JP2003217370A - Magnesium diboride superconductive wire - Google Patents

Magnesium diboride superconductive wire

Info

Publication number
JP2003217370A
JP2003217370A JP2002014718A JP2002014718A JP2003217370A JP 2003217370 A JP2003217370 A JP 2003217370A JP 2002014718 A JP2002014718 A JP 2002014718A JP 2002014718 A JP2002014718 A JP 2002014718A JP 2003217370 A JP2003217370 A JP 2003217370A
Authority
JP
Japan
Prior art keywords
pipe
alloy
wire
superconducting wire
mgb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002014718A
Other languages
Japanese (ja)
Other versions
JP4058951B2 (en
Inventor
Katsumi Miyashita
克己 宮下
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002014718A priority Critical patent/JP4058951B2/en
Publication of JP2003217370A publication Critical patent/JP2003217370A/en
Application granted granted Critical
Publication of JP4058951B2 publication Critical patent/JP4058951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide magnesium diboride superconductive wire capable of manufacturing a superconductive wire of a multicore structure with high critical current density. <P>SOLUTION: Mixed powder 11 of Mg and B is filled in an Nb pipe or an Nb-Ta alloy pipe 12 not forming a solid solution (not reacting) with Mg and reacting with B only in high temperature, and a Cu pipe 14 is covered on an outer circumference of the Nb pipe or Nb-Ta alloy pipe 12 for improving drawability. Or, by arranging a Ta pipe 13 in an inner side of the Nb or Nb-Ta alloy pipe, a (Mg+B)/Ta/Nb/Cu (or a Cu alloy) or (Mg+B)/Ta/Nb-Ta/Cu (or the Cu alloy) structure is provided. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高磁界を発生する
ための超電導マグネットや伝導冷却用マグネットに用い
られる二ホウ化マグネシウム超電導線材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesium diboride superconducting wire used for a superconducting magnet for generating a high magnetic field or a conduction cooling magnet.

【0002】[0002]

【従来の技術】MgB2(二ホウ化マグネシウム)は、
Mg(マグネシウム)とB(ホウ素)の原子が交互に層
状に積み重なった結晶構造を持ち、超伝導特性を有する
ものであることが知られている。このMgB2は、金属
として電線などに加工して使いやすいものの中において
優れた超伝導転移温度を有している。
2. Description of the Related Art MgB 2 (magnesium diboride) is
It is known to have a crystal structure in which Mg (magnesium) and B (boron) atoms are alternately stacked in layers to have superconducting properties. This MgB 2 has an excellent superconducting transition temperature as a metal which is easy to be processed into an electric wire or the like.

【0003】従来、MgB2を利用したMgB2多芯構造
超電導線の作製方法として、例えば、次に記述すると
の製法が試みられている。
Conventionally, as a method for manufacturing a MgB 2 multi-core structure superconducting wire using MgB 2, for example, then the method with the described have been attempted.

【0004】MgB2粉末を出発原料粉末とする方法
では、反応済みのMgB2超電導粉末をTa、Ni、F
e等の金属パイプに充填し、その外側にCuパイプを被
覆したのち線引き加工してシングル六角線とし、それを
複数本パイプ内に組み込んで多芯構造としたのち伸線す
る。最後に、その多芯線を800〜900℃の範囲で熱
処理し、固相反応によってMgB2粉末同士を結合させ
て超電導線とする。
In the method of using MgB 2 powder as the starting material powder, the reacted MgB 2 superconducting powder is Ta, Ni, F.
It is filled in a metal pipe such as e, coated with a Cu pipe on the outer side thereof, and then drawn to form a single hexagonal wire. A single hexagonal wire is incorporated into a plurality of pipes to form a multi-core structure and then drawn. Finally, the multifilamentary wire is heat-treated in the range of 800 to 900 ° C., and the MgB 2 powders are bonded to each other by a solid phase reaction to form a superconducting wire.

【0005】MgとBの混合粉末を出発材料とし、T
aパイプに充填する方法では、MgとBの微粒粉末をモ
ル比が約Mg:B=1:2となるように混合した後、M
gと反応しないTaパイプに充填し、その外周をCuパ
イプで被覆して押出し加工した後、線引き加工してシン
グル六角線とし、それを複数本パイプ内に組み込んで多
芯構造とする。この多芯構造のビレットを再度、押出し
加工して伸線し、最後に熱処理してMgB2多芯構造超
電導線を生成する。
Starting from a mixed powder of Mg and B as a starting material, T
In the method of filling the a pipe, fine powders of Mg and B are mixed so that the molar ratio is about Mg: B = 1: 2, and then M
It is filled in a Ta pipe that does not react with g, the outer periphery thereof is covered with a Cu pipe and extruded, and then drawn to form a single hexagonal wire, which is incorporated into a plurality of pipes to form a multi-core structure. This multi-core structure billet is extruded again, drawn, and finally heat-treated to produce a MgB 2 multi-core structure superconducting wire.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の方法に
おいては、次に記述するような問題があった。上記の
方法では、出発原料であるMgB2粉末の硬度が高く
(硬く)、延性が無いために加工性に難があり、加工で
きたとしても均一な断面の多芯線とすることが困難であ
った。加えて、断線防止のために、線材の引っ張り強度
を上げる必要性があり、線材全断面積に対するコア部分
のMgB2粉末比率(コア比)を高くできないため、結
果として被覆金属部分である非超電導部分の占積率が増
加し、線材オーバーオールの臨界電流密度が低下する傾
向にあった。
However, the conventional method has the following problems. In the above method, since the starting material MgB 2 powder has high hardness (hardness) and lacks ductility, it has a difficulty in workability, and even if it can be processed, it is difficult to form a multifilamentary wire having a uniform cross section. It was In addition, in order to prevent disconnection, it is necessary to increase the tensile strength of the wire, and the MgB 2 powder ratio (core ratio) of the core part to the total cross-sectional area of the wire cannot be increased, resulting in the non-superconducting metal part of the coated metal part. The space factor of the part increased and the critical current density of the wire overall tended to decrease.

