电技术有限公司 Frame glue and liquid crystal display panel
JP7408930B2 (en) * 2019-06-27 2024-01-09 東洋インキScホールディングス株式会社 Conductive particles, dispersion and manufacturing method thereof
KR20230012496A (en) * 2020-05-20 2023-01-26 니폰 가가쿠 고교 가부시키가이샤 Conductive particle, conductive material and connection structure using the same
JP7041305B2 (en) * 2020-05-20 2022-03-23 日本化学工業株式会社 Conductive particles, conductive materials and connecting structures using them

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338710B2 (en) * 2002-06-06 2008-03-04 Sony Chemicals & Information Device Corporation Resin particle, conductive particle and anisotropic conductive adhesive containing the same
JP2004035293A (en) * 2002-07-01 2004-02-05 Ube Nitto Kasei Co Ltd Silica-based particle, its manufacturing method, and conductive silica-based particle
JP4026812B2 (en) * 2002-07-15 2007-12-26 宇部日東化成株式会社 Conductive particles and method for producing the same
JP2005325383A (en) * 2004-05-12 2005-11-24 Sekisui Chem Co Ltd Method for producing electroconductive fine particle, electroconductive fine particle and anisotropic electroconductive material
JP4527495B2 (en) * 2004-10-22 2010-08-18 株式会社日本触媒 Polymer fine particles and method for producing the same, conductive fine particles

Also Published As

Publication number Publication date
JP2008059914A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4902853B2 (en) Resin fine particles and conductive fine particles
JP4904353B2 (en) Insulating conductive particles and anisotropic conductive adhesive film using the same
TWI522409B (en) Conductive particles, anisotropic conductive materials and connecting structures
TWI601159B (en) Conductive particles, resin particles, a conductive material, and a connecting structure
CN102112507B (en) Polymer particle, conductive particle, anisotropic conductive material and connection structure
EP1076082B1 (en) Low-temperature setting adhesive and anisotropically electroconductive adhesive film using the same
WO2006065009A1 (en) Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
JPH08325543A (en) Anisotropically electroconductive adhesive
WO2006090950A1 (en) Polymer particles and conductive particles having enhanced conducting properties and an anisotropic conductive packaging materials containing the same
JP2009522716A (en) Conductive particles for anisotropic conductive connection
JP2000319309A (en) Polymer fine particle and its production, spacer for liquid crystal display element, electroconductive fine particle
JP3587398B2 (en) Conductive particles and anisotropic conductive adhesive
TWI484504B (en) Anisotropic conductive film, method for producing the same and method for pressing circuit terminals
JP2003313304A (en) Conductive fine particle, its manufacturing method and bonding material for electronic component
JP2001216841A (en) Conductive partiulates and conductive connecting fabric
JP4278374B2 (en) Conductive fine particles, method for producing conductive fine particles, and conductive material
JP3373094B2 (en) Elastic fine particles, method for producing the same, and elastic conductive fine particles
JP3898510B2 (en) Conductive fine particles and anisotropic conductive materials
JP2004165019A (en) Conductive particulate and anisotropic conductive material
JP3241276B2 (en) Conductive microsphere and liquid crystal display device
JP2001164210A (en) Anisotropic conductive film and electronic equipment using the same
TWI719054B (en) Method for manufacturing connection structure, conductive particles, conductive film, and connection structure
KR100727741B1 (en) Anisotropic conductive adhesive for hyper speed hardening, and anisotropic conductive film using the same
JP2006107881A (en) Conductive fine particle and anisotropic conductive material
JP2008171594A (en) Projecting particulate, projecting conductive particulate, and manufacturing method of projecting particulate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090604

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110909

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111229

R150 Certificate of patent or registration of utility model

Ref document number: 4902853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250