JP2003231097A - Structure mounting thin-film type particle having skeleton composed of carbon on substrate and its manufacturing method - Google Patents

Structure mounting thin-film type particle having skeleton composed of carbon on substrate and its manufacturing method

Info

Publication number
JP2003231097A
JP2003231097A JP2002032881A JP2002032881A JP2003231097A JP 2003231097 A JP2003231097 A JP 2003231097A JP 2002032881 A JP2002032881 A JP 2002032881A JP 2002032881 A JP2002032881 A JP 2002032881A JP 2003231097 A JP2003231097 A JP 2003231097A
Authority
JP
Japan
Prior art keywords
thin film
particles
substrate
film particles
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002032881A
Other languages
Japanese (ja)
Inventor
Masukazu Hirata
益一 平田
Takuya Goto
拓也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002032881A priority Critical patent/JP2003231097A/en
Priority to US10/359,684 priority patent/US20030186059A1/en
Publication of JP2003231097A publication Critical patent/JP2003231097A/en
Priority to US11/540,517 priority patent/US20070160842A1/en
Priority to US12/457,325 priority patent/US20090252891A1/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure mounting a thin-film type particles having a skeleton composed of carbon on a substrate and to provide its manufacturing method. <P>SOLUTION: The thin-film type particles having the skeleton composed of the carbon are mounted on the substrate with improved affinity to the particles and the particle inside or the multiple particles are formed into patterns on the substrate. Their electrical features are changed according to their dimensions and shapes. This structure is a new system whose electronic properties and stability peculiar to the carbon substance having a periodic structure can be easily used and can be applied to a micro circuit (an element and wiring), a high-temperature circuit (the element and the wiring), a photoelectric transducer (a solar cell, a light emitter, etc.), a heating body, an optical element, and a stable recording material. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭素からなる骨格
を持つ薄膜状粒子を基板に載せた構造物とその作製方法
および用途に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure in which thin film particles having a skeleton made of carbon are placed on a substrate, a method for producing the same, and uses thereof.

【0002】[0002]

【従来の技術】近年、形状の異方性が高い物質の探索と
その応用が急速に進行している。炭素原子を骨格とする
異方性形状の物質としては、1次元では黒鉛繊維やそれ
が特に細くなったカーボンナノチューブが知られてお
り、2次元では黒鉛、フッ化黒鉛、酸化黒鉛などが知ら
れている。これらのうち、黒鉛、フッ化黒鉛、酸化黒鉛
はいずれも2次元的な基本層が積み重なった多層構造体
であり、一般に層数の非常に多いものが知られている。
さらに、酸化黒鉛については、層数の少ない非常に薄い
ものも作られており(例えば、N.A.Kotov et al.,Adv.M
ater.,8,637(1996))、本発明者らも先に、そのような
酸化黒鉛(層数が1枚の場合は例えば酸化グラフェンと
呼ぶことが望ましい(グラフェンは黒鉛の1層分の名
称))の薄膜状粒子を高収率で製造する方法を見出すと
共に、それを還元して層数の非常に少ない黒鉛(層数が
1枚の場合はグラフェンと呼ぶことが望ましい)類似の
薄膜状粒子を得た(特願2000−277307)。さ
らに、本発明者らは、特に大きく広がった薄膜状粒子や
薄膜状粒子が積層して広がった積層集合体と、それらの
還元物を得た(特願2001−374537、特願20
01−374538)。
2. Description of the Related Art In recent years, the search for substances having high shape anisotropy and their applications have been rapidly progressing. As an anisotropic material having a carbon atom as a skeleton, one-dimensionally known graphite fibers and particularly thinned carbon nanotubes, and two-dimensionally known graphite, fluorinated graphite, graphite oxide, etc. ing. Of these, graphite, fluorinated graphite, and graphite oxide are all multilayer structures in which two-dimensional basic layers are stacked, and it is generally known that the number of layers is very large.
Furthermore, for graphite oxide, very thin ones with a small number of layers have been made (eg, NAKotov et al., Adv.M.
Ater., 8, 637 (1996)), the inventors of the present invention previously mentioned that it is desirable to call such graphite oxide (when the number of layers is one, for example, graphene oxide (graphene is the name of one layer of graphite)). ) And a graphite having a very small number of layers by reducing it (preferably called graphene when the number of layers is one). (Japanese Patent Application No. 2000-277307). Furthermore, the present inventors have obtained a particularly widespread thin film particle and a laminated aggregate in which thin film particles are laminated and expanded, and a reduced product thereof (Japanese Patent Application Nos. 2001-374537 and 20).
01-374538).

【0003】ここで、酸化黒鉛の基本層は、炭素原子1
個分または2個分の厚さの炭素骨格(sp3炭素とsp2
炭素からなり、sp3炭素が多い)と、その骨格の両側
の面に酸性の水酸基などが結合した構造を持つと考えら
れている(例えば、T.Nakajima et al.,Carbon,26,357
(1988);M.Mermoux et al.,Carbon,29,469(1991))。炭
素骨格の厚さが炭素原子1個分で、その両側の面に水酸
基などがあり、層間の水が極めて少ない場合には、基本
層の厚さは0.61nmである。また、酸化の程度が高
く、よく乾燥された場合、酸化黒鉛に含まれる酸素は4
0wt%程度である。
Here, the basic layer of graphite oxide is 1 carbon atom.
Carbon skeletons of one or two thicknesses (sp 3 carbon and sp 2
Consisting of carbon, sp 3 carbons and often), on both sides of the plane of the skeleton, such as acidic hydroxyl group is believed to have a structure bonded (e.g., T.Nakajima et al., Carbon, 26,357
(1988); M. Mermoux et al., Carbon, 29, 469 (1991)). When the thickness of the carbon skeleton is one carbon atom, hydroxyl groups are present on both sides of the carbon skeleton, and the amount of water between the layers is extremely small, the thickness of the basic layer is 0.61 nm. In addition, when the degree of oxidation is high and it is dried well, the oxygen contained in the oxidized graphite is 4
It is about 0 wt%.

【0004】この酸化黒鉛の薄膜状粒子(以下では酸化
型の薄膜状粒子と呼ぶ)は、部分的に、または完全に還
元されることで、黒鉛類似のsp2結合の多い電子状態
となり、電気伝導性が高くなる。特に、酸化黒鉛の一般
的挙動として、加熱による還元で多層内部まで黒鉛類似
の構造にすることが可能であり、複数の粒子が互いに結
合した状態で加熱すれば、多層粒子内部の層間や複数の
粒子間に分子間力が生じて、通常の黒鉛フィルムなどの
巨視的な形状の付与も可能であることが知られている
(J.Maire et al.,Carbon,6,555(1968))。酸化型の薄
膜状粒子は、同様の加熱により還元型の薄膜状粒子にな
る(特願2000−277307)。
The graphite oxide thin-film particles (hereinafter referred to as “oxidation-type thin-film particles”) are partially or completely reduced to be in an electronic state with many sp 2 bonds similar to graphite, resulting in an electrical state. Higher conductivity. In particular, as a general behavior of graphite oxide, it is possible to form a graphite-like structure up to the inside of the multilayer by reduction by heating. It is known that an intermolecular force is generated between the particles to give a macroscopic shape such as an ordinary graphite film (J.Maire et al., Carbon, 6,555 (1968)). Oxidized thin film particles are reduced to thin film particles by the same heating (Japanese Patent Application No. 2000-277307).

【0005】ここで、薄膜状粒子が完全に還元された場
合には、薄膜状粒子の各基本層はほぼ黒鉛の基本層(グ
ラフェン)になる。多層粒子であれば、層間距離はほぼ
黒鉛の層間距離に一致するが、各層の相互位置関係は黒
鉛のそれよりも乱れた乱層気味の構造となる。また、部
分的な還元の場合には、各基本層に酸素などが残り、そ
の層間距離は黒鉛の層間距離よりも大きくなる。
Here, when the thin film particles are completely reduced, each basic layer of the thin film particles becomes a basic layer (graphene) of graphite. In the case of multi-layer particles, the interlayer distance substantially matches the interlayer distance of graphite, but the mutual positional relationship of the layers has a disordered structure that is more disturbed than that of graphite. Further, in the case of partial reduction, oxygen or the like remains in each basic layer, and the interlayer distance becomes larger than the interlayer distance of graphite.

【0006】以上のような酸化型と還元型の薄膜状粒子
は、酸素の分率が高い場合には酸化黒鉛ナノフィルム
(1層であれば酸化グラフェンナノフィルム)、酸素の
分率が低い場合や酸素が無い場合には黒鉛ナノフィルム
(1層であればグラフェンナノフィルム)、と呼ぶこと
ができる。さらに、統一的には、それぞれ、酸化型の単
層カーボンナノフィルムと多層カーボンナノフィルム、
還元型の単層カーボンナノフィルムと多層カーボンナノ
フィルム、と呼ぶことができる。このカーボンナノフィ
ルムの名称であれば、前記のように乱層気味でありなが
ら黒鉛と呼ぶことによる混乱が生じない。
The above-mentioned oxidized and reduced thin-film particles have a graphite oxide nanofilm (graphene oxide nanofilm if there is one layer) when the oxygen fraction is high, and a low oxygen fraction. When there is no oxygen, it can be called a graphite nanofilm (graphene nanofilm if there is one layer). Furthermore, as a unified approach, the oxidation type single-layer carbon nanofilm and multilayer carbon nanofilm, respectively,
It can be referred to as a reduced single-layer carbon nanofilm and a multi-layer carbon nanofilm. With the name of this carbon nanofilm, although it is a disordered layer as described above, there is no confusion caused by calling it graphite.

【0007】これらの薄膜状粒子と同じ程度の厚さを持
つ薄い炭素系物質については、基板の上に蒸着などで形
成させることや、基板に載せた有機物を熱分解(さらに
黒鉛化と呼ばれる結晶成長)することで形成させること
なども可能である。しかし、それらの炭素系物質は、比
較的結晶性の高い場合でも広い領域では小さな結晶の集
まった構造になる。また、その形成には高温や真空など
の条件が必要である。
For a thin carbonaceous material having a thickness similar to those of these thin film particles, it is possible to form it on the substrate by vapor deposition or to thermally decompose the organic substances placed on the substrate (further called a crystal called graphitization). It is also possible to form it by growing it. However, even if the carbonaceous material has relatively high crystallinity, it has a structure in which small crystals are gathered in a wide area. Further, the formation thereof requires conditions such as high temperature and vacuum.

【0008】[0008]

【発明が解決しようとする課題】酸化型や還元型の薄膜
状粒子(カーボンナノフィルム)には、電子物性などの
各種応用が期待される。例えば、微細な回路(素子や導
体)、高温用の回路(同)、光電変換素子(太陽電池、
発光素子など)、発熱体、光学素子、安定な記録材料な
どが考えられる。高温用などの回路については、以下の
ような現状にある。
Various applications such as electronic physical properties are expected for the oxidized or reduced thin film particles (carbon nanofilm). For example, fine circuits (elements and conductors), high temperature circuits (the same), photoelectric conversion elements (solar cells,
Light emitting elements), heating elements, optical elements, stable recording materials, etc. are considered. Circuits for high temperatures are currently in the following situations.

【0009】近年、ダイヤモンドや炭化珪素などのバン
ドギャップの広い半導体を用いたデバイス(電子デバイ
ス、光デバイス)の研究が進んでいる。このデバイスに
は、高速、高パワー、500℃付近までの高温、高放射
線下などでの動作や紫外光の発生などが期待されている
(例えば、川原田洋、応用物理、67,128(1999))。現在
は個別素子が作られている段階であるが、いずれ集積回
路化されると予想される。
In recent years, research on devices (electronic devices, optical devices) using semiconductors having a wide band gap such as diamond and silicon carbide has been advanced. This device is expected to operate at high speed, high power, high temperature up to about 500 ° C., high radiation, and generate ultraviolet light (for example, Hiroshi Kawarada, Applied Physics, 67,128 (1999)). At present, individual devices are being manufactured, but it is expected that they will eventually be integrated into a circuit.

【0010】このようなデバイスの導体部分には、金
属、黒鉛とその類似体(sp2主体の炭素系物質)、不
純物を高濃度でドープした半導体などを用いることが考
えられている。これらのうち、適度な導電性の高さ、デ
バイスの製造時(特に多数回のパターン形成)や使用時
(特に長時間の場合)の高温による劣化(酸化など)の
少なさ、半導体部分との親和性の高さ、を考慮すると、
特に黒鉛とその類似体が望ましい場合がある。その例と
して、ダイヤモンドの一部を黒鉛化する方法について
は、陽子などの照射(特許2834829)、イオン打
ち込みと加熱(特開平07−37835)、電子ビーム
やレーザーの照射(特開平10−261712)などが
ある。また、ダイヤモンド上でパターン形成した有機物
を黒鉛化する方法なども考えられる。しかし、これらの
方法では、位置選択性が悪いこと、高温で長時間の加熱
が必要で半導体部分が劣化すること、などが問題とな
る。
It has been considered to use a metal, graphite and its analogs (a carbonaceous substance mainly composed of sp 2 ), a semiconductor doped with a high concentration of impurities, etc. in the conductor portion of such a device. Of these, a suitable level of conductivity, little deterioration (oxidation, etc.) due to high temperatures during device manufacturing (especially pattern formation many times) and during use (especially for a long time), and semiconductor part Considering the high affinity,
In particular, graphite and its analogs may be desirable. As an example, regarding a method of graphitizing a part of diamond, irradiation of protons and the like (Patent 2834829), ion implantation and heating (JP-A-07-37835), irradiation of electron beam and laser (JP-A-10-261712) and so on. Further, a method of graphitizing an organic substance patterned on diamond is also considered. However, these methods have problems such as poor position selectivity and deterioration of the semiconductor portion due to the need for heating at a high temperature for a long time.

【0011】このようなバンドギャップの広い半導体材
料の親水化の方法として、例えばダイヤモンド基板につ
いては、酸素プラズマ照射や、過酸化水素水溶液を接触
させて紫外光を照射する方法(特開平10−1731
4、水に対する接触角は処理前後で90度から40度に
変化)などが考えられている。また、炭化珪素について
は、膜を形成する際に同時に親水化する方法(特許29
23275)などが考えられている。
As a method for hydrophilizing a semiconductor material having such a wide band gap, for example, for a diamond substrate, oxygen plasma irradiation or a method of contacting an aqueous solution of hydrogen peroxide to irradiate ultraviolet light (Japanese Patent Application Laid-Open No. 10-1731).
4. The contact angle with water changes from 90 degrees to 40 degrees before and after the treatment). Regarding silicon carbide, a method of making hydrophilic at the same time when forming a film (Patent 29
23275) and the like are considered.

【0012】以上のような各種応用において、薄膜状粒
子の電子物性などを長期間安定して利用するには、単独
または複数の薄膜状粒子を密着性よく基板に載せ、各種
の望みの寸法と形状に加工する必要がある。さらに、加
工した薄膜状粒子に電気を流す場合には、外部の電気回
路などと接続する必要がある。しかし、それらのための
具体的な方法は提案されていなかった。
In various applications as described above, in order to stably use the electronic properties of the thin film particles for a long period of time, one or a plurality of thin film particles are placed on the substrate with good adhesion and various desired dimensions are obtained. Need to be processed into a shape. Further, when electricity is applied to the processed thin film particles, it is necessary to connect to an external electric circuit or the like. However, no concrete method for them has been proposed.

【0013】本発明の目的は、薄膜状粒子(カーボンナ
ノフィルム)の電子物性などを利用した各種デバイスや
導体などの応用対象を提案すると同時に、それらの対象
を基板を含めた構造物として作製するための、具体的で
簡便な方法を提供することにある。
An object of the present invention is to propose application targets such as various devices and conductors utilizing the electronic properties of thin-film particles (carbon nanofilm), and at the same time, to manufacture those targets as a structure including a substrate. To provide a concrete and simple method for

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、薄膜状粒子に対する基板の親和性
向上と薄膜状粒子の位置選択的な加工による配置との2
つに集約される要素技術を検討して、薄膜状粒子の特徴
を有効に利用できる対象とそれを作製する方法を見出
し、基板上での薄膜状粒子の利用に関する本発明を完成
させた。
In order to achieve the above-mentioned object, the present inventors have two methods of improving the affinity of the substrate for the thin film particles and arranging the thin film particles by position-selective processing.
The present inventors have completed the present invention concerning the use of thin film particles on a substrate by studying the elemental technologies to be summarized in one and finding an object that can effectively utilize the characteristics of the thin film particles and a method for producing the same.

【0015】[0015]

【発明の実施の形態】(酸化型の薄膜状粒子の合成)本
発明に用いる酸化型の薄膜状粒子(酸化型のカーボンナ
ノフィルム)には、先に特願2000−277307で
開示したような、不純物が少なく、層構造が発達した結
晶性の高い黒鉛を原料として、化学的または電気化学的
な酸化を行い、さらに小さなイオンなどをできるだけ除
去するように精製して、自発的な層の分離を進めたもの
を用いる。酸化の時間は、各層の骨格の分解(破壊)が
少なければ、できるだけ層の分離を進行させるために、
平面方向(原料黒鉛のa軸とb軸の作る面内の方向)の
長さ10μm当たり30分以上のように長い方がよい。
ただし、逆に、層の分離が可能であれば、そのような最
短の時間で酸化を終了すればよい。
BEST MODE FOR CARRYING OUT THE INVENTION (Synthesis of Oxidizing Thin Film Particles) The oxidizing thin film particles (oxidizing carbon nanofilm) used in the present invention are as disclosed in Japanese Patent Application No. 2000-277307. , Graphite with few impurities and high crystallinity with a well-developed layer structure is subjected to chemical or electrochemical oxidation, and purification is performed to remove even smaller ions as much as possible, and spontaneous separation of layers Use the one advanced. If the decomposition (destruction) of the skeleton of each layer is small, the oxidation time is to promote the separation of layers as much as possible,
The length in the plane direction (direction in the plane formed by the a-axis and the b-axis of the raw material graphite) is preferably as long as 30 minutes or more per 10 μm.
However, conversely, if the layers can be separated, the oxidation may be completed in such a shortest time.

【0016】特に、平面方向に広い大型の薄膜状粒子を
合成する場合には、先に特願2001−374537で
開示したように、平面方向の長さが例えば1mm以上の
ように広く、厚さ(c軸方向の長さ)が例えば300μ
m以下のようにできるだけ薄い、結晶性の高い黒鉛を原
料に用いて、長時間の酸化を行うと共に、合成(酸化と
精製)時の液の攪拌を最小限にして、各層の分解(破
壊)を抑制すればよい。また、希望の形状(正方形な
ど)の薄膜状粒子を得るために、原料黒鉛の形状を予め
加工しておいてもよい。
In particular, when synthesizing large thin film particles in the plane direction, as disclosed in Japanese Patent Application No. 2001-374537, the length in the plane direction is as wide as 1 mm or more, and the thickness is large. (Length in c-axis direction) is, for example, 300μ
Decomposition (destruction) of each layer by using graphite with high crystallinity as thin as m or less as raw material for long-term oxidation and agitating the liquid during synthesis (oxidation and purification) to a minimum Should be suppressed. Further, in order to obtain thin film particles having a desired shape (square or the like), the shape of raw material graphite may be processed in advance.

【0017】さらに、特に層の分離を進める方法とし
て、薄膜状粒子の分散液を100℃付近で加熱する方法
がある。
Further, as a method for particularly promoting the separation of layers, there is a method of heating a dispersion liquid of thin film particles at around 100 ° C.

【0018】以上により、酸化型のカーボンナノフィル
ムと呼べるような、極めて薄い薄膜状粒子が水に分散し
た分散液が合成される。
As described above, a dispersion liquid in which extremely thin thin film particles are dispersed in water, which can be called an oxidation type carbon nanofilm, is synthesized.

【0019】薄膜状粒子の寸法は、比較的小さなものと
しては、厚さ(原料黒鉛でのc軸の方向)が0.4nm
〜10nm、望ましくは0.4nm〜5nmであり、平
面方向(原料黒鉛でのa軸とb軸の方向)の大きさが2
0nm以上、望ましくは200nm以上、さらに望まし
くは1μm以上である。また、大型のものでは、例え
ば、厚さが0.4nm〜10μm(特に厚い場合も後の
加工で薄くする場合を考えてナノフィルムに含めてお
く)、望ましくは0.4nm〜1μmであり、平面方向
の大きさが500μm以上、望ましくは3mm以上であ
る。この寸法は、薄膜状粒子の用途によって選択すれば
よい。
The size of the thin-film particles is such that the thickness (the direction of the c-axis in the raw material graphite) is 0.4 nm as a relatively small particle.
10 nm, preferably 0.4 nm to 5 nm, and the size in the plane direction (direction of a-axis and b-axis in raw graphite) is 2
It is 0 nm or more, preferably 200 nm or more, and more preferably 1 μm or more. In the case of a large size, the thickness is, for example, 0.4 nm to 10 μm (especially in the case of being thick, it is included in the nanofilm in consideration of thinning it in later processing), preferably 0.4 nm to 1 μm, The size in the plane direction is 500 μm or more, preferably 3 mm or more. This size may be selected depending on the application of the thin film particles.

【0020】薄膜状粒子の合成が終了した段階におい
て、薄膜状粒子の形態は水を分散媒とする分散液であ
る。この分散液の分散媒を、水から、水以外のメタノー
ル、エタノール、アセトン、2−ブタノンなどの比誘電
率で約15以上の高極性の液体に交換することが可能で
ある。このような水以外の高極性の液体を主な分散媒と
するための手段として、元の分散液に含まれる水よりも
十分多量の水以外の高極性の分散媒を加えて希釈する方
法、水以外の高極性の分散媒を加えてから遠心分離とデ
カンテーションなどで上澄みを除くことを繰り返して水
以外の高極性の分散媒に徐々に交換する方法、などがあ
る。
When the synthesis of the thin film particles is completed, the thin film particles are in the form of a dispersion liquid containing water as a dispersion medium. It is possible to replace the dispersion medium of this dispersion liquid with water, instead of water, with a highly polar liquid having a relative dielectric constant of about 15 or more, such as methanol, ethanol, acetone, or 2-butanone. As a means for using such a high-polarity liquid other than water as the main dispersion medium, a method of diluting by adding a sufficiently high-polarity dispersion medium other than water contained in the original dispersion liquid, There is a method in which a high-polarity dispersion medium other than water is added and then the supernatant is repeatedly removed by centrifugation and decantation to gradually exchange the high-polarity dispersion medium other than water.

【0021】薄膜状粒子は、水を含めた高極性の分散媒
に対する親液性(分散性など)が高い。しかし、薄膜状
粒子が低濃度になるほど、また、異なる複数の分散媒を
比較すると分散媒の誘電率が低いほど、静電的反発の影
響よりも重力(遠心力で代替することも可能である)の
影響が大きくなり、薄膜状粒子は沈降気味になる。ま
た、薄膜状粒子が大型になるほど沈降気味になる。しか
し、このような沈降気味の粒子を含む場合も分散液と呼
ぶことにする。
The thin film particles have high lyophilicity (dispersibility etc.) with respect to a highly polar dispersion medium including water. However, the lower the concentration of the thin-film particles, and the lower the dielectric constant of the dispersion medium when comparing a plurality of different dispersion media, the gravity (rather than centrifugal force can be substituted instead of the effect of electrostatic repulsion). ), The thin film particles tend to settle. Also, the larger the thin-film particles, the more they tend to settle. However, the case in which such particles having a tendency to settle out is also referred to as a dispersion liquid.

【0022】薄膜状粒子の分散液は、薄膜状粒子の形状
の異方性が高いため、濃度による流動性の変化が大き
い。含まれる薄膜状粒子の寸法や形状に依存するが、例
えば2wt%付近の濃度の分散液は、容器を傾けても流
動しない。 (酸化型の薄膜状粒子の積層集合体の合成)
Since the dispersion liquid of thin film particles has a high anisotropy of the shape of the thin film particles, the change in fluidity due to the concentration is large. Although depending on the size and shape of the thin film particles contained, the dispersion liquid having a concentration of, for example, about 2 wt% does not flow even when the container is tilted. (Synthesis of layered aggregates of oxidized thin film particles)

【0023】先に特願2001−374538で開示し
たように、前記の薄膜状粒子の沈降気味の分散液を静置
して薄膜状粒子を沈降させ、複数の薄膜状粒子の間に結
合を生じさせることで、薄膜状粒子の積層集合体を合成
することも可能である。生じる結合としては、分子間
力、水素結合、粒子間の脱水などによる共有結合が考え
られる。分散液を静置する期間は、重力のみで沈降させ
るなら10日以上、望ましくは30日以上となる。ま
た、遠心力で沈降させるなら、その後の放置はより短い
期間でもよい。沈降させる分散液中の薄膜状粒子の濃度
は、用いる薄膜状粒子の大きさにも依存するが、望まし
くは概ね0.1wt%以下、さらに望ましくは0.01
wt%以下である。沈降が速い場合や濃度が高い場合に
は、複数の粒子が沈降するまでに互いに接触するなどの
影響で、きれいな積層が困難となって、乱れ気味の集合
体となる。また、この濃度が低いと、一体化できる強度
を与えるほどの粒子の重なりが生じないため、広い集合
体が得られない。
As previously disclosed in Japanese Patent Application No. 2001-374538, the thin-film particles are allowed to settle by allowing the above-mentioned dispersion liquid of the thin-film particles to settle to form a bond between a plurality of thin-film particles. By doing so, it is also possible to synthesize a laminated assembly of thin film particles. The resulting bond may be a covalent bond due to intermolecular force, hydrogen bond, dehydration between particles, or the like. The period in which the dispersion liquid is allowed to stand is 10 days or longer, preferably 30 days or longer if it is allowed to settle by gravity alone. Further, if the sedimentation is performed by centrifugal force, the subsequent standing may be for a shorter period. The concentration of the thin film particles in the dispersion liquid to be precipitated depends on the size of the thin film particles to be used, but is preferably about 0.1 wt% or less, more preferably 0.01% by weight or less.
It is less than wt%. When the sedimentation is fast or the concentration is high, the particles are in contact with each other before they are sedimented, so that it is difficult to perform a clean stacking, and the aggregate becomes disturbed. Further, when the concentration is low, particles do not overlap to each other to give sufficient strength, and a wide aggregate cannot be obtained.

【0024】この積層集合体は、それを含む液を穏やか
に振とうすると液中に漂い、液中に孤立して存在するこ
とが可能である。その寸法は、元の薄膜状粒子の大きさ
にも依存するが、厚さが10nm以上、平面方向の大き
さが100nm以上、さらには100μm以上である。
また、この積層集合体は、厚さに対して広がりが大きい
ため、緻密な炭素骨格を含む薄膜状粒子から構成される
にも関わらず、折れるように急激に曲がることが可能で
ある。その曲がりの部分では、構成要素である個々の薄
膜状粒子も折れるように急激に曲がる。さらにこの部分
では、大型の平面状分子と言えるような薄膜状粒子の各
基本層も急激に折れ曲がっていることになる。
This laminated assembly can float in the liquid when it is gently shaken, and can exist in the liquid in an isolated state. The size depends on the size of the original thin film particles, but the thickness is 10 nm or more, the size in the plane direction is 100 nm or more, and further 100 μm or more.
Further, since this laminated aggregate has a large spread with respect to the thickness, it can be bent sharply to be broken even though it is composed of thin-film particles containing a dense carbon skeleton. In the bent portion, the individual thin film particles, which are the constituent elements, also bend sharply so as to be broken. Further, in this portion, each basic layer of thin film particles, which can be said to be a large planar molecule, is also sharply bent.

【0025】この積層集合体も広義のカーボンナノフィ
ルムであるが、二次的な構造であるので、以下では別に
扱い、明示的に薄膜状粒子の積層集合体と呼ぶ。
This laminated aggregate is also a carbon nanofilm in a broad sense, but since it has a secondary structure, it will be treated separately below and explicitly referred to as a laminated aggregate of thin film particles.

【0026】(還元型の薄膜状粒子の合成)酸化型の薄
膜状粒子の還元には、還元剤を用いる各種の公知の還元
反応や電極反応(電解還元)が利用可能である。ただ
し、特に還元剤を用いる場合には、基本層まで分解でき
ていないと、多層粒子の内部までの完全な還元は困難で
あると考えられる。他方、酸化黒鉛の一般的挙動として
知られている加熱による還元(J.Maire et al.,Carbon,
6,555(1968))では、多層内部までほぼ完全に還元する
ことが可能である。酸化型の薄膜状粒子は、先に特願2
000−277307で開示したように、同様の加熱に
より還元型の薄膜状粒子になる。
(Synthesis of Reducing Thin-Film Particles) Various known reduction reactions using a reducing agent and electrode reactions (electrolytic reduction) can be used to reduce the oxidizing thin-film particles. However, especially when a reducing agent is used, complete reduction to the inside of the multilayer particles is considered difficult unless the basic layer is decomposed. On the other hand, reduction by heating, which is known as the general behavior of graphite oxide (J.Maire et al., Carbon,
6,555 (1968)), it is possible to reduce almost completely to the inside of multiple layers. Oxidized thin-film particles were previously described in Japanese Patent Application 2
As disclosed in 000-277307, reduction type thin film particles are formed by similar heating.

【0027】ここで、薄膜状粒子が完全に還元されれ
ば、薄膜状粒子の各基本層はほぼ黒鉛の基本層(グラフ
ェン)になる。層間距離(単層の場合は定義されない)
はほぼ黒鉛の層間距離に一致するが、各層の相互位置関
係は黒鉛のそれよりも少し乱れた乱層気味の構造とな
る。また、複数の薄膜状粒子の平面方向の相互位置関係
は、非常に乱れた(ほとんどランダムな)乱層構造とな
り、さらに複数の粒子の間に隙間のある構造となる。
Here, when the thin film particles are completely reduced, each basic layer of the thin film particles becomes a basic layer (graphene) of graphite. Interlayer distance (undefined for single layer)
Is almost the same as the interlayer distance of graphite, but the mutual positional relationship of the layers is a disordered structure that is a little more disturbed than that of graphite. In addition, the mutual positional relationship in the plane direction of the plurality of thin film particles has a very disordered (almost random) disordered layer structure, and further, there is a gap between the plurality of particles.

【0028】他方、薄膜状粒子の還元の程度は、必ずし
も完全である必要は無く、電子物性などが安定して利用
可能であれば、部分還元でもよい。この場合には、各基
本層は酸素などを含み、その層間距離は黒鉛の層間距離
よりも大きくなる。
On the other hand, the degree of reduction of the thin film particles does not necessarily have to be perfect, and partial reduction may be used as long as electronic properties and the like can be stably utilized. In this case, each basic layer contains oxygen and the like, and its interlayer distance is larger than that of graphite.

【0029】加熱による還元は、特に150℃〜200
℃付近で急激に生じ、さらに非酸化性の雰囲気下や真空
中では1000℃以上まで緩やかに進行する。また、さ
らに高温で加圧することで、より大きな結晶になること
が期待される。他方、空気中では600℃以下で焼失す
るため、わずかに酸素などが残る部分的な還元のみが可
能である。加熱による還元の際には、水、酸素、炭素化
合物などの脱離が生じる。その結果、酸素の分率は還元
前の40wt%程度から、0〜35wt%程度に変化す
る。
The reduction by heating is particularly performed at 150 ° C to 200 ° C.
It rapidly occurs at around ℃, and further slowly progresses to 1000 ℃ or more in a non-oxidizing atmosphere or in vacuum. Further, it is expected that a larger crystal will be formed by pressing at a higher temperature. On the other hand, since it burns down in air at 600 ° C. or lower, only partial reduction in which oxygen or the like remains is possible. During the reduction by heating, desorption of water, oxygen, carbon compounds, etc. occurs. As a result, the oxygen fraction changes from about 40 wt% before reduction to about 0 to 35 wt%.

【0030】還元により、酸素などが脱離するため、薄
膜状粒子の厚さは減少する。これに対して、薄膜状粒子
の平面方向の大きさはあまり変化しない。これは、sp
2炭素の作る平面骨格(グラフェンに相当)における最
近接の炭素−炭素間の距離が0.142nm、sp3
素の作るジグザグの平面骨格(立方晶ダイヤモンドの
(111)面を1面だけ取り出したもので考えればよ
い)における最近接の炭素−炭素間の距離を(111)
面に投影した距離が0.145nm、sp3とsp2の両
炭素を含む場合の同距離がそれらの間、となることで理
解できる。この変化の少なさにより、後記の基板上での
還元で、剥離が生じにくい。
Oxygen and the like are desorbed by the reduction, so that the thickness of the thin film particles is reduced. On the other hand, the size of the thin film particles in the plane direction does not change much. This is sp
Closest of carbon in making a 2 carbon plane skeleton (corresponding to graphene) - the distance between the carbon 0.142Nm, taken out flat skeleton zigzag making the sp 3 carbon (cubic diamond (111) surface by one surface The closest carbon-carbon distance in (111)
It can be understood that the distance projected on the plane is 0.145 nm, and the same distance when both carbons of sp 3 and sp 2 are included is between them. Due to the small change, peeling is less likely to occur in the reduction on the substrate described later.

【0031】以上のようにして、比較的低温の加熱で、
酸化型の薄膜状粒子(酸化型のカーボンナノフィルム)
から還元型の薄膜状粒子(還元型のカーボンナノフィル
ム)が合成される。また、同様にして、酸化型の薄膜状
粒子の積層集合体から還元型の薄膜状粒子の積層集合体
が合成される。
As described above, by heating at a relatively low temperature,
Oxidized thin film particles (oxidized carbon nanofilm)
From this, reduced thin film particles (reduced carbon nanofilm) are synthesized. Further, in the same manner, a laminated aggregate of reduced thin film particles is synthesized from a laminated aggregate of oxidized thin film particles.

【0032】(薄膜状粒子の構造的な特徴)以上のよう
に合成される薄膜状粒子は、その各層が高い周期性の炭
素骨格を持ち、特に還元型の薄膜状粒子では骨格にパイ
電子が多い構造になる。そのため、電子工学的な展開な
どが可能となる。特に、炭素系物質の微細な構造で発現
する新規な電子的性質(後記)を利用する場合には、周
期性が高く、かつ広い炭素骨格を含む還元型の薄膜状粒
子のような構造が最適である。また、特に酸化型の薄膜
状粒子は極性の官能基を持ち、多くの液体に対して親液
性を持つ。そのため、通常は扱いにくい炭素系物質の薄
い構造体を、分散液の形態で容易に扱うことができる。
(Structural Characteristics of Thin-Film Particles) The thin-film particles synthesized as described above have a highly periodic carbon skeleton in each layer, and in particular, reduced-type thin-film particles have pi-electrons in the skeleton. There are many structures. Therefore, it is possible to develop electronically. In particular, when utilizing the novel electronic properties (described below) that are manifested in the fine structure of carbon-based materials, a structure such as reduced thin-film particles with high periodicity and a wide carbon skeleton is optimal. Is. Further, particularly, the oxidative thin film particles have polar functional groups and are lyophilic to many liquids. Therefore, a thin structure of a carbon-based material, which is usually difficult to handle, can be easily handled in the form of a dispersion liquid.

【0033】(薄膜状粒子の電子工学的な特徴)この薄
膜状粒子(カーボンナノフィルム)を、電子工学的なナ
ノ材料として期待されているカーボンナノチューブと比
較した場合の長所は、2次元的さらには3次元的に広が
る多数の部分からなる複雑な配線や素子を後加工で一括
して配置可能(ナノチューブでは多数本を個別に配置す
る必要がある)、外部電極との接触面積を任意に設定可
能(ナノチューブでは接触面積が小さく高抵抗になる可
能性がある)、線幅を加工時に任意に設定可能(ナノチ
ューブでは太さで選択する必要があり、特に太い線には
多数本で対応することになる)、などとなる。ただし、
カーボンナノチューブとカーボンナノフィルムは排他的
ではなく、両者を組み合わせることや、さらに他の材料
を組み合わせることで、より新規な利用が可能になる。
(Electronic Characteristics of Thin Film Particles) The advantage of comparing the thin film particles (carbon nanofilm) with carbon nanotubes, which is expected as an electronic nanomaterial, is two-dimensional. Is capable of collectively arranging complicated wiring and elements consisting of many parts that spread three-dimensionally in post processing (many nanotubes need to be individually arranged), and the contact area with external electrodes can be set arbitrarily Possible (nanotube has a small contact area and may have high resistance), line width can be set arbitrarily at the time of processing (nanotube needs to be selected by thickness, especially thick line can be supported by multiple lines) Will be), and so on. However,
Carbon nanotubes and carbon nanofilms are not exclusive, and by combining them, or by combining other materials, more novel uses become possible.

【0034】(微細化による変化)固体中の電子伝導に
おいて、固体の寸法が微細になると、弾道的伝導(電子
が適当な距離を散乱を受けずに移動する)、量子干渉効
果(電子の波の位相差で導電性が変化する)、量子サイ
ズ効果(電子の閉じ込めによりエネルギー準位が離散化
する、材質と寸法で電子のバンド状態を制御できる)な
どの変化が生じる。還元型の薄膜状粒子についても微細
加工でこのような変化を生じさせることができる。ここ
で、例えば量子サイズ効果は、物質の寸法が電子の波と
しての波長と同程度またはそれ以下になると生じる。こ
れまでの量子サイズ効果の観察は、電子の波長が1nm
程度と小さく加工が相対的に困難な金属よりも、電子の
波長が数十nm程度以上で加工が容易な各種半導体で行
われてきた。これに対して、還元型の薄膜状粒子は、比
較的導電性の高い物質でありながら、大きめの寸法(特
に平面方向の寸法)で量子サイズ効果を発現する可能性
がある。
(Change due to miniaturization) In electron conduction in a solid, when the size of the solid becomes fine, ballistic conduction (electrons move without scattering for an appropriate distance), quantum interference effect (electron wave) Changes in conductivity due to the phase difference of), quantum size effect (energy level is discretized by confinement of electrons, and band state of electrons can be controlled by material and size). Such a change can be generated by fine processing of the reduced type thin film particles. Here, for example, the quantum size effect occurs when the size of a substance becomes equal to or smaller than the wavelength of an electron wave. The observation of the quantum size effect up to now is that the electron wavelength is 1 nm.
It has been performed on various semiconductors whose electron wavelength is several tens of nm or more and which is easy to process, rather than metals which are relatively small and relatively difficult to process. On the other hand, the reduced type thin film particles may exhibit a quantum size effect with a large size (particularly a size in the plane direction) even though the reduced type thin film-like particle is a substance having relatively high conductivity.

【0035】他方、還元型の多層の薄膜状粒子は、平面
方向(層内方向)と比較して層間方向の導電性が特に低
い。そのため、電気的性質に対する厚さの影響は、かな
り薄い場合(10nm以下など)を除いて一般に低く、
電気的に独立な層が重なっているように扱ってもよい。
そのため、平面方向の微細化による各種の変化を用いる
と同時に、適度な厚さ(層数)で電流量を確保すること
ができる。
On the other hand, the reduction-type multilayer thin-film particles have a particularly low conductivity in the interlayer direction as compared with the planar direction (in-layer direction). Therefore, the effect of thickness on electrical properties is generally low, except when it is fairly thin (less than 10 nm, for example),
It may be treated as if the electrically independent layers overlap.
Therefore, it is possible to use various changes due to miniaturization in the plane direction and at the same time secure the amount of current with an appropriate thickness (number of layers).

【0036】(半導体性などの利用)酸化黒鉛は加熱還
元で導電率が数桁以上高くなることが知られている(J.
Maire et al.,Carbon,6,555(1968)、この文献では粒子
の厚さが不明であるが、それほど薄くない)。酸化型の
薄膜状粒子もこれと類似の変化を生じる。このような半
導体域から良導体域への変化は、加熱でOH基などが脱
離すると同時に、炭素骨格中のsp2炭素の比率が増加
することで生じる。この変化は温度で制御できるが、O
H基などを含む構造の安定性が低いので、逆に熱的な影
響を受け易い。そのため、長期の信頼性が要求される電
子回路やデバイスにこの半導体域をそのまま用いること
は望ましくない。これに対して、半導体域を安定化する
方法(より一般的には、電気的性質を変化させる方法、
また、その変化の特殊な場合として微細構造に特異な性
質を発現させる方法)として、以下に示すような化学変
化の利用、外部からの影響の利用、形状加工の利用、な
どが考えられる。
(Use of semiconductor property, etc.) It is known that the conductivity of graphite oxide is increased by several orders of magnitude by heat reduction (J.
Maire et al., Carbon, 6,555 (1968), particle thickness is unknown in this document, but not so thin). Oxidized thin film particles also undergo a similar change. Such a change from the semiconductor region to the good conductor region occurs when the OH group and the like are desorbed by heating and at the same time, the ratio of sp 2 carbon in the carbon skeleton increases. This change can be controlled by temperature, but O
On the contrary, since the structure including the H group has low stability, it is easily affected by heat. Therefore, it is not desirable to use this semiconductor region as it is in electronic circuits and devices that require long-term reliability. On the other hand, a method of stabilizing the semiconductor region (more generally, a method of changing electrical properties,
Further, as a method of expressing a peculiar property in the fine structure as a special case of the change, use of the following chemical change, use of external influence, use of shape processing, and the like can be considered.

【0037】改質や修飾などの化学変化による半導体域
の安定化(さらに、電気的性質を変化させる方法)は、
炭素骨格の多数の炭素の一部をsp3炭素にするための
安定な構造を導入する(全てsp3にすると不導体にな
るので、sp2とsp3を共存させるように導入する)こ
とで可能になる。安定化のために液相や気相の化学反応
で導入できそうな軽元素としては、水素(部分水素化、
p型半導体になる可能性がある)、フッ素(部分フッ素
化、同)などがある。ここで、素子の作製などのための
位置選択的な導入には、基板の上に載せてからマスクを
併用(レジストワークなど)すればよい。さらに炭素骨
格を一部変化させることを許容すると、位置選択的な導
入も可能な方法として、イオンビームや中性粒子ビーム
の照射(注入)などがある。それにより、炭素の一部を
除くこと(微細な多孔質にする)や、ホウ素や窒素など
のヘテロ原子(できればキャリヤも増加するもの)を導
入することができる。さらに原料を黒鉛に限定しないな
ら、ヘテロ原子(ホウ素、窒素など)含有の炭素系多層
構造物質から薄膜状粒子を作製することなども考えられ
る。
Stabilization of a semiconductor region by a chemical change such as modification or modification (further, a method of changing electrical properties) is
By introducing a stable structure for making some of the many carbons in the carbon skeleton into sp 3 carbons (since all sp 3 makes a non-conductor, sp 2 and sp 3 are introduced so that they coexist) It will be possible. Hydrogen (partial hydrogenation, partial hydrogenation, as a light element that can be introduced in a liquid phase or gas phase chemical reaction for stabilization)
It may be a p-type semiconductor), fluorine (partially fluorinated, the same), and the like. Here, in order to introduce the device selectively for the production of the device, it is possible to place it on the substrate and use a mask together (resist work or the like). Further, if the carbon skeleton is allowed to be partially changed, a method of position-selective introduction also includes irradiation (implantation) of an ion beam or a neutral particle beam. As a result, it is possible to remove a part of carbon (make it finely porous) and to introduce a hetero atom such as boron or nitrogen (possibly increasing the number of carriers). Further, if the raw material is not limited to graphite, it may be possible to prepare thin-film particles from a carbon-based multilayer structure substance containing heteroatoms (boron, nitrogen, etc.).

【0038】外部からの影響の利用による半導体域の安
定化(さらに、電気的性質を変化させる方法)は、基板
による薄膜状粒子の電気的性質の変化を利用することで
可能になる。例えば、高誘電体、なかでも特に分極させ
たエレクトレットなどの、電子供与性または受容性の高
い基板を用いると、化学的ドーピングに類似の、キャリ
アを生成させる効果が期待される。また、後記の電界効
果の利用が考えられる。
Stabilization of the semiconductor region by utilizing the influence from the outside (further, a method of changing the electric property) is possible by utilizing the change of the electric property of the thin film particles by the substrate. For example, the use of a substrate having a high electron donating or accepting property, such as a high dielectric substance, in particular, a polarized electret, is expected to have an effect of generating carriers similar to chemical doping. In addition, the use of the electric field effect described below can be considered.

【0039】形状加工による半導体域の安定化(さら
に、微細構造に特異な性質を発現させる方法)は、主に
完全還元後の薄膜状粒子を微細加工することで可能にな
る。これには、近年の、各種の炭素縮合環系物質の研究
結果を用いることができる。このような炭素系物質を幅
の狭いものから広いものへと順に示すと、線状(1次
元:ポリアセチレン)、帯状(1.5次元:広義のポリ
アセン族(ポリアセン系列、ポリフェナントレン系列な
ど)、さらに幅の広いものはナノリボンと呼ばれる)、
平面状(2次元:黒鉛(1層ではグラフェン))とな
る。これらの炭素系物質では、幅が広くなるに従ってバ
ンドギャップが小さくなることや、炭素骨格の方位でバ
ンドギャップが変化することなどが予測されている(例
えば、K.Tanakaet al.,Synthetic Metals, 17,143(198
7)、ただし、この予測は炭化水素系、すなわち水素終端
した炭素系物質の構造に対するものである)。また、平
面状の炭素系物質では、層数と積層状態の影響として、
1層のグラフェン(バンドギャップが0の半導体と予測
されている)が規則正しく多数積層した場合(黒鉛)に
は導電性が出る(数層の場合は段階的に変化する)が、
ランダムに多数積層した場合(乱層構造炭素)にはバン
ドギャップが0の半導体になると予想されている。この
ように、帯状構造では、その幅、厚さ(層数)、炭素骨
格の方位、積層状態、終端結合の種類などで、半導体性
を中心とする電気的性質を任意に制御できる可能性があ
る。なお、この可能性は、完全還元後の薄膜状粒子に限
定されるものではなく、大型で周期性の高い炭素縮合環
系物質に共通のものであり、一般的には製造法に依存し
ない(酸化型の薄膜状粒子を経由しなくてもよい)。
Stabilization of the semiconductor region by shape processing (further, a method of exhibiting a characteristic peculiar to the fine structure) can be achieved mainly by finely processing the thin-film particles after complete reduction. For this, the recent research results of various condensed carbon ring substances can be used. When these carbonaceous materials are shown in order from narrow ones to wide ones, they are linear (one-dimensional: polyacetylene), strip-shaped (1.5-dimensional: polyacene group in a broad sense (polyacene series, polyphenanthrene series, etc.), The wider one is called a nanoribbon),
It becomes planar (two-dimensional: graphite (graphene in one layer)). In these carbon-based materials, it is predicted that the band gap will become smaller as the width becomes wider, and the band gap will change depending on the orientation of the carbon skeleton (eg, K. Tanaka et al., Synthetic Metals, 17,143). (198
7), however, this prediction is for the structure of hydrocarbon-based, ie hydrogen-terminated carbon-based materials). In the case of a planar carbon-based material, the effect of the number of layers and the stacking state is
When one layer of graphene (predicted to be a semiconductor with a band gap of 0) is regularly stacked (graphite), conductivity appears (in the case of several layers, it changes stepwise).
When a large number of layers are randomly stacked (turbulent structure carbon), it is expected to be a semiconductor with a band gap of zero. As described above, in the band-shaped structure, it is possible that the electrical properties centered on the semiconductor property can be arbitrarily controlled by the width, the thickness (the number of layers), the orientation of the carbon skeleton, the stacking state, the type of termination bond, and the like. is there. Note that this possibility is not limited to thin-film particles after complete reduction, but is common to large, highly cyclic carbon-condensed ring materials, and generally does not depend on the production method ( It does not have to go through oxidized thin film particles).

【0040】薄膜状粒子(特に広い面積で単結晶である
もの)を元にすれば、微細加工によって、このような電
気的性質を任意に制御できる構造を多数、同時に作製す
ることが容易であり、位置選択的に炭素を完全に除く、
または薄くすることで、望みの回路やデバイスを作るこ
とが可能である。さらに、狭い幅の構造で電流量を増加
させるために複数本を用いること(ただし、ループがで
きると振動現象が生じる可能性がある)や、高抵抗にす
るために蛇行させることや周期的に孔を空けること、な
ども考えられる。
Based on thin-film particles (especially single-crystal particles having a large area), it is easy to simultaneously manufacture a large number of structures whose electric properties can be arbitrarily controlled by fine processing. , Regioselectively completely removes carbon,
Alternatively, by making it thin, it is possible to make a desired circuit or device. In addition, it is necessary to use multiple wires to increase the amount of current in a structure with a narrow width (however, there is a possibility that a vibration phenomenon will occur if a loop is created), or to make a serpentine to increase the resistance and to periodically It is also possible to make holes.

【0041】このように、平面方向について1.5次元
の任意の構造を極めて容易に作ることが可能な、薄膜状
粒子(カーボンナノフィルム)のような2〜2.5次元
の大型かつ高周期性の炭素構造体は、これまで知られて
いなかった。また、具体的な加工の方針も提案されてい
なかった。
As described above, it is possible to extremely easily form a 1.5-dimensional arbitrary structure in the plane direction, such as a thin film-like particle (carbon nanofilm). Sexual carbon structures have heretofore been unknown. Also, no specific processing policy was proposed.

【0042】(導電性の向上)還元型の薄膜状粒子(還
元型のカーボンナノフィルム)の導電性の特徴は、一般
的な分子性物質のそれと同様、キャリア(電子や正孔)
の密度(単位体積当たりの数)が相対的に低いこと、ま
た、分子間に相当する層間や粒子間の導電性が分子内に
相当する層内部の導電性に比較して低いこと、である。
そのため、導電性を高めたい場合には、逆に、キャリア
の濃度を高めることや、層間や粒子間の導電性を高める
ことが望ましい。
(Improvement of conductivity) The reduction type thin-film particles (reduction type carbon nanofilm) have characteristics of conductivity like carriers (electrons and holes) like those of general molecular substances.
Has a relatively low density (number per unit volume), and the conductivity between the layers corresponding to the molecules or between the particles is lower than the conductivity inside the layers corresponding to the molecules. .
Therefore, when it is desired to increase the conductivity, it is desirable to increase the carrier concentration or to increase the conductivity between layers or between particles.

【0043】キャリアの高濃度化の方法としては、ま
ず、古くから知られている化学的ドーピングがある。た
だし、この場合には、生じる層間化合物が空気中で一般
に不安定であり、長期の安定な使用が困難である。さら
に、電界効果ドーピングと呼ばれる、高伝導にしたい部
分に隣接する絶縁体部分で電荷を発生させ、その電荷を
高伝導にしたい部分にキャリアとして注入する方法(例
えば、A.Tsumura et al.,Appl.Phys.Lett.,49,1210(198
6))があり、この方法により、分子性物質の集合体(結
晶など)を高伝導状態(低温では超伝導状態)にする例
も出てきている(例えば、J.H.Schon et al.,Science,2
88,656(2000))。この場合には、電荷を発生させる別の
部分が必要であるが、長期の安定な使用が可能である。
また、半導体域で用いるならn型(電子がキャリア)と
p型(正孔がキャリア)のどちらにも変化させることが
可能である。この方法を還元型の薄膜状粒子に使用する
ことで、低温域での超伝導状態の発現や、常温域での導
電性の向上(さらには超伝導)が期待される。還元型の
薄膜状粒子は、各層の周期性の高さ、形状や基板への密
着性の高さで、黒鉛系の電界効果ドーピングの対象に最
適である。
As a method for increasing the carrier concentration, first, there has been known chemical doping for a long time. However, in this case, the resulting intercalation compound is generally unstable in air, and stable use for a long period of time is difficult. Furthermore, a method called field effect doping, in which a charge is generated in an insulator part adjacent to a part to be highly conductive and the charge is injected as a carrier to the part to be highly conductive (for example, A.Tsumura et al., Appl. .Phys.Lett., 49,1210 (198
6)), and there are some examples of using this method to make aggregates (crystals, etc.) of molecular substances into a highly conductive state (a superconducting state at low temperatures) (eg JHSchon et al., Science, 2).
88,656 (2000)). In this case, another part for generating charges is required, but stable use for a long period of time is possible.
When used in the semiconductor region, it can be changed to either n-type (electrons are carriers) or p-type (holes are carriers). By using this method for reducing thin-film particles, it is expected that the superconducting state will be exhibited in the low temperature region and the conductivity will be improved (and superconductivity) in the normal temperature region. The reduction type thin film particles are suitable for graphite-based field effect doping because of high periodicity of each layer, high shape and high adhesion to a substrate.

【0044】層間や粒子間の導電性を高める(層間や粒
子間の導電性の影響を相対的に低下させる)ためには、
粒子間が問題にならないようにできるだけ大きな粒子を
単独または少数個で用いることや、多数個の粒子の場合
は、少ない隙間で、きれいに重ねることなどが重要とな
る。さらに導電性を高めるためには、厚さ方向で同じ位
置にある異なる粒子の層の間にシグマ結合とパイ結合を
生成させることや、層内部の導電性をあまり低下させな
い程度に重なり合った各層を少し破壊して、層間にシグ
マ結合とパイ結合を生成させることなどが考えられる。
これらの結合形成のためには、非酸化性雰囲気中での高
温の加熱や通電、紫外光や粒子線の照射などを用いるこ
とができる。
In order to enhance the conductivity between layers or between particles (relatively reduce the influence of conductivity between layers or particles),
It is important to use as large a particle as possible, or to use a small number of particles so as not to cause a problem between particles, and in the case of a large number of particles, to stack them neatly with a small gap. In order to further increase the conductivity, sigma bond and pi bond are generated between the layers of different particles at the same position in the thickness direction, and the layers that are overlapped with each other to the extent that the conductivity inside the layers is not significantly lowered are provided. It is possible to break it down a little to form sigma bond and pi bond between layers.
For the formation of these bonds, high temperature heating or current application in a non-oxidizing atmosphere, irradiation with ultraviolet light or particle beam, etc. can be used.

【0045】(電子回路やデバイスへの応用)酸化型と
還元型の薄膜状粒子(単独の粒子または複数の粒子)
の、電子回路やデバイスへの応用の対象は、大型回路用
と微細回路用の2つに大別できる。また、薄膜状粒子の
使用の形態は、単独または少数の大型の薄膜状粒子、極
めて多数の微細な薄膜状粒子、の2つに大別できる。こ
れらの組み合わせは以下となる。
(Application to electronic circuits and devices) Oxidizing type and reducing type thin film particles (single particle or plural particles)
The target of application to electronic circuits and devices can be broadly classified into two types, one for large circuits and one for fine circuits. In addition, the mode of use of the thin film particles can be roughly classified into two types: single or a few large thin film particles and a very large number of fine thin film particles. These combinations are as follows.

【0046】大型回路用としては、特に、今後の発展が
期待される高温半導体デバイス(半導体部分はダイヤモ
ンドや炭化珪素など)の導体部分がある。このようなデ
バイスには、耐高温(500℃程度まで)、高出力、耐
放射線性、さらに将来的には高速演算などが期待されて
おり、また、紫外線発光素子については一部実現されて
いる。この用途では、1μm以上や1mm以上などの比
較的広い線幅の導体部分を持つことになり、また、大き
いものでは数cm2以上の広い面積になると考えられ
る。この用途に適する薄膜状粒子の使用は、単独または
少数の大型の薄膜状粒子、極めて多数の微細な薄膜状粒
子、のいずれでもよい。それらのなかでも、極めて多数
の微細な薄膜状粒子を用いる場合には、特に広い面積や
長い部分に、巨視的に見て低い異方性で導体部分の形成
が可能となる。ただし、広く連続した層が無く、かつ空
隙が存在するために相対的に導電性が低いこと、位置に
よる厚さのばらつきが生じること、などに注意する必要
がある。
For large-scale circuits, there are conductor parts of high-temperature semiconductor devices (semiconductor parts are diamond, silicon carbide, etc.) which are expected to develop in the future. Such devices are expected to have high temperature resistance (up to about 500 ° C.), high output, radiation resistance, and high-speed calculation in the future, and some of the ultraviolet light emitting elements have been realized. . In this application, it is considered that the conductor portion has a relatively wide line width of 1 μm or more or 1 mm or more, and a large area has a large area of several cm 2 or more. The thin film particles suitable for this application may be used alone or in a small number of large thin film particles, or in a very large number of fine thin film particles. Among them, when an extremely large number of fine thin film particles are used, it is possible to form a conductor portion in a large area or a long portion with macroscopically low anisotropy. However, it is necessary to pay attention to the fact that there is no wide continuous layer and the presence of voids has relatively low conductivity, and the thickness varies depending on the position.

【0047】微細回路用としては、特に、今後の発展が
期待される高速または特殊なデバイスの素子本体や導体
部分がある。このようなデバイスには、超高速演算、高
集積化、さらに量子計算(組み合わせ問題を高速で解く
ことができる多重化演算)などが期待されている。この
用途では、1μm以下や10nm以下の狭い線幅の素子
本体や導体部分が重要になり、同時に、外部との接続部
分には広い線幅が必要になる。また、機能を担う狭い線
幅の素子本体や導体部分には、不連続な層や空隙、位置
による厚さのばらつき(加工で付与する厚さの変化を除
く)などは望ましくなく、共有結合で繋がった連続した
炭素骨格からなる層が必要である。さらに、集積回路化
や大量生産のためにはできるだけ広い面積が望ましい。
それらの結果、この用途に適する薄膜状粒子の形態は、
主に、単独または少数の大型の薄膜状粒子である。ただ
し、炭素骨格の異方性により使用する方向に少し制約
(例えば細い帯状にする場合に、骨格の方位によって電
気伝導性が変化するなど)が出る。
For fine circuits, there are especially element bodies and conductors of high-speed or special devices which are expected to develop in the future. Such devices are expected to have ultra-high-speed operation, high integration, and quantum calculation (multiplex operation capable of solving combination problems at high speed). In this application, an element body or a conductor portion having a narrow line width of 1 μm or less or 10 nm or less is important, and at the same time, a wide line width is required for a connection portion with the outside. In addition, discontinuous layers, voids, and variations in thickness due to position (excluding changes in the thickness given by processing) are not desirable in the element body or conductor portion with a narrow line width, which is responsible for the function. A layer of connected, continuous carbon skeletons is required. Furthermore, as large an area as possible is desirable for integrated circuits and mass production.
As a result, the morphology of thin film particles suitable for this application is
Mainly, it is a single or a small number of large thin film particles. However, due to the anisotropy of the carbon skeleton, there is some restriction in the direction of use (for example, when making a thin strip, the electrical conductivity changes depending on the orientation of the skeleton).

【0048】以上のように、薄膜状粒子を用いて、さら
に他の絶縁体、半導体、良導体を組み合わせることで、
トランジスター(特に単一電子用などの微細なもの)、
抵抗器、コンデンサーなどの個別素子や配線部分を作製
することが可能であり、また、それらの集積回路を作製
することが可能である。
As described above, by using the thin film particles and combining another insulator, semiconductor, and good conductor,
Transistors (especially fine ones for single electrons),
It is possible to fabricate individual elements such as resistors and capacitors and wiring portions, and it is also possible to fabricate integrated circuits thereof.

【0049】薄膜状粒子は完全に還元しても、前記の電
界効果ドーピングなどを行わない限り、例えば銅と比較
して導電率が低く、さらに多数の粒子を用いる場合には
境界の影響も加わり、長い導体部分では高抵抗となる。
そのため、以上のような薄膜状粒子を用いた回路の使用
は、できれば特に高温や高速になる部分などに限定する
ことが望ましい。ただし、金属とは逆に高温状態で導電
率が高まり、さらに高温で安定なので、高温向けであ
る。
Even if the thin-film particles are completely reduced, the conductivity is lower than that of copper, for example, unless the above-mentioned field effect doping is performed, and when a large number of particles are used, the influence of boundaries is also added. , Long conductors have high resistance.
Therefore, it is desirable to limit the use of the circuit using the thin film particles as described above to a part where the temperature becomes high or the speed becomes high. However, contrary to metals, the conductivity increases at high temperatures and is stable at higher temperatures, so it is suitable for high temperatures.

【0050】また、薄膜状粒子は、平面方向と比較して
厚さ方向の導電率が低い。そのため、薄膜状粒子を用い
る電子回路やデバイスには、要所ごとに広い面積の部分
を用いて厚さ方向の電流量を確保するなどの、異方性物
質向けの形状設計を行うことが望ましい。
The thin film particles have a lower conductivity in the thickness direction than in the plane direction. Therefore, for electronic circuits and devices using thin-film particles, it is desirable to perform shape design for anisotropic substances, such as securing a current amount in the thickness direction by using a large area portion for each important point. .

【0051】(基板の利用とその親和性向上)以上のよ
うな薄膜状粒子の各種の利用において電気的性質などの
再現性を得るためには、平面方向の寸法や形状を定めて
加工する必要がある。その加工時やデバイスなどで実際
に使用する際には、薄膜状粒子を長期間安定して空間中
に浮かせることは困難または信頼性が低下するため、ま
た、他の特定の種類の物質と組み合わせて利用すること
が重要になるため、薄膜状粒子を他物質の適当な基板の
上に載せるか、他物質のマトリックスの内部で保持する
ことになる。これらのうち、特に基板の上に載せる方法
が重要である。
(Use of Substrate and Improvement of Affinity) In order to obtain reproducibility of electric properties in various uses of thin film particles as described above, it is necessary to determine the size and shape in the plane direction for processing. There is. Since it is difficult or unreliable to suspend thin film particles in the space stably for a long period of time during processing or when actually using it in a device, etc., in combination with other specific types of substances. Therefore, the thin film particles are placed on a suitable substrate of another substance or are held inside the matrix of another substance. Of these, the method of mounting on the substrate is particularly important.

【0052】基板の種類としては、公知の各種物質を使
用することが可能であるが、薄膜状粒子と異なる性質
(電気的性質、光学的性質など)を持つ物質を組み合わ
せることで可能性が広がること、用途によって加熱で還
元する必要があることや高温で使用する場合があるこ
と、などの要請により、絶縁体から半導体の基板、さら
には加えて300℃程度以上の耐熱性の安定な基板が望
ましい。その材質は、無機物では、シリカ、アルミナ
(サファイア)、シリコン、ダイヤモンド、炭化珪素、
ホウ珪酸ガラス、アルミノ珪酸ガラス(無アルカリガラ
ス)など、有機物ではエポキシ樹脂、ポリイミドなどの
耐熱性の各種樹脂などである。また、半導体用途におけ
る不純物ドープのような公知の各種処理を加えた基板、
繊維強化樹脂のような複合体の基板、金属などの他材質
の基板の上に薄い絶縁体を載せたような多層の基板など
でもよい。さらに、薄膜状粒子の電気的性質などを変化
させることができる伸縮性の基板や多孔質の基板、微細
な凹凸を与えた基板などでもよい。
As the type of substrate, various known substances can be used, but the possibilities are expanded by combining substances having different properties (electrical properties, optical properties, etc.) with the thin film particles. In addition, depending on the requirements such as need to be reduced by heating and use at high temperature depending on the application, a substrate from an insulator to a semiconductor, and further a substrate with stable heat resistance of about 300 ° C. or more are required. desirable. The materials are inorganic materials such as silica, alumina (sapphire), silicon, diamond, silicon carbide,
Borosilicate glass, aluminosilicate glass (non-alkali glass), organic materials such as epoxy resin, polyimide and various heat-resistant resins. Also, a substrate that has been subjected to various known treatments such as impurity doping in semiconductor applications,
It may be a composite substrate such as a fiber reinforced resin, or a multilayer substrate in which a thin insulator is placed on a substrate made of other material such as metal. Further, a stretchable substrate or a porous substrate capable of changing the electrical properties of the thin film particles, a substrate having fine irregularities, or the like may be used.

【0053】基板の形状は、通常は平面状のものが扱い
やすいが、立体的なものでもよい。いずれの形状の場合
でも、例えば薄膜状粒子を分散液で扱うことによって、
後記のようにパターン形成が可能である。
The substrate is usually easy to handle, but may be three-dimensional. In any case, for example, by treating thin film particles with the dispersion,
Pattern formation is possible as described later.

【0054】薄膜状粒子を基板に載せる場合、酸化型の
薄膜状粒子を用いると扱いやすい。この場合には、加工
後の使用時を含めて薄膜状粒子を安定に基板に密着させ
ておくために、薄膜状粒子を載せる前に、予め基板の親
和性を向上させておくことが望ましい。これは基板表面
の極性を高めることに相当し、基板表面の官能基の密度
を高めることで実現できる。
When the thin film particles are placed on the substrate, it is easy to use the oxidized thin film particles. In this case, it is desirable to improve the affinity of the substrate in advance before placing the thin film particles in order to stably adhere the thin film particles to the substrate, including during use after processing. This corresponds to increasing the polarity of the substrate surface and can be realized by increasing the density of functional groups on the substrate surface.

【0055】この親和性向上の具体的な方法として、酸
やアルカリなどを用いる化学的な処理、熱、プラズマや
各種ビームなどを用いる物理的な処理などがある。特
に、本発明者らが各種の無機物の基板に試みた限りで
は、300℃程度以上の単純な加熱処理が有効であっ
た。また、その加熱の前にできるだけ洗浄し、加熱の後
に水に浸漬することが望ましかった。これは、表面に付
着した有機物の除去や、表面の酸化による酸化物や水酸
基などの生成の効果であると考えられる。
Specific methods for improving the affinity include chemical treatment using acid or alkali, physical treatment using heat, plasma, various beams, and the like. In particular, as long as the present inventors have tried various inorganic substrates, simple heat treatment at about 300 ° C. or higher was effective. It was also desirable to wash as much as possible before the heating and soak in water after the heating. This is considered to be the effect of removing organic substances attached to the surface and generating oxides and hydroxyl groups due to oxidation of the surface.

【0056】基板の親和性向上の程度は、例えば水に対
する接触角で評価することができる。薄膜状粒子を載せ
るためには、この接触角を40度以下、望ましくは20
度以下とする。
The degree of improvement in the affinity of the substrate can be evaluated by, for example, the contact angle with water. In order to put thin film particles, this contact angle is 40 degrees or less, preferably 20 degrees.
No more than a degree.

【0057】(薄膜状粒子の基板への載せ方)基板の上
(表面)に薄膜状粒子を載せるには、通常、酸化型の薄
膜状粒子の分散液を用いる。大きさが数百μm程度以下
の薄膜状粒子の場合には、比較的多数の粒子を含む分散
液を基板に載せる方法が容易であり、より大きな薄膜状
粒子の場合には、個々の粒子を認識して1枚などの少数
個で基板に載せる方法が容易であるが、それらの逆の組
み合わせでももちろんよい。一般に、微細な素子や配線
などを作る場合には、他の粒子と互いに接触しないよう
に基板に載せるので、少数個で載せることになり、大型
の配線などを作る場合には、同じく接触するように基板
に載せるので、多数の粒子を同時に載せることになる。
(How to Place Thin Film Particles on Substrate) In order to place the thin film particles on the surface (surface) of the substrate, a dispersion liquid of oxidized thin film particles is usually used. In the case of thin film particles having a size of about several hundreds of μm or less, it is easy to deposit a dispersion liquid containing a relatively large number of particles on a substrate, and in the case of larger thin film particles, individual particles are It is easy to recognize and place a small number such as one on the substrate, but of course the reverse combination thereof is also possible. Generally, when making fine elements or wiring, they are placed on the substrate so that they do not come into contact with other particles, so it is necessary to put a small number of them, and when making large wiring, make the same contact. Since a large number of particles are placed on the substrate at the same time.

【0058】粒子を基板に載せる場合の分散液の濃度
は、以上のような利用時の粒子数の必要性により変化さ
せればよい。さらに、後記のパターン形成で用い易い粘
度(流動性)を与える濃度とすればよい。また、粘度を
調節するために他の成分を加えてもよい。
The concentration of the dispersion liquid when the particles are placed on the substrate may be changed depending on the necessity of the number of particles at the time of use as described above. Furthermore, the concentration may be such that it provides a viscosity (fluidity) that is easy to use in the pattern formation described below. Also, other components may be added to adjust the viscosity.

【0059】基板に載せる場合の分散液の分散媒は、前
記のように比誘電率で約15以上の高極性の液体が使用
できるが、分散媒の乾燥の速さや表面張力の少なさなど
が必要な場合は、特にメタノールやアセトンなどが望ま
しい。これにより、よく広がって皺の少ない粒子を短時
間で基板に載せることができる。ただし、皺(厚さ方向
への蛇行)により積極的に導電性を変化させる可能性も
ある。
As the dispersion medium of the dispersion liquid when it is placed on the substrate, a highly polar liquid having a relative dielectric constant of about 15 or more can be used as described above, but the drying speed of the dispersion medium and the low surface tension are small. If necessary, methanol or acetone is particularly desirable. This allows particles that spread well and have less wrinkles to be placed on the substrate in a short time. However, wrinkles (meandering in the thickness direction) may positively change the conductivity.

【0060】多数の薄膜状粒子を基板に載せる場合に
は、配線などの、希望の形状や導電性を得られるよう
に、多数の薄膜状粒子の全体での広がりと厚さを決めれ
ばよい。ただし、その広がりが大きすぎる場合や厚さが
大きすぎる場合には、分散媒の乾燥時と加熱による還元
時において、分散媒や脱離する水などの脱出に長時間を
必要とする。また、乾燥時や加熱による還元時に昇温が
高速すぎると、急激に気化する分散媒や水により、基板
と薄膜状粒子との界面や薄膜状粒子同士の境界で、剥離
を生じる。そのため、昇温は低速(例えば10℃/時間
以下)で行うことが望ましく、また、気体の脱出距離が
短いように、できるだけ広すぎない形状や、広くても適
当に巨視的な穴の空いた形状、単位面積当たりの気体の
発生量が少ないように、できるだけ厚すぎない形状、な
どが望ましい。
When a large number of thin film-shaped particles are placed on a substrate, the overall spread and thickness of the large number of thin film-shaped particles may be determined so that a desired shape or conductivity such as wiring can be obtained. However, if the spread is too large or the thickness is too large, it takes a long time to escape the dispersion medium and water to be released during the drying of the dispersion medium and the reduction by heating. Further, if the temperature rise is too fast during drying or reduction by heating, the dispersion medium or water that is rapidly vaporized causes separation at the interface between the substrate and the thin film particles or at the boundary between the thin film particles. Therefore, it is desirable to raise the temperature at a low speed (for example, 10 ° C./hour or less). In addition, a shape that is not too wide or a macro hole is formed even if it is wide so that the escape distance of gas is short. It is desirable that the shape and the shape not be too thick so that the amount of gas generated per unit area is small.

【0061】(他の導電部分などの追加)前記のように
薄膜状粒子は完全に還元しても一般に導電率が低いた
め、電子回路やデバイスなどにおいて、大きな(長い)
部分に用いることはあまり望ましくない。そのため、外
部との接続部分などの他の導電部分には、他の導電材料
として薄膜状粒子よりも高導電率の金属などを用いるこ
とが望ましい。この場合、高温における安定性が必要で
あれば例えば金を、高温にする必要が無ければ銅やアル
ミニウムなどを用いればよい。
(Addition of Other Conductive Portions) As described above, thin film particles generally have low conductivity even when completely reduced, so that they are large (long) in electronic circuits and devices.
It is less desirable to use it for parts. Therefore, it is desirable to use, as the other conductive material, a metal having a higher conductivity than the thin-film particles in the other conductive portion such as the connection portion with the outside. In this case, if stability at high temperature is required, for example, gold may be used, and if it is not necessary to raise the temperature to high temperature, copper or aluminum may be used.

【0062】このような他の導電部分や他の素子を構成
する半導体部分、絶縁体部分などを、薄膜状粒子を載せ
る前の基板に予め付加しておいてもよい。ここでは、こ
れらの部分も含めて基板とする。ただし、このような他
の部分が厚く段差があると、その段差で、基板からの粒
子の剥離や粒子の割れを生じる可能性がある。これは、
特に大型粒子において問題となる。この場合には、他の
導体部分などを、できるだけ薄い構造にすること、埋め
込まれた象眼構造にすること、または薄膜状粒子を載せ
てから他の部分を付加すること、などが有効である。
Such other conductive parts, semiconductor parts constituting other elements, insulator parts, etc. may be added in advance to the substrate before the thin film particles are placed thereon. Here, a substrate including these portions is also used. However, if such other portion is thick and has a step, the step may cause separation of particles from the substrate or cracking of particles. this is,
Especially, it becomes a problem with large particles. In this case, it is effective to make the other conductor portion or the like as thin as possible, have an embedded inlaid structure, or add another portion after the thin film particles are placed.

【0063】また、薄膜状粒子の導電性の異方性によ
り、他の導体部分などとの接触部分での抵抗が大きくな
るので、その部分の接触面積を大きくすることが望まし
い。
Further, because the anisotropy of the conductivity of the thin film particles increases the resistance at the contact portion with other conductor portions, it is desirable to increase the contact area at that portion.

【0064】光学素子や記録材料のような応用では、一
般に、外部との接続部分は不要である。
In applications such as an optical element and a recording material, a connection portion with the outside is generally unnecessary.

【0065】(パターン形成方法)基板や外部との接続
用の導体などの上に、位置選択的に薄膜状粒子を載せる
ためには、本系に、公知の各種パターン形成方法を単独
または組み合わせて適用すればよい。この場合、特に分
散液で扱える酸化型の薄膜状粒子によるパターン形成が
有利である。
(Pattern forming method) In order to position-selectively deposit thin film particles on a substrate or a conductor for connection to the outside, various known pattern forming methods may be used alone or in combination with this system. You can apply. In this case, it is particularly advantageous to form a pattern using oxidized thin film particles that can be treated with the dispersion liquid.

【0066】比較的大型のパターンの場合には、例え
ば、比較的小さな薄膜状粒子の分散液をインクとして、
スクリーン印刷方式やインクジェット方式などの一般的
な印刷や塗布を用いて、基板などの上に位置選択的に載
せて、分散媒を乾燥することでパターン形成することが
できる(載っている部分と載っていない部分によるパタ
ーンができる)。この場合には、分散液の粘度が重要に
なり、例えばスクリーン印刷方式では比較的高い粘度
(例えば、傾けても流動しない程度)が、逆にインクジ
ェット方式では低い粘度が望ましい。また、スピンコー
トなどで基板の全面に薄膜状粒子を載せてから、レジス
トとマスクを用いたリソグラフィー(主に可視光で露
光)、不要な薄膜状粒子部分のエッチング、レジストの
除去でパターン形成することや、機械的に切削してパタ
ーン形成することなども可能である。
In the case of a relatively large pattern, for example, a dispersion liquid of relatively small thin film particles is used as an ink.
Patterning can be performed by using a general printing or coating method such as a screen printing method or an ink jet method, and by selectively placing it on a substrate or the like, and drying the dispersion medium (the portion to be placed and the portion to be placed). There is a pattern by the part which is not). In this case, the viscosity of the dispersion becomes important, and for example, a relatively high viscosity in the screen printing method (for example, to the extent that it does not flow even when tilted) and a low viscosity in the inkjet method are desirable. Also, after forming thin film particles on the entire surface of the substrate by spin coating or the like, patterning is performed by lithography using a resist and a mask (mainly exposed to visible light), etching of unnecessary thin film particle portions, and removal of the resist. It is also possible to form a pattern by mechanically cutting.

【0067】小型で微細なパターンの場合には、例え
ば、比較的大きな薄膜状粒子を単独または少数個で少量
の液と共に基板に載せて、液を乾燥させてから、また
は、さらに加熱などで還元してから、レジストまたはレ
ジストとマスクを用いたリソグラフィー(紫外光、電子
ビーム、イオンビームなどで露光(マスクを用いない場
合は、それらを走査してもよい))、薄膜状粒子内部の
不要な部分のエッチング、レジストの除去でパターン形
成することができる。また、レジストを用いずに、走査
した短波長レーザー、電子ビーム、イオンビーム、中性
粒子ビームなどにより薄膜状粒子の内部を直接エッチン
グしてもよい。さらに、走査型プローブ顕微鏡による各
種加工(分子または原子集団の操作、さらに原子操作)
も適用できる。
In the case of a small and fine pattern, for example, relatively large thin film particles are placed alone or in small numbers together with a small amount of liquid on a substrate, and the liquid is dried, or further reduced by heating or the like. After that, lithography using resist or resist and mask (exposure with ultraviolet light, electron beam, ion beam, etc. (may be scanned if mask is not used)), unnecessary inside thin film particles A pattern can be formed by etching a part and removing the resist. Alternatively, the inside of the thin film particles may be directly etched by a scanned short wavelength laser, an electron beam, an ion beam, a neutral particle beam or the like without using a resist. Furthermore, various processing by scanning probe microscope (manipulation of molecules or atomic groups, further atomic manipulation)
Can also be applied.

【0068】このような薄膜状粒子のパターン形成に、
他の導電部分や絶縁部分などの付加とパターン形成を組
み合わせることも可能であり、さらに、以上の各種工程
を複数回繰り返してもよい。
For pattern formation of such thin film particles,
It is also possible to combine the addition of other conductive portions or insulating portions with the pattern formation, and further, the above various steps may be repeated a plurality of times.

【0069】(その他)薄膜状粒子を用いた電子回路や
デバイスは柔らかく脆い。しかし、通常の半導体デバイ
スも特に微細になった場合に極めて脆くなることから、
同様の封止方法などで保護すれば問題はないと考えられ
る。また、薄膜状粒子を用いた電子回路やデバイスを形
成してから、さらに加工する場合にも、適当な保護を行
えばよい。ただし、特に微細なデバイスなどでは、外部
の影響(放射線、熱など)で情報の変化を生じる可能性
が高くなるため、さらに厳重な保護を行うことや、同一
の演算を重複して行う多数決の回路を採用することなど
が望ましい。
(Others) Electronic circuits and devices using thin film particles are soft and fragile. However, since ordinary semiconductor devices also become extremely brittle when they become particularly fine,
It is considered that there will be no problem if protected by a similar sealing method. In addition, when an electronic circuit or device using thin film particles is formed and then further processed, appropriate protection may be performed. However, especially in the case of fine devices, there is a high possibility that information will change due to external influences (radiation, heat, etc.), so more stringent protection will be applied and the same operation will be duplicated. Adopting a circuit is desirable.

【0070】この電子回路やデバイスは、薄膜状粒子を
堆積させて形成しているため、還元しても粒子間の空隙
が残ることになる。そのため、低温使用では低分子の吸
着により導電性が変化するが、高温使用では吸着が無く
なるので、安定した動作が可能になる。低温での吸着の
影響を除く方法として、例えば空隙を他の絶縁体で埋め
ることや、気密端子付きの密閉された容器などを用いる
ことが考えられる。
Since this electronic circuit or device is formed by depositing thin film particles, voids between particles remain even after reduction. Therefore, the conductivity changes due to the adsorption of low molecules when used at low temperature, but the adsorption is eliminated when used at high temperature, so that stable operation is possible. As a method of eliminating the influence of adsorption at low temperature, it is conceivable to fill the void with another insulator, or to use a sealed container with an airtight terminal.

【0071】以上の薄膜状粒子の合成から電子回路やデ
バイスの作製までの各種工程では、きれいな原料や薬品
を使うことや、きれいな環境で作業を行うことが望まし
い。特に微細な加工を行う場合には、微細なゴミなどの
混入をできるだけ防ぐ必要があり、クリーンルーム内で
の作業が望ましい。
In the various steps from the synthesis of the thin film particles to the production of electronic circuits and devices, it is desirable to use clean raw materials and chemicals and to work in a clean environment. Especially when performing fine processing, it is necessary to prevent the entry of fine dust and the like as much as possible, and it is desirable to work in a clean room.

【0072】[0072]

【実施例】以下、実施例を用いて本発明をさらに詳しく
説明するが、本発明はこれによって限定されるものでは
ない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0073】(広がりが約20μmの酸化型の薄膜状粒
子の作製)天然黒鉛((株)エスイーシー製、SNO−2
5、純度99.97wt%以上、2900℃の加熱で不
純物などを除いた精製品、平均粒径24μm、粒径4.
6μm以下と61μm以上が各5wt%)10gを、硝
酸ナトリウム(純度99%)7.5g、硫酸(純度96
%)621g、過マンガン酸カリウム(純度99%)4
5gからなる混合液中に入れ、約20℃で5日間、緩や
かに撹拌しながら放置した。得られた高粘度の液を、5
wt%硫酸水溶液(希釈用の水には伝導度0.1μS/
cm未満のものを用いた(以下同じ))1000cm3
約1時間で撹拌しながら加えて、さらに2時間撹拌し
た。得られた液に過酸化水素(30wt%水溶液)30
gを加えて、2時間撹拌した。
(Preparation of Oxidized Thin Film Particles with Spread of about 20 μm) Natural Graphite (SNO-2, SNO-2)
5. Purity 99.97 wt% or more, purified product obtained by removing impurities by heating at 2900 ° C., average particle size 24 μm, particle size 4.
6 g or less and 61 μm or more are 5 wt% each, 10 g, sodium nitrate (purity 99%) 7.5 g, sulfuric acid (purity 96
%) 621 g, potassium permanganate (purity 99%) 4
The mixture was placed in a mixed solution of 5 g and left at about 20 ° C. for 5 days with gentle stirring. The obtained high-viscosity liquid was added to 5
wt% sulfuric acid aqueous solution (conductivity of 0.1 μS / for diluted water)
It was added to 1000 cm 3 of less than 1 cm (the same applies hereinafter) with stirring for about 1 hour, and stirred for another 2 hours. Hydrogen peroxide (30 wt% aqueous solution) 30 was added to the obtained liquid.
g and stirred for 2 hours.

【0074】この液を遠心瓶に入れて遠心分離(最大回
転半径17cm(以下同じ)、1000rpm、10分)
し、上澄み(沈殿も少し混入する、以下同じ)を廃棄し
て沈殿のみとした。さらに、遠心瓶に入れたまま、沈殿
に3wt%硫酸/0.5wt%過酸化水素の混合水溶液
(沈殿に対して約6倍〜約4倍、操作が進むにつれて倍
率は減少)を加えてから、蓋をして、瓶を振って沈殿を
再分散させ、遠心分離(3000rpm、20分)し
て、上澄みを廃棄する操作を15回行った。混合水溶液
として合計約13kgを用いた。
This solution was placed in a centrifuge bottle and centrifuged (maximum turning radius 17 cm (same below), 1000 rpm, 10 minutes)
Then, the supernatant (a little mixed with the precipitate, the same applies in the following) was discarded to leave only the precipitate. Furthermore, after adding a mixed aqueous solution of 3 wt% sulfuric acid / 0.5 wt% hydrogen peroxide (about 6 to about 4 times to the precipitate, the magnification decreases as the operation proceeds) to the precipitate while still in the centrifuge bottle, The procedure of capping, shaking the bottle to redisperse the precipitate, centrifuging (3000 rpm, 20 minutes), and discarding the supernatant was performed 15 times. A total of about 13 kg was used as the mixed aqueous solution.

【0075】加える液を水に替えて、同様に再分散と遠
心分離(7000rpm、30分)と上澄みの廃棄を2
回繰り返した。さらに水を加えて再分散させ、1日間放
置して沈殿しやすい少量の粒子(厚い粒子など)のみを
沈殿させた。この沈殿を除き、沈殿しなかった液を遠心
分離(7000rpm、30分)して、上澄みを廃棄し
た。上澄み以外は、下部の流動しにくい沈殿と上部の少
し粘度の高い液であり、合計約650cm3となった。
The liquid to be added was replaced with water, and redispersion, centrifugation (7000 rpm, 30 minutes) and discarding of the supernatant were carried out in the same manner as above.
Repeated times. Further, water was added to redisperse the mixture, and the mixture was allowed to stand for 1 day to precipitate only a small amount of particles (thick particles, etc.) that tend to precipitate. This precipitate was removed, the liquid that did not precipitate was centrifuged (7,000 rpm, 30 minutes), and the supernatant was discarded. Except for the supernatant, the lower part of the precipitate was hard to flow and the upper part was a slightly viscous liquid, and the total amount was about 650 cm 3 .

【0076】この流動しにくい沈殿と少し粘度の高い液
とを撹拌し、均質の液にしてから、その約1/2を用い
て、同様に水(約5倍〜0.4倍、操作が進むにつれて
倍率は減少)を加えて再分散と遠心分離(7000rp
m、60分)と上澄みの廃棄を合計20回繰り返した。
その後、少量の水を加えて撹拌し、高度に精製した薄膜
状粒子の水分散液、1350cm3を得た。液の一部の
乾燥前後の重量変化から、液中の薄膜状粒子の濃度は
0.45wt%となった。また、40℃で真空乾燥させ
た薄膜状粒子の元素分析で、酸素は約42wt%、水素
は約2wt%であった。
The precipitate which is hard to flow and the liquid having a slightly high viscosity are stirred to form a homogeneous liquid, and about 1/2 thereof is used in the same manner as water (about 5 to 0.4 times, As the process progresses, the magnification decreases, and redispersion and centrifugation (7000 rp)
m, 60 minutes) and discarding the supernatant was repeated 20 times in total.
Then, a small amount of water was added and stirred to obtain a highly purified aqueous dispersion of thin film particles, 1350 cm 3 . From the weight change of a part of the liquid before and after drying, the concentration of thin film particles in the liquid was 0.45 wt%. In addition, the elemental analysis of the thin film particles dried under vacuum at 40 ° C. revealed that oxygen was about 42 wt% and hydrogen was about 2 wt%.

【0077】得られた水分散液をガラス板に載せて乾燥
させ、X線回折測定を行った。0.83nmに対応する
ピークが得られた。これは一般的に知られている酸化黒
鉛(層間に水を保持した場合)の層間距離に対応する。
The obtained aqueous dispersion was placed on a glass plate and dried, and X-ray diffraction measurement was performed. A peak corresponding to 0.83 nm was obtained. This corresponds to the interlayer distance of generally known graphite oxide (when water is held between the layers).

【0078】同じ水分散液を水で100倍に希釈してか
らガラス板に載せて乾燥させて、薄膜状粒子の厚さの平
均値を出すことを試みた。液中から乾燥してガラス板に
付着した多数の粒子の平均の厚さが約12nmと計算
(粒子の密度を2.1g/cm 3とした)される場合
に、液が拡がった全面にほぼ粒子3枚程度以上が重なっ
ていることが光学顕微鏡(OM)観察で確認された(粒
子は極めて薄いが、ガラスよりも反射率が高いため、識
別できた)。これより、個々の薄膜状粒子の厚さは平均
4nm未満となった。また、この観察で、薄膜状粒子の
平面方向の大きさは平均約20μm程度であることが確
認された。
Dilute the same aqueous dispersion 100 times with water
And place it on a glass plate to dry, and then flatten the thickness of the thin-film particles.
I tried to get the average value. Dry from the liquid and put on a glass plate
Calculated the average thickness of a large number of attached particles is about 12 nm
(The particle density is 2.1 g / cm 3And if)
In addition, about 3 particles or more are overlaid on the entire surface where the liquid spreads
Was confirmed by optical microscope (OM) observation (grain
Although the child is extremely thin, it has a higher reflectance than glass,
I was able to separate). From this, the thickness of each thin film particle is an average
It was less than 4 nm. Also, in this observation, thin film particles
It is confirmed that the average size in the plane direction is about 20 μm.
It has been certified.

【0079】(広がりが約2μm以下の酸化型の薄膜状
粒子の作製)小さな天然黒鉛((株)エスイーシー製、S
NO−2、精製品、平均粒径2μm、粒径5μm以上が
約5wt%)を、メタノール(純度99.8%)中での
沈降速度の差で分別し、比較的沈降の遅い粒子(全体の
約15wt%)を得た。この分別した天然黒鉛1gを、
硝酸ナトリウム0.75g、硫酸62.1g、過マンガ
ン酸カリウム4.5gからなる混合液中に入れ、約20
℃で5日間、緩やかに撹拌しながら放置した。得られた
高粘度の液を、5wt%硫酸水溶液300cm 3に撹拌
しながら加えて、さらに2時間撹拌した。得られた液に
過酸化水素(30wt%水溶液)3gを加えて、2時間
撹拌した。
(Oxidized thin film with a spread of about 2 μm or less
Preparation of particles) Small natural graphite (S Co., Ltd., S
NO-2, purified product, average particle size 2μm, particle size 5μm or more
About 5 wt%) in methanol (purity 99.8%)
Particles with relatively slow sedimentation (total
About 15 wt%) was obtained. 1 g of this separated natural graphite
Sodium nitrate 0.75g, sulfuric acid 62.1g, permanga
Approximately 20
It was left for 5 days at 0 ° C. with gentle stirring. Got
A highly viscous liquid is a 5 wt% sulfuric acid aqueous solution 300 cm 3Stir to
While stirring, the mixture was stirred for 2 hours. In the obtained liquid
Add 3 g of hydrogen peroxide (30 wt% aqueous solution) for 2 hours
It was stirred.

【0080】この液を、3wt%硫酸/0.5wt%過
酸化水素の混合水溶液を用いた遠心分離と水を用いた遠
心分離で精製して、薄膜状粒子の水分散液(濃度0.8
5wt%)を得た。
This liquid was purified by centrifugation using a mixed aqueous solution of 3 wt% sulfuric acid / 0.5 wt% hydrogen peroxide and centrifugation using water to obtain an aqueous dispersion of thin film particles (concentration: 0.8
5 wt%) was obtained.

【0081】希釈した液のOM観察より、薄膜状粒子の
厚さは平均4nm未満となった。
From the OM observation of the diluted solution, the thickness of the thin film particles was less than 4 nm on average.

【0082】(単層の酸化型の薄膜状粒子の作製)前記
の、平均の広がりが約20μmで平均の厚さが4nm未
満の薄膜状粒子の水分散液(濃度0.45wt%)の一
部を遠心分離(7000rpm、30分)し、上澄みを
捨て、残りのうち上部の少し粘度の高い液の部分(比較
的大きな広がりと比較的小さな厚さの成分を含む部分)
を少量取り出してガラス瓶に入れ、水で約100倍に希
釈した。このガラス瓶を150℃のホットプレート上に
置き、中の液を約20分間加熱(煮沸)した。
(Preparation of Single Layer Oxidized Thin Film Particles) One of the above-mentioned aqueous dispersion (concentration 0.45 wt%) of thin film particles having an average spread of about 20 μm and an average thickness of less than 4 nm. Centrifuge part (7000 rpm, 30 minutes), discard the supernatant, and part of the rest that is a slightly viscous liquid part (the part containing components of relatively large spread and relatively small thickness)
Was taken out into a glass bottle and diluted with water to about 100 times. This glass bottle was placed on a hot plate at 150 ° C., and the liquid therein was heated (boiled) for about 20 minutes.

【0083】得られた液をメタノールで約10倍に希釈
し、カーボンマイクログリッド貼付の銅メッシュに載せ
て乾燥させた。これを予めOMで観察し、マイクログリ
ッド上に乗った薄膜状粒子の重なりの多い領域と重なり
の少ない領域とを確認してから、透過型電子顕微鏡で観
察した。
The obtained solution was diluted about 10 times with methanol, placed on a copper mesh with a carbon microgrid and dried. This was observed in advance by OM, and after confirming the region where the thin film particles on the microgrid had a large overlap and the region where the thin film particles had a small overlap, they were observed with a transmission electron microscope.

【0084】低倍率の観察では、両方の領域で不鮮明な
皺(薄膜状粒子が平面方向に対して垂直に立ち上がり、
また戻る構造)が観察された。重なりの少ない領域に存
在する皺を高倍率で観察しようとしたところ、強い電子
ビームの熱的な影響により皺が解消してしまうためか、
観察できなかった。他方、重なりの多い領域の皺は、皺
のある粒子が他の皺のない粒子によって補強されるため
か、不鮮明ながらも観察可能であり、特に幅の狭い皺の
特に狭い部分から、薄膜状粒子の厚さは約1nm未満と
なった。この厚さは基本層の厚さに近く、単層構造の薄
膜状粒子であると考えられた。
At low magnification, in both areas, unclear wrinkles (thin film particles stand up perpendicular to the plane direction,
Also, a returning structure) was observed. When I tried to observe the wrinkles existing in the region where there is little overlap at a high magnification, it is because the wrinkles disappear due to the thermal effect of the strong electron beam,
I could not observe. On the other hand, the wrinkles in the area where there are many overlaps are observable while being unclear, probably because the wrinkled particles are reinforced by other wrinkle-free particles, especially from the narrow part of the narrow wrinkles, and the thin film particles. Became less than about 1 nm. This thickness was close to that of the base layer and was considered to be a thin-film particle having a single layer structure.

【0085】(広がりが1mm程度の酸化型の薄膜状粒
子の作製)大きな粒径の天然黒鉛((株)エスイーシー
製、精製品、直径約1.4〜2.0mm、厚さ0.1m
m以下の鱗片状)20粒を、硝酸ナトリウム0.34
g、硫酸27.66g、過マンガン酸カリウム2.00
gからなる混合液中に入れ、撹拌せずに放置した。
(Preparation of Oxidized Thin-Film Particles with Spread of about 1 mm) Natural graphite of large particle size (manufactured by SEC Co., Ltd., purified product, diameter about 1.4 to 2.0 mm, thickness 0.1 m)
20 scales of 20 m or less)
g, sulfuric acid 27.66 g, potassium permanganate 2.00
It was placed in a mixed solution consisting of g and left without stirring.

【0086】40日後に、薬さじを用いて、生成した反
応物を液ごと3wt%硫酸/1wt%過酸化水素の混合
水溶液500cm3の中に穏やかに移した。生成物は全
て多数に薄く***し、全て透明な薄膜状粒子になった。
生成した薄膜状粒子は、半分程度が1mm×1mm程度
で、残りはより小さな粒子であった。
After 40 days, the produced reaction product was gently transferred together with the solution into 500 cm 3 of a mixed aqueous solution of 3 wt% sulfuric acid / 1 wt% hydrogen peroxide using a spoon. The products were all thinly divided into many thin transparent particles.
About half of the produced thin film particles were about 1 mm × 1 mm, and the rest were smaller particles.

【0087】この液から、1mm×1mm程度の薄膜状
粒子5枚をわずかな液ごと薬さじで取り出して、約30
分以上放置してから液を流して新しい混合水溶液を加え
ることを10回繰り返して、マンガンイオンなどを除い
た。次に、液を水に替えて、同様に10回交換して、硫
酸などを除いた。これらの精製中に薄膜状粒子はさらに
***して、その数は約5倍になった。
From this liquid, 5 thin film-like particles of about 1 mm × 1 mm were taken out together with a small amount of liquid with a scoop, and about 30
The process of allowing the solution to stand for more than a minute and then pouring the solution and adding a new mixed aqueous solution was repeated 10 times to remove manganese ions and the like. Next, the liquid was replaced with water and replaced 10 times in the same manner to remove sulfuric acid and the like. During these purifications, the thin film-like particles were further divided, and the number was increased by about 5 times.

【0088】得られた薄膜状粒子の1枚を、少量の液と
共に薬さじで取り出してガラスの板の上に移し、液を乾
燥させた。OMで観察したところ、粒子には光の干渉に
よる着色が見られた。その色は粒子の各部分で変化して
いたが、色の変化(紫から赤まで)は1周期のみで、ま
た粒子の外周部は特に薄いために着色が見られなかった
(いわゆる黒膜に相当)ことから、粒子の厚みは光の波
長の1倍以内(赤色で700nm程度)と考えられた。
これと粒子の屈折率が1.5以上と予想されることか
ら、粒子の厚さは最も厚い部分で約500nm以下と推
定された。
One of the obtained thin film-like particles was taken out with a spoon and was transferred onto a glass plate together with a small amount of liquid to dry the liquid. When observed by OM, coloring due to light interference was observed on the particles. The color changed in each part of the particle, but the color change (from purple to red) was only one cycle, and coloring was not seen because the outer periphery of the particle was particularly thin (so-called black film Therefore, the thickness of the particles was considered to be within one time the wavelength of light (about 700 nm in red).
Since this and the refractive index of the particles are expected to be 1.5 or more, the thickness of the particles was estimated to be about 500 nm or less at the thickest portion.

【0089】(広がりが3mm程度の酸化型の薄膜状粒
子の作製)高配向性熱分解黒鉛(Advanced Ceramics Co
rporation製、STM−1、純度99.99wt%以
上、約3000℃の加熱で製造したもの、平面方向の大
きさ12mm×12mm、厚さ2mmのものを厚さ10
0μmに劈開した1個を用いた)を、硝酸ナトリウム
0.34g、硫酸27.66g、過マンガン酸カリウム
2.00gからなる混合液中に入れ、攪拌せずに約10
〜20℃で放置した。放置中に反応が進行し、黒鉛は厚
さ方向と平面方向の両方について複数に***、さらに膨
潤した。
(Preparation of Oxidized Thin Film Particles with Spread of about 3 mm) Highly Oriented Pyrolytic Graphite (Advanced Ceramics Co
Made by rporation, STM-1, purity 99.99 wt% or more, manufactured by heating at about 3000 ° C., size in the plane direction 12 mm × 12 mm, thickness 2 mm, thickness 10
1 cleaved to 0 μm was used) was placed in a mixed solution of 0.34 g of sodium nitrate, 27.66 g of sulfuric acid, and 2.00 g of potassium permanganate, and the mixture was stirred for about 10 minutes.
Left at -20 ° C. The reaction proceeded during standing, and the graphite was split into multiple pieces in both the thickness direction and the plane direction and further swelled.

【0090】40日後に、薬さじを用いて、生成した反
応物を液ごと3wt%硫酸/1wt%過酸化水素の混合
水溶液500cm3の中に穏やかに移した。多数に薄く
***した生成物のうち、2枚のみはその中央の部分が分
裂せず黒色のままであったが、他は透明な薄膜状粒子に
なった。それらの大きさは、大部分が5mm×5mm以
下、平均3mm×3mm程度であり、また、それらの輪
郭は、ほとんどが不定形で、一部に元の黒鉛の輪郭に由
来する直線部分を含んでいた。
After 40 days, the produced reaction product was gently transferred together with the liquid into 500 cm 3 of a mixed aqueous solution of 3 wt% sulfuric acid / 1 wt% hydrogen peroxide using a spoon. Of the many thinly split products, only two of them remained black without splitting in the central part, but the others became transparent thin film particles. Most of them have a size of 5 mm × 5 mm or less, and an average of about 3 mm × 3 mm, and their contours are almost indefinite, and partly includes a straight line portion derived from the contour of the original graphite. I was out.

【0091】この薄膜状粒子を含む液に対して、約30
分以上放置してから液を流して新しい混合水溶液を加え
ることを10回繰り返して、マンガンイオンなどを除い
た。次に、液を水に替えて、同様に10回交換して、硫
酸などを除いた。これらの精製中に薄膜状粒子はさらに
***して、その数は約10倍になった。
About 30 to the liquid containing the thin film particles.
The process of allowing the solution to stand for more than a minute and then pouring the solution and adding a new mixed aqueous solution was repeated 10 times to remove manganese ions and the like. Next, the liquid was replaced with water and replaced 10 times in the same manner to remove sulfuric acid and the like. During these purifications, the thin film-like particles were further divided, and the number thereof was increased by about 10 times.

【0092】得られた薄膜状粒子の1枚を、少量の液と
共に薬さじで取り出してガラスの板の上に移し、液を乾
燥させて、OMで観察した。粒子の厚さは最も厚い部分
で約500nm以下と推定された。
One piece of the obtained thin film-like particles was taken out with a spoon and was transferred onto a glass plate with a small amount of liquid, and the liquid was dried and observed by OM. The thickness of the particles was estimated to be about 500 nm or less at the thickest part.

【0093】(酸化型の積層集合体の作製)前記の、平
均の広がりが約20μmで平均の厚さが4nm未満の薄
膜状粒子の水分散液(濃度0.45wt%)にメタノー
ル(25℃における比誘電率32.7)を加えて0.1
wt%の分散液とした。この分散液に、さらにメタノー
ルを加えて、わずかに水を含む0.01wt%メタノー
ル分散液とした。この液を底部が平面のガラス容器に液
の深さ約2cmで入れ、蓋をして、約20℃で静置し
た。静置中に薄膜状粒子は沈殿した。約90日後に、液
を穏やかに振とうすると舞い上がる、広がりが500μ
m以上の、肉眼で確認できる大型の粒子を得た。
(Preparation of Oxidized Laminated Assembly) Methanol (25 ° C.) was added to an aqueous dispersion (concentration 0.45 wt%) of the thin film particles having an average spread of about 20 μm and an average thickness of less than 4 nm. Relative dielectric constant of 32.7) is added to 0.1
It was a dispersion liquid of wt%. Methanol was further added to this dispersion to give a 0.01 wt% methanol dispersion containing a slight amount of water. This liquid was placed in a glass container having a flat bottom at a depth of about 2 cm, covered with a lid, and allowed to stand at about 20 ° C. The thin film-like particles were precipitated during standing. Approximately 90 days later, when the liquid is gently shaken, it rises up and spreads 500μ.
Large particles with a size of m or more that can be visually confirmed were obtained.

【0094】この大型の粒子1枚を少量の液と共に薬さ
じで取り出してガラス板の上に移し、液を乾燥させた。
OM観察で、大型の粒子は、複数の小さな薄膜状粒子が
互いに積層、集合して構成された、積層集合体であるこ
とを確認した。
One piece of this large particle was taken out with a small spoon with a small amount of liquid, transferred onto a glass plate, and the liquid was dried.
By OM observation, it was confirmed that the large particles were a laminated aggregate composed of a plurality of small thin film particles laminated and aggregated with each other.

【0095】さらに500℃で加熱(加熱の詳細は後
記)してから観察した。還元で反射率が高まったため
に、積層集合体を構成する個々の薄膜状粒子の輪郭が明
瞭になった。さらに積層集合体の内部における薄膜状粒
子の重なりの枚数は、場所により異なるが、平均すると
10枚程度以下であることが分かった。これから、積層
集合体の厚さは数十nmであると考えられた。また、積
層集合体の内部の一部に、ガラス板に載せる際に生じた
大きな折れ曲がりが存在していた。この大きな折れ曲が
りの部分では、積層集合体を構成している個々の薄膜状
粒子も折れ曲がっていて、さらに大型の平面状分子でも
ある各基本層も折れ曲がっていると考えられた。
Further observation was performed after heating at 500 ° C. (details of heating will be described later). Since the reflectance was increased by the reduction, the outlines of the individual thin film-like particles constituting the layered assembly became clear. Further, it was found that the number of overlapping thin film particles inside the laminated assembly varied depending on the place, but was about 10 or less on average. From this, it was considered that the thickness of the laminated assembly was several tens of nm. In addition, there was a large bend in the interior of the laminated assembly when it was placed on the glass plate. It was considered that in this large bent portion, the individual thin-film particles constituting the layered assembly were also bent, and each basic layer, which was also a large planar molecule, was also bent.

【0096】(加熱による還元と粒子の変化)前記の、
平均の広がりが約20μmで平均の厚さが4nm未満の
酸化型の薄膜状粒子の水分散液を、広がりが1cm×1
cm程度、乾燥後の厚さが約30μmになるようにホウ
珪酸ガラスの基板に載せ、埃よけをして約20℃、相対
湿度約40%で放置して乾燥させてから、順次温度を高
めながら真空加熱(さらに1200℃の高温については
ガラス板から剥離してアルゴン中で加熱)して、X線回
折測定で層間距離の変化を調べた(測定は空気中、約2
0℃)。
(Reduction by Heating and Change of Particles)
An aqueous dispersion of oxidized thin film-like particles having an average spread of about 20 μm and an average thickness of less than 4 nm has a spread of 1 cm × 1.
cm, about 30 μm in thickness after drying, placed on a borosilicate glass substrate, dust-protected and left at about 20 ° C., relative humidity about 40% to dry, and then temperature While increasing the temperature, vacuum heating (further peeling from the glass plate and heating in argon at a high temperature of 1200 ° C.) was performed, and the change in interlayer distance was examined by X-ray diffraction measurement (measurement was performed in air at about 2
0 ° C).

【0097】層間距離を与えるピークは、加熱温度が高
くなるにつれて、酸化黒鉛のピーク(酸素を含む層構造
に対応、20℃では層間距離0.83nm)のみから、
酸化黒鉛のピークと黒鉛類似のピークに至るピークとの
共存(酸素を含む層構造部分とあまり含まない層構造部
分が共存していることに対応、150℃では同0.55
nmと0.38nm)を経て、黒鉛類似のピーク(酸素
をほとんど含まない、または含まない層構造に対応、ピ
ークの広がりは黒鉛よりも大きい、300℃で同0.3
7nm、1200℃で同0.34nm)のみになった。
From the peak of oxide graphite (corresponding to the layer structure containing oxygen, the interlayer distance is 0.83 nm at 20 ° C.) as the heating temperature increases, the peak giving the interlayer distance is
Coexistence of peaks of graphite oxide and peaks similar to graphite (corresponding to the coexistence of a layer structure part containing oxygen and a layer structure part not containing much oxygen, 0.55
nm and 0.38 nm), corresponding to a graphite-like peak (corresponding to a layered structure containing little or no oxygen, the broadening of the peak is larger than that of graphite, the same at 300 ° C.).
7 nm, the same was 0.34 nm at 1200 ° C.).

【0098】色調と電気抵抗(通常のテスターを用いて
電極間隔1mm程度で簡易測定、同じ方法で厚さ0.5
mmの低配向の黒鉛シートは1.5Ω)は、20℃で茶
褐色と32MΩ以上(測定範囲外)、100℃で濃い茶
褐色と20MΩ、150℃で暗い銀色と10kΩ、20
0℃で銀色と300Ω、1200℃で明るい銀色と5
Ω、であった。また、熱重量分析では、特に150℃〜
210℃付近の重量減少が著しかった。
Color tone and electric resistance (simple measurement using an ordinary tester with an electrode interval of about 1 mm, thickness of 0.5 by the same method)
mm low orientation graphite sheet is 1.5Ω), brown at 20 ° C. and 32 MΩ or more (outside the measuring range), dark brown at 20 ° C. and 20 MΩ, dark silver at 150 ° C. and 10 kΩ, 20
5Ω with silver color at 0 ℃ and 300Ω and bright silver color at 1200 ℃
It was Ω. In thermogravimetric analysis, especially,
The weight loss at around 210 ° C was remarkable.

【0099】前記の、大きさが3mm×3mm程度、厚
さが500nm未満の酸化型の薄膜状粒子1枚を、薬さ
じを用いてホウ珪酸ガラスの基板に載せ、室温で乾燥さ
せてから、空気中で、約20℃から300℃まで約20
時間で昇温し、300℃から500℃まで1時間で昇温
して、500℃で1時間放置してから約20℃に戻し
た。粒子は銀色の還元型になった。
One piece of the above-mentioned oxidation type thin film particles having a size of about 3 mm × 3 mm and a thickness of less than 500 nm was placed on a borosilicate glass substrate with a spoon and dried at room temperature. About 20 to 300 ℃ in air
The temperature was raised in time, from 300 ° C. to 500 ° C. in 1 hour, left at 500 ° C. for 1 hour, and then returned to about 20 ° C. The particles became silvery reduced.

【0100】前記の、ガラス板上の1枚の酸化型の積層
集合体を、空気中で、約20℃から300℃まで約5時
間で昇温し、300℃から500℃まで1時間で昇温し
て、500℃で1時間放置してから約20℃に戻した。
積層集合体は半透明の銀色の還元型になった。
[0100] The above-mentioned oxidation type laminated assembly on a glass plate was heated in air from about 20 ° C to 300 ° C in about 5 hours, and then heated from 300 ° C to 500 ° C in 1 hour. It was warmed, left at 500 ° C. for 1 hour and then returned to about 20 ° C.
The layered assembly became a translucent silvery reduced form.

【0101】(分散媒の交換)前記の、平均の広がりが
約20μmで平均の厚さが4nm未満の酸化型の薄膜状
粒子の水分散液を遠心瓶に入れ、アセトン(25℃にお
ける比誘電率20.7、純度99.5%、水分散液の約
2倍〜4倍、操作が進むにつれて倍率は増大)を加えて
再分散と遠心分離(7000rpm、30分)と上澄み
の廃棄を合計3回繰り返した。得られた沈殿は濃度が約
1.7wt%で、流動性のない固まりであった。
(Exchange of Dispersion Medium) The above-mentioned aqueous dispersion of oxidized thin-film particles having an average spread of about 20 μm and an average thickness of less than 4 nm was placed in a centrifuge bottle and placed in acetone (specific dielectric at 25 ° C.). Rate 20.7, purity 99.5%, about 2 to 4 times that of the aqueous dispersion, the magnification increases as the operation proceeds), and redispersion and centrifugation (7000 rpm, 30 minutes) and discarding of the supernatant are added. Repeated 3 times. The obtained precipitate had a concentration of about 1.7 wt% and was a solid without fluidity.

【0102】さらにこの固まりを遠心瓶に入れたまま、
2−ブタノン(20℃における比誘電率18.5、純度
99%、アセトン分散液の約4倍)を加えて再分散と遠
心分離(7000rpm、30分)と上澄みの廃棄を合
計3回繰り返した。得られた沈殿は濃度が約2.0wt
%で、流動性のない固まりであった。
Further, with this lump put in a centrifuge bottle,
2-Butanone (relative dielectric constant at 20 ° C., 18.5, purity 99%, about 4 times that of acetone dispersion) was added, and redispersion, centrifugation (7000 rpm, 30 minutes), and discarding of the supernatant were repeated 3 times in total. . The obtained precipitate has a concentration of about 2.0 wt.
%, It was a non-flowable mass.

【0103】以上のように、酸化型の薄膜状粒子は水以
外の液体でも分散系を作ることができた。ただし、誘電
率の低下に伴い、粒子間の反発が小さくなるために、よ
り高濃度の沈殿を生成しやすくなった。また、その形状
の異方性が高いために、数%の低濃度でも周囲の分散媒
を保持して、分散液の流動性が著しく低下した。
As described above, the oxide type thin film particles were able to form a dispersion system with a liquid other than water. However, as the dielectric constant decreased, the repulsion between the particles became smaller, and it became easier to generate a higher-concentration precipitate. Further, because of its high shape anisotropy, the surrounding dispersion medium was retained even at a low concentration of several%, and the fluidity of the dispersion liquid was significantly reduced.

【0104】前記の、大きさが3mm×3mm程度、厚
さが500nm未満の酸化型の薄膜状粒子1枚を、薬さ
じを用いてメタノールの中に入れ、分散媒を交換した。
One piece of the above-mentioned oxidation type thin film particles having a size of about 3 mm × 3 mm and a thickness of less than 500 nm was put into methanol using a spoon and the dispersion medium was exchanged.

【0105】(基板の親和性向上)各種基板の親和性向
上(親水化処理)を行い、その後に酸化型の薄膜状粒子
を付着させ、加熱還元した。その際、親水化の程度を水
に対する接触角で評価した。接触角は、基板に水を滴下
して、その水の体積(例えば3mm3)と、基板上で測
定される液滴の接触面の直径(接触角が90度未満の場
合)または液滴の直径(同90度以上の場合)を用い、
液滴の形状を球の一部と仮定して、計算で求めた。
(Improvement of Affinity of Substrates) Affinities of various substrates were improved (hydrophilization treatment), and thereafter, oxidation type thin film particles were adhered and reduced by heating. At that time, the degree of hydrophilicity was evaluated by the contact angle with water. The contact angle is measured by dropping water on the substrate and measuring the volume of the water (for example, 3 mm 3 ) and the diameter of the contact surface of the droplet measured on the substrate (when the contact angle is less than 90 degrees) or Use the diameter (if it is 90 degrees or more),
It was calculated by assuming that the shape of the droplet is a part of a sphere.

【0106】ダイヤモンドの基板(住友電気工業(株)
製、多結晶、シリコン基板の上に成長させて表面を研磨
したもの、ダイヤモンド層の厚さ25μm)をメタノー
ルで洗浄(メタノールに浸漬して超音波照射3分)後に
水洗(水に浸漬して超音波照射3分)してから乾燥(圧
縮空気で水を飛ばした)し、さらに空気中で500℃で
1時間加熱して冷却後に水に浸漬してから乾燥(同)し
た。接触角は、未処理で97度、水洗と乾燥後で52
度、加熱と乾燥後で8度と順に変化した。
Diamond substrate (Sumitomo Electric Industries, Ltd.)
Made, polycrystal, grown on a silicon substrate and polished on the surface, diamond layer thickness 25 μm) washed with methanol (immersed in methanol and irradiated with ultrasonic waves for 3 minutes) and then washed with water (immersed in water Ultrasonic irradiation was performed for 3 minutes, followed by drying (water was blown off with compressed air), further heating in air at 500 ° C. for 1 hour, cooling, immersion in water, and drying (same). The contact angle is 97 degrees before treatment and 52 after washing and drying.
After heating and drying, the temperature gradually changed to 8 degrees.

【0107】炭化珪素の基板(日立化成工業(株)製、多
結晶、厚さ5mm)をダイヤモンド基板と同様に処理し
た。接触角の変化は同じく87度、72度、17度であ
った。
A silicon carbide substrate (manufactured by Hitachi Chemical Co., Ltd., polycrystalline, thickness 5 mm) was treated in the same manner as the diamond substrate. The changes in contact angle were 87 degrees, 72 degrees, and 17 degrees, respectively.

【0108】シリコンの基板(シリコンウェハー、単結
晶、厚さ0.4mm)をダイヤモンド基板と同様に処理
した。接触角の変化は同じく51度、50度、29度で
あった。さらに10wt%の水酸化ナトリウム水溶液に
1分間浸漬してから乾燥(同)した。接触角は18度で
あった。
A silicon substrate (silicon wafer, single crystal, thickness 0.4 mm) was treated in the same manner as the diamond substrate. The changes in contact angle were 51 degrees, 50 degrees, and 29 degrees, respectively. Further, it was immersed in a 10 wt% sodium hydroxide aqueous solution for 1 minute and then dried (same). The contact angle was 18 degrees.

【0109】サファイアの基板(京セラ(株)製、SA1
00、単結晶、片面研磨品、厚さ0.43mm)をダイ
ヤモンド基板と同様に処理した。接触角の変化は同じく
33度、28度、5度であった。
Sapphire substrate (SA1 manufactured by Kyocera Corp.)
00, single crystal, one-side polished product, thickness 0.43 mm) were treated in the same manner as the diamond substrate. The changes in contact angle were 33 degrees, 28 degrees, and 5 degrees.

【0110】石英ガラスの基板(非晶質、研磨品、厚さ
2mm)をダイヤモンド基板と同様に処理した。接触角
の変化は同じく46度、43度、6度であった。
A quartz glass substrate (amorphous, polished product, thickness 2 mm) was treated in the same manner as the diamond substrate. The changes in contact angle were 46, 43, and 6 degrees, respectively.

【0111】無アルカリガラスの基板(日本電気ガラス
(株)製、OA−10、主成分はシリカとアルミナ、非晶
質、研磨品、厚さ0.7mm)をダイヤモンド基板と同
様に処理した。接触角の変化は同じく34度、32度、
14度であった。
Alkali-free glass substrate (Nippon Electric Glass)
OA-10 (manufactured by KK), silica and alumina as main components, amorphous, polished product, and thickness 0.7 mm) were treated in the same manner as the diamond substrate. The change in contact angle is the same at 34 degrees, 32 degrees,
It was 14 degrees.

【0112】ホウ珪酸ガラスの基板(スライドガラス、
非晶質、研磨洗浄品、厚さ1.2mm)の接触角は未処
理で4度であった。
Borosilicate glass substrate (slide glass,
The contact angle of the amorphous material, the polishing-cleaned product, and the thickness of 1.2 mm) was 4 degrees without any treatment.

【0113】別の1枚のダイヤモンドの基板について、
スパッタリング(Ar イオン、印加電圧10kV、電流
密度200〜300μA/cm2、6時間)の後、50
0℃で1時間加熱して冷却後に水に浸漬してから乾燥
(同)した。接触角はスパッタリング後で47度、加熱
と乾燥後で6度に変化した。
For another diamond substrate,
After sputtering (Ar ions, applied voltage 10 kV, current density 200 to 300 μA / cm 2 , 6 hours), 50
It was heated at 0 ° C. for 1 hour, cooled, immersed in water, and then dried (same). The contact angle changed to 47 degrees after sputtering and 6 degrees after heating and drying.

【0114】(原子間力顕微鏡による観察)前記の、平
均の広がりが約20μmで平均の厚さが4nm未満の酸
化型の薄膜状粒子を、0.01wt%メタノール分散液
でシリコン基板(平坦性の低下をできるだけ避けるた
め、ここでは親水化なし)の上に載せ、乾燥させて原子
間力顕微鏡で観察し、さらに300℃、10分で加熱還
元し、室温に戻して再度観察した。
(Observation by Atomic Force Microscope) The above-mentioned oxidation type thin film particles having an average spread of about 20 μm and an average thickness of less than 4 nm were coated with a 0.01 wt% methanol dispersion liquid on a silicon substrate (flatness). In order to avoid a decrease in the temperature as much as possible, the sample was placed on the surface (not hydrophilized here), dried and observed with an atomic force microscope, further reduced by heating at 300 ° C. for 10 minutes, returned to room temperature, and observed again.

【0115】多くの粒子について、粒子内部に極めて緩
やかな皺が多数存在していた。一部の場所には、薄膜状
粒子が折り畳まれた構造と考えられる段差が認められ
た。その薄膜状粒子の曲がり部分は、厚くならずに急激
に折れ曲がっていた。この部分では、大型の分子でもあ
る各基本層も急激に折れ曲がっていると考えられる。ま
た、他の場所には、一度折れ曲がって再度反対側に折れ
曲がる2段階の折れ曲がりの構造と考えられる、一定の
幅の段差が認められた。
For many particles, there were many extremely gentle wrinkles inside the particles. At some places, a step that was thought to be a structure in which thin film particles were folded was recognized. The bent portion of the thin film-like particles was sharply bent without thickening. In this part, it is considered that each basic layer, which is also a large molecule, is sharply bent. Further, in other places, a step having a certain width, which is considered to be a structure of two-stage bending in which the material is once bent and then bent to the opposite side, was recognized.

【0116】さらに、特に薄い部分について、加熱前後
の厚さの変化を調べた。未加熱段階で厚さ2.1nmの
部分が、加熱還元後に厚さ1.1nmに変化した。この
比率は、前記のX線回折による格子面間隔の変化(0.
83nmと0.37nm)の比率に近い。
Furthermore, the change in thickness before and after heating was examined for a particularly thin portion. The 2.1-nm-thick portion in the unheated stage was changed to 1.1-nm-thick after heat reduction. This ratio is determined by the change in the lattice spacing (0.
The ratio is close to 83 nm and 0.37 nm).

【0117】(基板上への薄膜状粒子の付着)前記の親
水化した各種基板(それぞれ接触角が最小になったも
の)の上に、酸化型の薄膜状粒子を多数含む分散液(平
均の広がりが約2μm未満のもの(濃度0.85wt
%)と同約20μm(濃度0.45wt%)の2種、い
ずれも乾燥後の全体の広がりが約0.5cm2で平均厚
さが約2μmになるように塗布)、広がりが約2mm×
2mmで厚さ500nm未満の酸化型の薄膜状粒子(1
枚、少量の液と共に薬さじで移した)、広がりが約50
0μmの酸化型の積層集合体(1枚、同)、の合計4種
をそれぞれ載せて、約20℃で15時間放置して乾燥
後、1時間当たり約50℃で緩やかに昇温して最高温度
500℃で1時間加熱還元した。いずれも基板上にきれ
いに載せることができた。
(Adhesion of Thin Film Particles to Substrate) A dispersion liquid containing a large number of oxidized thin film particles (on average) on the above-mentioned hydrophilicized various substrates (each having a minimum contact angle). Spreading less than about 2 μm (concentration 0.85 wt
%) And about 20 μm (concentration 0.45 wt%), both of which are applied so that the total spread after drying is about 0.5 cm 2 and the average thickness is about 2 μm), and the spread is about 2 mm ×
Oxidized thin film-like particles (1 mm thick and less than 500 nm thick)
Transferred with a scoop with a small amount of liquid), spread about 50
A total of 4 kinds of 0 μm oxidative laminated aggregates (1 sheet, the same) were placed, left standing at about 20 ° C. for 15 hours to dry, and then gradually heated up to about 50 ° C. per hour to reach the maximum. The mixture was heated and reduced at a temperature of 500 ° C. for 1 hour. Both could be placed on the substrate cleanly.

【0118】(イオンビーム照射によるパターン形成)
集束イオンビームを照射して薄膜状粒子の内部の一部を
除去することで、薄膜状粒子の内部を位置選択的に加工
(パターン形成)した。
(Pattern formation by ion beam irradiation)
By irradiating a focused ion beam to remove a part of the inside of the thin film particle, the inside of the thin film particle was position-selectively processed (patterned).

【0119】ホウ珪酸ガラスの基板に、広がりが約20
μmの酸化型の薄膜状粒子を、濃度0.01wt%のメ
タノール分散液として約5滴で載せて、乾燥し、300
℃で加熱還元した。加工時の試料の帯電を防止するため
に、約3mm×3mmの加工対象部分の周囲3方に導電
性ペーストを塗布した。この試料を予め光学顕微鏡で観
察し、他の粒子との接触が少なく、巨視的な皺の少ない
薄膜状粒子を多数選んだ。それらの粒子の内部に対し
て、集束イオンビーム装置((株)日立製作所製、FB−
2000A、イオン源はガリウム、一度の照射における
走査範囲は最大60×60μm、最小解像度10nm)
を用いて微細加工を行った。加工の形状は、導線や量子
構造などを想定して、網目状の格子(複数の正方形にイ
オンを照射し、複数の正方形の境界を残す)、複数の線
状(細長い長方形、最小の幅は約100nm)と正方形
(それらを残して周囲にイオン照射、大きさ各3種程
度)とした。
The spread is about 20 on a borosilicate glass substrate.
Approximately 5 drops of 0.01 μm-thick oxidized thin-film particles as a methanol dispersion having a concentration of 0.01 μm were placed and dried.
It was reduced by heating at ℃. In order to prevent the sample from being electrified during processing, a conductive paste was applied to three sides of a processing target area of about 3 mm × 3 mm. This sample was observed with an optical microscope in advance, and a large number of thin-film particles with less contact with other particles and less macroscopic wrinkles were selected. Focused ion beam device (FB-made by Hitachi, Ltd., FB-
2000A, gallium ion source, maximum scanning range of 60 × 60 μm, minimum resolution of 10 nm in one irradiation)
Was used for fine processing. As for the shape of processing, assuming a conducting wire or a quantum structure, a mesh-shaped lattice (irradiates multiple squares with ions and leaves the boundaries of multiple squares), multiple linear shapes (elongated rectangle, minimum width is About 100 nm) and squares (irradiated with ions left around them, about 3 kinds each in size).

【0120】加速電圧30kVにおいて、電流量と照射
時間を変化させて、数個の粒子に個別に照射し、集束イ
オンビーム装置内で照射時に観察される2次電子の像
と、外部の光学顕微鏡で観察される像とで、加工の程度
を調べた。約5〜60pC/μm2の電荷量(1価のイ
オンを仮定して約5〜60×10-17mol/μm2のイ
オン量)で、適正な加工が可能であった。また、粒子の
厚さに対して照射量が少ないと加工不十分で、多いと剥
離を生じていた。
At an accelerating voltage of 30 kV, the current amount and the irradiation time were changed to irradiate several particles individually, and an image of secondary electrons observed during irradiation in the focused ion beam apparatus and an external optical microscope. The degree of processing was examined with the image observed in. Appropriate processing was possible with a charge amount of about 5 to 60 pC / μm 2 (an ion amount of about 5 to 60 × 10 -17 mol / μm 2 assuming monovalent ions). Further, if the irradiation amount was small with respect to the thickness of the particles, processing was insufficient, and if the irradiation amount was large, peeling occurred.

【0121】さらに得られた加工品を原子間力顕微鏡で
観察し、薄膜状粒子の厚さが約10nmであること、高
さ方向(粒子の厚さ方向)に希望の形状で加工できてい
ること、線幅約100nmの細線が加工できているこ
と、を確認した。この場合、大型の分子でもある各基本
層もその内部が加工されたことになる。
Further, the obtained processed product is observed by an atomic force microscope, and the thickness of the thin film particles is about 10 nm, and the desired shape can be processed in the height direction (particle thickness direction). It was confirmed that a fine wire having a line width of about 100 nm could be processed. In this case, the inside of each basic layer, which is also a large molecule, is processed.

【0122】以上のように、基板に載せた単独の薄膜状
粒子の内部を具体的にパターン形成することが可能であ
った。このような形状は、電気を流すことで微細配線や
素子に、また、例えば加工部分における薄膜状粒子の有
無を情報として扱うことで記録材料(記録媒体)に、そ
れぞれ対応させることができる。
As described above, it was possible to specifically pattern the inside of a single thin film particle placed on the substrate. Such a shape can be made to correspond to a fine wiring or an element by passing electricity, and to a recording material (recording medium) by treating the presence or absence of thin film particles in a processed portion as information, for example.

【0123】(スクリーン印刷によるパターン形成)多
数の薄膜状粒子を位置選択的に基板に載せることでパタ
ーン形成した。
(Pattern formation by screen printing) A large number of thin film particles were position-selectively placed on a substrate to form a pattern.

【0124】スクリーンマスクを用いた印刷により、無
アルカリガラス基板(OA−10)上に、金ペースト
(ヘレウス(株)、C4350、金の比率は90wt%、
600℃の加熱でペーストを固定、この加熱で同時に基
板を親水化)で外部接続用の配線(幅1mmの隙間を持
つ幅1mmの2本の線、厚さ約20μm)を作製した。
By printing using a screen mask, a gold paste (Hereus Co., Ltd., C4350, the ratio of gold was 90 wt%, was applied on a non-alkali glass substrate (OA-10).
The paste was fixed by heating at 600 ° C., and the substrate was made hydrophilic at the same time by this heating to form wiring for external connection (two lines with a width of 1 mm and a thickness of about 20 μm with a gap of 1 mm in width).

【0125】さらに、異なるスクリーンマスクを用いた
印刷により、前記の、平均の広がりが約20μmで平均
の厚さが4nm未満の酸化型の薄膜状粒子の水分散液
(濃度1.6wt%、遠心分離で濃縮した)をインクと
して、配線2本のそれぞれに重なる位置に、3mm×3
mmの正方形、乾燥後の厚さ約700nmでパターン形
成した。
Further, by printing using different screen masks, an aqueous dispersion of the above-mentioned oxidized thin film particles having an average spread of about 20 μm and an average thickness of less than 4 nm (concentration: 1.6 wt%, centrifugal (Concentrated by separation) is used as an ink, and 3 mm × 3
The pattern was formed into a square of mm and a thickness after drying of about 700 nm.

【0126】(導電率の測定)このスクリーン印刷でパ
ターン形成した構造物を加熱還元しながら、導電率(正
確には比導電率)の変化を測定した(同一試料で順次加
熱して測定、測定は空気中、室温)。ここで、導電率の
計算において、金の配線の間隔と、パターン形成した薄
膜状粒子の平面方向の寸法は、加熱により変化しないと
仮定した。また、厚さは、200℃加熱後のみを原子間
力顕微鏡で測定し、他の温度の場合を厚さをX線回折で
求めた層間距離の変化から計算して、用いた。導電率
は、未加熱で0.0027S/m以下(抵抗値が測定範
囲外)、100℃、30分加熱で0.0029S/m以
下(同)、200℃、210分加熱で120S/m、3
00℃、90分真空加熱で220S/m、400℃、9
0分真空加熱で780S/m、500℃、90分真空加
熱で1600S/mであった。
(Measurement of Electrical Conductivity) While the structure formed by screen printing was heated and reduced, a change in electrical conductivity (more specifically, specific electrical conductivity) was measured (measured by sequentially heating the same sample. Is in air at room temperature). Here, in the calculation of conductivity, it was assumed that the space between the gold wirings and the dimension of the patterned thin film particles in the plane direction did not change due to heating. The thickness was measured by an atomic force microscope only after heating at 200 ° C., and at other temperatures, the thickness was calculated from the change in interlayer distance obtained by X-ray diffraction and used. The conductivity is 0.0027 S / m or less when unheated (the resistance value is outside the measurement range), 0.0029 S / m or less after heating at 100 ° C. for 30 minutes (the same), 120 S / m after heating at 200 ° C. for 210 minutes, Three
220 S / m by vacuum heating at 00 ° C for 90 minutes, 400 ° C, 9
It was 780 S / m in 0 minute vacuum heating and 500 ° C. and 1600 S / m in 90 minute vacuum heating.

【0127】別の、スクリーンマスクを用いた印刷によ
り、サファイア基板(SA100)上に、金ペースト
(ヘレウス(株)、RP20003、金の比率は20wt
%、850℃の加熱でペーストを固定、この加熱で同時
に基板を親水化)で第一の外部接続用の配線(幅1mm
の隙間を持つ幅1mmの2本の平行な帯状の線、厚さ約
0.3μm)を作製した。さらにこの配線に一部を重ね
て延長するように金ペースト(ヘレウス(株)、C575
5A、金の比率は86wt%、850℃の加熱でペース
トを固定)で第二の配線(厚さ約20μm)を作製し
た。さらに、前記の、大きさが3mm×3mm程度、厚
さが500nm未満の酸化型の薄膜状粒子1枚を、その
粒子の2つの部分が第一の配線2本のそれぞれに重なる
位置に、少量の液と共に薬さじで載せて、乾燥した。こ
の構造物を加熱還元しながら、導電率の変化を測定し
た。導電率は、未加熱で0.0020S/m以下(抵抗
値が測定範囲外)、100℃、30分加熱で0.002
1S/m以下(同)、200℃、210分加熱で2.2
S/m、300℃、90分真空加熱で5.2S/m、4
00℃、90分真空加熱で37S/m、500℃、90
分真空加熱で96S/mであった。また、金配線との接
触部分がオーム性接触であることを確認した。
By another printing using a screen mask, a gold paste (Hereus Co., Ltd., RP20003, the ratio of gold was 20 wt.%) Was formed on a sapphire substrate (SA100).
%, The paste is fixed by heating at 850 ° C., and the substrate is made hydrophilic at the same time by this heating) The wiring for the first external connection (width 1 mm)
2 parallel strip-shaped lines having a width of 1 mm and a thickness of about 0.3 μm) were prepared. Gold paste (Heraus Co., C575
The second wiring (thickness: about 20 μm) was formed by 5 A, the ratio of gold was 86 wt%, and the paste was fixed by heating at 850 ° C. Furthermore, a small amount of the above-mentioned oxidation type thin film particle having a size of about 3 mm × 3 mm and a thickness of less than 500 nm is placed at a position where two parts of the particle overlap with each of the two first wirings. Place it with a spoon and dry it. The change in conductivity was measured while the structure was heated and reduced. The electrical conductivity is 0.0020 S / m or less when unheated (the resistance value is outside the measurement range), and 0.002 after heating at 100 ° C. for 30 minutes.
2.2 at 1 S / m or less (same) at 200 ° C for 210 minutes
S / m, 300 ℃, 90 minutes vacuum heating 5.2 S / m, 4
Vacuum heating at 00 ℃ for 90 minutes 37S / m, 500 ℃, 90
It was 96 S / m by minute vacuum heating. In addition, it was confirmed that the contact portion with the gold wiring was ohmic contact.

【0128】[0128]

【発明の効果】本発明の炭素からなる骨格を持つ薄膜状
粒子(酸化型と還元型のカーボンナノフィルム)を基板
に載せた構造物は、周期構造を持つ炭素系物質に固有の
電子物性や安定性などを簡便に利用できる新規な系であ
り、微細な回路(素子や配線)、高温用の回路(同)、
光電変換素子(太陽電池、発光素子など)、発熱体、光
学素子、安定な記録材料などへの応用が可能である。
EFFECT OF THE INVENTION A structure in which thin film particles having a carbon skeleton (oxidation type and reduction type carbon nanofilm) of the present invention are placed on a substrate has an electronic physical property unique to a carbon-based substance having a periodic structure. It is a new system that can easily use stability, etc., and has fine circuits (elements and wiring), high temperature circuits (the same),
It can be applied to photoelectric conversion elements (solar cells, light emitting elements, etc.), heating elements, optical elements, stable recording materials, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】電極付きの基板に載せる場合の形態と作製方法
の模式図(微細な回路の例、ビーム加工などを利用する
場合)
FIG. 1 is a schematic diagram of a form and a manufacturing method when mounted on a substrate with electrodes (an example of a fine circuit, a case of using beam processing, etc.)

【図2】電極付きの基板に載せる場合の形態と作製方法
の模式図(比較的大きな回路の例、印刷などを利用する
場合)
2A and 2B are schematic diagrams of a form and a manufacturing method when mounted on a substrate with electrodes (an example of a relatively large circuit, a case where printing or the like is used).

【図3】形状により電気的性質を変化させる例(電界効
果トランジスターの場合、厚さ方向も加工)の模式図
FIG. 3 is a schematic diagram of an example in which electrical properties are changed depending on the shape (in the case of a field effect transistor, the thickness direction is also processed).

【図4】形状により電気的性質を変化させる例(電界効
果トランジスターの場合、厚さ方向は一定のまま(特に
薄い場合))の模式図
FIG. 4 is a schematic diagram of an example in which electrical properties are changed depending on the shape (in the case of a field effect transistor, the thickness direction remains constant (especially when thin)).

【図5】形状により電気的性質を変化させる例(抵抗器
の場合)の模式図
FIG. 5 is a schematic diagram of an example (in the case of a resistor) of changing electrical properties depending on the shape.

【図6】他の良導体との接続の例(外部の配線との接続
の場合)の模式図
FIG. 6 is a schematic diagram of an example of connection with another good conductor (in the case of connection with external wiring).

【図7】薄膜状粒子の折れ曲がりの原子間力顕微鏡像
(右側の淡い色の部分はシリコンウェハー、中央付近の
左右方向に折れ曲がりの部分がある)
FIG. 7: Atomic force microscope image of bending of thin film particles (light-colored part on the right side is a silicon wafer, there is a bending part in the left-right direction near the center)

【図8】粒子内部の加工例の光学顕微鏡像(白い部分が
集束イオンビームで除かれた領域)
FIG. 8 is an optical microscope image of a processing example inside a particle (a white portion is an area removed by a focused ion beam).

【図9】粒子内部の加工例の原子間力顕微鏡像(正方形
に加工した部分)
FIG. 9 is an atomic force microscope image of a processed example of the inside of a particle (a part processed into a square).

【図10】粒子内部の加工例の原子間力顕微鏡像(2種
の線(帯状構造)の一部)
FIG. 10 is an atomic force microscope image (a part of two kinds of lines (band-shaped structure)) of a processing example inside a particle.

【符号の説明】[Explanation of symbols]

1 本発明における基板 2 絶縁体部分 3 良導体部分 4 1枚の薄膜状粒子(酸化型) 5 1枚の薄膜状粒子(還元型) 6 内部がパターン形成された1枚の薄膜状粒子(還元
型) 7 パターン形成された多数の薄膜状粒子(酸化型) 8 パターン形成された多数の薄膜状粒子(還元型) 10 パターン形成された薄膜状粒子 11 半導体部分(特に狭い部分) 12 良導体部分(配線) 13 ソース電極相当の良導体部分(厚さ方向の電流量
を確保する広い部分) 14 ドレイン電極相当の良導体部分(厚さ方向の電流
量を確保する広い部分) 15 良導体部分(半導体側はソース電極相当) 16 良導体部分(半導体側はドレイン電極相当) 17 高抵抗にした良導体部分 18 外部配線との接続部分(厚さ方向の電流量を確保
する広い部分) 20 薄い絶縁体部分 30 ゲート電極相当の良導体部分(配線、特に集積回
路などの場合には全面ではない) 40 絶縁体部分 50 外部の良導体部分(配線)
1 Substrate 2 in the Present Invention Insulator Part 3 Good Conductor Part 4 1 Thin Film Particle (Oxidation Type) 5 1 Thin Film Particle (Reduction Type) 6 1 Thin Film Particle with Internal Pattern Formed (Reduction Type) ) 7 A large number of patterned thin film particles (oxidized type) 8 A large number of patterned thin film particles (reduced type) 10 A patterned thin film particle 11 Semiconductor part (particularly narrow part) 12 Good conductor part (wiring) ) 13 good conductor part corresponding to source electrode (wide part that secures current amount in thickness direction) 14 good conductor part corresponding to drain electrode (wide part that secures current amount in thickness direction) 15 good conductor part (source electrode on the semiconductor side) 16 Good conductor part (semiconductor side is equivalent to drain electrode) 17 High conductor good conductor part 18 Connection part with external wiring (wide part that secures current amount in thickness direction) 20 Thin Insulator portion 30 gate electrode substantial good conductor portion (wiring, especially not the entire surface in the case of such an integrated circuit) 40 insulator portion 50 outside of the conductor portion (wiring)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/288 H01L 21/288 M 21/3205 29/06 601N 29/06 601 21/88 B 51/00 29/28 Fターム(参考) 4G046 EA06 EB00 EB06 EB13 EC02 EC03 EC05 EC06 4M104 BB36 DD21 DD51 DD65 DD78 DD79 DD81 5F033 HH00 HH35 PP26 QQ00 QQ14 QQ53 QQ59 QQ64 QQ65 QQ73 QQ91 WW01 WW02 WW03 WW04 5G301 DA18 DD10 5G307 GA08 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 21/288 H01L 21/288 M 21/3205 29/06 601N 29/06 601 21/88 B 51/00 29/28 F-term (reference) 4G046 EA06 EB00 EB06 EB13 EC02 EC03 EC05 EC06 4M104 BB36 DD21 DD51 DD65 DD78 DD79 DD81 5F033 HH00 HH35 PP26 QQ00 QQ14 QQ53 QQ59 QQ64 QQ65 QQ73 QQ91 WW01 WW10 5W02 WW02 WW02 5W03 WW02 5W05 WW02 WW02 WW02 WW02 WW02 WW02 WW02 WW05 WW02

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 (a)黒鉛を酸化して得られる、厚さが
0.4nm〜10μm、平面方向の大きさが厚さの2倍
以上で、比誘電率が15以上の液体に親液性があり、炭
素からなる骨格を持つ、酸化型の単独または複数個の薄
膜状粒子、または、その酸化型の薄膜状粒子が複数個で
積層かつ互いに結合した酸化型の積層集合体、または、
(b)それらの酸化型の薄膜状粒子や酸化型の薄膜状粒
子の積層集合体を酸素含有率が0〜35wt%になるよ
うに部分的または完全に還元して得られる還元型の単独
または複数個の薄膜状粒子またはその還元型の積層集合
体と、(c)基板とが互いに接触されて構成された構造
物。
1. A lyophilic liquid (a) which is obtained by oxidizing graphite and has a thickness of 0.4 nm to 10 μm, a size in the plane direction of at least twice the thickness, and a relative dielectric constant of 15 or more. Having a skeleton made of carbon, a single or a plurality of oxidation type thin film particles, or an oxidation type laminated assembly in which a plurality of the oxidation type thin film particles are laminated and bonded to each other, or
(B) A reducing type alone or a reducing type obtained by partially or completely reducing the oxygen-containing thin film-like particles or a laminated aggregate of the oxide-type thin film-like particles so that the oxygen content becomes 0 to 35 wt%. A structure comprising a plurality of thin-film particles or a reduction-type laminated assembly thereof and (c) a substrate in contact with each other.
【請求項2】 (c1)電気の絶縁体、半導体、良導体
のいずれか1種からなる基板、または、(c2)電気の
絶縁体、半導体、良導体の2種以上からなり、それらが
位置選択的に配置された内部構造を持つ基板、を用いる
ことを特徴とする請求項1に記載の構造物。
2. A substrate comprising (c1) an electrical insulator, a semiconductor, or a good conductor, or a (c2) electrical insulator, semiconductor, or a good conductor, which are position-selective. The structure according to claim 1, wherein a substrate having an internal structure arranged in is used.
【請求項3】 酸化型または還元型の、複数個の薄膜状
粒子または複数個の積層集合体が位置選択的に配置され
て基板に載ることによりパターン形成されていることを
特徴とする請求項1および請求項2に記載の構造物。
3. A pattern is formed by arranging a plurality of oxidized or reduced thin film particles or a plurality of laminated aggregates on a substrate in a position-selective manner. The structure according to claim 1 and claim 2.
【請求項4】 酸化型または還元型の、単独または複数
個の薄膜状粒子または積層集合体の内部が位置選択的に
パターン形成されていることを特徴とする請求項1〜請
求項3に記載の構造物。
4. The oxidation-reducing or reducing-type single or plural thin-film particles or laminated aggregates are position-selectively patterned inside. Structure.
【請求項5】 薄膜状粒子または積層集合体の還元の程
度と、薄膜状粒子または積層集合体をパターン形成して
得られる単独または複数の帯状構造などの各種構造の形
状、幅、厚さ(層数)、炭素骨格の方位、複数の層の積
層状態、炭素骨格に終端結合している原子の種類などを
変化させ、電子状態を変化させることで、電気的性質を
変化させることを特徴とする請求項1〜請求項4に記載
の構造物。
5. The degree of reduction of the thin film particles or the laminated aggregate and the shape, width and thickness of various structures such as a single structure or a plurality of strip-shaped structures obtained by patterning the thin film particles or the laminated aggregate ( The number of layers), the orientation of the carbon skeleton, the stacking state of a plurality of layers, the type of atoms end-bonded to the carbon skeleton, etc. are changed to change the electronic state, thereby changing the electrical properties. The structure according to any one of claims 1 to 4.
【請求項6】 電界効果ドーピング法を用いて電気的性
質を変化させることを特徴とする請求項1〜請求項5に
記載の構造物。
6. The structure according to claim 1, wherein the electrical property is changed by using a field effect doping method.
【請求項7】 黒鉛を酸化して得られる、厚さが0.4
nm〜10μm、平面方向の大きさが厚さの2倍以上
で、比誘電率が15以上の液体に親液性があり、炭素か
らなる骨格を持つ、酸化型の単独または複数個の薄膜状
粒子、またはその薄膜状粒子が複数個で積層かつ互いに
結合した酸化型の積層集合体を、基板の表面に載せてか
ら、部分的または完全な還元によりその薄膜状粒子また
は薄膜状粒子の積層集合体の酸素含有率を0〜35wt
%とする請求項1および請求項2に記載の構造物の作製
方法。
7. The thickness obtained by oxidizing graphite is 0.4.
nm to 10 μm, the size in the planar direction is twice or more the thickness, the relative dielectric constant is 15 or more, and the liquid is lyophilic and has a carbon skeleton. Particles, or a thin film-like particle or a thin film-like particle stacking assembly by placing an oxidation-type stacking assembly in which a plurality of thin film-like particles are stacked and bonded to each other on a surface of a substrate and then partially or completely reduced. Oxygen content of body is 0 ~ 35wt
%, The method for producing a structure according to claim 1 or 2.
【請求項8】 酸化型の薄膜状粒子を比誘電率が15以
上の液体に分散させた分散液を用いて、位置選択的に基
板に載せることでパターン形成することを特徴とする請
求項1〜請求項3に記載の構造物の作製方法。
8. A pattern is formed by position-selectively placing on a substrate using a dispersion liquid in which oxidized thin film particles are dispersed in a liquid having a relative dielectric constant of 15 or more. ~ The method for producing a structure according to claim 3.
【請求項9】 基板の表面に載せた酸化型または還元型
の単独または複数個の薄膜状粒子または積層集合体の内
部の一部を位置選択的に、除くこと、または薄くするこ
とでパターン形成することを特徴とする請求項1〜請求
項4に記載の構造物の作製方法。
9. A pattern is formed by position-selectively removing or thinning a part of the inside of a single or plural thin-film particles or a laminated aggregate of the oxidation type or the reduction type placed on the surface of a substrate. The method for producing a structure according to claim 1, wherein:
【請求項10】 水に対する接触角が40度以下になる
ように表面の親和性を高めた基板を用いることを特徴と
する請求項1〜請求項4に記載の構造物の作製方法。
10. The method of manufacturing a structure according to claim 1, wherein a substrate having a surface affinity increased so that a contact angle with water is 40 degrees or less is used.
【請求項11】 加熱または加熱と水への浸漬により基
板の表面の親和性を高めることを特徴とする請求項10
に記載の構造物の作製方法。
11. The affinity of the surface of the substrate is increased by heating or heating and immersion in water.
A method for manufacturing the structure according to.
【請求項12】 加熱、還元剤または電極反応により還
元することを特徴とする請求項1〜請求項4に記載の構
造物の作製方法。
12. The method for producing a structure according to claim 1, wherein the structure is reduced by heating, a reducing agent or an electrode reaction.
【請求項13】 昇温速度を10℃/時間以下として、
150℃以上の最高温度で加熱して還元することを特徴
とする請求項12に記載の構造物の作製方法。
13. A heating rate of 10 ° C./hour or less,
The method for producing a structure according to claim 12, wherein the structure is heated and reduced at a maximum temperature of 150 ° C. or higher.
【請求項14】 請求項1〜請求項6に記載の構造物を
用いたトランジスター、抵抗器、コンデンサーなどの電
子素子。
14. An electronic device, such as a transistor, a resistor, or a capacitor, which uses the structure according to any one of claims 1 to 6.
【請求項15】 請求項1〜請求項6に記載の構造物を
用いた配線用の導体部分。
15. A conductor portion for wiring, which uses the structure according to any one of claims 1 to 6.
【請求項16】 請求項1〜請求項6に記載の構造物を
用いた集積回路。
16. An integrated circuit using the structure according to claim 1. Description:
【請求項17】 請求項1〜請求項6に記載の構造物を
用いた太陽電池や発光素子などの光電変換素子。
17. A photoelectric conversion element, such as a solar cell or a light emitting element, which uses the structure according to any one of claims 1 to 6.
【請求項18】 請求項1〜請求項6に記載の構造物を
用いた発熱体。
18. A heating element using the structure according to claim 1.
【請求項19】 請求項1〜請求項6に記載の構造物を
用いた光学素子。
19. An optical element using the structure according to any one of claims 1 to 6.
【請求項20】 請求項1〜請求項6に記載の構造物を
用いた安定な記録材料。
20. A stable recording material using the structure according to any one of claims 1 to 6.
JP2002032881A 2002-02-08 2002-02-08 Structure mounting thin-film type particle having skeleton composed of carbon on substrate and its manufacturing method Pending JP2003231097A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002032881A JP2003231097A (en) 2002-02-08 2002-02-08 Structure mounting thin-film type particle having skeleton composed of carbon on substrate and its manufacturing method
US10/359,684 US20030186059A1 (en) 2002-02-08 2003-02-07 Structure matter of thin film particles having carbon skeleton, processes for the production of the structure matter and the thin-film particles and uses thereof
US11/540,517 US20070160842A1 (en) 2002-02-08 2006-10-02 Structure matter of thin-film particles having carbon skeleton, processes for the production of the structure matter and the thin-film particles and uses thereof
US12/457,325 US20090252891A1 (en) 2002-02-08 2009-06-08 Structure matter of thin film particles having carbon skeleton, processes for the production of the structure matter and the thin-film particles and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002032881A JP2003231097A (en) 2002-02-08 2002-02-08 Structure mounting thin-film type particle having skeleton composed of carbon on substrate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003231097A true JP2003231097A (en) 2003-08-19

Family

ID=27775865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032881A Pending JP2003231097A (en) 2002-02-08 2002-02-08 Structure mounting thin-film type particle having skeleton composed of carbon on substrate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003231097A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351602A (en) * 2003-05-30 2004-12-16 Fuji Xerox Co Ltd Carbon nano-tube device, producing method thereof and carbon nano-tube transfer body
JP2005123428A (en) * 2003-10-17 2005-05-12 Fuji Xerox Co Ltd Capacitor and its manufacturing method
JP2006008454A (en) * 2004-06-25 2006-01-12 Fuji Xerox Co Ltd Carbon particulate structure, manufacturing method therefor, carbon particulate transcript and solution for manufacturing the carbon particulate structure, carbon particulate structure electronic element using the carbon particulate structure, manufacturing method therefor and integrated circuit
JP2007335532A (en) * 2006-06-13 2007-12-27 Hokkaido Univ Graphene intergrated circuit
JPWO2006028052A1 (en) * 2004-09-06 2008-05-08 財団法人北九州産業学術推進機構 Mold for molding, method for producing the same, and method for producing a molded body using the die
WO2009004906A1 (en) * 2007-07-04 2009-01-08 Tokyo Electron Limited Substrate treatment method, substrate treatment apparatus, reducing agent sheet, and computer-readable storage medium
JP2009070911A (en) * 2007-09-11 2009-04-02 Fujitsu Ltd Wiring structure, semiconductor device, and manufacturing method of wiring structure
JP2009259716A (en) * 2008-04-18 2009-11-05 Mitsubishi Gas Chem Co Inc Conductor and its method for manufacturing
JP2010123280A (en) * 2008-11-17 2010-06-03 Mitsubishi Gas Chemical Co Inc Method of manufacturing conductor
JP2010248066A (en) * 2009-04-16 2010-11-04 Northrop Grumman Systems Corp Graphene oxide deoxygenation
JP2010258246A (en) * 2009-04-27 2010-11-11 Hitachi Ltd Device for electrically joining graphene with metal electrode and electronic device, electronic integrated circuit, and opto/electronic integrated circuit using the same
JP2010540405A (en) * 2007-10-11 2010-12-24 ユニベルシテ ピエール エ マリー キュリー(パリ シズエム) Method for fixing a lamellar material sheet on a suitable substrate
JP2011509359A (en) * 2007-12-27 2011-03-24 シュルンベルジェ ホールディングス リミテッド Downhole detection system using carbon nanotube FET
JP2011168449A (en) * 2010-02-19 2011-09-01 Fuji Electric Co Ltd Method for manufacturing graphene film
JP2012015481A (en) * 2010-06-01 2012-01-19 Sony Corp Field effect transistor manufacturing method, field effect transistor and semiconductor graphene oxide manufacturing method
WO2012070218A1 (en) * 2010-11-22 2012-05-31 パナソニック株式会社 Production method for oxidized carbon thin-film, element having oxidized carbon thin-film, and production method therefor
JP2012211034A (en) * 2011-03-31 2012-11-01 Taiyo Nippon Sanso Corp Method for producing highly oriented carbon nanotube
JP2013028526A (en) * 2011-06-24 2013-02-07 Semiconductor Energy Lab Co Ltd Multilayer graphene and power storage device
JP2013058598A (en) * 2011-09-08 2013-03-28 Sumitomo Chemical Co Ltd Electrode for organic semiconductor element and method for manufacturing the same
JP2013058599A (en) * 2011-09-08 2013-03-28 Sumitomo Chemical Co Ltd Electrode for organic semiconductor element and method for manufacturing the same
JP5240741B2 (en) * 2008-12-04 2013-07-17 国立大学法人大阪大学 Pattern formation method
JP2013533189A (en) * 2010-05-18 2013-08-22 国家納米科学中心 Graphene-based conductive material and method for preparing the same
JP2013536149A (en) * 2010-08-19 2013-09-19 インターナショナル・ビジネス・マシーンズ・コーポレーション Method for increasing the conductivity of graphene films
US8778701B2 (en) 2010-11-22 2014-07-15 Panasonic Corporation Method for producing spin injection electrode
JP2014166676A (en) * 2014-02-24 2014-09-11 Fujitsu Ltd Method of growing carbon structure, method of producing sheet-like structure and method of producing semiconductor device
KR101472592B1 (en) * 2005-10-14 2014-12-15 더 트러스티즈 오브 프린스턴 유니버시티 Thermally exfoliated graphite oxide
KR20150037763A (en) * 2012-06-21 2015-04-08 모나쉬 유니버시티 Conductive portions in insulating materials
JP2017508695A (en) * 2013-12-17 2017-03-30 ノキア テクノロジーズ オサケユイチア Method and apparatus for patterning graphene oxide
JP2017142154A (en) * 2016-02-10 2017-08-17 日本電信電話株式会社 Sensor
JP2018078280A (en) * 2016-11-08 2018-05-17 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor having high photoelectric conversion efficiency and low dark current
JP2021005712A (en) * 2015-05-29 2021-01-14 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351602A (en) * 2003-05-30 2004-12-16 Fuji Xerox Co Ltd Carbon nano-tube device, producing method thereof and carbon nano-tube transfer body
JP2005123428A (en) * 2003-10-17 2005-05-12 Fuji Xerox Co Ltd Capacitor and its manufacturing method
JP2006008454A (en) * 2004-06-25 2006-01-12 Fuji Xerox Co Ltd Carbon particulate structure, manufacturing method therefor, carbon particulate transcript and solution for manufacturing the carbon particulate structure, carbon particulate structure electronic element using the carbon particulate structure, manufacturing method therefor and integrated circuit
JPWO2006028052A1 (en) * 2004-09-06 2008-05-08 財団法人北九州産業学術推進機構 Mold for molding, method for producing the same, and method for producing a molded body using the die
JP4753045B2 (en) * 2004-09-06 2011-08-17 財団法人北九州産業学術推進機構 Mold for molding, method for producing the same, and method for producing a molded body using the die
KR101472592B1 (en) * 2005-10-14 2014-12-15 더 트러스티즈 오브 프린스턴 유니버시티 Thermally exfoliated graphite oxide
JP2007335532A (en) * 2006-06-13 2007-12-27 Hokkaido Univ Graphene intergrated circuit
WO2009004906A1 (en) * 2007-07-04 2009-01-08 Tokyo Electron Limited Substrate treatment method, substrate treatment apparatus, reducing agent sheet, and computer-readable storage medium
JP2009070911A (en) * 2007-09-11 2009-04-02 Fujitsu Ltd Wiring structure, semiconductor device, and manufacturing method of wiring structure
JP2010540405A (en) * 2007-10-11 2010-12-24 ユニベルシテ ピエール エ マリー キュリー(パリ シズエム) Method for fixing a lamellar material sheet on a suitable substrate
JP2011509359A (en) * 2007-12-27 2011-03-24 シュルンベルジェ ホールディングス リミテッド Downhole detection system using carbon nanotube FET
JP2009259716A (en) * 2008-04-18 2009-11-05 Mitsubishi Gas Chem Co Inc Conductor and its method for manufacturing
JP2010123280A (en) * 2008-11-17 2010-06-03 Mitsubishi Gas Chemical Co Inc Method of manufacturing conductor
JP5240741B2 (en) * 2008-12-04 2013-07-17 国立大学法人大阪大学 Pattern formation method
JP2010248066A (en) * 2009-04-16 2010-11-04 Northrop Grumman Systems Corp Graphene oxide deoxygenation
TWI511922B (en) * 2009-04-16 2015-12-11 Northrop Grumman Systems Corp Graphene oxide deoxygenation
JP2010258246A (en) * 2009-04-27 2010-11-11 Hitachi Ltd Device for electrically joining graphene with metal electrode and electronic device, electronic integrated circuit, and opto/electronic integrated circuit using the same
JP2011168449A (en) * 2010-02-19 2011-09-01 Fuji Electric Co Ltd Method for manufacturing graphene film
JP2013533189A (en) * 2010-05-18 2013-08-22 国家納米科学中心 Graphene-based conductive material and method for preparing the same
JP2012015481A (en) * 2010-06-01 2012-01-19 Sony Corp Field effect transistor manufacturing method, field effect transistor and semiconductor graphene oxide manufacturing method
JP2013536149A (en) * 2010-08-19 2013-09-19 インターナショナル・ビジネス・マシーンズ・コーポレーション Method for increasing the conductivity of graphene films
JP5036921B2 (en) * 2010-11-22 2012-09-26 パナソニック株式会社 Manufacturing method of oxidized carbon thin film, element having oxidized carbon thin film, and manufacturing method thereof
WO2012070218A1 (en) * 2010-11-22 2012-05-31 パナソニック株式会社 Production method for oxidized carbon thin-film, element having oxidized carbon thin-film, and production method therefor
US8722430B2 (en) 2010-11-22 2014-05-13 Panasonic Corporation Production method for oxidized carbon thin film, and element having oxidized carbon thin film and production method therefor
US8778701B2 (en) 2010-11-22 2014-07-15 Panasonic Corporation Method for producing spin injection electrode
JP2012211034A (en) * 2011-03-31 2012-11-01 Taiyo Nippon Sanso Corp Method for producing highly oriented carbon nanotube
JP2013028526A (en) * 2011-06-24 2013-02-07 Semiconductor Energy Lab Co Ltd Multilayer graphene and power storage device
JP2013058598A (en) * 2011-09-08 2013-03-28 Sumitomo Chemical Co Ltd Electrode for organic semiconductor element and method for manufacturing the same
JP2013058599A (en) * 2011-09-08 2013-03-28 Sumitomo Chemical Co Ltd Electrode for organic semiconductor element and method for manufacturing the same
KR20150037763A (en) * 2012-06-21 2015-04-08 모나쉬 유니버시티 Conductive portions in insulating materials
JP2015528198A (en) * 2012-06-21 2015-09-24 モナッシュ ユニバーシティMonash University Conductive part of insulating material
KR102081669B1 (en) 2012-06-21 2020-02-26 모나쉬 유니버시티 Conductive portions in insulating materials
JP2017508695A (en) * 2013-12-17 2017-03-30 ノキア テクノロジーズ オサケユイチア Method and apparatus for patterning graphene oxide
JP2014166676A (en) * 2014-02-24 2014-09-11 Fujitsu Ltd Method of growing carbon structure, method of producing sheet-like structure and method of producing semiconductor device
JP2021005712A (en) * 2015-05-29 2021-01-14 株式会社半導体エネルギー研究所 Semiconductor device
JP2017142154A (en) * 2016-02-10 2017-08-17 日本電信電話株式会社 Sensor
JP2018078280A (en) * 2016-11-08 2018-05-17 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor having high photoelectric conversion efficiency and low dark current
US11239274B2 (en) 2016-11-08 2022-02-01 Samsung Electronics Co., Ltd. Image sensor for high photoelectric conversion efficiency and low dark current
JP7226910B2 (en) 2016-11-08 2023-02-21 三星電子株式会社 Image sensor capable of realizing high photoelectric conversion efficiency and low dark current
US11888016B2 (en) 2016-11-08 2024-01-30 Samsung Electronics Co., Ltd. Image sensor for high photoelectric conversion efficiency and low dark current

Similar Documents

Publication Publication Date Title
JP2003231097A (en) Structure mounting thin-film type particle having skeleton composed of carbon on substrate and its manufacturing method
Glavin et al. Emerging applications of elemental 2D materials
US20070160842A1 (en) Structure matter of thin-film particles having carbon skeleton, processes for the production of the structure matter and the thin-film particles and uses thereof
Chang et al. Regulating infrared photoresponses in reduced graphene oxide phototransistors by defect and atomic structure control
Bae et al. Engineered nanocarbon mixing for enhancing the thermoelectric properties of a telluride-PEDOT: PSS nanocomposite
KR101119985B1 (en) Single-layer carbon nanotube and aligned single-layer carbon nanotube bulk structure, and their production process, production apparatus and use
Xiao et al. Directed Integration of Tetracyanoquinodimethane‐Cu Organic Nanowires into Prefabricated Device Architectures
KR20110016287A (en) Coating method with colloidal graphine oxides
KR20130038836A (en) Transparent electrodes based on graphene and grid hybrid structures
JP2004351602A (en) Carbon nano-tube device, producing method thereof and carbon nano-tube transfer body
WO2009139331A9 (en) Carbon wire, nanostructure composed of carbon film, method for producing the carbon wire, and method for producing nanostructure
Su et al. Transfer printing of graphene strip from the graphene grown on copper wires
JPWO2006009073A1 (en) Silicon nanosheet, nanosheet solution and production method thereof, nanosheet-containing composite, and nanosheet aggregate
KR101273695B1 (en) Method for forming graphene pattern and method for manufacturing electronic element having graphene pattern
Singh et al. Graphene: Potential material for nanoelectronics applications
KR20100091998A (en) A deposit and electrical devices comprising the same
Das et al. Facile synthesis of multi-layer graphene by electrochemical exfoliation using organic solvent
CN1946634A (en) Nanostructures and method for making such nanostructures
CN109712742A (en) A kind of graphene crystal film and preparation method thereof with highly conductive ability
KR20140142382A (en) Method for patterning graphene using laser
Xu et al. Silicene quantum dots confined in few-layer siloxene nanosheets for blue-light-emitting diodes
Hata et al. Enhancement of p-type thermoelectric power factor by low-temperature calcination in carbon nanotube thermoelectric films containing cyclodextrin polymer and Pd
Goniszewski et al. Self‐supporting graphene films and their applications
Kurra et al. Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns
CN108807562B (en) Photoelectric detector and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071003