【0007】これらの理由から、MgB2超電導粉体を
出発材とした線材の断面構造は、単芯線あるいはフィラ
メント数が10本以下と少なく、フィラメント径も10
0μm以上ある多芯線構造しか作製することができな
い。これは、超電導線の交流損失低減や磁気的不安定性
低減(フラックスジャンプ防止)の観点から極細多芯構
造を有する実用超電導線の構造を満足するものではな
い。
For these reasons, the cross-sectional structure of a wire starting from MgB 2 superconducting powder has a small number of single-core wires or 10 filaments or less, and a filament diameter of 10 or less.
Only a multi-core wire structure having a thickness of 0 μm or more can be produced. This does not satisfy the structure of a practical superconducting wire having an ultrafine multicore structure from the viewpoint of reducing AC loss of the superconducting wire and reducing magnetic instability (prevention of flux jump).

【0008】また、MgB2の表面に酸化膜やMgB4
の異相(絶縁相あるいは常電導相)が存在していると、
最終熱処理しても粒界部分に異相が析出するために、個
々の粒子は超電導状態を示しても、粒界部で電流が妨げ
られ臨界電流が向上しない可能性があった。
If a different phase (insulating phase or normal conducting phase) such as an oxide film or MgB 4 exists on the surface of MgB 2 ,
Even after the final heat treatment, a heterogeneous phase is precipitated in the grain boundary portion, so even if each particle exhibits a superconducting state, the current may be obstructed at the grain boundary portion and the critical current may not be improved.

【0009】上記の方法では、の方法に比較してM
gとBの混合粉末を出発材料とすることで、ある程度延
性のあるMgの存在により加工性が向上する。しかし、
TaはMgと反応しないものの、伸線加工するに連れて
Ta部分の断面が乱れ、Ta被覆が破れて外皮のCuと
Mgが部分的に直接接触してしまうことがあった。そう
なると、最終的なMgB2生成熱処理時に融点が650
℃と比較的低いMgがCu側に拡散してCu−Mg合金
が生成し、コア部分が化学量論組成(Mg:B=1:
2)からずれてB過剰(ボロンリッチ)となり、超電導
特性が劣化してしまうことがある。特に、多芯線になっ
た場合、Ta被覆厚さは数十μm以下まで低下するた
め、乱れによって部分的に被覆が破れてしまう可能性が
高く、多芯線の臨界電流低下の要因となっていた。
In the above method, M
By using a mixed powder of g and B as a starting material, workability is improved due to the presence of Mg, which is ductile to some extent. But,
Although Ta does not react with Mg, the cross-section of the Ta portion is disturbed as the wire drawing process is performed, and the Ta coating may be broken and Cu and Mg of the outer skin may be partially in direct contact with each other. If so, the melting point is 650 during the final heat treatment for forming MgB 2.
Mg, which is relatively low at ℃, diffuses to the Cu side to form a Cu—Mg alloy, and the core portion has a stoichiometric composition (Mg: B = 1:
There is a case where it deviates from 2) and B becomes excessive (boron rich), and the superconducting property is deteriorated. In particular, in the case of a multifilamentary wire, the Ta coating thickness is reduced to several tens of μm or less, so that there is a high possibility that the coating partially breaks due to turbulence, which is a factor of a decrease in the critical current of the multifilamentary wire. .

【0010】伸線加工に伴う断面の乱れの原因は、1つ
目には、Taの結晶粒が大きいため、粒界部分が少な
く、加工に伴う粒界すべりが、あまり期待できないこ
と、2つ目には、外周に被覆したCuとの密着性が悪く
界面隔離しやすいこと、3つ目には、Cuとの硬さの違
いが大きく、伸線加工時の変形抵抗に大きな差が生じる
こと、等であると推測される。
The cause of the disorder of the cross section due to the wire drawing work is that, firstly, since the crystal grains of Ta are large, the grain boundary portion is small, and the grain boundary slip accompanying the work cannot be expected so much. Eyes have poor adhesion to Cu coated on the outer circumference and are likely to be isolated from the interface. Thirdly, there is a large difference in hardness from Cu and a large difference in deformation resistance during wire drawing. , And so on.

【0011】本発明は、かかる点に鑑みてなされたもの
であり、臨界電流密度の高い多芯構造の超電導線を作製
することができる二ホウ化マグネシウム超電導線材を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a magnesium diboride superconducting wire capable of producing a superconducting wire having a multicore structure having a high critical current density.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明の二ホウ化マグネシウム超電導線材は、Mg
とBの混合粉末、またはMg、Bおよび、その他の添加
元素または化合物粉末を混合した混合粉末を、Nbパイ
プまたはNb−Ta合金パイプ内に充填し、このパイプ
をCu(銅)パイプまたはCu合金パイプで被覆するこ
とにより、(Mg+B)/Nb/Cu(またはCu合
金)、あるいは(Mg+B)/Nb−Ta/Cu(また
はCu合金)構造としたことを特徴としている。
In order to solve the above-mentioned problems, the magnesium diboride superconducting wire of the present invention is made of Mg
And a mixed powder of B and Mg, or a mixed powder of Mg, B, and other additive element or compound powder are filled in an Nb pipe or an Nb-Ta alloy pipe, and this pipe is Cu (copper) pipe or Cu alloy It is characterized by having a (Mg + B) / Nb / Cu (or Cu alloy) or (Mg + B) / Nb-Ta / Cu (or Cu alloy) structure by coating with a pipe.

【0013】即ち、MgとBの混合粉末を、Mgと固溶
せず(反応せず)、かつBとは高温でしか反応しないN
bパイプまたはNb−Ta合金パイプ内に充填し、加え
て伸線加工性を向上させるためNbパイプまたはNb−
Ta合金パイプの外周にCuパイプを被覆した構造とな
る。この構造によれば、Nbは、Taに比較してCuと
の接合性が良好で、加工時の変形抵抗の差も小さい。ま
た、Taを数at%添加したNb−Ta合金は結晶粒が
微細化され、伸線あるいは圧延等の塑性加工時の割れや
乱れを防ぐことができる。ただし、Taは、Nbに比較
してBとの反応温度が高く、約800℃以上の高温でM
gB2生成熱処理をする場合は、混合粉末との接触部分
をTaにしたほうが被覆パイプとBの反応を防止するこ
とができる。
That is, the mixed powder of Mg and B does not form a solid solution with Mg (does not react) and reacts with B only at high temperatures.
Bb pipe or Nb-Ta alloy pipe is filled with Nb pipe or Nb-
The outer periphery of the Ta alloy pipe is covered with a Cu pipe. According to this structure, Nb has a better bondability with Cu than Ta and has a small difference in deformation resistance during processing. In addition, the crystal grains of the Nb-Ta alloy containing Ta at a few at% are made finer, and cracking and disorder during plastic working such as wire drawing or rolling can be prevented. However, Ta has a higher reaction temperature with B than Nb, and Ta has a high reaction temperature of about 800 ° C. or higher.
When the heat treatment for generating gB 2 is performed, it is possible to prevent the reaction between the coated pipe and B by making the contact portion with the mixed powder Ta.

【0014】また、前記NbまたはNb−Ta合金パイ
プの内側にTaパイプを配置することにより、(Mg+
B)/Ta/Nb/Cu(またはCu合金)、あるいは
(Mg+B)/Ta/Nb−Ta/Cu(またはCu合
金)構造としたことを特徴としている。
By arranging the Ta pipe inside the Nb or Nb-Ta alloy pipe, (Mg +
B) / Ta / Nb / Cu (or Cu alloy) or (Mg + B) / Ta / Nb-Ta / Cu (or Cu alloy) structure.

【0015】即ち、MgとBの混合粉末を、Mgと固溶
せず(反応せず)、かつBとは高温でしか反応しないT
aとNbの複合構造パイプ(Ta/Nb構造)、または
TaとNb−Taの複合構造パイプ(Ta/Nb・Ta
構造)内に充填し、加えて伸線加工性を向上させるため
NbパイプまたはNb−Ta合金パイプの外周にCuパ
イプを被覆した構造となる。この構造によれば、上記同
様に、Taを数at%添加したNb−Ta合金は結晶粒
が微細化され、伸線あるいは圧延等の塑性加工時の割れ
や乱れを防ぐことができる。ただし、Taは、Nbに比
較してBとの反応温度が高く、約800℃以上の高温で
MgB2生成熱処理をする場合は、混合粉末との接触部
分をTaにしたほうが被覆パイプとBの反応を防止する
ことができる。また、前記(Mg+B)/Nb/Cu
(またはCu合金)、(Mg+B)/Nb−Ta/Cu
(またはCu合金)、(Mg+B)/Ta/Nb/Cu
(またはCu合金)、あるいは(Mg+B)/Ta/N
b−Ta/Cu(またはCu合金)の構造を有する線材
の複数が集合されたものであることを特徴としている。
That is, the mixed powder of Mg and B does not form a solid solution with Mg (does not react) and reacts with B only at a high temperature.
Composite structure pipe of a and Nb (Ta / Nb structure) or composite structure pipe of Ta and Nb-Ta (Ta / Nb · Ta)
In order to improve the wire drawing workability, the Nb pipe or the Nb-Ta alloy pipe is covered with a Cu pipe on the outer periphery thereof. According to this structure, similarly to the above, in the Nb-Ta alloy to which Ta is added at a few at%, the crystal grains are made finer, and it is possible to prevent cracking and disorder during plastic working such as wire drawing or rolling. However, Ta has a higher reaction temperature with B than Nb, and when the MgB 2 production heat treatment is performed at a high temperature of about 800 ° C. or higher, Ta is better for the contact portion with the mixed powder than for the coated pipe and B. The reaction can be prevented. In addition, (Mg + B) / Nb / Cu
(Or Cu alloy), (Mg + B) / Nb-Ta / Cu
(Or Cu alloy), (Mg + B) / Ta / Nb / Cu
(Or Cu alloy), or (Mg + B) / Ta / N
It is characterized in that a plurality of wire rods having a structure of b-Ta / Cu (or Cu alloy) are aggregated.

【0016】また、前記線材の全断面積に対する混合粉
末部の占積率(混合粉末部断面積/単芯線全断面積=コ
ア比)が0.55以下であることを特徴としている。
Further, the space factor of the mixed powder portion with respect to the total sectional area of the wire (mixed powder portion sectional area / single-core wire total sectional area = core ratio) is 0.55 or less.

【0017】この0.55以下とする理由は、単芯線作
製工程(二ホウ化マグネシウム超電導線材作製工程)に
おいてコア比を高くする、つまり混合粉末部面積の単芯
線全断面積に対する比率を0.55以上に高くすると、
NbやCu等の金属被覆パイプに比較して延性の低いコ
ア部の影響で伸線中に断線する可能性が高くなるからで
ある。特にコア周囲の被覆厚さが数十μm以下まで薄く
なる多芯線に、多数の本二ホウ化マグネシウム超電導線
材を適用した場合、伸線できてもNbやTa等の被覆が
部分的に破れ、最後のMgB2生成熱処理時にMgとC
uが反応して超電導特性の劣化が起きる可能性が非常に
高くなるからである。
The reason for setting the ratio to 0.55 or less is to increase the core ratio in the single core wire manufacturing process (magnesium diboride superconducting wire manufacturing process), that is, the ratio of the mixed powder part area to the total single core wire cross-sectional area. If you raise it above 55,
This is because the possibility of disconnection during wire drawing increases due to the effect of the core portion having a low ductility as compared with a metal-coated pipe such as Nb or Cu. In particular, when a large number of main magnesium diboride superconducting wire rods are applied to a multifilamentary wire whose coating thickness around the core is reduced to several tens of μm or less, even if wire drawing is possible, the coating such as Nb or Ta partially breaks, Mg and C during the final MgB 2 formation heat treatment
This is because there is a very high possibility that u will react to cause deterioration of superconducting properties.

【0018】また、前記線材における混合粉末部以外の
被覆厚さ(t)と、混合粉末部分の半径(=コア半径:
r)との比率(t/r)が0.12以上であることを特
徴としている。
Further, the coating thickness (t) of the wire other than the mixed powder portion and the radius of the mixed powder portion (= core radius:
The ratio (t / r) to r) is 0.12 or more.

【0019】この0.12以上とする理由は、Nb、N
b−Ta、Ta/NbあるいはTa/Nb・Ta被覆パ
イプの厚さが薄すぎると、例え外側のCuパイプ厚さが
厚く、伸線できたとしても断面が乱れてNb等の被覆が
破れ、最後のMgB2生成熱処理時にMgとCuが反応
して超電導特性の劣化が起きる可能性が非常に高くなる
からである。
The reason why the value is 0.12 or more is that Nb, N
If the thickness of b-Ta, Ta / Nb or Ta / Nb / Ta coated pipe is too thin, the thickness of the outer Cu pipe is large, and even if wire drawing is possible, the cross section is disturbed and the coating such as Nb is broken, This is because there is a high possibility that the superconducting characteristics will deteriorate due to the reaction between Mg and Cu during the final heat treatment for forming MgB 2 .

【0020】また、MgB2を生成する本線材への熱処
理として、600℃以上、900℃以下の熱処理を施し
たことを特徴としている。
Further, the present invention is characterized in that a heat treatment at 600 ° C. or higher and 900 ° C. or lower is performed as a heat treatment on the main wire which produces MgB 2 .

【0021】この熱処理を600℃以上、900℃以下
とする理由は、600℃以下の熱処理温度ではMgB2
の生成反応が進まず、臨界電流が向上しないからであ
る。一方、900℃以上の熱処理を行うと、MgB2
晶粒の粗大化が促進され、粒界部分に超電導電流を阻害
する非超電導物質(MgB4、MgやBの酸化物)の析
出が顕著となり、粒界部分で臨界電流が極端に低下する
ため、マクロ的に見た線全体の臨界電流が低下してしま
うからである。
The reason why this heat treatment is performed at 600 ° C. or higher and 900 ° C. or lower is that MgB 2 is used at a heat treatment temperature of 600 ° C. or lower.
This is because the production reaction of does not proceed and the critical current does not improve. On the other hand, when heat treatment is performed at 900 ° C. or higher, coarsening of MgB 2 crystal grains is promoted, and precipitation of non-superconducting substances (MgB 4 , oxides of Mg and B) that obstructs superconducting current becomes remarkable at grain boundaries. The reason is that the critical current is extremely reduced at the grain boundary portion, so that the critical current of the entire line seen from a macro perspective is reduced.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings.

【0023】(実施の形態)図1は、本発明の実施の形
態に係るMgB2超電導線材の構成を示す断面図であ
る。
(Embodiment) FIG. 1 is a sectional view showing a structure of a MgB 2 superconducting wire according to an embodiment of the present invention.

【0024】この図1に示すMgB2超電導線材10
は、MgとBを約1:2のモル比で混合した粉末(混合
粉末)11を、NbやNb−Ta合金パイプ12に充填
するか、または、Nb−Ta合金パイプ12の内側に配
置したTaパイプ13との複合パイプ内に充填して粉体
をプレスし、その外側をCuパイプ14で被覆すること
によって形成したものである。
The MgB 2 superconducting wire 10 shown in FIG.
Is filled with Nb or Nb-Ta alloy pipe 12 with a powder (mixed powder) 11 in which Mg and B are mixed in a molar ratio of about 1: 2, or is arranged inside Nb-Ta alloy pipe 12. It is formed by filling a composite pipe with the Ta pipe 13 and pressing the powder, and coating the outside with a Cu pipe 14.

【0025】このMgB2超電導線材10を、さらに、
パイプの前端と後端に栓をして単芯ビレットとし、押出
し加工後に引き抜き伸線加工して細線化し、最後に六角
ダイスで六角断面のシングル線(単芯線)とする。この
単芯線である六角線を複数束ねてCuまたはCu−Ni
パイプ等に組み込み、パイプの前端と後端に栓をして多
芯ビレットとし、押出し加工後に引き抜き伸線加工して
細線化し、最終熱処理をしてMgとBを反応させること
によって、MgB2多芯超電導線を形成することができ
る。
This MgB 2 superconducting wire 10 is further
A single core billet is obtained by plugging the front and rear ends of the pipe, and after extrusion, drawing and drawing to make a fine wire, and finally using a hexagon die to make a single wire (single core wire) with a hexagonal cross section. Cu or Cu-Ni is formed by bundling a plurality of hexagonal wires that are single-core wires.
Assembled into a pipe, etc., plug the front and rear ends of the pipe to form a multi-core billet, and after extruding, draw wire drawing to make a fine wire, and finally heat-treat to react Mg and B, thereby increasing the MgB 2 content. A core superconducting wire can be formed.

【0026】このようなMgB2超電導線材10およ
び、MgB2超電導線材10を用いたMgB2多芯超電導
線の実際の作製方法を、図2の作製工程の説明図を参照
して説明する。
An actual manufacturing method of such a MgB 2 superconducting wire 10 and a MgB 2 multi-core superconducting wire using the MgB 2 superconducting wire 10 will be described with reference to the explanatory views of the manufacturing process of FIG.

【0027】まず、工程201において、平均粒子径
0.1μmの非晶質(アモルファス)B粉末と、平均粒
径20μmのMg粉末をモル比でMg:B=1:2とな
るように混合することによって、MgとBの混合粉末1
1を得た。
First, in step 201, amorphous B powder having an average particle diameter of 0.1 μm and Mg powder having an average particle diameter of 20 μm are mixed in a molar ratio of Mg: B = 1: 2. By this, mixed powder of Mg and B 1
Got 1.

【0028】工程202において、混合粉末11を内径
18mm、外径19mmのTaパイプ13に充填し、こ
れを工程203において、プレスして粉末充填率を62
%とした。また、粉末を充填したTaパイプ13の外側
に、内径19.1mm、外径22mmのNb−1at%
Taパイプ(以下、Nb−Ta合金パイプという)12
を被覆し、その外側に内径22.1mm、外径28mm
のCuパイプ14を被覆した。これによって、MgB2
超電導線材10を得た。
In step 202, the mixed powder 11 is filled in a Ta pipe 13 having an inner diameter of 18 mm and an outer diameter of 19 mm, and this is pressed in step 203 so that the powder filling rate is 62.
%. Also, on the outside of the Ta pipe 13 filled with powder, Nb-1 at% with an inner diameter of 19.1 mm and an outer diameter of 22 mm.
Ta pipe (hereinafter referred to as Nb-Ta alloy pipe) 12
The inner diameter is 22.1 mm and the outer diameter is 28 mm.
Of Cu pipe 14 was coated. As a result, MgB 2
Superconducting wire 10 was obtained.

【0029】工程204において、そのパイプの後端に
Feプラグ、前端にCuプラグをセットして、単芯ビレ
ットとし、それを静水圧押出し加工により外径15mm
に押出しした。
In step 204, a Fe plug is set at the rear end of the pipe and a Cu plug is set at the front end to form a single core billet, which is hydrostatically extruded to have an outer diameter of 15 mm.
Extruded.

【0030】工程205において、その押出し材を伸線
加工し、工程206において、六角ダイスで伸線して対
近距離が2.65mmの六角線とした。工程207にお
いて、その六角線を矯正して直線状にしたのち、長さ1
50mmに切り分けした。この切り分けられた六角線の
概略斜視図を符号21で示す。
In step 205, the extruded material was drawn, and in step 206, it was drawn with a hexagonal die to obtain a hexagonal wire having a close distance of 2.65 mm. In step 207, the hexagonal line is corrected to form a straight line, and then the length 1
It was cut into 50 mm. Reference numeral 21 is a schematic perspective view of the cut hexagonal line.

【0031】工程208において、六角線21を61本
選択し、工程209において、その61本の六角線21
を、内径25.5mm、外径28mmのCuパイプ22
に組み込み(概略斜視図参照)、さらに工程210にお
いて、その組み込み後のパイプの後端にFeプラグ、前
端にCuプラグをセットして、外径28mmの多芯ビレ
ットを静水圧押出し加工により外径15mmに押出しし
た。
In step 208, 61 hexagonal lines 21 are selected, and in step 209, the 61 hexagonal lines 21 are selected.
Is a Cu pipe 22 having an inner diameter of 25.5 mm and an outer diameter of 28 mm.
(See schematic perspective view), and in step 210, set the Fe plug at the rear end of the pipe and the Cu plug at the front end after the assembling, and then the multi-core billet with an outer diameter of 28 mm was subjected to hydrostatic extrusion to produce an outer diameter. Extruded to 15 mm.

【0032】工程211において、その押出し材を線径
1mmまで伸線加工したのち、最後に、工程212にお
いて、Ar雰囲気中で700℃×50時間のMgB2
成熱処理を行った。これによって、MgB2超電導線材
10を用いたMgB2多芯超電導線を得た。これを以
降、本実施の形態超電導線という。
In step 211, the extruded material was drawn to a wire diameter of 1 mm, and finally, in step 212, a heat treatment for forming MgB 2 at 700 ° C. for 50 hours was performed in an Ar atmosphere. Thus, a MgB 2 multi-core superconducting wire using the MgB 2 superconducting wire 10 was obtained. Hereinafter, this is referred to as the superconducting wire of the present embodiment.

【0033】次に、この本実施の形態超電導線の特性の
向上を検証するため、図3に示す従来のMgB2超電導
線材30を用いてMgB2多芯超電導線を作製した。こ
の作製方法は、上記本実施の形態超電導線作製方法と同
じ混合粉末11を上記工程202で、内径18mm、外
径22mmのTaパイプ13aに充填し、これを上記工
程203で、プレスして粉末充填率を62%とした。さ
らに、粉末を充填したTaパイプ13aの外側に、内径
22.1mm、外径28mmのCuパイプ14を被覆し
た。これによって、従来のMgB2超電導線材30を得
た。以下、上記工程204〜212と同様に処理するこ
とによって、従来のMgB2超電導線材30を用いたM
gB2多芯超電導線を得た。これを以降、従来超電導線
という。
Next, in order to verify the improvement of the characteristics of the superconducting wire of this embodiment, a MgB 2 multi-core superconducting wire was produced using the conventional MgB 2 superconducting wire 30 shown in FIG. In this manufacturing method, the same mixed powder 11 as in the superconducting wire manufacturing method of the present embodiment is filled in a Ta pipe 13a having an inner diameter of 18 mm and an outer diameter of 22 mm in the step 202, and the Ta pipe 13a is pressed into a powder in the step 203. The filling rate was 62%. Further, the outside of the Ta pipe 13a filled with powder was covered with a Cu pipe 14 having an inner diameter of 22.1 mm and an outer diameter of 28 mm. Thereby, the conventional MgB 2 superconducting wire 30 was obtained. Thereafter, by performing the same processing as in the above steps 204 to 212, M using the conventional MgB 2 superconducting wire 30 is obtained.
A gB 2 multifilamentary superconducting wire was obtained. This is hereinafter referred to as a conventional superconducting wire.

【0034】次に、本実施の形態超電導線と従来超電導
線の双方を比較した結果を述べる。線径1mmの多芯線
の断面を観察した結果、Ta/Cu構造である従来超電
導線のフィラメント形状は、不均一で61本あるフィラ
メントのサイズもバラツキが大きかった。また、フィラ
メントの周囲を覆うTaバリアの計算上の厚さ約12μ
mに対して、厚さ分布が不均一で部分的にバリアが破
れ、この破れによって直接CuとMg+B粉末が接触し
ている箇所が観察された。
Next, the result of comparison between the superconducting wire of this embodiment and the conventional superconducting wire will be described. As a result of observing the cross section of the multifilamentary wire having a wire diameter of 1 mm, the filament shape of the conventional superconducting wire having the Ta / Cu structure was non-uniform and the size of the 61 filaments also varied greatly. Also, the calculated thickness of the Ta barrier covering the periphery of the filament is about 12μ.
With respect to m, the thickness distribution was non-uniform and the barrier was partially broken, and the breakage was observed at the location where Cu and Mg + B powder were in direct contact.

【0035】一方、Ta/Nb−Ta/Cu構造である
本実施の形態超電導線のフィラメント形状は、従来超電
導線に比較して均一性が大幅に向上し、サイズのバラツ
キも小さく、Ta/Nb・Taバリアが破れている箇所
もなかった。
On the other hand, the filament shape of the superconducting wire of the present embodiment having the Ta / Nb-Ta / Cu structure has significantly improved homogeneity as compared with the conventional superconducting wire, and the variation in size is small, and Ta / Nb.・ There were no places where the Ta barrier was broken.

【0036】このような本実施の形態超電導線と従来超
電導線の各々の液体ヘリウム中における臨界電流密度J
c(A/mm2)と外部磁界B(T)との特性(Jc−
B特性)を、図4に示す。
The critical current density J in the liquid helium of each of the superconducting wire of the present embodiment and the conventional superconducting wire.
c (A / mm 2 ) and external magnetic field B (T) characteristics (Jc-
B characteristic) is shown in FIG.

【0037】5TにおけるJcは、従来超電導線42の
480A/mm2に対して、本実施の形態超電導線41
が約2.5倍の1220A/mm2となった。本実施の形
態超電導線41は、従来超電導線42に比較して全ての
磁界領域で約2倍以上のJcを示した。この理由は、本
実施の形態超電導線41のほうが線材断面においてフィ
ラメントの均一性とバリアの健全性が優れていたためと
考えられる。
The Jc at 5T is 480 A / mm 2 of the conventional superconducting wire 42, whereas the superconducting wire 41 of this embodiment has
Was about 2.5 times as high as 1220 A / mm 2 . The superconducting wire 41 of the present embodiment showed Jc about twice or more in all magnetic field regions as compared with the conventional superconducting wire 42. It is considered that this is because the superconducting wire 41 of the present embodiment is superior in the uniformity of the filament and the soundness of the barrier in the cross section of the wire.

【0038】従って、本実施の形態超電導線によれば、
高い臨界電流密度を得ることができる。
Therefore, according to the superconducting wire of this embodiment,
A high critical current density can be obtained.

【0039】このような本実施の形態超電導線を巻線す
ることにより超電導マグネットを形成すれば、この超電
導マグネットは高磁界を安定して発生可能となる。ま
た、本実施の形態超電導線は、臨界温度が39Kと高い
ため、従来の金属系超電導マグネットを用いた伝導冷却
式マグネット(約5Kまで冷却)に比較して、冷却温度
を10K程度まで高くすることが可能となり、その結
果、上記超電導マグネットを用いた冷凍機においては、
その負荷を大幅に低減することが可能となる。
If the superconducting magnet is formed by winding the superconducting wire of the present embodiment, the superconducting magnet can stably generate a high magnetic field. Further, since the superconducting wire of this embodiment has a high critical temperature of 39K, the cooling temperature is raised to about 10K as compared with the conduction cooling type magnet (cooling to about 5K) using the conventional metal-based superconducting magnet. As a result, in a refrigerator using the above superconducting magnet,
The load can be significantly reduced.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
MgとBの混合粉末を、Mgと固溶せず(反応せず)、
かつBとは高温でしか反応しないNbパイプまたはNb
−Ta合金パイプ内に充填し、加えて伸線加工性を向上
させるためNbパイプまたはNb−Ta合金パイプの外
周にCuパイプを被覆した構造とした。この構造では、
Nbは、Taに比較してCuとの接合性が良好で、加工
時の変形抵抗の差も小さく、また、Taを数At%添加
したNb−Ta合金は、結晶粒が微細化され、伸線ある
いは圧延等の塑性加工時の割れや乱れを防ぐことができ
るので、高い臨界電流密度を得ることができる。従っ
て、臨界電流密度の高い多芯構造の超電導線を作製する
ことができる
As described above, according to the present invention,
The mixed powder of Mg and B does not form a solid solution with Mg (does not react),
And Nb pipe or Nb that reacts only with B at high temperature
In order to improve the wire drawing workability, the Nb pipe or the Nb-Ta alloy pipe was covered with a Cu pipe so as to be filled in the -Ta alloy pipe. In this structure,
Nb has a better bondability with Cu than Ta and a small difference in deformation resistance at the time of working. Further, Nb-Ta alloy containing Ta added by several At% has a finer crystal grain and has a better elongation. Since it is possible to prevent cracking and disturbance during plastic working such as wire or rolling, it is possible to obtain a high critical current density. Therefore, a superconducting wire having a multi-core structure with a high critical current density can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係るMgB2超電導線材
の構成を示す断面図である。
FIG. 1 is a cross-sectional view showing the structure of a MgB 2 superconducting wire according to an embodiment of the present invention.

【図2】上記実施の形態に係るMgB2超電導線材およ
び、MgB2超電導線材を用いたMgB2多芯超電導線の
作製工程の説明図である。
[Figure 2] MgB 2 superconducting wire according to the above embodiment and is an explanatory view of a manufacturing process of MgB 2 multi-core superconducting wire using MgB 2 superconducting wire.

【図3】従来のMgB2超電導線材の構成を示す断面図
である。
FIG. 3 is a sectional view showing a structure of a conventional MgB 2 superconducting wire.

【図4】本実施の形態および従来例双方のMgB2超電
導線材を用いたMgB2多芯超電導線超電導線の液体ヘ
リウム中における臨界電流密度Jc(A/mm2)と外
部磁界B(T)との特性(Jc−B特性)を示す図であ
る。
FIG. 4 shows a critical current density Jc (A / mm 2 ) and an external magnetic field B (T) in liquid helium of a MgB 2 multi-core superconducting wire using the MgB 2 superconducting wire of both the present embodiment and the conventional example. It is a figure which shows the characteristic (Jc-B characteristic) with.

【符号の説明】[Explanation of symbols]

10 本実施の形態のMgB2超電導線材 11 MgとBの混合粉末 12 Nb−Ta合金パイプ 13,13a Taパイプ 14,22 Cuパイプ 21 六角線 30 従来のMgB2超電導線材 41 本実施の形態の多芯構造超電導線 42 従来の多芯構造超電導線10 MgB 2 superconducting wire rod 11 of the present embodiment 11 Mixed powder of Mg and B 12 Nb-Ta alloy pipe 13, 13 a Ta pipe 14, 22 Cu pipe 21 Hexagonal wire 30 Conventional MgB 2 superconducting wire rod 41 Core structure superconducting wire 42 Conventional multi-core structure superconducting wire

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 6/06 H01F 5/08 B Fターム(参考) 4G047 JA05 JC16 KB02 KB04 KB17 LB01 5G321 AA98 BA03 CA32 CA42 DA03 DA04 DB18 DB47 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01F 6/06 H01F 5/08 BF term (reference) 4G047 JA05 JC16 KB02 KB04 KB17 LB01 5G321 AA98 BA03 CA32 CA42 DA03 DA04 DB18 DB47

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Mg(マグネシウム)とB(ホウ素)の
混合粉末、またはMg、Bおよび、その他の添加元素ま
たは化合物粉末を混合した混合粉末を、Nb(ニオブ)
パイプまたはNb−Ta(タンタル)合金パイプ内に充
填し、このパイプをCu(銅)パイプまたはCu合金パ
イプで被覆することにより、(Mg+B)/Nb/Cu
(またはCu合金)、あるいは(Mg+B)/Nb−T
a/Cu(またはCu合金)構造としたことを特徴とす
る二ホウ化マグネシウム超電導線材。
1. A mixed powder of Mg (magnesium) and B (boron) or a mixed powder of Mg, B, and other additive element or compound powder is mixed with Nb (niobium).
(Mg + B) / Nb / Cu by filling a pipe or a Nb-Ta (tantalum) alloy pipe and coating this pipe with a Cu (copper) pipe or a Cu alloy pipe.
(Or Cu alloy), or (Mg + B) / Nb-T
A magnesium diboride superconducting wire having an a / Cu (or Cu alloy) structure.
【請求項2】 前記NbまたはNb−Ta合金パイプの
内側にTaパイプを配置することにより、(Mg+B)
/Ta/Nb/Cu(またはCu合金)、あるいは(M
g+B)/Ta/Nb−Ta/Cu(またはCu合金)
構造としたことを特徴とする請求項1記載の二ホウ化マ
グネシウム超電導線材。
2. By arranging a Ta pipe inside the Nb or Nb-Ta alloy pipe, (Mg + B)
/ Ta / Nb / Cu (or Cu alloy) or (M
g + B) / Ta / Nb-Ta / Cu (or Cu alloy)
2. The magnesium diboride superconducting wire according to claim 1, which has a structure.
【請求項3】 前記(Mg+B)/Nb/Cu(または
Cu合金)、(Mg+B)/Nb−Ta/Cu(または
Cu合金)、(Mg+B)/Ta/Nb/Cu(または
Cu合金)、あるいは(Mg+B)/Ta/Nb−Ta
/Cu(またはCu合金)の構造を有する線材の複数が
集合されたものであることを特徴とする請求項1または
2に記載の二ホウ化マグネシウム超電導線材。
3. The (Mg + B) / Nb / Cu (or Cu alloy), (Mg + B) / Nb-Ta / Cu (or Cu alloy), (Mg + B) / Ta / Nb / Cu (or Cu alloy), or (Mg + B) / Ta / Nb-Ta
The magnesium diboride superconducting wire according to claim 1 or 2, wherein a plurality of wires having a structure of / Cu (or Cu alloy) are aggregated.
【請求項4】 前記線材の全断面積に対する混合粉末部
の占積率(混合粉末部断面積/単芯線全断面積=コア
比)が0.55以下であることを特徴とする請求項1〜
3のいずれかに記載の二ホウ化マグネシウム超電導線
材。
4. The space factor of the mixed powder portion with respect to the total sectional area of the wire (mixed powder portion sectional area / single core total sectional area = core ratio) is 0.55 or less. ~
3. The magnesium diboride superconducting wire according to any one of 3 above.
【請求項5】 前記線材における混合粉末部以外の被覆
厚さ(t)と、混合粉末部分の半径(=コア半径:r)
との比率(t/r)が0.12以上であることを特徴と
する請求項1〜4のいずれかに記載の二ホウ化マグネシ
ウム超電導線材。
5. The coating thickness (t) of the wire other than the mixed powder portion and the radius of the mixed powder portion (= core radius: r).
And a ratio (t / r) of 0.12 or more is 0.12 or more, and the magnesium diboride superconducting wire according to any one of claims 1 to 4.
【請求項6】 MgB2(二ホウ化マグネシウム)を生
成する本線材への熱処理として、600℃以上、900
℃以下の熱処理を施したことを特徴とする請求項1〜5
のいずれかに記載の二ホウ化マグネシウム超電導線材。
6. The heat treatment for the main wire which produces MgB 2 (magnesium diboride) is 600 ° C. or higher, 900 ° C.
A heat treatment at a temperature of less than or equal to 0 ° C. is performed.
2. A magnesium diboride superconducting wire according to any one of 1.
JP2002014718A 2002-01-23 2002-01-23 Magnesium diboride superconducting wire precursor and magnesium diboride superconducting wire Expired - Fee Related JP4058951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014718A JP4058951B2 (en) 2002-01-23 2002-01-23 Magnesium diboride superconducting wire precursor and magnesium diboride superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014718A JP4058951B2 (en) 2002-01-23 2002-01-23 Magnesium diboride superconducting wire precursor and magnesium diboride superconducting wire

Publications (2)

Publication Number Publication Date
JP2003217370A true JP2003217370A (en) 2003-07-31
JP4058951B2 JP4058951B2 (en) 2008-03-12

Family

ID=27651317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014718A Expired - Fee Related JP4058951B2 (en) 2002-01-23 2002-01-23 Magnesium diboride superconducting wire precursor and magnesium diboride superconducting wire

Country Status (1)

Country Link
JP (1) JP4058951B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104144A1 (en) * 2004-04-22 2005-11-03 Tokyo Wire Works, Ltd. Process for producing mgb2 superconductive wire excelling in critical current performance
JP2006107841A (en) * 2004-10-01 2006-04-20 National Institute For Materials Science Magnesium diboride compound sheath superconducting wire and manufacturing method of the same
JP2007221013A (en) * 2006-02-20 2007-08-30 Hitachi Ltd Persistent current switch
JP2008508677A (en) * 2004-07-30 2008-03-21 コロンブス・スーパーコンダクターズ・ソシエタ・ア・レスポンサビリタ・リミタータ Superconducting composite wire made from magnesium diboride
JP2009004794A (en) * 2008-07-10 2009-01-08 Hitachi Ltd Persistent current switch
JP2011014304A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Superconducting wire rod
JP2011076821A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Magnesium diboride wire, and manufacturing method thereof
KR101044890B1 (en) 2009-02-18 2011-06-28 한국원자력연구원 FABRICATION METHOD OF MgB2 SUPERCONDUCTING WIRE
JP2012508157A (en) * 2008-11-11 2012-04-05 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Magnesium diboride
KR101212111B1 (en) * 2010-06-10 2012-12-13 한국기계연구원 Preparing method of MgB2 superconducting conductor and MgB2 superconducting conductor prepared thereby
WO2015049776A1 (en) * 2013-10-04 2015-04-09 株式会社日立製作所 MgB2 SUPERCONDUCTING WIRE ROD, SUPERCONDUCTING CONNECTION STRUCTURE, SUPERCONDUCTING MAGNET USING MgB2 SUPERCONDUCTING WIRE ROD, AND SUPERCONDUCTING CABLE USING MgB2 SUPERCONDUCTING WIRE ROD
CN113963854A (en) * 2021-11-30 2022-01-21 西北有色金属研究院 Kilometer-level MgB with rectangular cross section2Method for producing superconducting wire
CN114596996A (en) * 2022-03-21 2022-06-07 西北有色金属研究院 Kilometer-grade multi-core MgB2Method for producing superconducting wire
CN116779240A (en) * 2023-08-16 2023-09-19 西安聚能超导线材科技有限公司 Preparation method of magnesium diboride superconducting wire and magnesium diboride superconducting wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6000412B1 (en) * 2015-06-30 2016-09-28 ユニ・チャーム株式会社 Shaped nonwoven fabric for absorbent articles, absorbent article comprising the shaped nonwoven fabric, and method for producing the shaped nonwoven fabric

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104144A1 (en) * 2004-04-22 2005-11-03 Tokyo Wire Works, Ltd. Process for producing mgb2 superconductive wire excelling in critical current performance
JP4833210B2 (en) * 2004-07-30 2011-12-07 コロンブス・スーパーコンダクターズ・ソシエタ・ア・レスポンサビリタ・リミタータ Superconducting composite wire made from magnesium diboride
JP2008508677A (en) * 2004-07-30 2008-03-21 コロンブス・スーパーコンダクターズ・ソシエタ・ア・レスポンサビリタ・リミタータ Superconducting composite wire made from magnesium diboride
JP2006107841A (en) * 2004-10-01 2006-04-20 National Institute For Materials Science Magnesium diboride compound sheath superconducting wire and manufacturing method of the same
JP2007221013A (en) * 2006-02-20 2007-08-30 Hitachi Ltd Persistent current switch
JP2009004794A (en) * 2008-07-10 2009-01-08 Hitachi Ltd Persistent current switch
JP2012508157A (en) * 2008-11-11 2012-04-05 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Magnesium diboride
KR101044890B1 (en) 2009-02-18 2011-06-28 한국원자력연구원 FABRICATION METHOD OF MgB2 SUPERCONDUCTING WIRE
JP2011014304A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Superconducting wire rod
JP2011076821A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Magnesium diboride wire, and manufacturing method thereof
KR101212111B1 (en) * 2010-06-10 2012-12-13 한국기계연구원 Preparing method of MgB2 superconducting conductor and MgB2 superconducting conductor prepared thereby
WO2015049776A1 (en) * 2013-10-04 2015-04-09 株式会社日立製作所 MgB2 SUPERCONDUCTING WIRE ROD, SUPERCONDUCTING CONNECTION STRUCTURE, SUPERCONDUCTING MAGNET USING MgB2 SUPERCONDUCTING WIRE ROD, AND SUPERCONDUCTING CABLE USING MgB2 SUPERCONDUCTING WIRE ROD
CN113963854A (en) * 2021-11-30 2022-01-21 西北有色金属研究院 Kilometer-level MgB with rectangular cross section2Method for producing superconducting wire
CN114596996A (en) * 2022-03-21 2022-06-07 西北有色金属研究院 Kilometer-grade multi-core MgB2Method for producing superconducting wire
CN116779240A (en) * 2023-08-16 2023-09-19 西安聚能超导线材科技有限公司 Preparation method of magnesium diboride superconducting wire and magnesium diboride superconducting wire
CN116779240B (en) * 2023-08-16 2023-10-20 西安聚能超导线材科技有限公司 Preparation method of magnesium diboride superconducting wire and magnesium diboride superconducting wire

Also Published As

Publication number Publication date
JP4058951B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JP3658844B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JP2003217370A (en) Magnesium diboride superconductive wire
JP6155253B2 (en) Compound superconducting wire and manufacturing method thereof
JP2016195100A (en) SEMI-COMPLETE WIRE MATERIAL HAVING PIT ELEMENT FOR SUPERCONDUCTING WIRE MATERIAL CONTAINING Nb3Sn AND METHOD FOR MANUFACTURING SEMI-COMPLETE WIRE MATERIAL
JP5045396B2 (en) Manufacturing method of MgB2 superconducting wire
JP3775304B2 (en) Magnesium diboride superconducting wire manufacturing method
JP4163719B2 (en) Powder method Nb3Sn superconducting wire precursor and manufacturing method
CN115312258A (en) Improved preparation method of iron-based superconducting long wire
EP3961658A1 (en) Blank for producing a long nb3 sn-based superconducting wire
JP3724128B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
WO2023089919A1 (en) Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire
JP3736425B2 (en) Manufacturing method of oxide superconducting multi-core wire
JPH05804B2 (en)
JP4214200B2 (en) Powder method Nb3Sn superconducting wire
US6810276B1 (en) Method to reduce magnetization in high current density superconductors formed by reaction of multi-component elements in filamentary composite superconductors
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JP3428771B2 (en) Nb3Sn compound superconducting wire
JPH07114838A (en) Oxide superconducting cable
JP3212596B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JP3716309B2 (en) Manufacturing method of Nb3Sn wire
JPH1012057A (en) Nb3al-type superconductive wire material and manufacture thereof
JP2017208289A (en) PRECURSOR WIRE FOR MANUFACTURING Nb3Al SUPERCONDUCTING WIRE AND MANUFACTURING METHOD THEREFOR
JPH06290651A (en) Nb3x type superconductive wire rod and its manufacture
JP2003115226A (en) MANUFACTURING METHOD OF Nb3Sn SUPERCONDUCTIVE WIRE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees