JP4098997B2 - Non-aqueous electrolyte secondary battery and electrolyte used therefor - Google Patents

Non-aqueous electrolyte secondary battery and electrolyte used therefor Download PDF

Info

Publication number
JP4098997B2
JP4098997B2 JP2002096213A JP2002096213A JP4098997B2 JP 4098997 B2 JP4098997 B2 JP 4098997B2 JP 2002096213 A JP2002096213 A JP 2002096213A JP 2002096213 A JP2002096213 A JP 2002096213A JP 4098997 B2 JP4098997 B2 JP 4098997B2
Authority
JP
Japan
Prior art keywords
secondary battery
group
electrolyte
carbonate
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002096213A
Other languages
Japanese (ja)
Other versions
JP2003297420A (en
Inventor
雅裕 竹原
誠 宇恵
啓三 饗場
隆 米島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Neos Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Neos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Neos Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2002096213A priority Critical patent/JP4098997B2/en
Publication of JP2003297420A publication Critical patent/JP2003297420A/en
Application granted granted Critical
Publication of JP4098997B2 publication Critical patent/JP4098997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水系電解液二次電池およびそれに用いる電解液に関する。詳しくは、本発明は、特定の非水系電解液を使用することにより、大電流時の充放電効率を向上させ、かつ高温下でも充放電効率、保持特性の優れた非水系電解液二次電池を提供するものである。
【0002】
【従来の技術】
近年の電気製品の軽量化、小型化にともない、高いエネルギー密度を持つリチウム二次電池の開発が以前にもまして望まれており、また、リチウム二次電池の適用分野の拡大に伴い電池特性の改善も要望されている。
現在、正極には、LiCoO2 、LiMn24 、LiNiO2 等の金属酸化物塩が、負極には、金属リチウムの他、コークス、人造黒鉛、天然黒鉛等の炭素質材料や、Sn、Si等の金属酸化物材料といったリチウムイオンを吸蔵及び放出することが可能な化合物を用いた非水系電解液二次電池が提案されている。
【0003】
しかしながら、これらリチウム二次電池においては、正極および/または負極上において電極表面での電解液の溶媒の分解が大小の差違は有れ起こることが知られており、このことが保存特性やサイクル特性低下の原因となっている。
例えば、黒鉛系の種々の電極材を単独で、或いは、リチウムを吸蔵及び放出することが可能な他の負極材と混合して負極とした非水系電解液二次電池を例に取ると、リチウム一次電池で一般に好んで使用されるプロピレンカーボネートを主溶媒とする電解液を用いた場合、黒鉛電極表面で溶媒の分解反応が激しく進行して黒鉛電極へのスムーズなリチウムの吸蔵及び放出が不可能になる。
【0004】
一方、エチレンカーボネートはこのような分解が少ないことから、非水系電解液二次電池の電解液の主溶媒として多用されている。しかしながら、エチレンカーボネートを主溶媒としても、充放電過程において電極表面で電解液が少量づつ分解を起こすために充放電効率の低下の低下等が起こる問題があった。
これらの問題を解決する為に、ビニレンカーボネートを少量添加すると、初期充放電時に負極表面において分解してその分解物が保護皮膜を作り、この保護皮膜の効果により保存特性やサイクル特性を向上させる事が知られている。しかしながら、保護皮膜の存在故に、大電流放電特性が低下するという問題が発生する事もまた知られていた。
【0005】
また、この問題とは別に、正極・負極材料と電解液との親和性には、まだまだ課題があり、放電電流を大きくした場合、小さい電流にて放電した場合と比べて著しく放電容量が落ちてしまうという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は、非水系電解液二次電池の電解液の分解を最小限に抑えて、充放電効率が高く、高温下でも保存特性の優れ、大電流放電時の放電容量の大きい高エネルギー密度の非水系電解液二次電池を提供することを目的とする。本発明においては、本電解液を用いることにより、正極および/または負極と電解液との親和性が向上し、また負極上にリチウムイオン透過が高く安定性のよい保護皮膜が生成されていると推定される。
【0007】
【課題を解決するための手段】
金属Liを負極として用いる非水系電解液二次電池においては、フルオロエチレンカーボ―ネート等の含フッ素有機化合物を添加する事で、安定性のよい保護皮膜が生成される事が知られている。含フッ素有機化合物は、その特異な特性により、正極および/または負極と電解液との親和性が向上し、大電流特性の向上も期待できる。しかしながら、実際には、フルオロエチレンカーボ―ネート等の含フッ素有機化合物は、金属Li負極以外の負極である炭素系負極等と組み合わせた場合、生成する保護皮膜が厚過ぎる為に、非水系電解液二次電池の初期的な性能を低下させてしまい、有効な例は見つかっていなかった。本発明者等は、上記目的を達成するために種々の検討を重ねた結果、非水系電解液二次電池の電解液として、一般式(1)で表される化合物を特定量の範囲で含有する電解液を使用することにより、初期の充電時から正極および/または負極と電解液との親和性が向上し、かつ負極表面にリチウムイオン透過性で安定性のよい被膜が効率よく生成し、過度の電解液の分解を抑制する為に、大電流放電特性、サイクル特性、保存特性を向上させることを見いだし本発明を完成させるに至った。
【0008】
即ち本発明の要旨は、少なくとも、X線回折における格子面(002)面のd値が0.335〜0.34nmの炭素質物を含む負極と、リチウム遷移金属複合酸化物材料を含む正極と、環状カーボネートと鎖状カーボネートを含む非水溶媒にリチウム塩を溶解してなる電解液とから構成される非水系電解液二次電池において、該非水溶媒中に、下記一般式(1)で表される化合物を、電解液の0.01〜重量%含有することを特徴とする非水系電解液二次電池、に存する。
【0009】
【化2】

