JP2003297423A - Nonaqueous system electrolyte solution and nonaqueous system electrolyte solution secondary battery using the same - Google Patents

Nonaqueous system electrolyte solution and nonaqueous system electrolyte solution secondary battery using the same

Info

Publication number
JP2003297423A
JP2003297423A JP2002100543A JP2002100543A JP2003297423A JP 2003297423 A JP2003297423 A JP 2003297423A JP 2002100543 A JP2002100543 A JP 2002100543A JP 2002100543 A JP2002100543 A JP 2002100543A JP 2003297423 A JP2003297423 A JP 2003297423A
Authority
JP
Japan
Prior art keywords
carbon atoms
aqueous electrolyte
secondary battery
general formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002100543A
Other languages
Japanese (ja)
Other versions
JP4461664B2 (en
Inventor
Daisuke Noda
大介 野田
Kenji Shizuka
賢治 志塚
Shinichi Kinoshita
信一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002100543A priority Critical patent/JP4461664B2/en
Publication of JP2003297423A publication Critical patent/JP2003297423A/en
Application granted granted Critical
Publication of JP4461664B2 publication Critical patent/JP4461664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery having improved safety when overcharged and capable of suppressing battery performance degradation after high temperature preservation, and a nonaqueous system electrolyte solution from which the lithium secondary battery can be obtained. <P>SOLUTION: The nonaqueous system electrolyte solution secondary battery comprises negative and positive electrodes capable of storing and releasing lithium and a nonaqueous system electrolyte solution including a solute and organic solvent, wherein the organic solvent contains a sulfone compound of general formula (1) as shown below and an aromatic compound of general formula (2) with a molecular weight equal to or less than 500. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解液二次
電池及びそれに用いる非水系電解液に関する。詳しく
は、高温保存時の電池の劣化を防止した信頼性の高い非
水系電解液二次電池及びそれを提供するための非水系電
解液に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte used therein. More specifically, the present invention relates to a highly reliable non-aqueous electrolyte secondary battery that prevents deterioration of the battery during high temperature storage, and a non-aqueous electrolyte solution for providing the same.

【0002】[0002]

【従来の技術】近年、電気製品の軽量化、小型化にとも
ない、高いエネルギー密度を持つリチウム二次電池が注
目されている。また、リチウム二次電池の適用分野の拡
大に伴い、電池特性の改善も要望されている。このよう
なリチウム二次電池の電解液の溶媒としては、例えば炭
酸エチレン、炭酸プロピレン等の環状炭酸エステル類ま
たはγ−ブチロラクトン等の環状カルボン酸エステル類
などの高誘電率溶媒と、炭酸ジエチル、炭酸ジメチル等
の鎖状炭酸エステル類またはジメトキシエタン等のエー
テル類などの低粘度溶媒を適宜混合したものが用いられ
ている。これらの非水系溶媒は、誘電率が高く、また酸
化電位が高いために電池使用時の安定性にも優れる等の
電池特性上優れた溶媒である。
2. Description of the Related Art In recent years, lithium secondary batteries having high energy density have been attracting attention as electric products have become lighter and smaller. Further, with the expansion of application fields of lithium secondary batteries, improvement of battery characteristics is also demanded. Examples of the solvent for the electrolytic solution of such a lithium secondary battery include high-dielectric constant solvents such as cyclic carbonic acid esters such as ethylene carbonate and propylene carbonate or cyclic carboxylic acid esters such as γ-butyrolactone, diethyl carbonate and carbonic acid. A suitable mixture of low viscosity solvents such as chain carbonic acid esters such as dimethyl or ethers such as dimethoxyethane is used. These non-aqueous solvents are excellent solvents in terms of battery characteristics such as high dielectric constant and high oxidation potential, and thus excellent stability during battery use.

【0003】一方、上記非水系溶媒を用いた電解液は、
該非水系溶媒の高安定性のために高い電位での使用が可
能であるが故に、逆に充電時等に所定の上限電圧以上の
電圧になる、いわゆる過充電現象が問題となりやすい。
過充電になると、電池の変形や発熱だけでなく、甚だし
い場合には発火、破裂等の現象をも招き得るため、過充
電時の二次電池の安全性を向上させることは重要であ
る。
On the other hand, the electrolytic solution using the above non-aqueous solvent is
Since the non-aqueous solvent has high stability and can be used at a high potential, conversely, a so-called overcharge phenomenon in which a voltage becomes equal to or higher than a predetermined upper limit voltage at the time of charging tends to be a problem.
It is important to improve the safety of the secondary battery during overcharging, because overcharging can cause not only deformation and heat generation of the battery but also, in extreme cases, phenomena such as ignition and rupture.

【0004】従来、このような過充電時の安全性を向上
させる試みとして、過充電防止剤を電解液中に添加し
て、電流を遮断する方法が知られている。即ち、過充電
防止剤として、電池の上限電圧値以上の酸化電位を有す
るビフェニル等の芳香族化合物を電解液中に添加し、過
充電状態となった際には、上記芳香族化合物が酸化重合
して活物質表面に高抵抗の被膜を形成することによって
過充電電流を抑えて過充電の進行を止める方法である
(例えば、特開平9−106835号公報等)。
Conventionally, as an attempt to improve the safety during such overcharge, a method of adding an overcharge inhibitor to the electrolytic solution to cut off the current is known. That is, as an overcharge inhibitor, an aromatic compound such as biphenyl having an oxidation potential equal to or higher than the upper limit voltage value of the battery is added to the electrolytic solution, and when the overcharge state occurs, the aromatic compound is oxidatively polymerized. Then, by forming a high resistance coating on the surface of the active material, the overcharge current is suppressed and the progress of overcharge is stopped (for example, JP-A-9-106835).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
9−106835号公報に記載された過充電防止剤であ
るビフェニルや3−クロロチオフェン、フラン等が添加
された電池は過充電状態での安全性は確保できるもの
の、通常の充電状態で高温保存した場合、過充電時に進
行するはずの酸化重合反応が徐々に進行してしまい、そ
れによって生成した皮膜の抵抗により電池性能が著しく
低下するという問題があった。
However, the battery to which the overcharge preventing agent such as biphenyl, 3-chlorothiophene, or furan described in JP-A-9-106835 is added is safe in an overcharged state. However, when stored at high temperature in a normal state of charge, the oxidative polymerization reaction, which should proceed during overcharge, gradually progresses, and the resistance of the resulting film causes a significant decrease in battery performance. there were.

【0006】そこで、過充電防止剤の高温保存時におけ
る反応を抑制し、過充電時の安全性を確保するととも
に、高温保存後も安定した性能を維持するための添加剤
が求められていた。
Therefore, there has been a demand for an additive that suppresses the reaction of an overcharge inhibitor during high temperature storage, ensures safety during overcharge, and maintains stable performance even after high temperature storage.

【0007】[0007]

【課題を解決するための手段】本発明は上記問題点に鑑
みなされたもので、その目的は、従来の過充電防止剤の
通常充電状態での高温保存時の反応を抑制し、高温保存
後の電池性能を高めることにある。本発明者らは上記目
的を達成すべく鋭意検討を重ねた結果、従来公知の芳香
族化合物系の過充電防止剤と併せて特定の化合物を用い
ることによって、芳香族化合物の反応を抑制し、高温保
存後の電池性能の劣化を改善できることを見出して、本
発明を完成した。
The present invention has been made in view of the above problems, and an object thereof is to suppress the reaction of a conventional overcharge inhibitor during high temperature storage in a normally charged state, and To improve the battery performance of. As a result of repeated intensive studies to achieve the above-mentioned objects, the present inventors used a specific compound in combination with a conventionally known aromatic compound-based overcharge inhibitor to suppress the reaction of the aromatic compound, The present invention has been completed by finding that deterioration of battery performance after high temperature storage can be improved.

【0008】即ち本発明の要旨は、リチウムを吸蔵・放
出することが可能な負極及び正極と溶質及び有機系溶媒
からなる非水系電解液とを備えた非水系電解液二次電池
において、上記有機系溶媒中に、下記一般式(1)で表
されるスルホン化合物と下記一般式(2)で表される分
子量500以下の芳香族化合物とを含有することを特徴
とする非水系電解液二次電池、に存する。
That is, the gist of the present invention is a non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte solution containing a solute and an organic solvent. A non-aqueous electrolyte secondary containing a sulfone compound represented by the following general formula (1) and an aromatic compound represented by the following general formula (2) having a molecular weight of 500 or less in a system solvent. Batteries.

【0009】[0009]

【化9】 [Chemical 9]

【0010】(式中、R1及びR2は、それぞれ独立して
アリール基若しくはハロゲン原子で置換されていてもよ
いアルキル基又はアルキル基若しくはハロゲン原子で置
換されていてもよいアリール基であり、R1とR2は互い
に結合して不飽和結合を含んでいてもよい環状構造を形
成していてもよい。)
(In the formula, R 1 and R 2 are each independently an aryl group or an alkyl group which may be substituted with a halogen atom, or an aryl group which may be substituted with an alkyl group or a halogen atom, R 1 and R 2 may be bonded to each other to form a cyclic structure which may contain an unsaturated bond.)

【0011】[0011]

【化10】 [Chemical 10]

【0012】(式中、R3〜R8はそれぞれ独立して水素
原子、ハロゲン原子、炭素数1〜12の鎖状アルキル
基、炭素数5〜12のシクロアルキル基、炭素数6〜1
2のアリール基、或いは炭素数11〜14のアリールシ
クロアルキル基である。) 本発明の他の要旨は、リチウムを吸蔵・放出することが
可能な負極及び正極と溶質及び有機系溶媒からなる非水
系電解液とを備えた非水系電解液二次電池において、上
記有機系溶媒中に、下記一般式(1)で表されるスルホ
ン化合物と下記一般式(3)で表される分子量500以
下の芳香族化合物とを含有することを特徴とする非水系
電解液二次電池、に存する。
(In the formula, R 3 to R 8 are each independently a hydrogen atom, a halogen atom, a chain alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, and a carbon atom having 6 to 1 carbon atoms.
It is an aryl group having 2 or an arylcycloalkyl group having 11 to 14 carbon atoms. ) Another aspect of the present invention is a non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte solution containing a solute and an organic solvent. A non-aqueous electrolyte secondary battery comprising a sulfone compound represented by the following general formula (1) and an aromatic compound represented by the following general formula (3) having a molecular weight of 500 or less in a solvent. ,.

【0013】[0013]

【化11】 [Chemical 11]

【0014】(式中、R1及びR2は、それぞれ独立して
アリール基若しくはハロゲン原子で置換されていてもよ
いアルキル基又はアルキル基若しくはハロゲン原子で置
換されていてもよいアリール基であり、R1とR2は互い
に結合して不飽和結合を含んでいてもよい環状構造を形
成していてもよい。)
(Wherein R 1 and R 2 are each independently an aryl group or an alkyl group optionally substituted with a halogen atom, or an aryl group optionally substituted with an alkyl group or a halogen atom, R 1 and R 2 may be bonded to each other to form a cyclic structure which may contain an unsaturated bond.)

【0015】[0015]

【化12】 [Chemical 12]

【0016】(式中、R9は炭素数1〜12の鎖状アル
キル基、炭素数5〜12のシクロアルキル基、或いは炭
素数6〜12のアリール基であり、R10〜R14はそれぞ
れ独立して水素原子、ハロゲン原子、炭素数1〜12の
鎖状アルキル基、炭素数5〜12のシクロアルキル基、
或いは炭素数6〜12のアリール基であり、R9とR10
〜R14とは互いに結合して環状構造を形成していてもよ
い。) また本発明のさらに他の要旨は、リチウムを吸蔵・放出
することが可能な負極及び正極と組合せて使用するため
の二次電池用非水系電解液であって、溶質及び有機系溶
媒からなり、上記有機系溶媒中に、下記一般式(1)で
表されるスルホン化合物と下記一般式(2)で表される
分子量500以下の芳香族化合物とを含有することを特
徴とする非水系電解液、に存する。
(In the formula, R 9 is a chain alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and R 10 to R 14 are respectively Independently a hydrogen atom, a halogen atom, a chain alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms,
Alternatively, it is an aryl group having 6 to 12 carbon atoms, and R 9 and R 10
~ R 14 may combine with each other to form a cyclic structure. ) Still another subject matter of the present invention is a non-aqueous electrolyte solution for a secondary battery, which is used in combination with a negative electrode and a positive electrode capable of inserting and extracting lithium, and which comprises a solute and an organic solvent. A non-aqueous electrolysis, wherein the organic solvent contains a sulfone compound represented by the following general formula (1) and an aromatic compound represented by the following general formula (2) and having a molecular weight of 500 or less. In the liquid.

【0017】[0017]

【化13】 [Chemical 13]

【0018】(式中、R1及びR2は、それぞれ独立して
アリール基若しくはハロゲン原子で置換されていてもよ
いアルキル基又はアルキル基若しくはハロゲン原子で置
換されていてもよいアリール基であり、R1とR2は互い
に結合して不飽和結合を含んでいてもよい環状構造を形
成していてもよい。)
(In the formula, R 1 and R 2 are each independently an aryl group or an alkyl group optionally substituted with a halogen atom, or an aryl group optionally substituted with an alkyl group or a halogen atom, R 1 and R 2 may be bonded to each other to form a cyclic structure which may contain an unsaturated bond.)

【0019】[0019]

【化14】 [Chemical 14]

【0020】(式中、R3〜R8はそれぞれ独立して水素
原子、ハロゲン原子、炭素数1〜12の鎖状アルキル
基、炭素数5〜12のシクロアルキル基、炭素数6〜1
2のアリール基、或いは炭素数11〜14のアリールシ
クロアルキル基である。) また本発明のさらに他の要旨は、リチウムを吸蔵・放出
することが可能な負極及び正極と組合せて使用するため
の二次電池用非水系電解液であって、溶質及び有機系溶
媒からなり、上記有機系溶媒中に、下記一般式(1)で
表されるスルホン化合物と下記一般式(3)で表される
分子量500以下の芳香族化合物とを含有することを特
徴とする非水系電解液、に存する。
(In the formula, R 3 to R 8 are each independently a hydrogen atom, a halogen atom, a chain alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, and a carbon atom having 6 to 1 carbon atoms.
It is an aryl group having 2 or an arylcycloalkyl group having 11 to 14 carbon atoms. ) Still another subject matter of the present invention is a non-aqueous electrolyte solution for a secondary battery, which is used in combination with a negative electrode and a positive electrode capable of inserting and extracting lithium, and which comprises a solute and an organic solvent. A non-aqueous electrolysis, wherein the organic solvent contains a sulfone compound represented by the following general formula (1) and an aromatic compound represented by the following general formula (3) and having a molecular weight of 500 or less. In the liquid.

【0021】[0021]

【化15】 [Chemical 15]

【0022】(式中、R1及びR2は、それぞれ独立して
アリール基若しくはハロゲン原子で置換されていてもよ
いアルキル基又はアルキル基若しくはハロゲン原子で置
換されていてもよいアリール基であり、R1とR2は互い
に結合して不飽和結合を含んでいてもよい環状構造を形
成していてもよい。)
(In the formula, R 1 and R 2 are each independently an aryl group or an alkyl group optionally substituted with a halogen atom, or an alkyl group or an aryl group optionally substituted with a halogen atom, R 1 and R 2 may be bonded to each other to form a cyclic structure which may contain an unsaturated bond.)

【0023】[0023]

【化16】 [Chemical 16]

【0024】(式中、R9は炭素数1〜12の鎖状アル
キル基、炭素数5〜12のシクロアルキル基、或いは炭
素数6〜12のアリール基であり、R10〜R14はそれぞ
れ独立して水素原子、ハロゲン原子、炭素数1〜12の
鎖状アルキル基、炭素数5〜12のシクロアルキル基、
或いは炭素数6〜12のアリール基であり、R9とR10
〜R14とは互いに結合して環状構造を形成していてもよ
い。)
(In the formula, R 9 is a chain alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and R 10 to R 14 are respectively Independently a hydrogen atom, a halogen atom, a chain alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms,
Alternatively, it is an aryl group having 6 to 12 carbon atoms, and R 9 and R 10
~ R 14 may combine with each other to form a cyclic structure. )

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態につき
詳細に説明する。本発明の非水系電解液に使用される有
機系溶媒としては、プロピレンカーボネート、エチレン
カーボネート、ブチレンカーボネート等の環状炭酸エス
テル類、ジメチルカーボネート、ジエチルカーボネー
ト、エチルメチルカーボネート等の鎖状炭酸エステル
類、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、テトラヒドロピラン等の環状エーテル類、ジメトキ
シエタン、ジエトキシエタン等の鎖状エーテル類、γ-
ブチロラクトン、γ−バレロラクトン等の環状カルボン
酸エステル類、酢酸メチル、プロピオン酸メチル等の鎖
状カルボン酸エステル類等が挙げられ、これらを単独で
あるいは適宜2種類以上を混合して使用する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. Examples of the organic solvent used in the non-aqueous electrolytic solution of the present invention include cyclic carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, tetrahydrofuran. , Cyclic ethers such as 2-methyltetrahydrofuran and tetrahydropyran, chain ethers such as dimethoxyethane and diethoxyethane, γ-
Examples thereof include cyclic carboxylic acid esters such as butyrolactone and γ-valerolactone, and chain carboxylic acid esters such as methyl acetate and methyl propionate. These may be used alone or in admixture of two or more kinds.

【0026】本発明の非水系電解液においては、電解液
中に前記一般式(1)で表されるスルホン化合物と、前
記一般式(2)または一般式(3)で表される、分子量
500以下の芳香族化合物を共に含有することを特徴と
する。前記一般式(1)中のR1及びR2は、それぞれ独
立してアリール基若しくはハロゲン原子で置換されてい
てもよいアルキル基又はアルキル基若しくはハロゲン原
子で置換されていてもよいアリール基であり、R1とR2
は互いに結合して不飽和結合を含んでいてもよい環状構
造を形成していてもよい。
In the non-aqueous electrolyte of the present invention, the sulfone compound represented by the general formula (1) and the molecular weight of 500 represented by the general formula (2) or (3) are contained in the electrolyte. It is characterized by containing the following aromatic compounds together. R 1 and R 2 in the general formula (1) are each independently an aryl group or an alkyl group which may be substituted with a halogen atom, or an aryl group which may be substituted with an alkyl group or a halogen atom. , R 1 and R 2
May be bonded to each other to form a cyclic structure which may contain an unsaturated bond.

【0027】上記のR1及びR2が取り得るアルキル基
は、好ましくは炭素数1〜4のアルキル基であり、具体
的にはメチル基、エチル基、プロピル基、イソプロピル
基、ブチル基等を挙げることができる。該アルキル基の
置換基となりうるアリール基としては、フェニル基、ナ
フチル基、アントラニル基などを挙げることができる
が、フェニル基が好ましい。また、アルキル基の置換基
となりうるハロゲン原子としては、フッ素原子、塩素原
子及び臭素原子が好ましい。これらの置換基はアルキル
基に複数個置換していてもよく、またアリール基とハロ
ゲン原子とが共に置換していてもよい。上記のR1及び
2が互いに結合して形成する環状構造は4員環以上で
あり、それは二重結合または三重結合を含んでいてもよ
い。上記のR1とR2とが互いに結合して形成する結合基
としては、例えば−CH2−、−CH2CH2−、−CH2
CH 2CH2−、−CH2CH2CH2CH2−、−CH2
2CH2CH2CH2−、−CH=CH−、−CH=CH
CH2−、−CH=CHCH2CH2−、−CH2CH=C
HCH2−、−CH2CH2C≡CCH2CH2−を例示す
ることができる。これらの結合基の水素原子は、アルキ
ル基、ハロゲン原子、アリール基などによって置換され
ていてもよい。
R above1And R2Alkyl group
Is preferably an alkyl group having 1 to 4 carbon atoms,
Specifically methyl group, ethyl group, propyl group, isopropyl group
Group, butyl group and the like. Of the alkyl group
Examples of the aryl group which can be a substituent include a phenyl group and a naphthalene group.
Examples include futyl group and anthranyl group.
However, a phenyl group is preferable. Also, the substituent of the alkyl group
Possible halogen atoms are fluorine atom and chlorine atom.
Child and bromine atoms are preferred. These substituents are alkyl
A plurality of groups may be substituted, and the aryl group and halo may be substituted.
The gen atom may be substituted together. R above1as well as
R2Is a 4-membered ring or more
Yes, it may contain double or triple bonds
Yes. R above1And R2A linking group formed by and bound to each other
Is, for example, -CH2-, -CH2CH2-, -CH2
CH 2CH2-, -CH2CH2CH2CH2-, -CH2C
H2CH2CH2CH2-, -CH = CH-, -CH = CH
CH2-, -CH = CHCH2CH2-, -CH2CH = C
HCH2-, -CH2CH2C≡CCH2CH2− Is shown as an example
You can The hydrogen atoms of these linking groups are
Substituted by a halogen group, a halogen atom, an aryl group, etc.
May be.