Figure 0004098997
【0010】
(式中、R1及びR2は一部又は全ての水素原子がフッ素原子で置換されたアルキル基、R3は、それぞれ独立して水素原子、アルキル基、エーテル基、カルボン酸エステル基、炭酸エステル基又はハロゲン原子を表す。)また本発明の他の要旨は、少なくとも、X線回折における格子面(002)面のd値が0.335〜0.34nmの炭素質物を含む負極と、リチウム遷移金属複合酸化物材料を含む正極と、環状カーボネートと鎖状カーボネートを含む非水溶媒にリチウム塩を溶解してなる電解液とから構成される非水系電解液二次電池に用いられる電解液であって、該非水溶媒中に、上記一般式(1)で表される化合物を、電解液の0.01〜5重量%含有する非水系電解液二次電池用電解液、に存する。
【0011】
【発明の実施の形態】
本発明に使用できる非水溶媒としては、環状カーボネート類、鎖状カーボネート類、ラクトン化合物(環状エステル)類、鎖状エステル類、環状エーテル類、鎖状エーテル類、含硫黄有機溶媒等が挙げられる。
これらの溶媒は単独で用いても、二種類以上混合して用いても良い。
【0012】
これらの中で好ましくは、総炭素数がそれぞれ3〜9の環状カーボネート、ラクトン化合物、鎖状カーボネート、鎖状エステル、鎖状エーテル類であり、総炭素数がそれぞれ3〜9の環状カーボネート、鎖状カーボネートをそれぞれ一種以上含むことが望ましい。
総炭素数がそれぞれ3〜9である環状カーボネート、ラクトン化合物、鎖状カーボネート、鎖状エステル、鎖状エーテル類の具体例としては、以下のようなものが挙げられる。
【0013】
1)総炭素数が3〜9の環状カーボネート:エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート等が挙げられる。この中で、エチレンカーボネート、プロピレンカーボネートがより好ましい。
2)総炭素数が3〜9のラクトン化合物:γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等を挙げることができ、これらの中で、γ−ブチロラクトンがより好ましい。
【0014】
3)総炭素数が3〜9の鎖状カーボネート:ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、ジ−n−ブチルカーボネート、ジイソプロピルカーボネート、ジ−t−ブチルカーボネート、n−ブチルイソブチルカーボネート、n−ブチル−t−ブチルカーボネート、イソブチル−t−ブチルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート、n−ブチル−n−プロピルカーボネート、イソブチル−n−プロピルカーボネート、t−ブチル−n−プロピルカーボネート、n−ブチルイソプロピルカーボネート、イソブチルイソプロピルカーボネート、t−ブチルイソプロピルカーボネート等を挙げることができる。これらの中で、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが好ましい。
【0015】
4)総炭素数3〜9の鎖状エステル:酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸−イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチルを挙げることができる。これらの中で、酢酸エチル、プロピオン酸メチル、プロピオン酸エチルがさらに好ましい。
【0016】
5)総炭素数3〜6の鎖状エーテル:ジメトキシメタン、ジメトキシエタン、ジエトキシメタン、ジエトキシエタン、エトキシメトキシメタン、エトキシメトキシエタン等を挙げることができる。これらの中で、ジメトキシエタン、ジエトキシエタンがより好ましい。
本発明においては、非水溶媒が総炭素数3〜9の環状カーボネートからなる群から選ばれる1種以上と鎖状カーボネートからなる群から選ばれる1種以上を、合計で非水溶媒全量の70容量%含み、かつ非水溶媒全量の20容量%以上が総炭素数3〜9の環状カーボネートの1種以上であることが望ましい。
【0017】
本発明で使用される電解液の溶質としては、リチウム塩が用いられる。リチウム塩については、非水系電解液の溶質として使用し得るものであれば特に限定はされない。その具体例として例えば、
1)無機リチウム塩:LiPF6 、LiAsF6 、LiBF4 、LiAlF4 等の無機フッ化物塩、LiClO4 、LiBrO4 、LiIO4 、等の過ハロゲン酸塩
2)有機リチウム塩:LiCF3 SO3 等の有機スルホン酸塩、LiN(CF3 SO2 2 、LiN(C2 5 SO2 2 、LiN(CF3 SO2 )(C4 9 SO2 )等のパーフルオロアルキルスルホン酸イミド塩、LiC(CF3 SO2 3 等のパーフルオロアルキルスルホン酸メチド塩、LiPF(CF3 5 、LiPF2 (CF3 4 、LiPF3 (CF3 3 、LiPF2 (C2 5 4 、LiPF3 (C2 5 3 、LiPF(n−C3 7 5 、LiPF2 (n−C3 7 4 、LiPF3 (n−C3 7 3 、LiPF(iso−C3 7 5 、LiPF2 (iso−C3 7 4 、LiPF3 (iso−C3 7 3 、LiB(CF3 4 、LiBF(CF3 3 、LiBF2 (CF3 2 、LiBF3 (CF3 )、LiB(C2 5 4 、LiBF(C2 5 3 、LiBF2 (C2 5 2 、LiBF3 (C2 5 )、LiB(n−C3 7 4 、LiBF(n−C3 7 3 、LiBF2 (n−C3 7 2 、LiBF3 (n−C3 7 )、LiB(iso−C3 7 4 、LiBF(iso−C3 7 3 、LiBF2 (iso−C3 7 2 、LiBF3 (iso−C3 7 )等の、フッ素原子の一部をパーフルオロアルキル基で置換した無機フッ化物塩、フルオロホスフェート、含フッ素有機リチウム塩が挙げられる。これらの中、LiPF6 、LiBF4 、LiN(CF3 SO2 2 、LiN(C2 5 SO2 2 、LiN(CF3 SO2 )(C4 9 SO2 )、LiPF3 (CF3 3 、LiPF3 (C2 5 3 、LiBF2 (C2 5 2 がより好ましい。
【0018】
なおこれらの溶質は2種類以上混合して用いても良い。
Li塩の解離度、電気伝導率等の特性から、より好ましくは、LiPF6をリチウム塩総量の5%以上、さらに好ましくは10%以上含むことが好ましい。
電解液中の溶質のリチウム塩モル濃度は、0.5〜3モル/リットルであることが望ましい。濃度が低すぎると、絶対的な濃度不足により電解液の電気伝導率で不十分であり、濃度が濃すぎると、粘度上昇の為電気伝導率が低下し、また低温での析出が起こりやすくなる為、電池の性能が低下し好ましくない。
【0019】
本発明に用いられる電解液は、その非水溶媒中に、前記一般式(1)で表される化合物を含有する事を特徴とするものであり、それらの化合物は本発明の所期の効果を過度に阻害しない範囲で置換基を有していてもよい。
上記化合物として具体的には、次のような化合物が挙げられる。
【0020】
【化3】
Figure 0004098997
【0021】
【化4】
Figure 0004098997
【0022】
【化5】
Figure 0004098997
【0023】
【化6】
Figure 0004098997
【0024】
【化7】
Figure 0004098997
【0025】
【化8】
Figure 0004098997
【0026】
また、上記化合物のうちより好ましいものとしては、次のような化合物が挙げられる。
【0027】
【化9】
Figure 0004098997
【0028】
上記化合物は、単独でも、2種類以上を併用してもよいが、非水溶媒中の存在量が、電解液の0.01〜10重量%、好ましくは0.5〜5重量%となるように用いられる。
上記化合物は、充電の初期時から正極および/または負極と電解液との親和性を向上させ、かつ負極表面にリチウムイオン透過性で安定性のよい被膜が効率よく生成し、過度の電解液の分解を抑制する為に、大電流放電特性、サイクル特性、保存特性を向上させるものと推定される。電解液中の存在量が少なすぎると皮膜の形成が不完全となり、所期の効果が十分に発現しない。逆に余りに多すぎると電池特性に悪影響を及ぼすことがある。
【0029】
本発明のリチウム二次電池用非水系電解液には、更に、公知の皮膜生成剤、過充電防止剤、脱水剤、脱酸剤等を添加してもよい。
公知の皮膜生成剤としては、ビニレンカーボネート等の不飽和環状カーボネート;ビニルエチレンカーボネート等のアルケニル基を有する飽和環状カーボネート;フェニルエチレンカーボネート等のアリール基を有する飽和環状カーボネート;エチレンサルファイト等の環状サルファイト;プロパンスルトン等の環状スルトン;無水コハク酸、無水マロン酸、無水マレイン酸、無水フタル酸等の環状カルボン酸無水物等が挙げられ、これらの1種又は2種以上の化合物を用いることができる。このような皮膜生成剤を含有していると、それらを含まない場合と比較して、容量維持特性及びサイクル特性がより良好となる。皮膜生成剤は、非水溶媒中に、0.1〜5重量%となるように添加されるのが好ましい。
【0030】
また、例えば、特開平8−203560号、特開平7−302614号、特開平9−50822号、特開平8−273700号、特開平9−17447号の各公報等に記載されているベンゼン誘導体;特開平9−106835号、特開平9−171840号、特開平10−321258号、特開平7−302614号、特開平7−302614号、特開平11−162512号、特許2939469号、特許2963898号の各公報等に記載されているビフェニル及びその誘導体;特開平9−45369号、特開平10−321258号の各公報等に記載されているピロール誘導体;特開平7−320778号、特開平7−302614号の各公報等に記載されているアニリン誘導体等の芳香族化合物;特許2983205号公報等に記載されているエーテル系化合物;特開2001−15158に記載されている化合物などの過充電防止剤を含有していると、それらを含まない場合よりも過充電状態を防止することができる。過充電防止剤は、非水溶媒中に、0.1〜5重量%となるように添加されるのが好ましい。
【0031】
本発明の電池を構成する負極の材料としては、リチウムを吸蔵及び放出し得る異元素材料を含むものであれば特に限定されないが、その具体例としては、例えば様々な熱分解条件での有機物の熱分解物や、人造黒鉛、天然黒鉛等の炭素材料、金属酸化物材料、更には種々のリチウム合金が挙げられる。
これらの内、炭素材料として好ましくは種々の原料から得た易黒鉛性ピッチの高温熱処理によって製造された人造黒鉛及び精製天然黒鉛或いはこれらの黒鉛にピッチを含む種々の表面処理を施した材料である。これらの炭素材料は学振法によるX線回折で求めた格子面(002)面のd値(層間距離)が0.335〜0.34nm、より好ましくは0.335〜0.337nmであるものが好ましい。これら炭素材料は、灰分が1重量%以下、より好ましくは0.5重量%以下、最も好ましくは0.1重量%以下でかつ学振法によるX線回折で求めた結晶子サイズ(Lc)が30nm以上であることが好ましい。更に結晶子サイズ(Lc)は、50nm以上の方がより好ましく、100nm以上であるものが最も好ましい。また、メジアン径は、レーザー回折・散乱法によるメジアン径で、1〜100μm、好ましくは3〜50μm、より好ましくは5〜40μm、更に好ましくは7〜30μmである。また、BET法比表面積は、0.5〜25.0m2 /gであり、好ましくは0.5〜20.0m2 /g、より好ましくは0.6〜15.0m2 /g、更に好ましくは0.6〜10.0m2 /gである。また、アルゴンイオンレーザー光を用いたラマンスペクトル分析において1580〜1620cm-1の範囲のピークPA(ピーク強度IA )及び1350〜1370cm-1の範囲のピークPB(ピーク強度IB )の強度比R=IB /IA が0〜0.5、1580〜1620cm-1の範囲のピークの半値幅が26cm-1以下、更には25cm-1以下がより好ましい。
【0032】
またこれらの炭素質材料にリチウムを吸蔵及び放出可能な金属化合物を混合して用いることもできる。
炭素質材料以外のリチウムを吸蔵及び放出可能な金属化合物としては、Ag、Zn、Ga、In、Si、Ge、Sn、Pb、P、Sb、Bi、Cu、Ni、Sr、Ba等の金属とLiの合金、またはこれら金属の金属酸化物材料が挙げられるが、好ましくは、Sn酸化物、Si酸化物、Sn、Siのリチウム合金が挙げられる。
【0033】
これらの負極材料は2種類以上混合して用いても良い。
これらの負極材料を用いて負極を製造する方法は特に限定されない。例えば、負極材料に、必要に応じて結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体の基板に塗布し、乾燥することにより負極を製造することができるし、また、該負極材料をそのままロール成形してシート電極としたり、圧縮成形によりペレット電極とすることもできる。
【0034】
電極の製造に結着剤を用いる場合には、電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等を挙げることができる。
【0035】
電極の製造に増粘剤を用いる場合には、電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン等が挙げられる。
【0036】
電極の製造に導電材を用いる場合には、電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としては、銅やニッケル等の金属材料、グラファイト、カーボンブラック等のような炭素材料が挙げられる。
負極用集電体の材質は、銅、ニッケル、ステンレス等の金属が使用され、これらの中で薄膜に加工しやすいという点とコストの点から銅箔が好ましい。
【0037】
本発明の電池を構成する正極の材料としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料等のリチウムを吸蔵及び放出可能な材料を使用することができる。
正極の製造方法については、特に限定されず、上記の負極の製造方法に準じて製造することができる。また、その形状については、正極材料に必要に応じて結着剤、導電材、溶媒等を加えて混合後、集電体の基板に塗布してシート電極としたり、プレス成形を施してペレット電極とすることができる。
【0038】
正極用集電体の材質は、アルミニウム、チタン、タンタル等の金属またはその合金が用いられる。これらの中で、特にアルミニウムまたはその合金が軽量であるためエネルギー密度の点で望ましい。
本発明の電池に使用するセパレーターの材質や形状については、特に限定されない。但し、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートまたは不織布等を用いるのが好ましい。
【0039】
負極、正極及び非水系電解液を少なくとも有する本発明の電池を製造する方法については、特に限定されず、通常採用されている方法の中から適宜選択することができる。
また、電池の形状については特に限定されず、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が使用可能である。
【0040】
【実施例】
以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を越えない限りこれらの実施例に限定されるものではない。
実施例1
エチレンカーボネートとジエチルカーボネートを重量比で1:1に混合した溶媒に乾燥アルゴン雰囲気下で十分に乾燥を行った六フッ化リン酸リチウム(LiPF6)を溶質として1モル/リットルの割合で溶解し、更に下記式(2)で表される化合物を電解液重量に対し2重量%の割合で溶解し、後記の方法にてコイン型セルを作製し、初期充放電効率、保存特性に関し、評価を行なった。結果を表−1に示す。
【0041】
【化10】
Figure 0004098997
【0042】
実施例2
エチレンカーボネートとジエチルカーボネートを重量比で1:1に混合した溶媒にLiPF6を1モル/リットルの割合で溶解し、更に下記式(3)で表される化合物を電解液重量に対し2重量%の割合で溶解して調製した電解液を用いたこと以外は実施例1と同様にして評価を行なった。結果を表−1に示す。
【0043】
【化11】
Figure 0004098997
【0044】
実施例3
エチレンカーボネートとジエチルカーボネートを重量比で1:1に混合した溶媒にLiBF4とLiPF6をそれぞれ0.5モル/リットルずつの割合で溶解し、更に式(2)で表される化合物を電解液重量に対し2重量%の割合で溶解して調製した電解液を用いたこと以外は実施例1と同様にして評価を行なった。結果を表−1に示す。
【0045】
実施例4
エチレンカーボネートとジエチルカーボネートを重量比で1:1に混合した溶媒にLiPF6を1モル/リットルの割合で溶解し、更に式(2)で表される化合物とビニレンカーボネートを電解液重量に対しそれぞれ2重量%の割合で溶解して調製した電解液を用いたこと以外は実施例1と同様にして評価を行なった。結果を表−1に示す。
【0046】
比較例1
エチレンカーボネートとジエチルカーボネートを重量比で1:1に混合した溶媒に、LiPF6を1モル/リットルの割合で溶解して調製した電解液を用いたこと以外は実施例1と同様にして評価を行なった。結果を表−1に示す。
比較例2
エチレンカーボネートとジエチルカーボネートを重量比で1:1に混合した溶媒に、LiBF4とLiPF6をそれぞれ0.5モル/リットルずつの割合で溶解して調製した電解液を用いたこと以外は実施例1と同様にして評価を行なった。結果を表−1に示す。
【0047】
比較例3
エチレンカーボネートとジエチルカーボネートを重量比で1:1に混合した溶媒にLiPF6を1モル/リットルの割合で溶解し、更にビニレンカーボネートを電解液重量に対し2重量%の割合で溶解して調製した電解液を用いたこと以外は実施例1と同様にして評価を行なった。結果を表−1に示す。
【0048】
【表1】
Figure 0004098997
【0049】
[正極の作製]
正極活物質としてLiCoO2 85重量%にカーボンブラック6重量%、ポリフッ化ビニリデン(呉羽化学社製、商品名KF−1000)9重量%を加え混合し、N−メチル−2−ピロリドンで分散し、スラリー状としたものを正極集電体である厚さ20μmのアルミニウム箔上に均一に塗布し、乾燥後、直径12.5mmの円盤状に打ち抜いて正極とした。
【0050】
[負極の作製]
X線回折における格子面(002)面のd値が0.336nm、晶子サイズ(Lc)が、100nm以上(264nm)、灰分が0.04重量%、レーザー回折・散乱法によるメジアン径が17μm、BET法比表面積が8.9m2 /g、アルゴンイオンレーザー光を用いたラマンスペクトル分析において1580〜1620cm-1の範囲のピークPA (ピーク強度IA )及び1350〜1370cm-1の範囲のピークPB (ピーク強度IB )の強度比R=IB /IA が0.15、1580〜1620cm-1の範囲のピークの半値幅が22.2cm-1である人造黒鉛粉末(ティムカル社製、商品名KS−44)94重量%に蒸留水で分散させたスチレン−ブタジエンゴム(SBR)を固形分で6重量%となるように加えディスパーザーで混合し、スラリー状としたものを負極集電体である厚さ18μmの銅箔上に均一に塗布し、乾燥後、直径12.5mmの円盤状に打ち抜いて電極を作製し負極として用いた。
【0051】
[コイン型セルの作製]
上記の正極、負極、電解液を用いて、正極導電体を兼ねるステンレス鋼製の缶体に正極を収容し、その上に電解液を含浸させたポリエチレン製のセパレーターを介して負極を載置した。この缶体と負極導電体を兼ねる封口板とを、絶縁用のガスケットを介してかしめて密封し、コイン型セルを作製した。
【0052】
[コイン型セルの評価]
25℃において、充電終止電圧4.2V、放電終止電圧2.5Vで0.5mA定電流で4サイクル充放電試験を行い、5サイクル目として、0.5mA定電流で充電後、5mA定電流で放電試験を行い、4サイクル目の放電容量で割った値を大電流放電特性と定義した。また、5サイクル目放電後、さらに0.5mA定電流で放電し、再度充電状態として85℃で72時間保存した後、放電させ、次いで7サイクル目の充電及び放電を行なった。この7サイクル目の放電容量を7サイクル目の充電容量で割った値を保存特性と定義した。
【0053】
【発明の効果】
本発明により、充放電効率、保存特性が向上した非水系電解液二次電池を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery and an electrolyte used therefor. Specifically, the present invention improves the charge / discharge efficiency at a large current by using a specific non-aqueous electrolyte, and the non-aqueous electrolyte secondary battery has excellent charge / discharge efficiency and retention characteristics even at high temperatures. Is to provide.
[0002]
[Prior art]
With the recent reduction in weight and size of electrical products, the development of lithium secondary batteries with high energy density has been desired more than before. Improvement is also desired.
At present, metal oxide salts such as LiCoO 2 , LiMn 2 O 4 and LiNiO 2 are used for the positive electrode, and carbon materials such as coke, artificial graphite and natural graphite, Sn, Si, etc. in addition to metal lithium for the negative electrode. A non-aqueous electrolyte secondary battery using a compound capable of occluding and releasing lithium ions such as a metal oxide material has been proposed.
[0003]
However, in these lithium secondary batteries, it is known that decomposition of the solvent of the electrolyte solution on the electrode surface on the positive electrode and / or the negative electrode occurs with a large or small difference. This is the cause of the decline.
For example, a non-aqueous electrolyte secondary battery in which various graphite-based electrode materials are used alone or mixed with other negative electrode materials capable of inserting and extracting lithium to form negative electrodes When an electrolyte containing propylene carbonate, which is generally preferred for primary batteries, is used as the main solvent, the decomposition reaction of the solvent proceeds violently on the surface of the graphite electrode, and smooth insertion and extraction of lithium into the graphite electrode is impossible. become.
[0004]
On the other hand, ethylene carbonate is frequently used as the main solvent of the electrolyte solution of the non-aqueous electrolyte secondary battery because it has little such decomposition. However, even when ethylene carbonate is used as the main solvent, there is a problem in that a decrease in charge / discharge efficiency is reduced because the electrolyte solution decomposes little by little on the electrode surface during the charge / discharge process.
In order to solve these problems, if a small amount of vinylene carbonate is added, it decomposes on the negative electrode surface during initial charge and discharge, and the decomposition product forms a protective film, and the protective film and cycle characteristics are improved by the effect of this protective film. It has been known. However, it has also been known that the problem that the high-current discharge characteristics deteriorate due to the presence of the protective film is also known.
[0005]
Apart from this problem, there is still a problem with the affinity between the positive and negative electrode materials and the electrolyte. When the discharge current is increased, the discharge capacity is significantly reduced compared to the case of discharging with a small current. There was a problem that.
[0006]
[Problems to be solved by the invention]
The present invention minimizes the decomposition of the electrolyte solution of the non-aqueous electrolyte secondary battery, has high charge / discharge efficiency, excellent storage characteristics even at high temperatures, and has a high energy density with a large discharge capacity during large current discharge. An object is to provide a non-aqueous electrolyte secondary battery. In the present invention, by using this electrolytic solution, the affinity between the positive electrode and / or the negative electrode and the electrolytic solution is improved, and a lithium ion permeation and high stability protective film is formed on the negative electrode. Presumed.
[0007]
[Means for Solving the Problems]
In a non-aqueous electrolyte secondary battery using metal Li as a negative electrode, it is known that a protective film having good stability can be produced by adding a fluorine-containing organic compound such as fluoroethylene carbonate. The fluorine-containing organic compound is expected to improve the affinity between the positive electrode and / or the negative electrode and the electrolytic solution due to its unique characteristics, and to improve the large current characteristics. However, in fact, when a fluorine-containing organic compound such as fluoroethylene carbonate is combined with a carbon-based negative electrode that is a negative electrode other than a metal Li negative electrode, the produced protective film is too thick. The initial performance of the secondary battery was degraded, and no effective example was found. As a result of repeating various studies to achieve the above object, the inventors of the present invention contain the compound represented by the general formula (1) in a specific amount range as an electrolyte solution of a non-aqueous electrolyte secondary battery. By using the electrolytic solution, the affinity between the positive electrode and / or the negative electrode and the electrolytic solution is improved from the initial charging, and a lithium ion permeable and stable coating is efficiently generated on the negative electrode surface, In order to suppress excessive decomposition of the electrolytic solution, the inventors have found that high current discharge characteristics, cycle characteristics, and storage characteristics are improved, and have completed the present invention.
[0008]
That is, the gist of the present invention is at least a negative electrode including a carbonaceous material having a d-value of 0.335 to 0.34 nm on the lattice plane (002) in X-ray diffraction , a positive electrode including a lithium transition metal composite oxide material , In a non-aqueous electrolyte secondary battery composed of an electrolyte obtained by dissolving a lithium salt in a non-aqueous solvent containing a cyclic carbonate and a chain carbonate, the non-aqueous solvent is represented by the following general formula (1). The present invention resides in a non-aqueous electrolyte secondary battery comprising 0.01 to 5 % by weight of the electrolyte.
[0009]
[Chemical 2]
Figure 0004098997
[0010]
(Wherein R 1 and R 2 are alkyl groups in which some or all of the hydrogen atoms are substituted with fluorine atoms, and R 3 is independently a hydrogen atom, an alkyl group, an ether group, a carboxylic acid ester group, a carbonic acid group, Represents an ester group or a halogen atom.) Another aspect of the present invention is that at least a negative electrode containing a carbonaceous material having a d-value of 0.335 to 0.34 nm on the lattice plane (002) plane in X-ray diffraction, lithium An electrolyte used for a non-aqueous electrolyte secondary battery comprising a positive electrode containing a transition metal composite oxide material and an electrolyte obtained by dissolving a lithium salt in a non-aqueous solvent containing a cyclic carbonate and a chain carbonate In the non-aqueous solvent, the compound represented by the general formula (1) is present in an electrolyte for a non-aqueous electrolyte secondary battery containing 0.01 to 5% by weight of the electrolyte .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Non-aqueous solvents that can be used in the present invention include cyclic carbonates, chain carbonates, lactone compounds (cyclic esters), chain esters, cyclic ethers, chain ethers, sulfur-containing organic solvents, and the like. .
These solvents may be used alone or in combination of two or more.
[0012]
Among these, cyclic carbonates having 3 to 9 carbon atoms, lactone compounds, chain carbonates, chain esters, and chain ethers are preferable, and cyclic carbonates and chains having 3 to 9 carbon atoms in total. It is desirable to contain at least one carbonate.
Specific examples of cyclic carbonates, lactone compounds, chain carbonates, chain esters and chain ethers each having 3 to 9 total carbon atoms include the following.
[0013]
1) Cyclic carbonate having 3 to 9 carbon atoms: ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethylene carbonate and the like. Among these, ethylene carbonate and propylene carbonate are more preferable.
2) Lactone compounds having 3 to 9 carbon atoms: γ-butyrolactone, γ-valerolactone, δ-valerolactone, and the like, among which γ-butyrolactone is more preferable.
[0014]
3) Chain carbonate having 3 to 9 carbon atoms: dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, di-n-butyl carbonate, diisopropyl carbonate, di-t- Butyl carbonate, n-butyl isobutyl carbonate, n-butyl-t-butyl carbonate, isobutyl-t-butyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, n-butyl methyl carbonate, isobutyl methyl carbonate, t-butyl methyl Carbonate, ethyl-n-propyl carbonate, n-butyl ethyl carbonate, isobutyl ethyl carbonate, t-butyl ethyl carbonate, n-butyl-n-propyl Carbonate, isobutyl -n- propyl carbonate, t- butyl -n- propyl carbonate, n- butyl isopropyl carbonate, isobutyl isopropyl carbonate, and t-butyl isopropyl carbonate. Of these, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferred.
[0015]
4) Chain ester having 3 to 9 carbon atoms: methyl acetate, ethyl acetate, acetic acid-n-propyl, acetic acid-isopropyl, acetic acid-n-butyl, acetic acid isobutyl, acetic acid-t-butyl, propionic acid methyl, propionic acid Mention may be made of ethyl, propionate-n-propyl, propionate-isopropyl, propionate-n-butyl, propionate isobutyl, propionate-t-butyl. Among these, ethyl acetate, methyl propionate, and ethyl propionate are more preferable.
[0016]
5) A chain ether having 3 to 6 carbon atoms: dimethoxymethane, dimethoxyethane, diethoxymethane, diethoxyethane, ethoxymethoxymethane, ethoxymethoxyethane and the like. Among these, dimethoxyethane and diethoxyethane are more preferable.
In the present invention, the non-aqueous solvent comprises one or more selected from the group consisting of cyclic carbonates having 3 to 9 carbon atoms in total and one or more selected from the group consisting of chain carbonates, for a total of 70 non-aqueous solvents. It is desirable that 20% by volume or more of the total amount of the non-aqueous solvent is one or more cyclic carbonates having 3 to 9 carbon atoms in total.
[0017]
A lithium salt is used as a solute of the electrolytic solution used in the present invention. The lithium salt is not particularly limited as long as it can be used as a solute of a non-aqueous electrolyte solution. For example,
1) Inorganic lithium salts: LiPF 6, LiAsF 6, LiBF 4, LiAlF 4 inorganic fluoride salts, such as, LiClO 4, LiBrO 4, LiIO 4, perhalogenate 2) organic lithium salt etc: LiCF 3 SO 3, etc. organic sulfonates, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2) perfluoroalkylsulfonic acid imide salts such as Perfluoroalkylsulfonic acid methides such as LiC (CF 3 SO 2 ) 3 , LiPF (CF 3 ) 5 , LiPF 2 (CF 3 ) 4 , LiPF 3 (CF 3 ) 3 , LiPF 2 (C 2 F 5 ) 4 , LiPF 3 (C 2 F 5 ) 3 , LiPF (n—C 3 F 7 ) 5 , LiPF 2 (n—C 3 F 7 ) 4 , LiPF 3 (n—C 3 F 7 ) 3 , LiPF (iso) -C 3 F 7) 5, LiPF 2 (i o-C 3 F 7) 4 , LiPF 3 (iso-C 3 F 7) 3, LiB (CF 3) 4, LiBF (CF 3) 3, LiBF 2 (CF 3) 2, LiBF 3 (CF 3), LiB (C 2 F 5) 4 , LiBF (C 2 F 5) 3, LiBF 2 (C 2 F 5) 2, LiBF 3 (C 2 F 5), LiB (n-C 3 F 7) 4, LiBF ( n-C 3 F 7) 3 , LiBF 2 (n-C 3 F 7) 2, LiBF 3 (n-C 3 F 7), LiB (iso-C 3 F 7) 4, LiBF (iso-C 3 F 7 ) 3 , inorganic fluoride salts in which a part of the fluorine atom is substituted with a perfluoroalkyl group, such as LiBF 2 (iso-C 3 F 7 ) 2 , LiBF 3 (iso-C 3 F 7 ), fluorophosphate, Examples thereof include fluorine-containing organic lithium salts. Among these, LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , and LiBF 2 (C 2 F 5 ) 2 are more preferable.
[0018]
Two or more kinds of these solutes may be mixed and used.
Dissociation of the Li salt, the characteristics of the electrical conductivity and the like, more preferably, LiPF 6 more than 5% of the lithium salt amount, still more preferably comprise 10% or more.
It is desirable that the lithium salt molar concentration of the solute in the electrolytic solution is 0.5 to 3 mol / liter. If the concentration is too low, the electrical conductivity of the electrolyte is insufficient due to an absolute concentration shortage. If the concentration is too high, the electrical conductivity decreases due to an increase in viscosity, and precipitation at low temperatures is likely to occur. For this reason, the performance of the battery is undesirably lowered.
[0019]
The electrolytic solution used in the present invention is characterized by containing the compound represented by the general formula (1) in the non-aqueous solvent, and these compounds have the desired effects of the present invention. It may have a substituent as long as it does not excessively inhibit.
Specific examples of the compound include the following compounds.
[0020]
[Chemical 3]
Figure 0004098997
[0021]
[Formula 4]
Figure 0004098997
[0022]
[Chemical formula 5]
Figure 0004098997
[0023]
[Chemical 6]
Figure 0004098997
[0024]
[Chemical 7]
Figure 0004098997
[0025]
[Chemical 8]
Figure 0004098997
[0026]
Moreover, as a more preferable thing among the said compounds, the following compounds are mentioned.
[0027]
[Chemical 9]
Figure 0004098997
[0028]
The above compounds may be used alone or in combination of two or more, but the abundance in the non-aqueous solvent is 0.01 to 10% by weight, preferably 0.5 to 5% by weight of the electrolytic solution. Used for.
The above compound improves the affinity between the positive electrode and / or negative electrode and the electrolytic solution from the initial stage of charging, and efficiently forms a stable lithium ion permeable and stable coating on the negative electrode surface. In order to suppress decomposition, it is estimated that the large current discharge characteristics, cycle characteristics, and storage characteristics are improved. If the amount in the electrolytic solution is too small, the formation of the film becomes incomplete and the desired effect is not sufficiently exhibited. On the other hand, if the amount is too large, the battery characteristics may be adversely affected.
[0029]
A known film forming agent, overcharge preventing agent, dehydrating agent, deoxidizing agent, and the like may be further added to the nonaqueous electrolytic solution for a lithium secondary battery of the present invention.
Known film forming agents include unsaturated cyclic carbonates such as vinylene carbonate; saturated cyclic carbonates having an alkenyl group such as vinyl ethylene carbonate; saturated cyclic carbonates having an aryl group such as phenylethylene carbonate; cyclic sulfur such as ethylene sulfite Phyto; cyclic sultone such as propane sultone; cyclic carboxylic acid anhydrides such as succinic anhydride, malonic anhydride, maleic anhydride, and phthalic anhydride, etc., and using one or more of these compounds it can. When such a film-forming agent is contained, the capacity maintenance characteristics and the cycle characteristics become better as compared with the case where they are not included. The film forming agent is preferably added to the non-aqueous solvent so as to be 0.1 to 5% by weight.
[0030]
Further, for example, benzene derivatives described in JP-A-8-203560, JP-A-7-302614, JP-A-9-50822, JP-A-8-273700, JP-A-9-17447, and the like; JP-A-9-106835, JP-A-9-171840, JP-A-10-32258, JP-A-7-302614, JP-A-7-302614, JP-A-11-162512, JP-A-2939469, JP-A-2963898 Biphenyl and derivatives thereof described in each publication; pyrrole derivatives described in each publication of JP-A-9-45369 and JP-A-10-32258; JP-A-7-320778, JP-A-7-302614 Aromatic compounds such as aniline derivatives described in each publication of No. 2; Ether compounds are; the JP 2001-15158 contains an overcharge inhibitor such as compounds described in, it is possible to prevent the over-charge state than when free them. The overcharge inhibitor is preferably added to the non-aqueous solvent so as to be 0.1 to 5% by weight.
[0031]
The material of the negative electrode constituting the battery of the present invention is not particularly limited as long as it contains a foreign element material capable of occluding and releasing lithium, and specific examples thereof include, for example, organic substances under various pyrolysis conditions. Examples include pyrolysates, carbon materials such as artificial graphite and natural graphite, metal oxide materials, and various lithium alloys.
Of these, artificial graphite and purified natural graphite produced by high-temperature heat treatment of graphitizable pitch obtained from various raw materials, and materials obtained by subjecting these graphites to various surface treatments including pitch are preferable. . These carbon materials have a lattice plane (002) plane d value (interlayer distance) of 0.335 to 0.34 nm, more preferably 0.335 to 0.337 nm, as determined by X-ray diffraction using the Gakushin method. Is preferred. These carbon materials have an ash content of 1% by weight or less, more preferably 0.5% by weight or less, most preferably 0.1% by weight or less, and a crystallite size (Lc) determined by X-ray diffraction by the Gakushin method. It is preferable that it is 30 nm or more. Further, the crystallite size (Lc) is more preferably 50 nm or more, and most preferably 100 nm or more. The median diameter is a median diameter measured by a laser diffraction / scattering method, and is 1 to 100 μm, preferably 3 to 50 μm, more preferably 5 to 40 μm, and still more preferably 7 to 30 μm. Further, the BET specific surface area is 0.5 to 25.0 m 2 / g, preferably 0.5 to 20.0 m 2 / g, more preferably 0.6 to 15.0 m 2 / g, still more preferably. Is 0.6 to 10.0 m 2 / g. The intensity of the peak P A (peak intensity I A) in the range of 1580~1620Cm -1 in the Raman spectrum analysis using an argon ion laser beam and 1350 -1 ranging peak P B (peak intensity I B) ratio the half-value width of the peak in the range of R = I B / I a is 0~0.5,1580~1620Cm -1 is 26cm -1 or less, more 25 cm -1 or less is more preferable.
[0032]
These carbonaceous materials can also be used by mixing a metal compound capable of inserting and extracting lithium.
Examples of metal compounds capable of inserting and extracting lithium other than carbonaceous materials include metals such as Ag, Zn, Ga, In, Si, Ge, Sn, Pb, P, Sb, Bi, Cu, Ni, Sr, and Ba. An alloy of Li or a metal oxide material of these metals can be used, and a Sn oxide, Si oxide, Sn, or a lithium alloy of Si is preferable.
[0033]
Two or more kinds of these negative electrode materials may be mixed and used.
The method for producing a negative electrode using these negative electrode materials is not particularly limited. For example, the negative electrode material can be made into a slurry by adding a binder, a thickener, a conductive material, a solvent, and the like to the negative electrode material as necessary, and applied to the substrate of the current collector and dried to produce the negative electrode. In addition, the negative electrode material can be roll-formed as it is to form a sheet electrode, or can be formed into a pellet electrode by compression molding.
[0034]
When the binder is used for manufacturing the electrode, it is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode manufacturing and other materials used during battery use. Specific examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isoprene rubber, and butadiene rubber.
[0035]
In the case of using a thickener for the production of the electrode, there is no particular limitation as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode production and other materials used during battery use. Specific examples thereof include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
[0036]
In the case of using a conductive material for the production of the electrode, there is no particular limitation as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode production and other materials used during battery use. Specific examples thereof include metal materials such as copper and nickel, and carbon materials such as graphite and carbon black.
The negative electrode current collector is made of a metal such as copper, nickel, and stainless steel. Among these, a copper foil is preferable from the viewpoint of easy processing into a thin film and cost.
[0037]
As a material for the positive electrode constituting the battery of the present invention, a material capable of occluding and releasing lithium, such as lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide, should be used. Can do.
It does not specifically limit about the manufacturing method of a positive electrode, It can manufacture according to said manufacturing method of a negative electrode. As for the shape, a binder, a conductive material, a solvent and the like are added to the positive electrode material as necessary and mixed, and then applied to the substrate of the current collector to form a sheet electrode, or subjected to press molding to a pellet electrode It can be.
[0038]
As a material of the positive electrode current collector, a metal such as aluminum, titanium, or tantalum or an alloy thereof is used. Of these, aluminum or an alloy thereof is particularly lightweight, which is desirable in terms of energy density.
The material and shape of the separator used in the battery of the present invention are not particularly limited. However, it is preferable to select from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene.
[0039]
The method for producing the battery of the present invention having at least a negative electrode, a positive electrode, and a non-aqueous electrolyte solution is not particularly limited, and can be appropriately selected from commonly employed methods.
In addition, the shape of the battery is not particularly limited, and a cylinder type in which a sheet electrode and a separator are spiraled, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin type in which a pellet electrode and a separator are stacked, and the like are used. Is possible.
[0040]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples unless it exceeds the gist.
Example 1
1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) that has been thoroughly dried in a dry argon atmosphere in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a weight ratio of 1: 1 is dissolved as a solute. Furthermore, a compound represented by the following formula (2) is dissolved at a ratio of 2% by weight with respect to the weight of the electrolyte, and a coin-type cell is produced by the method described later, and the initial charge / discharge efficiency and storage characteristics are evaluated. I did it. The results are shown in Table-1.
[0041]
[Chemical Formula 10]
Figure 0004098997
[0042]
Example 2
LiPF 6 is dissolved at a ratio of 1 mol / liter in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a weight ratio of 1: 1, and further a compound represented by the following formula (3) is 2% by weight with respect to the weight of the electrolyte. Evaluation was performed in the same manner as in Example 1 except that an electrolytic solution prepared by dissolving at a ratio of 1 was used. The results are shown in Table-1.
[0043]
Embedded image
Figure 0004098997
[0044]
Example 3
LiBF 4 and LiPF 6 are dissolved at a ratio of 0.5 mol / liter respectively in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a weight ratio of 1: 1, and the compound represented by the formula (2) is further dissolved in an electrolytic solution. Evaluation was performed in the same manner as in Example 1 except that an electrolytic solution prepared by dissolving at a ratio of 2% by weight with respect to the weight was used. The results are shown in Table-1.
[0045]
Example 4
LiPF 6 is dissolved at a ratio of 1 mol / liter in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a weight ratio of 1: 1, and the compound represented by the formula (2) and vinylene carbonate are respectively added to the weight of the electrolyte. Evaluation was performed in the same manner as in Example 1 except that an electrolytic solution prepared by dissolving at a ratio of 2% by weight was used. The results are shown in Table-1.
[0046]
Comparative Example 1
Evaluation was performed in the same manner as in Example 1 except that an electrolyte prepared by dissolving LiPF 6 at a ratio of 1 mol / liter in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a weight ratio of 1: 1 was used. I did it. The results are shown in Table-1.
Comparative Example 2
Ethylene carbonate and diethyl carbonate in a weight ratio of 1: mixed solvent 1, the embodiment except for using an electrolytic solution prepared by dissolving LiBF 4 and LiPF 6 at a rate of every 0.5 mole / liter, respectively Evaluation was performed in the same manner as in Example 1. The results are shown in Table-1.
[0047]
Comparative Example 3
It was prepared by dissolving LiPF 6 at a ratio of 1 mol / liter in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a weight ratio of 1: 1, and further dissolving vinylene carbonate at a ratio of 2% by weight with respect to the weight of the electrolyte. Evaluation was performed in the same manner as in Example 1 except that the electrolytic solution was used. The results are shown in Table-1.
[0048]
[Table 1]
Figure 0004098997
[0049]
[Production of positive electrode]
As a positive electrode active material, LiCoO 2 85% by weight, carbon black 6% by weight, polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd., trade name KF-1000) 9% by weight are added and mixed, and dispersed with N-methyl-2-pyrrolidone. The slurry was uniformly applied onto a 20 μm thick aluminum foil as a positive electrode current collector, dried, and then punched into a disk shape having a diameter of 12.5 mm to obtain a positive electrode.
[0050]
[Production of negative electrode]
The d value of the lattice plane (002) plane in X-ray diffraction is 0.336 nm, the crystallite size (Lc) is 100 nm or more (264 nm), the ash content is 0.04 wt%, the median diameter by laser diffraction / scattering method is 17 μm, BET method specific surface area of 8.9 m 2 / g, peak spectrum P A (peak intensity I A ) in the range of 1580 to 1620 cm −1 and peak in the range of 1350 to 1370 cm −1 in Raman spectrum analysis using argon ion laser light P B (peak intensity I B) intensity ratio R = I B / I a is artificial graphite powder half width of a peak in the range of 0.15,1580~1620Cm -1 is 22.2cm -1 (Timcal Co. Styrene-butadiene rubber (SBR) dispersed in 94% by weight of distilled water with distilled water was added to a solid content of 6% by weight and mixed with a disperser. The slurry was uniformly applied onto a negative electrode current collector 18 μm thick copper foil, dried, and then punched into a disk shape having a diameter of 12.5 mm to produce an electrode, which was used as the negative electrode.
[0051]
[Production of coin cell]
Using the above positive electrode, negative electrode, and electrolytic solution, the positive electrode was accommodated in a stainless steel can that also serves as a positive electrode conductor, and the negative electrode was placed on a polyethylene separator impregnated with the electrolytic solution thereon. . The can body and a sealing plate serving also as a negative electrode conductor were caulked and sealed via an insulating gasket to produce a coin-type cell.
[0052]
[Evaluation of coin cell]
At 25 ° C., a 4-cycle charge / discharge test was performed at a constant current of 0.5 mA at a charge end voltage of 4.2 V and a discharge end voltage of 2.5 V. As a fifth cycle, after charging at a constant current of 0.5 mA, a constant current of 5 mA A discharge test was performed, and a value divided by the discharge capacity at the fourth cycle was defined as a large current discharge characteristic. Further, after the fifth cycle discharge, the battery was further discharged at a constant current of 0.5 mA, stored again at 85 ° C. for 72 hours as a charged state, then discharged, and then charged and discharged in the seventh cycle. A value obtained by dividing the discharge capacity at the seventh cycle by the charge capacity at the seventh cycle was defined as storage characteristics.
[0053]
【The invention's effect】
The present invention can provide a non-aqueous electrolyte secondary battery with improved charge / discharge efficiency and storage characteristics.

Claims (6)

少なくとも、X線回折における格子面(002)面のd値が0.335〜0.34nmの炭素質物を含む負極と、リチウム遷移金属複合酸化物材料を含む正極と、環状カーボネートと鎖状カーボネートを含む非水溶媒にリチウム塩を溶解してなる電解液とから構成される非水系電解液二次電池において、該非水溶媒中に、下記一般式(1)で表される化合物を、電解液の0.01〜5重量%含有することを特徴とする非水系電解液二次電池。
Figure 0004098997
(式中、R1及びR2は一部又は全ての水素原子がフッ素原子で置換されたアルキル基、R3は、それぞれ独立して水素原子、アルキル基、エーテル基、カルボン酸エステル基、炭酸エステル基又はハロゲン原子を表す。)
At least a negative electrode including a carbonaceous material having a d value of 0.335 to 0.34 nm on a lattice plane (002) plane in X-ray diffraction, a positive electrode including a lithium transition metal composite oxide material, a cyclic carbonate, and a chain carbonate. In a non-aqueous electrolyte secondary battery composed of an electrolyte obtained by dissolving a lithium salt in a non-aqueous solvent, a compound represented by the following general formula (1) is added to the electrolyte in the non-aqueous solvent. A non-aqueous electrolyte secondary battery comprising 0.01 to 5% by weight.
Figure 0004098997
(Wherein R 1 and R 2 are alkyl groups in which some or all of the hydrogen atoms are substituted with fluorine atoms, and R 3 is independently a hydrogen atom, an alkyl group, an ether group, a carboxylic acid ester group, a carbonic acid group, Represents an ester group or a halogen atom.)
一般式(1)のR1、R2が、−CF3、−CF2−CF3、−CF2−CF2−CF3、−CF(CF32、−CH(CF32、−CF2−CF2−CF2−CF3、−CF(CF3)−CF2−CF3、−CH(CF3)−CF2−CF3、−CF2−CF(CF3)−CF3、−CF2−CH(CF3)−CF3又は−C(CF33であり、R3が水素原子または炭素数4以下のアルキル基である、請求項1に記載の非水系電解液二次電池。R 1 and R 2 in the general formula (1) are —CF 3 , —CF 2 —CF 3 , —CF 2 —CF 2 —CF 3 , —CF (CF 3 ) 2 , —CH (CF 3 ) 2 , -CF 2 -CF 2 -CF 2 -CF 3 , -CF (CF 3) -CF 2 -CF 3, -CH (CF 3) -CF 2 -CF 3, -CF 2 -CF (CF 3) -CF 3. The non-aqueous electrolysis according to claim 1, which is —CF 2 —CH (CF 3 ) —CF 3 or —C (CF 3 ) 3 , wherein R 3 is a hydrogen atom or an alkyl group having 4 or less carbon atoms. Liquid secondary battery. 一般式(1)のR1が−CF2−CF3、R2が−CH(CF32であり、R3が水素原子またはメチル基である、請求項1または2に記載の非水系電解液二次電池。The non-aqueous system according to claim 1, wherein R 1 in the general formula (1) is —CF 2 —CF 3 , R 2 is —CH (CF 3 ) 2 , and R 3 is a hydrogen atom or a methyl group. Electrolyte secondary battery. 非水溶媒が、総炭素数3〜9の環状カーボネートからなる群から選ばれる1種以上と鎖状カーボネートからなる群から選ばれる1種以上とを合計で非水溶媒全量の70容量%含み、かつ非水溶媒全量の20容量%以上が総炭素数3〜9の環状カーボネートの1種以上である、請求項1〜3のいずれか1項に記載の非水系電解液二次電池。  The non-aqueous solvent contains 70% by volume of the total amount of the non-aqueous solvent in total of one or more selected from the group consisting of cyclic carbonates having 3 to 9 carbon atoms and one or more selected from the group consisting of chain carbonates, The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein 20% by volume or more of the total amount of the nonaqueous solvent is one or more of cyclic carbonates having 3 to 9 carbon atoms in total. LiPF6が電解液中の総リチウム塩中5〜100mol%である、請求項1〜4のいずれか1項に記載の非水系電解液二次電池。The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein LiPF6 is 5 to 100 mol% in a total lithium salt in the electrolyte. 少なくとも、X線回折における格子面(002)面のd値が0.335〜0.34nmの炭素質物を含む負極と、リチウム遷移金属複合酸化物材料を含む正極と、環状カーボネートと鎖状カーボネートを含む非水溶媒にリチウム塩を溶解してなる電解液とから構成される非水系電解液二次電池に用いられる電解液であって、該非水溶媒中に、下記一般式(1)で表される化合物を、電解液の0.01〜5重量%含有する非水系電解液二次電池用電解液。
Figure 0004098997
(式中、R 1 及びR 2 は一部又は全ての水素原子がフッ素原子で置換されたアルキル基、R 3 は、それぞれ独立して水素原子、アルキル基、エーテル基、カルボン酸エステル基、炭酸エステル基又はハロゲン原子を表す。)
At least a negative electrode including a carbonaceous material having a d value of 0.335 to 0.34 nm on a lattice plane (002) plane in X-ray diffraction, a positive electrode including a lithium transition metal composite oxide material, a cyclic carbonate, and a chain carbonate. An electrolyte used for a non-aqueous electrolyte secondary battery composed of an electrolyte obtained by dissolving a lithium salt in a non-aqueous solvent, and represented by the following general formula (1) in the non-aqueous solvent An electrolyte for a non-aqueous electrolyte secondary battery containing 0.01 to 5% by weight of the compound .
Figure 0004098997
(Wherein R 1 and R 2 are alkyl groups in which some or all of the hydrogen atoms are substituted with fluorine atoms, and R 3 is independently a hydrogen atom, an alkyl group, an ether group, a carboxylic acid ester group, a carbonic acid group, Represents an ester group or a halogen atom.)
JP2002096213A 2002-03-29 2002-03-29 Non-aqueous electrolyte secondary battery and electrolyte used therefor Expired - Fee Related JP4098997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096213A JP4098997B2 (en) 2002-03-29 2002-03-29 Non-aqueous electrolyte secondary battery and electrolyte used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096213A JP4098997B2 (en) 2002-03-29 2002-03-29 Non-aqueous electrolyte secondary battery and electrolyte used therefor

Publications (2)

Publication Number Publication Date
JP2003297420A JP2003297420A (en) 2003-10-17
JP4098997B2 true JP4098997B2 (en) 2008-06-11

Family

ID=29387380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096213A Expired - Fee Related JP4098997B2 (en) 2002-03-29 2002-03-29 Non-aqueous electrolyte secondary battery and electrolyte used therefor

Country Status (1)

Country Link
JP (1) JP4098997B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461335B2 (en) 2012-03-02 2016-10-04 Nec Corporation Lithium secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029625A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
JP6350109B2 (en) * 2014-08-21 2018-07-04 株式会社村田製作所 Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
DE102016200079A1 (en) * 2016-01-07 2017-07-13 Robert Bosch Gmbh Electrolyte and battery cell containing this

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461335B2 (en) 2012-03-02 2016-10-04 Nec Corporation Lithium secondary battery

Also Published As

Publication number Publication date
JP2003297420A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
JP4283594B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP5239106B2 (en) Non-aqueous electrolyte secondary battery
JP2003282138A (en) Nonaqueous electrolyte secondary battery and electrolyte used in it
JP2001006729A (en) Nonaqueous electrolyte secondary battery
WO2000079632A1 (en) Nonaqueous electrolytic solution type secondary battery
JP2004014134A (en) Nonaqueous electrolyte secondary battery and electrolyte used for it
JP4934917B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP4051953B2 (en) Non-aqueous electrolyte secondary battery
JP2003297423A (en) Nonaqueous system electrolyte solution and nonaqueous system electrolyte solution secondary battery using the same
JP4830244B2 (en) Non-aqueous electrolyte secondary battery and electrolyte
JP4197079B2 (en) Non-aqueous electrolyte secondary battery
JP4211159B2 (en) Non-aqueous electrolyte secondary battery
JP4910239B2 (en) Non-aqueous electrolyte secondary battery
JP3978960B2 (en) Non-aqueous electrolyte secondary battery
EP1096592A1 (en) Secondary battery having nonaqueous electrolyte solution
JP2003132944A (en) Nonaqueous system electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP2003086247A (en) Nonaqueous electrolytic solution secondary battery
JP4204718B2 (en) Non-aqueous electrolyte secondary battery
JP4283593B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2002298912A (en) Nonaqueous electrolyte secondary battery and electrolyte used for the same
JP4098997B2 (en) Non-aqueous electrolyte secondary battery and electrolyte used therefor
JP2004103433A (en) Nonaqueous electrolyte secondary battery and electrolyte used for the same
JP4308477B2 (en) Non-aqueous electrolyte secondary battery and electrolyte used therefor
JP2002352851A (en) Nonaqueous electrolyte secondary cell
JP4288976B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4098997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

LAPS Cancellation because of no payment of annual fees