【0028】上記一般式(1)で表されるスルホン化合
物の具体例としては、ジメチルスルホン、ジエチルスル
ホン、エチルメチルスルホン、メチルプロピルスルホ
ン、エチルプロピルスルホン、ジフェニルスルホン、メ
チルフェニルスルホン、エチルフェニルスルホン、ジベ
ンジルスルホン、ベンジルメチルスルホン、ベンジルエ
チルスルホン等の鎖状スルホン、スルホラン、2−メチ
ルスルホラン、3−メチルスルホラン、2‐エチルスル
ホラン、3‐エチルスルホラン、2,4−ジメチルスル
ホラン、3−スルホレン、3−メチルスルホレン、2−
フェニルスルホラン、3−フェニルスルホラン等の環状
スルホン及び上記鎖状スルホンや環状スルホンのハロゲ
ン化物を挙げることができる。
Specific examples of the sulfone compound represented by the above general formula (1) include dimethyl sulfone, diethyl sulfone, ethylmethyl sulfone, methylpropyl sulfone, ethylpropyl sulfone, diphenyl sulfone, methylphenyl sulfone, ethylphenyl sulfone, Chain sulfones such as dibenzyl sulfone, benzyl methyl sulfone, and benzyl ethyl sulfone, sulfolane, 2-methylsulfolane, 3-methylsulfolane, 2-ethylsulfolane, 3-ethylsulfolane, 2,4-dimethylsulfolane, 3-sulfolen, 3-methylsulfolene, 2-
Examples thereof include cyclic sulfones such as phenylsulfolane and 3-phenylsulfolane, and the above-mentioned chain sulfones and halides of cyclic sulfones.

【0029】これらの一般式(1)で表されるスルホン
化合物の中でも化合物の電池内での安定性の面からジメ
チルスルホン、ジエチルスルホン、スルホラン及び3−
スルホレンが好ましい。これらの一般式(1)で表され
るスルホン化合物は一種類だけを選択して使用してもよ
いし、二種類以上を組み合わせて用いてもよい。電解液
中に含まれる一般式(1)のスルホン化合物の量は0.
1〜5重量%であることが好ましく、0.1〜2重量%
であればより好ましく、0.2〜1重量%であればなお
好ましい。含有量が多すぎると電池特性に悪影響を及ぼ
すという問題点が生じることがあり、また、含有量が少
なすぎると充分な反応抑制効果が得られない。
Among the sulfone compounds represented by the general formula (1), dimethyl sulfone, diethyl sulfone, sulfolane and 3-
Sulforene is preferred. One of these sulfone compounds represented by the general formula (1) may be selected and used, or two or more thereof may be used in combination. The amount of the sulfone compound of the general formula (1) contained in the electrolytic solution is 0.
It is preferably 1 to 5% by weight, and 0.1 to 2% by weight
It is more preferable if it is, and it is still more preferable if it is 0.2 to 1% by weight. If the content is too high, the battery characteristics may be adversely affected, and if the content is too low, a sufficient reaction suppressing effect cannot be obtained.

【0030】本発明においては、上記一般式(1)で表
されるスルホン化合物は、過充電電位領域で酸化される
前記一般式(2)または一般式(3)で表される分子量
500以下の芳香族化合物と併用することにより、過充
電防止効果が得られるとともに、通常の充電電位での高
温保存時に起こる該芳香族化合物の反応を抑制すること
ができる。
In the present invention, the sulfone compound represented by the general formula (1) has a molecular weight of 500 or less represented by the general formula (2) or the general formula (3), which is oxidized in the overcharge potential region. When used in combination with an aromatic compound, the effect of preventing overcharge can be obtained and the reaction of the aromatic compound that occurs during high temperature storage at a normal charge potential can be suppressed.

【0031】上記の過充電電位領域で酸化される前記一
般式(2)または一般式(3)で表される分子量500
以下の芳香族化合物は、その酸化電位を通常4.3〜
4.9Vの範囲に有するものである。ここで酸化電位
は、下記のサイクリックボルタンメトリー法によって測
定することができる。 [酸化電位の測定法]底面部分のみ露出した径1.6m
mの白金線を作用極、リチウム金属を対極および参照極
とした、ガラスフィルターで作用極側と対極側が区切ら
れたH型セルを用いて、エチレンカーボネート(EC)
とジエチルカーボネート(DEC)との体積比率7:3
の混合溶媒にLiPF6を1mol/Lの濃度で溶解し
た電解液に試料となる芳香族化合物を0.15mmol
/g添加したものをこのセルに入れる。次いで、作用極
の電位を酸化側(貴側)に20mV/秒の掃引速度で掃
引する。このとき0.5mA/cm2の電流密度が流れ
出す電位を酸化開始電位と規定する。測定は便宜上室温
(25℃付近)で行う。
The molecular weight of 500 represented by the general formula (2) or the general formula (3), which is oxidized in the overcharge potential region.
The following aromatic compounds usually have an oxidation potential of 4.3 to
It has a range of 4.9V. Here, the oxidation potential can be measured by the following cyclic voltammetry method. [Measuring method of oxidation potential] 1.6m in diameter with only the bottom exposed
Using an H-type cell in which the working electrode side and the counter electrode side were separated by a glass filter using a platinum wire of m as a working electrode and a lithium metal counter electrode and a reference electrode, ethylene carbonate (EC)
Volume ratio of diethyl carbonate (DEC) to 7: 3
0.15 mmol of an aromatic compound as a sample in an electrolytic solution prepared by dissolving LiPF 6 in a mixed solvent of 1 mol / L at a concentration of 1 mol / L.
/ G is added to this cell. Then, the potential of the working electrode is swept to the oxidation side (noble side) at a sweep rate of 20 mV / sec. At this time, the potential at which a current density of 0.5 mA / cm 2 flows out is defined as the oxidation start potential. The measurement is conveniently performed at room temperature (around 25 ° C.).

【0032】上記の方法によって測定される、化合物の
酸化電位は、通常4.9V以下、好ましくは4.7V以
下である。酸化電位が高すぎると過充電防止効果が小さ
くなる傾向にある。ただし、あまりに酸化電位が低いと
通常条件での電池使用時にも反応して電池特性を劣化さ
せることがあるので、通常4.3V以上、好ましくは
4.4V以上、さらに好ましくは4.5V以上とする。
The oxidation potential of the compound measured by the above method is usually 4.9 V or less, preferably 4.7 V or less. If the oxidation potential is too high, the effect of preventing overcharge tends to decrease. However, if the oxidation potential is too low, it may react even when the battery is used under normal conditions to deteriorate the battery characteristics. Therefore, the voltage is usually 4.3 V or higher, preferably 4.4 V or higher, and more preferably 4.5 V or higher. To do.

【0033】上記一般式(2)で表される分子量500
以下の芳香族化合物としては、例えばビフェニル、2−
メチルビフェニル、3−メチルビフェニル、4−メチル
ビフェニル、2−フルオロビフェニル、3−フルオロビ
フェニル、4−フルオロビフェニル、シクロヘキシルベ
ンゼン、1−フルオロ−2−シクロヘキシルベンゼン、
1−フルオロ−3−シクロヘキシルベンゼン、1−フル
オロ−4−シクロヘキシルベンゼン、2−シクロヘキシ
ルトルエン、3−シクロヘキシルトルエン、4−シクロ
ヘキシルトルエン、o−ターフェニル、m−ターフェニ
ル、p−ターフェニル、3−シクロヘキシルビフェニ
ル、1,3−ジフェニルシクロヘキサン、1−シクロヘ
キシル−3−フェニルシクロヘキサン、1,3−ジシク
ロヘキシルベンゼン等が挙げられる。
Molecular weight 500 represented by the above general formula (2)
Examples of the aromatic compound below include biphenyl and 2-
Methylbiphenyl, 3-methylbiphenyl, 4-methylbiphenyl, 2-fluorobiphenyl, 3-fluorobiphenyl, 4-fluorobiphenyl, cyclohexylbenzene, 1-fluoro-2-cyclohexylbenzene,
1-fluoro-3-cyclohexylbenzene, 1-fluoro-4-cyclohexylbenzene, 2-cyclohexyltoluene, 3-cyclohexyltoluene, 4-cyclohexyltoluene, o-terphenyl, m-terphenyl, p-terphenyl, 3- Examples thereof include cyclohexylbiphenyl, 1,3-diphenylcyclohexane, 1-cyclohexyl-3-phenylcyclohexane and 1,3-dicyclohexylbenzene.

【0034】これらの一般式(2)で表される芳香族化
合物は一種類だけを選択して使用してもよいし、二種類
以上を組み合わせて用いてもよい。また上記一般式
(3)で表される分子量500以下の芳香族化合物とし
ては、例えばジフェニルエーテル、2−フェノキシトル
エン、3−フェノキシトルエン、4−フェノキシトルエ
ン、ビス(2−トリル)エーテル、ビス(3−トリル)
エーテル、ビス(4−トリル)エーテル、ジベンゾフラ
ン、2,3−ベンゾフラン等が挙げられる。
The aromatic compounds represented by the general formula (2) may be used alone or in combination of two or more. Examples of the aromatic compound represented by the general formula (3) and having a molecular weight of 500 or less include diphenyl ether, 2-phenoxytoluene, 3-phenoxytoluene, 4-phenoxytoluene, bis (2-tolyl) ether, bis (3). -Trill)
Ether, bis (4-tolyl) ether, dibenzofuran, 2,3-benzofuran and the like can be mentioned.

【0035】これらの一般式(3)で表される芳香族化
合物は一種類だけを選択して使用してもよいし、二種類
以上を組み合わせて用いてもよい。上記一般式(2)ま
たは一般式(3)で表される分子量500以下の芳香族
化合物は、非水系電解液の0.1〜10重量%の割合で
添加されているのが好ましく、より好ましくは1〜5重
量%の範囲である。
These aromatic compounds represented by the general formula (3) may be used alone or in combination of two or more. The aromatic compound represented by the general formula (2) or the general formula (3) and having a molecular weight of 500 or less is preferably added in a proportion of 0.1 to 10% by weight of the non-aqueous electrolyte solution, and more preferably. Is in the range of 1 to 5% by weight.

【0036】上記一般式(1)で表されるスルホン化合
物、並びに一般式(2)または一般式(3)で表される
分子量500以下の芳香族化合物に加えて、さらにビニ
レンカーボネート又はビニルエチレンカーボネートを併
用すると、一層優れた過充電防止効果及び保存安定性を
発揮させるだけでなく、電池のサイクル特性も向上させ
ることが可能となるので好ましい。ビニレンカーボネー
ト又はビニルエチレンカーボネートは非水系電解液の
0.1〜10重量%の割合で添加するのが好ましい。
In addition to the sulfone compound represented by the general formula (1) and the aromatic compound represented by the general formula (2) or the general formula (3) and having a molecular weight of 500 or less, vinylene carbonate or vinylethylene carbonate. It is preferable to use in combination, because not only more excellent overcharge prevention effect and storage stability can be exhibited, but also the cycle characteristics of the battery can be improved. Vinylene carbonate or vinyl ethylene carbonate is preferably added in a proportion of 0.1 to 10% by weight of the non-aqueous electrolyte solution.

【0037】本発明の非水系電解液中の溶質としては、
リチウム塩を用いる。該リチウム塩としては、例えばL
iClO4、LiAsF6、LiPF6、LiBF4、Li
B(C654、LiCl、LiBr、LiCH3
3、LiCF3SO3、LiN(SO2CF32、LiN
(SO2252、LiC(SO2CF33、LiN
(SO3CF32等を挙げることができる。これらの2
種以上を混合して用いてもよい。上記リチウム塩の中で
も、LiBF4及びLiPF6を使用するのが好ましい。
リチウム塩の濃度は、電解液に対して、通常0.5〜
2.5M、好ましくは0.75〜1.5Mである。リチ
ウム塩濃度が高すぎても低すぎても電導度の低下が起
き、電池特性に悪影響があることがある。
As the solute in the non-aqueous electrolyte of the present invention,
Lithium salt is used. Examples of the lithium salt include L
iClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , Li
B (C 6 H 5 ) 4 , LiCl, LiBr, LiCH 3 S
O 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN
(SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , LiN
(SO 3 CF 3) may be mentioned 2. These two
You may mix and use 1 or more types. Among the above lithium salts, it is preferable to use LiBF 4 and LiPF 6 .
The concentration of the lithium salt is usually 0.5 to
It is 2.5M, preferably 0.75 to 1.5M. If the lithium salt concentration is too high or too low, the electrical conductivity may decrease, and the battery characteristics may be adversely affected.

【0038】本発明の非水系電解液は、必要に応じてさ
らに他の成分を含有することができる。かかる他の成分
としては、例えば、電池の活物質表面に被膜(SEI)
を形成するための各種の添加剤や界面活性剤を挙げるこ
とができる。本発明の非水系電解液二次電池は、正極、
負極及び前記非水系電解液を含有する。前記非水系電解
液は、通常、正極と負極との間の電解質層の成分として
用いられるが、過充電時の安全性と高温保存安定性を向
上させることができれば、電池のどこに用いられていて
もよい。
The non-aqueous electrolyte solution of the present invention may further contain other components, if necessary. Such other components include, for example, a coating (SEI) on the surface of the active material of the battery.
Various additives and surfactants for forming the can be mentioned. The non-aqueous electrolyte secondary battery of the present invention has a positive electrode,
It contains a negative electrode and the non-aqueous electrolyte solution. The non-aqueous electrolyte is usually used as a component of the electrolyte layer between the positive electrode and the negative electrode, but if it can improve the safety during overcharge and the high temperature storage stability, it is used anywhere in the battery. Good.

【0039】本発明の二次電池を構成する正極の活物質
としては、好ましくはリチウム遷移金属複合酸化物を使
用する。該リチウム遷移金属複合酸化物としては、例え
ばLiCoO2等のリチウムコバルト複合酸化物、Li
NiO2等のリチウムニッケル酸化物、LiMn24
のリチウムマンガン酸化物等を挙げることができる。特
にリチウムとコバルト及び/又はニッケルとを必須成分
とする金属複合酸化物が好ましい。これらリチウム遷移
金属金属複合酸化物は、主体となる遷移金属元素の一部
をAl、Ti、V、Cr、Mn、Fe、Co、Li、N
i、Cu、Zn、Mg、Ga、Zr等の他の金属種で置
き換えることにより安定化させることができ、好まし
い。正極の活物質を複数種併用することもできる。
A lithium transition metal composite oxide is preferably used as the positive electrode active material constituting the secondary battery of the present invention. Examples of the lithium transition metal composite oxide include lithium cobalt composite oxides such as LiCoO 2 and Li
Examples thereof include lithium nickel oxide such as NiO 2 and lithium manganese oxide such as LiMn 2 O 4 . Particularly, a metal composite oxide containing lithium and cobalt and / or nickel as essential components is preferable. In these lithium-transition metal composite oxides, a part of the main transition metal element is Al, Ti, V, Cr, Mn, Fe, Co, Li, N.
Substitution with other metal species such as i, Cu, Zn, Mg, Ga, and Zr is preferable because it can be stabilized. A plurality of positive electrode active materials may be used in combination.

【0040】本発明の二次電池を構成する負極の活物質
としては、リチウムを吸蔵及び放出し得る物質であれば
よいが、炭素質物が好ましい。該炭素質物としては、例
えば様々な熱分解条件での有機物の熱分解物や、人造黒
鉛、天然黒鉛等が挙げられる。好適には種々の原料から
得た易黒鉛性ピッチの高温熱処理によって製造された人
造黒鉛並びに黒鉛化メソフェーズ小球体、黒鉛化メソフ
ェーズピッチ系炭素繊維等の他の人造黒鉛及び精製天然
黒鉛、或いはこれらの黒鉛にピッチを含む種々の表面処
理を施した材料が使用される。これらの炭素質物は、学
振法によるX線回折で求めた格子面(002面)のd値
(層間距離)が0.335〜0.34nmであるものが
好ましく、0.335〜0.337nmであるものがよ
り好ましい。灰分は1重量%以下であるのが好ましく、
0.5重量%以下であるのがより好ましく、0.1重量
%以下であるのが特に好ましい。また、学振法によるX
線回折で求めた結晶子サイズ(Lc)は30nm以上で
あるのが好ましく、50nm以上であるのがより好まし
く、100nm以上であるのが特に好ましい。これらの
炭素質物にリチウムを吸蔵・放出可能な他の活物質を更
に混合して用いることもできる。炭素質物以外のリチウ
ムを吸蔵・放出可能な活物質としては、酸化錫、酸化珪
素等の金属酸化物材料、更にはリチウム金属並びに種々
のリチウム合金を例示することができる。これらの負極
材料は二種類以上を混合して用いてもよい。
The active material of the negative electrode constituting the secondary battery of the present invention may be any material capable of inserting and extracting lithium, but a carbonaceous material is preferable. Examples of the carbonaceous material include thermal decomposition products of organic substances under various thermal decomposition conditions, artificial graphite, natural graphite, and the like. Preferably artificial graphite produced by high temperature heat treatment of graphitizable pitch obtained from various raw materials and other artificial graphite and purified natural graphite such as graphitized mesophase microspheres, graphitized mesophase pitch carbon fiber, or these Materials obtained by subjecting graphite to various surface treatments including pitch are used. The carbonaceous material preferably has a lattice plane (002 plane) d value (interlayer distance) of 0.335 to 0.34 nm, which is 0.335 to 0.337 nm, which is obtained by X-ray diffraction by Gakushin method. Is more preferable. The ash content is preferably 1% by weight or less,
It is more preferably 0.5% by weight or less, and particularly preferably 0.1% by weight or less. In addition, X according to the Gakushin method
The crystallite size (Lc) determined by line diffraction is preferably 30 nm or more, more preferably 50 nm or more, and particularly preferably 100 nm or more. Other active materials capable of inserting and extracting lithium may be further mixed with these carbonaceous materials and used. Examples of the active material capable of inserting and extracting lithium other than carbonaceous materials include metal oxide materials such as tin oxide and silicon oxide, lithium metal, and various lithium alloys. You may use these negative electrode materials in mixture of 2 or more types.

【0041】上記の正極及び負極は、それぞれ、通常、
上記の活物質と結着剤とを含有する。該結着剤として
は、ポリフッ化ビニリデン、ポリテトラフルオロエチレ
ン、スチレン・ブタジエンゴム、イソプレンゴム、ブダ
ジエンゴム等を挙げることができる。さらに必要に応じ
て、電極中には、銅やニッケル等の金属材料、グラファ
イト、カーボンブラック等のような炭素材料等の導電材
を含有させることもできる。特に正極については、導電
材を含有させるのが好ましい。
The above-mentioned positive electrode and negative electrode are usually
It contains the above-mentioned active material and a binder. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, isoprene rubber, and butadiene rubber. Furthermore, if necessary, the electrode may contain a conductive material such as a metal material such as copper or nickel, or a carbon material such as graphite or carbon black. Particularly for the positive electrode, it is preferable to include a conductive material.

【0042】正極又は負極の電極を製造する方法につい
ては、特に限定されない。例えば、活物質に、必要に応
じて結着剤、増粘剤、導電材、溶媒等を加えてスラリー
状とし、集電体の基板に塗布し、乾燥することにより製
造することができるし、また、該活物質をそのままロー
ル成形してシート電極としてもよく、圧縮成形によりペ
レット電極とすることもできる。増粘剤としては、カル
ボキシメチルセルロース、メチルセルロース、ヒドロキ
シメチルセルロース、エチルセルロース、ポリビニルア
ルコール、酸化スターチ、リン酸化スターチ、カゼイン
等が挙げられる。
The method for producing the positive electrode or the negative electrode is not particularly limited. For example, the active material can be produced by adding a binder, a thickener, a conductive material, a solvent and the like to form a slurry, coating the substrate of a current collector, and drying, Further, the active material may be roll-formed as it is to be a sheet electrode, or may be compression-molded to be a pellet electrode. Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and the like.

【0043】電極に使用できる集電体としては、負極集
電体として、銅、ニッケル、ステンレス等の金属又は合
金、好ましくは銅が挙げられ、また、正極集電体として
は、アルミニウム、チタン、タンタル等の金属又は合
金、好ましくはアルミニウム及びその合金が挙げられ
る。本発明の二次電池は、通常、正極と負極との間にセ
パレータが介装される。使用するセパレータの材質や形
状については、特に限定されないが、電解液に対して安
定で、保液性の優れた材料として、ポリエチレン、ポリ
プロピレン等のポリオレフィンを原料とする多孔性シー
ト又は不織布等を用いるのが好ましい。
Examples of the current collector that can be used for the electrode include a negative electrode current collector such as a metal or an alloy such as copper, nickel or stainless steel, preferably copper, and a positive electrode current collector such as aluminum or titanium. Metals or alloys such as tantalum, preferably aluminum and its alloys are mentioned. In the secondary battery of the present invention, a separator is usually interposed between the positive electrode and the negative electrode. The material and shape of the separator to be used are not particularly limited, but a porous sheet or nonwoven fabric made of polyolefin such as polyethylene or polypropylene is used as a material that is stable to an electrolytic solution and has excellent liquid retention. Is preferred.

【0044】少なくとも上記の負極、正極及び非水系電
解液を備えた本発明に係る非水系二次電池を製造する方
法については、特に限定されず、通常採用されている非
水系二次電池の製造方法の中から適宜選択することがで
きる。また、本発明の二次電池の形状については特に限
定されず、シート電極及びセパレータをスパイラル状に
したシリンダータイプ、ペレット電極及びセパレータを
組み合わせたインサイドアウト構造のシリンダータイ
プ、ペレット電極及びセパレータを積層したコインタイ
プ等が使用可能である。
The method for producing the non-aqueous secondary battery according to the present invention, which comprises at least the above-mentioned negative electrode, positive electrode and non-aqueous electrolyte solution, is not particularly limited, and the production of commonly used non-aqueous secondary batteries is not limited. It can be appropriately selected from among the methods. Further, the shape of the secondary battery of the present invention is not particularly limited, the sheet electrode and the separator is a spiral cylinder type, a pellet electrode and a separator combined inside-out structure cylinder type, a pellet electrode and a separator are laminated. A coin type etc. can be used.

【0045】[0045]

【実施例】以下、本発明の具体的態様を実施例に基づき
さらに詳細に説明するが、本発明はその要旨を越えない
限り以下の実施例によって限定されるものではない。 [正極の作製]正極は、正極活物質としてのコバルト酸
リチウム(LiCoO2)90重量%と導電剤としての
アセチレンブラック5重量%と結着剤としてのポリフッ
化ビニリデン(PVdF)5重量%とを、N−メチルピ
ロリドン溶媒中で混合して、スラリー化した後、20μ
mのアルミ箔の片面に塗布し乾燥し、さらにプレス機で
圧延したものを直径12mmの打ち抜きポンチで打ち抜
いて作製した。
EXAMPLES Hereinafter, specific embodiments of the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. [Fabrication of Positive Electrode] The positive electrode contains 90% by weight of lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material, 5% by weight of acetylene black as a conductive agent, and 5% by weight of polyvinylidene fluoride (PVdF) as a binder. , N-methylpyrrolidone mixed in a solvent to make a slurry, and then 20 μ
It was produced by coating one side of an aluminum foil having a diameter of m, drying it, rolling it with a pressing machine, and punching it with a punch having a diameter of 12 mm.

【0046】[負極の作製]負極は、負極活物質として
の黒鉛(面間隔0.336nm)95重量%と結着剤の
ポリフッ化ビニリデン(PVdF)5重量%とを、N−
メチルピロリドン溶媒中で混合して、スラリー化した
後、20μm厚さの銅箔の片面に塗布し乾燥し、さらに
プレス機で圧延したものを直径12mmで打ち抜いて作
製した。
[Preparation of Negative Electrode] For the negative electrode, 95% by weight of graphite (plane spacing: 0.336 nm) as a negative electrode active material and 5% by weight of polyvinylidene fluoride (PVdF) as a binder were mixed with N-.
After mixing in a solvent of methylpyrrolidone to make a slurry, it was applied on one surface of a copper foil having a thickness of 20 μm, dried, and further rolled by a press machine, and punched to have a diameter of 12 mm.

【0047】[電池の組立]アルゴン雰囲気のドライボ
ックス内で、CR2032型コインセルを使用して、リ
チウム二次電池を作製した。即ち、正極缶の上に正極を
置き、その上にセパレータとして25μmの多孔性ポリ
エチレンフィルムを置き、ポリプロピレン製ガスケット
で押さえた後、負極を置き、厚み調整用のスペーサーを
置いた後、電解液を加え電池内に十分しみこませた後、
負極缶を載せて電池を封口した。なお、実施例および比
較例で電池の容量は、充電上限4.2V、放電下限3.
0Vで約4.0mAhになる設計とした。
[Assembly of Battery] A lithium secondary battery was manufactured using a CR2032 type coin cell in a dry box in an argon atmosphere. That is, a positive electrode is placed on a positive electrode can, a 25 μm porous polyethylene film is placed thereon as a separator, and a polypropylene gasket is pressed, then a negative electrode is placed, a spacer for thickness adjustment is placed, and then an electrolytic solution is applied. After soaking in the battery,
The negative electrode can was placed and the battery was sealed. In the examples and comparative examples, the capacities of the batteries were as follows: the upper limit of charge was 4.2 V and the lower limit of discharge was 3.
It was designed to be about 4.0 mAh at 0V.

【0048】この際、正極活物質重量W(c)と負極活
物質重量W(a)との比率は、電池の通常使用上限電圧
において、正極から放出されるリチウムイオンが、対向
する負極上でリチウム金属の析出を起こさない範囲が好
ましいので、負極と正極との容量比Rqが1.1≦Rq
≦1.2となるように、その重量を決定した。なお、容
量比Rqは、Q(a)×W(a)/{Q(c)×W
(c)}で求めた。ここで、電池の初期充電条件に対応
する条件下での、正極活物質の重量当たりの電気容量を
Q(c)mAh/g、リチウム金属が析出することなし
にリチウムを最大限に吸蔵しうる負極活物質の重量当た
りの電気容量をQ(a)mAh/gとした。Q(c)及
びQ(a)は、正極あるいは負極を作用極に、対極にリ
チウム金属を用い、上記電池を組み立てる際と同じ電解
液中でセパレータを介して試験セルを組んで測定した。
すなわち目的とする電池系の初期充電条件に対応する正
極の上限電位あるいは負極の下限電位まで、可能な限り
低い電流密度で、正極が充電(正極からのリチウムイオ
ンの放出)できる容量、負極が放電(負極へのリチウム
イオンの吸蔵)できる容量として求めた。
At this time, the ratio of the weight W (c) of the positive electrode active material to the weight W (a) of the negative electrode active material is such that lithium ions released from the positive electrode at the upper limit voltage of normal use of the battery are on the opposite negative electrode. Since it is preferable that lithium metal is not deposited, the capacity ratio Rq between the negative electrode and the positive electrode is 1.1 ≦ Rq.
The weight was determined so that ≦ 1.2. The capacity ratio Rq is Q (a) × W (a) / {Q (c) × W
(C)}. Here, the electric capacity per weight of the positive electrode active material is Q (c) mAh / g under conditions corresponding to the initial charging conditions of the battery, and lithium can be occluded to the maximum without depositing lithium metal. The electric capacity per weight of the negative electrode active material was Q (a) mAh / g. Q (c) and Q (a) were measured by using a positive electrode or a negative electrode as a working electrode, using lithium metal as a counter electrode, and assembling a test cell through a separator in the same electrolytic solution as when assembling the above battery.
That is, at the lowest possible current density up to the upper limit potential of the positive electrode or the lower limit potential of the negative electrode corresponding to the target initial charging conditions of the battery system, the capacity at which the positive electrode can be charged (release of lithium ions from the positive electrode) and the negative electrode are discharged. It was determined as the capacity (capacity of lithium ions stored in the negative electrode).

【0049】[電池の評価]電池の評価は(i)過充電
試験、及び(ii)高温保存試験の二種類行った。 (i)過充電試験 過充電試験は、(1)初期充放電(容量確認)、次いで
(2)満充電操作、さらに(3)過充電試験、の順に行
った。
[Evaluation of Battery] The battery was evaluated in two types: (i) overcharge test and (ii) high temperature storage test. (I) Overcharge test The overcharge test was performed in the order of (1) initial charge / discharge (capacity confirmation), then (2) full charge operation, and further (3) overcharge test.

【0050】初期充放電(容量確認)においては、1C
(4.0mA)、4.2V上限の定電流定電圧法により
充電した。充電のカットは、電流値が0.05mAに到
達した時点とした。放電は0.2Cで3.0Vまで定電
流で行った。ここで、1Cとは1時間で満充電できる電
流値を表わし、0.2Cはその1/5の電流値で、また
2Cはその2倍の電流値で、それぞれ満充電できる電流
値を表わす。
At the initial charge / discharge (capacity confirmation), 1C
(4.0 mA) It was charged by the constant current constant voltage method with an upper limit of 4.2 V. The charge was cut when the current value reached 0.05 mA. The discharge was performed at a constant current of 0.2 C up to 3.0 V. Here, 1C represents a current value that can be fully charged in one hour, 0.2C represents a current value that is ⅕ of that current value, and 2C represents a current value that is twice that current value, which represents a current value that can be fully charged.

【0051】満充電操作は、4.2V上限の定電流定電
圧法(0.05mAカット)により充電した。過充電試
験は、1Cで4.99Vカット又は3hrカット(どち
らか先に到達した方でカット)とした。過充電防止効果
の優劣を見る指標としては、過充電後のコインセルを解
体し、正極中に残存しているLiを元素分析で定量した
値を、過充電深度として用いた。過充電試験後の正極組
成をLixCoO2と表す時、x(正極Li残存量)が大
きいほど過充電が進んでおらず、過充電防止効果が高い
ことになる。
The full charge operation was performed by the constant current constant voltage method (0.05 mA cut) with an upper limit of 4.2 V. The overcharge test was 4.99 V cut or 3 hr cut at 1 C (whichever was reached first was cut). As an index for checking the superiority or inferiority of the overcharge prevention effect, a value obtained by disassembling the coin cell after overcharge and quantifying Li remaining in the positive electrode by elemental analysis was used as the overcharge depth. When the positive electrode composition after the overcharge test is expressed as Li x CoO 2 , the larger x (the positive electrode Li residual amount) is, the less overcharge is progressed, and the overcharge prevention effect is high.

【0052】ここで、x(正極Li残存量)は元素分析
(ICP発光分析)により求めた正極中のCoと正味の
Liのモル数比より求めた。なお、正味のLiのモル数
は同様の分析で正極中のリン(P)の定量も行い、これ
をLiPF6によるものとし、正極中の全Liモル数か
らLiPF6に相当するLiモル数を差し引いて求め
た。 (ii)高温保存試験 高温保存試験は過充電試験とは別に電池を作製し、
(1)初期充放電(容量確認)、次いで(2)満充電操
作、(3)高温保存試験、(4)保存後充放電(保存後
容量確認)、の順に行った。
Here, x (remaining amount of positive electrode Li) was determined from the molar ratio of Co and net Li in the positive electrode determined by elemental analysis (ICP emission analysis). Incidentally, the number of moles of the net Li also performs determination of phosphorus in the positive electrode (P) In a similar analysis, which was to be due to LiPF 6, the Li molar number corresponding to LiPF 6 from total Li moles in the positive electrode I subtracted it. (Ii) High temperature storage test In the high temperature storage test, a battery is manufactured separately from the overcharge test,
(1) Initial charge / discharge (capacity confirmation), then (2) full charge operation, (3) high temperature storage test, and (4) charge / discharge after storage (capacity check after storage).

【0053】初期充放電、満充電操作は過充電試験と同
様の条件で行った。高温保存試験は満充電状態の電池を
60℃のオーブン中、7日間保存した。保存後充放電は
保存試験終了後、1時間室温で放置して電池の温度を室
温に戻し、0.2Cで3.0Vまで定電流放電を行っ
た。さらに、1C(4.0mA)、4.2V上限の定電
流定電圧法により充電し、0.2Cで3.0Vまで定電
流放電を行い、保存後の容量確認を行った。このときの
充電のカットは、電流値が0.05mAに到達した時点
とした。
The initial charge / discharge and full charge operations were performed under the same conditions as in the overcharge test. In the high temperature storage test, the fully charged battery was stored in an oven at 60 ° C. for 7 days. After the storage test, the charge / discharge after storage was left at room temperature for 1 hour to return the temperature of the battery to room temperature, and constant current discharge was performed at 0.2 C to 3.0 V. Further, the battery was charged by a constant current constant voltage method with an upper limit of 1 C (4.0 mA) and 4.2 V, and discharged at a constant current of 0.2 C up to 3.0 V to confirm the capacity after storage. The charge was cut at this time when the current value reached 0.05 mA.

【0054】高温保存安定性を見る指標としては保存後
容量確認における容量を用い、容量が大きいものが高温
保存安定性が高いと言える。 実施例1 電解液として、エチレンカーボネート(EC)とジエチ
ルカーボネート(DEC)の体積比3:7の混合溶媒
に、1モル/リットルの濃度で六フッ化リン酸リチウム
(LiPF6)を溶解させた電解液にシクロヘキシルベ
ンゼンを2重量%の濃度で、さらにジメチルスルホンを
1重量%の濃度で添加したものを用いた。
The capacity in storage capacity confirmation after storage is used as an index for observing the storage stability at high temperature. It can be said that the storage capacity with a large capacity has high storage stability at high temperature. Example 1 As an electrolytic solution, lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: 7 at a concentration of 1 mol / liter. Cyclohexylbenzene at a concentration of 2% by weight and dimethyl sulfone at a concentration of 1% by weight were added to the electrolytic solution.

【0055】前記方法により製造したリチウム二次電池
の評価、および過充電後の電池を解体しての電極中のL
i分析を行った。結果を表−1に示す。 実施例2 添加剤としてシクロヘキシルベンゼンを2重量%の濃度
で、ジエチルスルホンを1重量%の濃度で添加したこと
以外は実施例1と同様にして、リチウム二次電池の評
価、および過充電後の電池を解体しての電極中のLi分
析を行った。結果を表−1に示す。
Evaluation of the lithium secondary battery manufactured by the above method, and L in the electrode after disassembling the battery after overcharging
i analysis was performed. The results are shown in Table-1. Example 2 A lithium secondary battery was evaluated and after overcharge in the same manner as in Example 1 except that cyclohexylbenzene was added as an additive at a concentration of 2% by weight and diethyl sulfone was added at a concentration of 1% by weight. Li analysis in the electrode after disassembling the battery was performed. The results are shown in Table-1.

【0056】実施例3 添加剤としてシクロヘキシルベンゼンを2重量%の濃度
で、ジメチルスルホンを1重量%の濃度で、さらにビニ
レンカーボネートを2重量%の濃度で添加したこと以外
は実施例1と同様にして、リチウム二次電池の評価、お
よび過充電後の電池を解体しての電極中のLi分析を行
った。結果を表−1に示す。
Example 3 As Example 1, except that cyclohexylbenzene was added as an additive at a concentration of 2% by weight, dimethyl sulfone was added at a concentration of 1% by weight, and vinylene carbonate was added at a concentration of 2% by weight. Then, the lithium secondary battery was evaluated, and the Li in the electrode after disassembling the battery after overcharging was analyzed. The results are shown in Table-1.

【0057】実施例4 添加剤としてジベンゾフランを2重量%の濃度で、ジメ
チルスルホンを1重量%の濃度で添加したこと以外は実
施例1と同様にして、リチウム二次電池の評価、および
過充電後の電池を解体しての電極中のLi分析を行っ
た。結果を表−1に示す。
Example 4 Evaluation of a lithium secondary battery and overcharge were carried out in the same manner as in Example 1 except that dibenzofuran was added at a concentration of 2% by weight and dimethyl sulfone was added at a concentration of 1% by weight as additives. After that, the battery was disassembled and the Li in the electrode was analyzed. The results are shown in Table-1.

【0058】実施例5 添加剤としてジベンゾフランを2重量%の濃度で、ジメ
チルスルホンを1重量%の濃度で、さらにビニレンカー
ボネートを2重量%の濃度で添加したこと以外は実施例
1と同様にして、リチウム二次電池の評価、および過充
電後の電池を解体しての電極中のLi分析を行った。結
果を表−1に示す。
Example 5 As Example 1, except that dibenzofuran was added at a concentration of 2% by weight, dimethyl sulfone was added at a concentration of 1% by weight, and vinylene carbonate was added at a concentration of 2% by weight as additives. The lithium secondary battery was evaluated, and the lithium in the electrode after disassembling the battery after overcharging was analyzed. The results are shown in Table-1.

【0059】比較例1 添加剤を加えなかったこと以外は実施例1と同様にし
て、リチウム二次電池の評価、および過充電後の電池を
解体しての電極中のLi分析を行った。結果を表−1に
示す。 比較例2 添加剤としてシクロヘキシルベンゼンを2重量%の割合
で添加したこと以外は実施例1と同様にして、リチウム
二次電池の評価、および過充電後の電池を解体しての電
極中のLi分析を行った。結果を表−1に示す。なお、
過充電時に短絡によると思われる電圧振動が観測され、
見かけの過充電電流量は大きくなった。
Comparative Example 1 A lithium secondary battery was evaluated and Li was analyzed in the electrode after disassembling the battery after overcharging in the same manner as in Example 1 except that no additive was added. The results are shown in Table-1. Comparative Example 2 Evaluation of a lithium secondary battery and Li in the electrode after disassembling the battery after overcharging were performed in the same manner as in Example 1 except that cyclohexylbenzene was added as an additive at a ratio of 2% by weight. Analysis was carried out. The results are shown in Table-1. In addition,
The voltage oscillation that seems to be due to a short circuit was observed during overcharge,
The amount of apparent overcharge current increased.

【0060】比較例3 添加剤としてシクロヘキシルベンゼンを2重量%の割合
で、またビニレンカーボネートを2重量%の割合で添加
したこと以外は実施例1と同様にして、リチウム二次電
池の評価、および過充電後の電池を解体しての電極中の
Li分析を行った。結果を表−1に示す。
Comparative Example 3 Evaluation of a lithium secondary battery was carried out in the same manner as in Example 1 except that cyclohexylbenzene was added as an additive at a ratio of 2% by weight and vinylene carbonate was added at a ratio of 2% by weight, and After the overcharge, the battery was disassembled and the Li in the electrode was analyzed. The results are shown in Table-1.

【0061】比較例4 添加剤としてジベンゾフランを2重量%の割合で添加し
たこと以外は実施例1と同様にして、リチウム二次電池
の評価、および過充電後の電池を解体しての電極中のL
i分析を行った。結果を表−1に示す。なお、過充電時
に短絡によると思われる電圧振動が観測され、見かけの
過充電電流量は大きくなった。
Comparative Example 4 Evaluation of a lithium secondary battery was carried out in the same manner as in Example 1 except that dibenzofuran was added in an amount of 2% by weight as an additive. L
i analysis was performed. The results are shown in Table-1. It should be noted that during overcharge, a voltage oscillation that was considered to be due to a short circuit was observed, and the apparent amount of overcharge current increased.

【0062】比較例5 添加剤としてジベンゾフランを2重量%の割合で、また
ビニレンカーボネートを2重量%の割合で添加したこと
以外は実施例1と同様にして、リチウム二次電池の評
価、および過充電後の電池を解体しての電極中のLi分
析を行った。結果を表−1に示す。
Comparative Example 5 Evaluation of a lithium secondary battery was performed in the same manner as in Example 1 except that dibenzofuran was added in an amount of 2% by weight and vinylene carbonate was added in an amount of 2% by weight as additives. After the battery was charged, the battery was disassembled to analyze Li in the electrode. The results are shown in Table-1.

【0063】[0063]

【表1】 [Table 1]

【0064】上記表−1より、前記一般式(1)で表さ
れるスルホン化合物と、過充電電位領域で酸化される前
記一般式(2)または一般式(3)で表される分子量5
00以下の芳香族化合物とを共に添加することによっ
て、過充電時の安全性が向上するとともに、高温保存中
の過充電添加剤の反応を抑制し、電池の性能低下を緩和
することができることがわかる。
From Table 1 above, the sulfone compound represented by the general formula (1) and the molecular weight 5 represented by the general formula (2) or the general formula (3) which is oxidized in the overcharge potential region are shown.
By adding together with an aromatic compound of 00 or less, it is possible to improve the safety at the time of overcharge, suppress the reaction of the overcharge additive during high temperature storage, and alleviate the deterioration of the battery performance. Recognize.

【0065】[0065]

【発明の効果】本発明によれば、過充電防止剤による過
充電時の安全性を向上させることができるだけでなく、
高温保存後の電池性能劣化をも抑制することのできる電
解液が提供される。
According to the present invention, not only the safety at the time of overcharging due to the overcharge inhibitor can be improved, but also
Provided is an electrolytic solution capable of suppressing deterioration of battery performance after storage at high temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木下 信一 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社内 Fターム(参考) 5H029 AJ04 AJ12 AK03 AL06 AM03 AM05 AM07 BJ03 BJ27 DJ16 DJ17 EJ11 HJ01 HJ02 HJ13 5H050 AA03 AA10 AA15 BA17 CA08 CB08 FA17 FA19 HA13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinichi Kinoshita             3-3-1 Chuo 8-chome, Ami Town, Inashiki District, Ibaraki Prefecture             Within Mitsubishi Chemical Corporation F-term (reference) 5H029 AJ04 AJ12 AK03 AL06 AM03                       AM05 AM07 BJ03 BJ27 DJ16                       DJ17 EJ11 HJ01 HJ02 HJ13                 5H050 AA03 AA10 AA15 BA17 CA08                       CB08 FA17 FA19 HA13

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・放出することが可能な
負極及び正極と溶質及び有機系溶媒からなる非水系電解
液とを備えた非水系電解液二次電池において、上記有機
系溶媒中に、下記一般式(1)で表されるスルホン化合
物と下記一般式(2)で表される分子量500以下の芳
香族化合物とを含有することを特徴とする非水系電解液
二次電池。 【化1】 (式中、R1及びR2は、それぞれ独立してアリール基若
しくはハロゲン原子で置換されていてもよいアルキル基
又はアルキル基若しくはハロゲン原子で置換されていて
もよいアリール基であり、R1とR2は互いに結合して不
飽和結合を含んでいてもよい環状構造を形成していても
よい。) 【化2】 (式中、R3〜R8はそれぞれ独立して水素原子、ハロゲ
ン原子、炭素数1〜12の鎖状アルキル基、炭素数5〜
12のシクロアルキル基、炭素数6〜12のアリール
基、或いは炭素数11〜14のアリールシクロアルキル
基である。)
1. A non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte solution containing a solute and an organic solvent, wherein the organic solvent contains: A non-aqueous electrolyte secondary battery comprising a sulfone compound represented by the following general formula (1) and an aromatic compound represented by the following general formula (2) having a molecular weight of 500 or less. [Chemical 1] (Wherein, R 1 and R 2 are each independently aryl or alkyl group which may be substituted with a halogen atom or an alkyl group or an aryl group which may be substituted by a halogen atom, and R 1 R 2 s may be bonded to each other to form a cyclic structure which may contain an unsaturated bond.) (In the formula, R 3 to R 8 are each independently a hydrogen atom, a halogen atom, a chain alkyl group having 1 to 12 carbon atoms, or 5 to 5 carbon atoms.
It is a cycloalkyl group having 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an arylcycloalkyl group having 11 to 14 carbon atoms. )
【請求項2】 リチウムを吸蔵・放出することが可能な
負極及び正極と溶質及び有機系溶媒からなる非水系電解
液とを備えた非水系電解液二次電池において、上記有機
系溶媒中に、下記一般式(1)で表されるスルホン化合
物と下記一般式(3)で表される分子量500以下の芳
香族化合物とを含有することを特徴とする非水系電解液
二次電池。 【化3】 (式中、R1及びR2は、それぞれ独立してアリール基若
しくはハロゲン原子で置換されていてもよいアルキル基
又はアルキル基若しくはハロゲン原子で置換されていて
もよいアリール基であり、R1とR2は互いに結合して不
飽和結合を含んでいてもよい環状構造を形成していても
よい。) 【化4】 (式中、R9は炭素数1〜12の鎖状アルキル基、炭素
数5〜12のシクロアルキル基、或いは炭素数6〜12
のアリール基であり、R10〜R14はそれぞれ独立して水
素原子、ハロゲン原子、炭素数1〜12の鎖状アルキル
基、炭素数5〜12のシクロアルキル基、或いは炭素数
6〜12のアリール基であり、R9とR10〜R14とは互
いに結合して環状構造を形成していてもよい。)
2. A non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte solution comprising a solute and an organic solvent, in the organic solvent, A non-aqueous electrolyte secondary battery comprising a sulfone compound represented by the following general formula (1) and an aromatic compound represented by the following general formula (3) having a molecular weight of 500 or less. [Chemical 3] (Wherein, R 1 and R 2 are each independently aryl or alkyl group which may be substituted with a halogen atom or an alkyl group or an aryl group which may be substituted by a halogen atom, and R 1 R 2 s may be bonded to each other to form a cyclic structure which may contain an unsaturated bond.) (In the formula, R 9 is a chain alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, or 6 to 12 carbon atoms.
Of an aryl group, each of R 10 to R 14 independently represent a hydrogen atom, a halogen atom, chain alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, or 6 to 12 carbon atoms It is an aryl group, and R 9 and R 10 to R 14 may combine with each other to form a cyclic structure. )
【請求項3】 一般式(1)において、R1及びR2はそ
れぞれ独立して、フェニル基若しくはハロゲン原子で置
換されていてもよい炭素数1〜4のアルキル基又はメチ
ル基若しくはハロゲン原子で置換されていてもよいフェ
ニル基であり、R1とR2は互いに結合して不飽和結合を
含んでいてもよい環状構造を形成していてもよい、請求
項1又は2に記載の非水系電解液二次電池。
3. In the general formula (1), R 1 and R 2 are each independently a phenyl group, an alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom, a methyl group or a halogen atom. The non-aqueous system according to claim 1 or 2, which is a phenyl group which may be substituted, and R 1 and R 2 may combine with each other to form a cyclic structure which may contain an unsaturated bond. Electrolyte secondary battery.
【請求項4】 一般式(1)で表されるスルホン化合物
が、ジメチルスルホン、ジエチルスルホン、スルホラン
又は3−スルホレンである、請求項3に記載の非水系電
解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 3, wherein the sulfone compound represented by the general formula (1) is dimethyl sulfone, diethyl sulfone, sulfolane or 3-sulfolen.
【請求項5】 一般式(1)で表されるスルホン化合物
が、非水系電解液の0.1〜5重量%の割合で含有され
ている、請求項1〜4のいずれかに記載の非水系電解液
二次電池。
5. The non-aqueous electrolyte according to claim 1, wherein the sulfone compound represented by the general formula (1) is contained in a proportion of 0.1 to 5% by weight of the non-aqueous electrolyte solution. Aqueous electrolyte secondary battery.
【請求項6】 一般式(2)または一般式(3)で表さ
れる分子量500以下の芳香族化合物が、非水系電解液
の0.1〜10重量%の割合で添加されている、請求項
1〜5のいずれかに記載の非水系電解液二次電池。
6. The aromatic compound represented by the general formula (2) or the general formula (3) and having a molecular weight of 500 or less is added in an amount of 0.1 to 10% by weight of the non-aqueous electrolyte solution. Item 6. A non-aqueous electrolyte secondary battery according to any one of Items 1 to 5.
【請求項7】 ビニレンカーボネート又はビニルエチレ
ンカーボネートが非水系電解液の0.1〜10重量%の
割合で添加されている、請求項1〜6のいずれかに記載
の非水系電解液二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 1, wherein vinylene carbonate or vinyl ethylene carbonate is added in a proportion of 0.1 to 10% by weight of the non-aqueous electrolyte. .
【請求項8】 正極が、リチウム遷移金属複合酸化物を
含有する、請求項1〜7のいずれかに記載の非水系電解
液二次電池。
8. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode contains a lithium transition metal composite oxide.
【請求項9】 負極が、X線回折における格子面(00
2面)のd値が0.335〜0.340nmの炭素材料
からなる、請求項1〜8のいずれかに記載の非水系電解
液二次電池。
9. The negative electrode has a lattice plane (00
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 8, which is made of a carbon material having a d value of 2 faces) of 0.335 to 0.340 nm.
【請求項10】 リチウムを吸蔵・放出することが可能
な負極及び正極と組合せて使用するための二次電池用非
水系電解液であって、溶質及び有機系溶媒からなり、上
記有機系溶媒中に、下記一般式(1)で表されるスルホ
ン化合物と下記一般式(2)で表される分子量500以
下の芳香族化合物とを含有することを特徴とする非水系
電解液。 【化5】 (式中、R1及びR2は、それぞれ独立してアリール基若
しくはハロゲン原子で置換されていてもよいアルキル基
又はアルキル基若しくはハロゲン原子で置換されていて
もよいアリール基であり、R1とR2は互いに結合して不
飽和結合を含んでいてもよい環状構造を形成していても
よい。) 【化6】 (式中、R3〜R8はそれぞれ独立して水素原子、ハロゲ
ン原子、炭素数1〜12の鎖状アルキル基、炭素数5〜
12のシクロアルキル基、炭素数6〜12のアリール
基、或いは炭素数11〜14のアリールシクロアルキル
基である。)
10. A non-aqueous electrolyte for a secondary battery, which is used in combination with a negative electrode and a positive electrode capable of inserting and extracting lithium, comprising a solute and an organic solvent in the organic solvent. In addition, the non-aqueous electrolyte solution containing the sulfone compound represented by the following general formula (1) and the aromatic compound represented by the following general formula (2) and having a molecular weight of 500 or less. [Chemical 5] (Wherein, R 1 and R 2 are each independently aryl or alkyl group which may be substituted with a halogen atom or an alkyl group or an aryl group which may be substituted by a halogen atom, and R 1 R 2 s may be bonded to each other to form a cyclic structure which may contain an unsaturated bond.) (In the formula, R 3 to R 8 are each independently a hydrogen atom, a halogen atom, a chain alkyl group having 1 to 12 carbon atoms, or 5 to 5 carbon atoms.
It is a cycloalkyl group having 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an arylcycloalkyl group having 11 to 14 carbon atoms. )
【請求項11】 リチウムを吸蔵・放出することが可能
な負極及び正極と組合せて使用するための二次電池用非
水系電解液であって、溶質及び有機系溶媒からなり、上
記有機系溶媒中に、下記一般式(1)で表されるスルホ
ン化合物と下記一般式(3)で表される分子量500以
下の芳香族化合物とを含有することを特徴とする非水系
電解液。 【化7】 (式中、R1及びR2は、それぞれ独立してアリール基若
しくはハロゲン原子で置換されていてもよいアルキル基
又はアルキル基若しくはハロゲン原子で置換されていて
もよいアリール基であり、R1とR2は互いに結合して不
飽和結合を含んでいてもよい環状構造を形成していても
よい。) 【化8】 (式中、R9は炭素数1〜12の鎖状アルキル基、炭素
数5〜12のシクロアルキル基、或いは炭素数6〜12
のアリール基であり、R10〜R14はそれぞれ独立して水
素原子、ハロゲン原子、炭素数1〜12の鎖状アルキル
基、炭素数5〜12のシクロアルキル基、或いは炭素数
6〜12のアリール基であり、R9とR10〜R14とは互
いに結合して環状構造を形成していてもよい。)
11. A non-aqueous electrolyte for a secondary battery, which is used in combination with a negative electrode and a positive electrode capable of inserting and extracting lithium, comprising a solute and an organic solvent in the organic solvent. In addition, the non-aqueous electrolyte solution containing the sulfone compound represented by the following general formula (1) and the aromatic compound represented by the following general formula (3) and having a molecular weight of 500 or less. [Chemical 7] (Wherein, R 1 and R 2 are each independently aryl or alkyl group which may be substituted with a halogen atom or an alkyl group or an aryl group which may be substituted by a halogen atom, and R 1 R 2's may combine with each other to form a cyclic structure which may contain an unsaturated bond.) (In the formula, R 9 is a chain alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, or 6 to 12 carbon atoms.
Of an aryl group, each of R 10 to R 14 independently represent a hydrogen atom, a halogen atom, chain alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, or 6 to 12 carbon atoms It is an aryl group, and R 9 and R 10 to R 14 may combine with each other to form a cyclic structure. )
JP2002100543A 2002-04-02 2002-04-02 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor Expired - Fee Related JP4461664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100543A JP4461664B2 (en) 2002-04-02 2002-04-02 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002100543A JP4461664B2 (en) 2002-04-02 2002-04-02 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor

Publications (2)

Publication Number Publication Date
JP2003297423A true JP2003297423A (en) 2003-10-17
JP4461664B2 JP4461664B2 (en) 2010-05-12

Family

ID=29388431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100543A Expired - Fee Related JP4461664B2 (en) 2002-04-02 2002-04-02 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor

Country Status (1)

Country Link
JP (1) JP4461664B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005048391A1 (en) 2003-11-13 2005-05-26 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery
JP2005203265A (en) * 2004-01-16 2005-07-28 Mitsubishi Chemicals Corp Electrolyte for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2006077763A1 (en) * 2005-01-20 2006-07-27 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2007273394A (en) * 2006-03-31 2007-10-18 Sony Corp Electrolyte and battery
JP2007311217A (en) * 2006-05-19 2007-11-29 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using it
JP2009512168A (en) * 2005-10-18 2009-03-19 比▲亜▼迪股▲分▼有限公司 Mixed additive for lithium ion secondary battery electrolyte and electrolyte containing the additive
JP2010027610A (en) * 2008-06-18 2010-02-04 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution, and nonaqueous electrolyte solution battery
WO2011021644A1 (en) 2009-08-19 2011-02-24 三菱化学株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2011181438A (en) * 2010-03-03 2011-09-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
KR20120012789A (en) * 2009-04-23 2012-02-10 소니 주식회사 Electrolyte and secondary battery
CN103155261A (en) * 2010-10-21 2013-06-12 索尼公司 Electrolyte and secondary battery
EP2755272A1 (en) * 2011-11-16 2014-07-16 LG Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
US8795904B2 (en) 2010-05-13 2014-08-05 The United States Of America As Represented By The Secretary Of The Army Nonaqueous electrolyte solvents and additives
US8889302B2 (en) 2008-02-29 2014-11-18 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
DE102015100696A1 (en) 2014-01-23 2015-07-23 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
US9209480B2 (en) 2009-01-29 2015-12-08 Sony Corporation Secondary battery containing a nonaqueous electrolyte with a sulfonic anhydride and an aromatic compound
JP2018005973A (en) * 2016-06-27 2018-01-11 株式会社日立製作所 Lithium ion battery
KR20190064283A (en) * 2017-11-30 2019-06-10 주식회사 엘지화학 Composition for gel polymer electrolyte, gel polymer electrolyte and lithium secondary battery comprising the same
US10438753B2 (en) 2010-07-06 2019-10-08 The United States Of America As Represented By The Secretary Of The Army Electrolytes in support of 5V Li ion chemistry

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1691441A4 (en) * 2003-11-13 2009-11-18 Ube Industries Nonaqueous electrolyte solution and lithium secondary battery
WO2005048391A1 (en) 2003-11-13 2005-05-26 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery
EP1691441A1 (en) * 2003-11-13 2006-08-16 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery
US7794885B2 (en) 2003-11-13 2010-09-14 Ube Industries, Ltd. Non-aqueous electrolytic solution and lithium secondary battery
JP2005203265A (en) * 2004-01-16 2005-07-28 Mitsubishi Chemicals Corp Electrolyte for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP4710228B2 (en) * 2004-01-16 2011-06-29 三菱化学株式会社 Non-aqueous electrolyte secondary battery electrolyte and non-aqueous electrolyte secondary battery
US8530080B2 (en) 2005-01-20 2013-09-10 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2013239468A (en) * 2005-01-20 2013-11-28 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using the same
WO2006077763A1 (en) * 2005-01-20 2006-07-27 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2010118356A (en) * 2005-01-20 2010-05-27 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
US7754380B2 (en) 2005-01-20 2010-07-13 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
US8440349B2 (en) 2005-01-20 2013-05-14 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2012079711A (en) * 2005-01-20 2012-04-19 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2009512168A (en) * 2005-10-18 2009-03-19 比▲亜▼迪股▲分▼有限公司 Mixed additive for lithium ion secondary battery electrolyte and electrolyte containing the additive
JP2007273394A (en) * 2006-03-31 2007-10-18 Sony Corp Electrolyte and battery
JP2007311217A (en) * 2006-05-19 2007-11-29 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using it
US9083058B2 (en) 2008-02-29 2015-07-14 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
US8916298B2 (en) 2008-02-29 2014-12-23 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
US8889302B2 (en) 2008-02-29 2014-11-18 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
JP2010027610A (en) * 2008-06-18 2010-02-04 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution, and nonaqueous electrolyte solution battery
US9209480B2 (en) 2009-01-29 2015-12-08 Sony Corporation Secondary battery containing a nonaqueous electrolyte with a sulfonic anhydride and an aromatic compound
EP2424030A4 (en) * 2009-04-23 2014-09-10 Sony Corp Electrolyte and secondary battery
US9819052B2 (en) 2009-04-23 2017-11-14 Sony Corporation Electrolyte and secondary battery
KR101656544B1 (en) 2009-04-23 2016-09-09 소니 주식회사 Electrolyte and secondary battery
EP2424030A1 (en) * 2009-04-23 2012-02-29 Sony Corporation Electrolyte and secondary battery
KR20120012789A (en) * 2009-04-23 2012-02-10 소니 주식회사 Electrolyte and secondary battery
WO2011021644A1 (en) 2009-08-19 2011-02-24 三菱化学株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2011181438A (en) * 2010-03-03 2011-09-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US8795904B2 (en) 2010-05-13 2014-08-05 The United States Of America As Represented By The Secretary Of The Army Nonaqueous electrolyte solvents and additives
US10438753B2 (en) 2010-07-06 2019-10-08 The United States Of America As Represented By The Secretary Of The Army Electrolytes in support of 5V Li ion chemistry
EP2631982A1 (en) * 2010-10-21 2013-08-28 Sony Corporation Electrolyte and secondary battery
EP2631982A4 (en) * 2010-10-21 2014-09-10 Sony Corp Electrolyte and secondary battery
CN103155261A (en) * 2010-10-21 2013-06-12 索尼公司 Electrolyte and secondary battery
EP2755272A4 (en) * 2011-11-16 2015-04-08 Lg Chemical Ltd Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
JP2014528639A (en) * 2011-11-16 2014-10-27 エルジー・ケム・リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery including the same
US9590272B2 (en) 2011-11-16 2017-03-07 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery using the same
EP2755272A1 (en) * 2011-11-16 2014-07-16 LG Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
DE102015100696A1 (en) 2014-01-23 2015-07-23 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
JP2018005973A (en) * 2016-06-27 2018-01-11 株式会社日立製作所 Lithium ion battery
KR20190064283A (en) * 2017-11-30 2019-06-10 주식회사 엘지화학 Composition for gel polymer electrolyte, gel polymer electrolyte and lithium secondary battery comprising the same
KR102516222B1 (en) 2017-11-30 2023-03-30 주식회사 엘지에너지솔루션 Composition for gel polymer electrolyte, gel polymer electrolyte and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
JP4461664B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
US7169511B2 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery employing the same
JP4843832B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4674444B2 (en) Method for producing difluorophosphate, non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery
JP5073161B2 (en) Non-aqueous electrolyte for lithium secondary battery, lithium secondary battery and secondary battery system
US20020192565A1 (en) Non-aqueous electrolyte secondary battery
JP4934914B2 (en) Electrolyte and secondary battery
JP4461664B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP2004031079A (en) Nonaqueous electrolyte secondary battery
JP2006216378A5 (en)
JP4934912B2 (en) Electrolyte and secondary battery
KR102152306B1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery
JP4679064B2 (en) Non-aqueous electrolyte secondary battery
JP2009272170A (en) Nonaqueous electrolyte secondary battery
JP2007019012A (en) Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery
JP2007173014A (en) Nonaqueous electrolyte secondary battery
JP4934917B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP2005093414A (en) Lithium cell
JP2007035617A (en) Non-aqueous electrolytic liquid for secondary battery, and non-aqueous electrolytic liquid secondary battery
JP2009252681A (en) Nonaqueous electrolytic solution for primary cell, and nonaqueous electrolytic solution primary cell using it
JP4952075B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP5408112B2 (en) Method for producing difluorophosphate, non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery
JP2001126761A (en) Nonaqueous electrolyte secondary battery
JP4259789B2 (en) Nonaqueous secondary battery electrolyte and nonaqueous electrolyte secondary battery using the same
JP2002352851A (en) Nonaqueous electrolyte secondary cell
JP4098997B2 (en) Non-aqueous electrolyte secondary battery and electrolyte used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4461664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees