JP4058951B2 - Magnesium diboride superconducting wire precursor and magnesium diboride superconducting wire - Google Patents

Magnesium diboride superconducting wire precursor and magnesium diboride superconducting wire Download PDF

Info

Publication number
JP4058951B2
JP4058951B2 JP2002014718A JP2002014718A JP4058951B2 JP 4058951 B2 JP4058951 B2 JP 4058951B2 JP 2002014718 A JP2002014718 A JP 2002014718A JP 2002014718 A JP2002014718 A JP 2002014718A JP 4058951 B2 JP4058951 B2 JP 4058951B2
Authority
JP
Japan
Prior art keywords
superconducting wire
pipe
wire
mgb
magnesium diboride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002014718A
Other languages
Japanese (ja)
Other versions
JP2003217370A (en
Inventor
克己 宮下
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002014718A priority Critical patent/JP4058951B2/en
Publication of JP2003217370A publication Critical patent/JP2003217370A/en
Application granted granted Critical
Publication of JP4058951B2 publication Critical patent/JP4058951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【発明の属する技術分野】
本発明は、高磁界を発生するための超電導マグネットや伝導冷却用マグネットに用いられる二ホウ化マグネシウム超電導線材に関する。
【0002】
【従来の技術】
MgB2(二ホウ化マグネシウム)は、Mg(マグネシウム)とB(ホウ素)の原子が交互に層状に積み重なった結晶構造を持ち、超伝導特性を有するものであることが知られている。このMgB2は、金属として電線などに加工して使いやすいものの中において優れた超伝導転移温度を有している。
【0003】
従来、MgB2を利用したMgB2多芯構造超電導線の作製方法として、例えば、次に記述する▲1▼と▲2▼の製法が試みられている。
【0004】
▲1▼MgB2粉末を出発原料粉末とする方法では、反応済みのMgB2超電導粉末をTa、Ni、Fe等の金属パイプに充填し、その外側にCuパイプを被覆したのち線引き加工してシングル六角線とし、それを複数本パイプ内に組み込んで多芯構造としたのち伸線する。最後に、その多芯線を800〜900℃の範囲で熱処理し、固相反応によってMgB2粉末同士を結合させて超電導線とする。
【0005】
▲2▼MgとBの混合粉末を出発材料とし、Taパイプに充填する方法では、MgとBの微粒粉末をモル比が約Mg:B=1:2となるように混合した後、Mgと反応しないTaパイプに充填し、その外周をCuパイプで被覆して押出し加工した後、線引き加工してシングル六角線とし、それを複数本パイプ内に組み込んで多芯構造とする。この多芯構造のビレットを再度、押出し加工して伸線し、最後に熱処理してMgB2多芯構造超電導線を生成する。
【0006】
【発明が解決しようとする課題】
しかし、従来の方法においては、次に記述するような問題があった。上記▲1▼の方法では、出発原料であるMgB2粉末の硬度が高く(硬く)、延性が無いために加工性に難があり、加工できたとしても均一な断面の多芯線とすることが困難であった。加えて、断線防止のために、線材の引っ張り強度を上げる必要性があり、線材全断面積に対するコア部分のMgB2粉末比率(コア比)を高くできないため、結果として被覆金属部分である非超電導部分の占積率が増加し、線材オーバーオールの臨界電流密度が低下する傾向にあった。
【0007】
これらの理由から、MgB2超電導粉体を出発材とした線材の断面構造は、単芯線あるいはフィラメント数が10本以下と少なく、フィラメント径も100μm以上ある多芯線構造しか作製することができない。これは、超電導線の交流損失低減や磁気的不安定性低減(フラックスジャンプ防止)の観点から極細多芯構造を有する実用超電導線の構造を満足するものではない。
【0008】
また、MgB2の表面に酸化膜やMgB4等の異相(絶縁相あるいは常電導相)が存在していると、最終熱処理しても粒界部分に異相が析出するために、個々の粒子は超電導状態を示しても、粒界部で電流が妨げられ臨界電流が向上しない可能性があった。
【0009】
上記▲2▼の方法では、▲1▼の方法に比較してMgとBの混合粉末を出発材料とすることで、ある程度延性のあるMgの存在により加工性が向上する。しかし、TaはMgと反応しないものの、伸線加工するに連れてTa部分の断面が乱れ、Ta被覆が破れて外皮のCuとMgが部分的に直接接触してしまうことがあった。そうなると、最終的なMgB2生成熱処理時に融点が650℃と比較的低いMgがCu側に拡散してCu−Mg合金が生成し、コア部分が化学量論組成(Mg:B=1:2)からずれてB過剰(ボロンリッチ)となり、超電導特性が劣化してしまうことがある。特に、多芯線になった場合、Ta被覆厚さは数十μm以下まで低下するため、乱れによって部分的に被覆が破れてしまう可能性が高く、多芯線の臨界電流低下の要因となっていた。
【0010】
伸線加工に伴う断面の乱れの原因は、1つ目には、Taの結晶粒が大きいため、粒界部分が少なく、加工に伴う粒界すべりが、あまり期待できないこと、2つ目には、外周に被覆したCuとの密着性が悪く界面隔離しやすいこと、3つ目には、Cuとの硬さの違いが大きく、伸線加工時の変形抵抗に大きな差が生じること、等であると推測される。
【0011】
本発明は、かかる点に鑑みてなされたものであり、臨界電流密度の高い多芯構造の超電導線を作製することができる二ホウ化マグネシウム超電導線材前駆体および二ホウ化マグネシウム超電導線材を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明の二ホウ化マグネシウム超電導線材前駆体は、MgとBの混合粉末、またはMg、B、およびその他の添加元素または化合物粉末を混合した混合粉末を、NbパイプまたはNb−Ta合金パイプで被覆し、このパイプをCu(銅)パイプまたはCu合金パイプで被覆してなるものにおいて、前記NbまたはNb−Ta合金パイプの内側にTaパイプを配置することにより、(Mg+B)/Ta/Nb/Cu(またはCu合金)、あるいは(Mg+B)/Ta/Nb−Ta/Cu(またはCu合金)構造としたことを特徴としている。
【0015】
即ち、MgとBの混合粉末を、Mgと固溶せず(反応せず)、かつBとは高温でしか反応しないTaとNbの複合構造パイプ(Ta/Nb構造)、またはTaとNb−Taの複合構造パイプ(Ta/Nb・Ta構造)内に充填し、加えて伸線加工性を向上させるためNbパイプまたはNb−Ta合金パイプの外周にCuパイプを被覆した構造となる。この構造によれば、Taを数at%添加したNb−Ta合金は結晶粒が微細化され、伸線あるいは圧延等の塑性加工時の割れや乱れを防ぐことができる。Taは、Nbに比較してBとの反応温度が高く、約800℃以上の高温でMgB生成熱処理をする場合は、混合粉末との接触部分をTaにした方が被覆パイプとBの反応を防止することができる。また、(Mg+B)/Ta/Nb/Cu(またはCu合金)、あるいは(Mg+B)/Ta/Nb−Ta/Cu(またはCu合金)の構造を有する線材の複数が集合されたものであることを特徴としている。
【0016】
また、前記線材の全断面積に対する混合粉末部の占積率(混合粉末部断面積/単芯線全断面積=コア比)が0.55以下であることを特徴としている。
【0017】
この0.55以下とする理由は、単芯線作製工程(二ホウ化マグネシウム超電導線材作製工程)においてコア比を高くする、つまり混合粉末部面積の単芯線全断面積に対する比率を0.55以上に高くすると、NbやCu等の金属被覆パイプに比較して延性の低いコア部の影響で伸線中に断線する可能性が高くなるからである。特にコア周囲の被覆厚さが数十μm以下まで薄くなる多芯線に、多数の本二ホウ化マグネシウム超電導線材を適用した場合、伸線できてもNbやTa等の被覆が部分的に破れ、最後のMgB2生成熱処理時にMgとCuが反応して超電導特性の劣化が起きる可能性が非常に高くなるからである。
【0018】
また、前記線材における混合粉末部以外の被覆厚さ(t)と、混合粉末部分の半径(=コア半径:r)との比率(t/r)が0.12以上であることを特徴としている。
【0019】
この0.12以上とする理由は、Ta/NbあるいはTa/Nb・Ta被覆パイプの厚さが薄すぎると、例え外側のCuパイプ厚さが厚く、伸線できたとしても断面が乱れてNb等の被覆が破れ、最後のMgB生成熱処理時にMgとCuが反応して超電導特性の劣化が起きる可能性が非常に高くなるからである。
【0020】
また、MgB2を生成する二ホウ化マグネシウム超電導線材前駆体への熱処理として、600℃以上、900℃以下の熱処理を施したことを特徴としている。
【0021】
この熱処理を600℃以上、900℃以下とする理由は、600℃以下の熱処理温度ではMgB2の生成反応が進まず、臨界電流が向上しないからである。一方、900℃以上の熱処理を行うと、MgB2結晶粒の粗大化が促進され、粒界部分に超電導電流を阻害する非超電導物質(MgB4、MgやBの酸化物)の析出が顕著となり、粒界部分で臨界電流が極端に低下するため、マクロ的に見た線全体の臨界電流が低下してしまうからである。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0023】
(実施の形態)
図1は、本発明の実施の形態に係るMgB2超電導線材前駆体の構成を示す断面図である。
【0024】
この図1に示すMgB2超電導線材前駆体10は、MgとBを約1:2のモル比で混合した粉末(混合粉末)11を、NbやNb−Ta合金パイプ12の内側に配置したTaパイプ13との複合パイプ内に充填して粉体をプレスし、その外側をCuパイプ14で被覆することによって形成したものである。
【0025】
このMgB2超電導線材前駆体10を、さらに、パイプの前端と後端に栓をして単芯ビレットとし、押出し加工後に引き抜き伸線加工して細線化し、最後に六角ダイスで六角断面のシングル線(単芯線)とする。この単芯線である六角線を複数束ねてCuまたはCu−Niパイプ等に組み込み、パイプの前端と後端に栓をして多芯ビレットとし、押出し加工後に引き抜き伸線加工して細線化し、最終熱処理をしてMgとBを反応させることによって、MgB2多芯超電導線を形成することができる。
【0026】
このようなMgB2超電導線材前駆体10および、MgB2超電導線材前駆体10を用いたMgB2多芯超電導線の実際の作製方法を、図2の作製工程の説明図を参照して説明する。
【0027】
まず、工程201において、平均粒子径0.1μmの非晶質(アモルファス)B粉末と、平均粒径20μmのMg粉末をモル比でMg:B=1:2となるように混合することによって、MgとBの混合粉末11を得た。
【0028】
工程202において、混合粉末11を内径18mm、外径19mmのTaパイプ13に充填し、これを工程203において、プレスして粉末充填率を62%とした。また、粉末を充填したTaパイプ13の外側に、内径19.1mm、外径22mmのNb−1at%Taパイプ(以下、Nb−Ta合金パイプという)12を被覆し、その外側に内径22.1mm、外径28mmのCuパイプ14を被覆した。これによって、MgB2超電導線材前駆体10を得た。
【0029】
工程204において、そのパイプの後端にFeプラグ、前端にCuプラグをセットして、単芯ビレットとし、それを静水圧押出し加工により外径15mmに押出しした。
【0030】
工程205において、その押出し材を伸線加工し、工程206において、六角ダイスで伸線して対近距離が2.65mmの六角線とした。工程207において、その六角線を矯正して直線状にしたのち、長さ150mmに切り分けした。この切り分けられた六角線の概略斜視図を符号21で示す。
【0031】
工程208において、六角線21を61本選択し、工程209において、その61本の六角線21を、内径25.5mm、外径28mmのCuパイプ22に組み込み(概略斜視図参照)、さらに工程210において、その組み込み後のパイプの後端にFeプラグ、前端にCuプラグをセットして、外径28mmの多芯ビレットを静水圧押出し加工により外径15mmに押出しした。
【0032】
工程211において、その押出し材を線径1mmまで伸線加工したのち、最後に、工程212において、Ar雰囲気中で700℃×50時間のMgB2生成熱処理を行った。これによって、MgB2超電導線材前駆体10を用いたMgB2多芯超電導線を得た。これを以降、本実施の形態超電導線という。
【0033】
次に、この本実施の形態超電導線の特性の向上を検証するため、図3に示す従来のMgB2超電導線材前駆体30を用いてMgB2多芯超電導線を作製した。この作製方法は、上記本実施の形態超電導線作製方法と同じ混合粉末11を上記工程202で、内径18mm、外径22mmのTaパイプ13aに充填し、これを上記工程203で、プレスして粉末充填率を62%とした。さらに、粉末を充填したTaパイプ13aの外側に、内径22.1mm、外径28mmのCuパイプ14を被覆した。これによって、従来のMgB2超電導線材前駆体30を得た。以下、上記工程204〜212と同様に処理することによって、従来のMgB2超電導線材前駆体30を用いたMgB2多芯超電導線を得た。これを以降、従来超電導線という。
【0034】
次に、本実施の形態超電導線と従来超電導線の双方を比較した結果を述べる。線径1mmの多芯線の断面を観察した結果、Ta/Cu構造である従来超電導線のフィラメント形状は、不均一で61本あるフィラメントのサイズもバラツキが大きかった。また、フィラメントの周囲を覆うTaバリアの計算上の厚さ約12μmに対して、厚さ分布が不均一で部分的にバリアが破れ、この破れによって直接CuとMg+B粉末が接触している箇所が観察された。
【0035】
一方、Ta/Nb−Ta/Cu構造である本実施の形態超電導線のフィラメント形状は、従来超電導線に比較して均一性が大幅に向上し、サイズのバラツキも小さく、Ta/Nb・Taバリアが破れている箇所もなかった。
【0036】
このような本実施の形態超電導線と従来超電導線の各々の液体ヘリウム中における臨界電流密度Jc(A/mm2)と外部磁界B(T)との特性(Jc−B特性)を、図4に示す。
【0037】
5TにおけるJcは、従来超電導線42の480A/mm2に対して、本実施の形態超電導線41が約2.5倍の1220A/mm2となった。本実施の形態超電導線41は、従来超電導線42に比較して全ての磁界領域で約2倍以上のJcを示した。この理由は、本実施の形態超電導線41のほうが線材断面においてフィラメントの均一性とバリアの健全性が優れていたためと考えられる。
【0038】
従って、本実施の形態超電導線によれば、高い臨界電流密度を得ることができる。
【0039】
このような本実施の形態超電導線を巻線することにより超電導マグネットを形成すれば、この超電導マグネットは高磁界を安定して発生可能となる。また、本実施の形態超電導線は、臨界温度が39Kと高いため、従来の金属系超電導マグネットを用いた伝導冷却式マグネット(約5Kまで冷却)に比較して、冷却温度を10K程度まで高くすることが可能となり、その結果、上記超電導マグネットを用いた冷凍機においては、その負荷を大幅に低減することが可能となる。
【0040】
【発明の効果】
以上説明したように、本発明によれば、MgとBの混合粉末を、Mgと固溶せず(反応せず)、かつBとは高温でしか反応しないTaパイプ内に充填し、加えて伸線加工性を向上させるため、Taパイプの外周にNbパイプまたはNb−Ta合金パイプを被覆し、さらに、NbパイプまたはNb−Ta合金パイプの外周にCuパイプを被覆した構造とした。この構造では、Nbは、Taに比較してCuとの接合性が良好で、加工時の変形抵抗の差も小さく、また、Taを数t%添加したNb−Ta合金は結晶粒が微細化され、伸線あるいは圧延等の塑性加工時の割れや乱れを防ぐことができるので、高い臨界電流密度を得ることができる。従って、臨界電流密度の高い多芯構造の超電導線を作製することができる
【図面の簡単な説明】
【図1】 本発明の実施の形態に係るMgB2超電導線材前駆体の構成を示す断面図である。
【図2】 上記実施の形態に係るMgB2超電導線材前駆体および、MgB2超電導線材前駆体を用いたMgB2多芯超電導線の作製工程の説明図である。
【図3】 従来のMgB2超電導線材前駆体の構成を示す断面図である。
【図4】 本実施の形態および従来例双方のMgB2超電導線材前駆体を用いたMgB2多芯超電導線超電導線の液体ヘリウム中における臨界電流密度Jc(A/mm2)と外部磁界B(T)との特性(Jc−B特性)を示す図である。
【符号の説明】
10 本実施の形態のMgB2超電導線材前駆体
11 MgとBの混合粉末
12 Nb−Ta合金パイプ
13,13a Taパイプ
14,22 Cuパイプ
21 六角線
30 従来のMgB2超電導線材前駆体
41 本実施の形態の多芯構造超電導線
42 従来の多芯構造超電導線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnesium diboride superconducting wire used for a superconducting magnet or a conductive cooling magnet for generating a high magnetic field.
[0002]
[Prior art]
MgB 2 (magnesium diboride) is known to have a superconducting property, having a crystal structure in which Mg (magnesium) and B (boron) atoms are alternately stacked in layers. This MgB 2 has an excellent superconducting transition temperature among those that are easy to use after being processed into metal or the like as a metal.
[0003]
Conventionally, as a method for manufacturing a MgB 2 multi-core structure superconducting wire using MgB 2, for example, now described ▲ 1 ▼ and ▲ 2 ▼ production methods have been attempted.
[0004]
(1) In the method using MgB 2 powder as the starting material powder, the reacted MgB 2 superconducting powder is filled into a metal pipe such as Ta, Ni, Fe, etc., and the outer side is coated with a Cu pipe, followed by a drawing process. Hexagonal wire is used, and it is drawn into a multi-core structure by incorporating it into multiple pipes. Finally, the multi-core wire is heat-treated in the range of 800 to 900 ° C., and MgB 2 powders are bonded to each other by a solid phase reaction to obtain a superconducting wire.
[0005]
(2) In a method of using a mixed powder of Mg and B as a starting material and filling a Ta pipe, after mixing Mg and B fine powder so that the molar ratio is about Mg: B = 1: 2, A non-reacting Ta pipe is filled, and the outer periphery thereof is covered with a Cu pipe and extruded, and then drawn into a single hexagonal wire, which is incorporated into a plurality of pipes to form a multi-core structure. This multi-core billet is again extruded and drawn, and finally heat treated to produce a MgB 2 multi-core superconducting wire.
[0006]
[Problems to be solved by the invention]
However, the conventional method has the following problems. In the method (1), the starting material MgB 2 powder has a high hardness (hard) and has no ductility, so that the workability is difficult. Even if it can be processed, a multi-core wire with a uniform cross section can be obtained. It was difficult. In addition, it is necessary to increase the tensile strength of the wire in order to prevent disconnection, and the MgB 2 powder ratio (core ratio) of the core part to the total cross-sectional area of the wire cannot be increased. As a result, the non-superconductivity that is the coated metal part The space factor of the portion increased, and the critical current density of the wire rod overall tended to decrease.
[0007]
For these reasons, the cross-sectional structure of the wire material starting from MgB 2 superconducting powder can only produce a single-core wire or a multi-core wire structure having a filament number as small as 10 or less and a filament diameter of 100 μm or more. This does not satisfy the structure of a practical superconducting wire having an ultrafine multi-core structure from the viewpoint of reducing AC loss of the superconducting wire and reducing magnetic instability (preventing flux jump).
[0008]
In addition, if a different phase (insulating phase or normal conducting phase) such as an oxide film or MgB 4 is present on the surface of MgB 2 , the different phase precipitates at the grain boundary portion even after the final heat treatment. Even when the superconducting state is shown, the current is hindered at the grain boundary portion, and the critical current may not be improved.
[0009]
In the method {circle around (2)}, compared to the method {circle around (1)}, by using a mixed powder of Mg and B as a starting material, workability is improved by the presence of Mg that is ductile to some extent. However, although Ta does not react with Mg, the section of the Ta portion is disturbed as the wire drawing is performed, and the Ta coating is broken, and Cu and Mg in the outer skin may be in direct contact with each other. In this case, Mg having a relatively low melting point of 650 ° C. diffuses to the Cu side during the final heat treatment for generating MgB 2 to form a Cu—Mg alloy, and the core portion has a stoichiometric composition (Mg: B = 1: 2). May deviate from B and become B-rich (boron-rich), which may deteriorate the superconducting characteristics. In particular, in the case of a multi-core wire, the Ta coating thickness is reduced to several tens of μm or less, so there is a high possibility that the coating will be partially broken due to disturbance, which is a factor in reducing the critical current of the multi-core wire. .
[0010]
The first cause of the disorder of the cross-section accompanying wire drawing is that the grain size of Ta is large, so there are few grain boundary parts, and the grain boundary sliding due to processing cannot be expected so much. The third is that the adhesion with Cu coated on the outer periphery is poor and the interface is easily isolated, and third, the difference in hardness with Cu is large, and there is a large difference in deformation resistance during wire drawing, etc. Presumed to be.
[0011]
The present invention has been made in view of the above points, and provides a magnesium diboride superconducting wire precursor and a magnesium diboride superconducting wire capable of producing a multiconductor superconducting wire having a high critical current density. For the purpose.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a magnesium diboride superconducting wire precursor of the present invention is a mixed powder of Mg and B, or a mixed powder obtained by mixing Mg, B, and other additive elements or compound powders, and an Nb pipe. Alternatively, in the case where the Nb-Ta alloy pipe is coated and the pipe is coated with a Cu (copper) pipe or a Cu alloy pipe, the Ta pipe is disposed inside the Nb or Nb-Ta alloy pipe ( It is characterized by having a (Mg + B) / Ta / Nb / Cu (or Cu alloy) or (Mg + B) / Ta / Nb-Ta / Cu (or Cu alloy) structure.
[0015]
That is, a mixed powder of Mg and B does not dissolve (react) with Mg and does not react with B only at a high temperature, or a composite pipe of Ta and Nb (Ta / Nb structure), or Ta and Nb- In order to fill the Ta composite structure pipe (Ta / Nb · Ta structure) and improve the wire drawing workability, the outer periphery of the Nb pipe or Nb-Ta alloy pipe is covered with a Cu pipe. According to this structure, the crystal grain of the Nb-Ta alloy added with several at% of Ta is refined, and cracks and disturbances during plastic working such as wire drawing or rolling can be prevented. Ta has a higher reaction temperature with B than Nb. When MgB 2 heat treatment is performed at a high temperature of about 800 ° C. or higher, the reaction between the coated pipe and B is better when the contact portion with the mixed powder is Ta. Can be prevented. Also, a plurality of wires having a structure of (Mg + B) / Ta / Nb / Cu (or Cu alloy) or (Mg + B) / Ta / Nb-Ta / Cu (or Cu alloy) are aggregated. It is a feature.
[0016]
The space factor of the mixed powder portion relative to the total cross-sectional area of the wire (mixed powder portion cross-sectional area / single-core wire total cross-sectional area = core ratio) is 0.55 or less.
[0017]
The reason for setting it to 0.55 or less is to increase the core ratio in the single core wire preparation step (magnesium diboride superconducting wire preparation step), that is, the ratio of the mixed powder part area to the total cross sectional area of the single core wire is 0.55 or more. This is because if the height is increased, the possibility of disconnection during wire drawing increases due to the influence of the core portion having low ductility compared to metal-coated pipes such as Nb and Cu. In particular, when a large number of magnesium diboride superconducting wires are applied to a multicore wire whose coating thickness around the core is reduced to several tens of μm or less, even if the wire can be drawn, the coating of Nb, Ta, etc. is partially broken, This is because there is a very high possibility that the superconducting characteristics will deteriorate due to the reaction between Mg and Cu during the final MgB 2 production heat treatment.
[0018]
Further, the ratio (t / r) between the coating thickness (t) of the wire other than the mixed powder portion and the radius of the mixed powder portion (= core radius: r) is 0.12 or more. .
[0019]
The reason for setting this to 0.12 or more is that if the thickness of the Ta / Nb or Ta / Nb · Ta-coated pipe is too thin, the outer Cu pipe is thick, and even if it can be drawn, the cross section is disturbed and Nb This is because the possibility that the superconducting characteristics deteriorate due to the reaction between Mg and Cu during the final heat treatment for generating MgB 2 is greatly increased.
[0020]
In addition, the heat treatment of the magnesium diboride superconducting wire precursor that generates MgB 2 is characterized in that heat treatment at 600 ° C. or higher and 900 ° C. or lower is performed.
[0021]
The reason why this heat treatment is set to 600 ° C. or more and 900 ° C. or less is that, at a heat treatment temperature of 600 ° C. or less, the formation reaction of MgB 2 does not proceed and the critical current does not improve. On the other hand, when heat treatment at 900 ° C. or higher is performed, coarsening of MgB 2 crystal grains is promoted, and precipitation of non-superconducting substances (MgB 4 , Mg and B oxides) that inhibit superconducting current becomes prominent at the grain boundaries. This is because the critical current is extremely reduced at the grain boundary portion, so that the critical current of the entire line as viewed macroscopically is reduced.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0023]
(Embodiment)
FIG. 1 is a cross-sectional view showing a configuration of a MgB 2 superconducting wire precursor according to an embodiment of the present invention.
[0024]
The MgB 2 superconducting wire precursor 10 shown in FIG. 1 is a Ta (powder) 11 in which Mg and B are mixed at a molar ratio of about 1: 2 and arranged inside an Nb or Nb—Ta alloy pipe 12. It is formed by filling the composite pipe with the pipe 13 and pressing the powder, and coating the outside with the Cu pipe 14.
[0025]
The MgB 2 superconducting wire precursor 10 is further plugged at the front and rear ends of the pipe to form a single-core billet, drawn and drawn after extrusion, and thinned, and finally a single wire having a hexagonal cross section with a hexagonal die. (Single core wire). A plurality of hexagonal wires, which are single wires, are bundled into a Cu or Cu-Ni pipe or the like, and the front and rear ends of the pipe are plugged into a multi-core billet. After extrusion, the wire is drawn and drawn into a thin wire. An MgB 2 multicore superconducting wire can be formed by reacting Mg and B by heat treatment.
[0026]
Such MgB 2 superconducting wire precursor 10 and the actual manufacturing method of MgB 2 multi-core superconducting wire using MgB 2 superconducting wire precursor 10 will be described with reference to the explanatory diagram of a manufacturing process of FIG.
[0027]
First, in step 201, by mixing an amorphous B powder having an average particle diameter of 0.1 μm and an Mg powder having an average particle diameter of 20 μm so that the molar ratio is Mg: B = 1: 2, A mixed powder 11 of Mg and B was obtained.
[0028]
In step 202, the mixed powder 11 was filled into a Ta pipe 13 having an inner diameter of 18 mm and an outer diameter of 19 mm, and this was pressed in step 203 to a powder filling rate of 62%. Further, the outside of the Ta pipe 13 filled with powder is coated with an Nb-1 at% Ta pipe (hereinafter referred to as an Nb-Ta alloy pipe) 12 having an inner diameter of 19.1 mm and an outer diameter of 22 mm, and the outer diameter is 22.1 mm. The Cu pipe 14 having an outer diameter of 28 mm was coated. Thereby, the MgB 2 superconducting wire precursor 10 was obtained.
[0029]
In step 204, a Fe plug was set at the rear end of the pipe and a Cu plug was set at the front end to form a single-core billet, which was extruded to an outer diameter of 15 mm by hydrostatic extrusion.
[0030]
In step 205, the extruded material was drawn, and in step 206, the extruded material was drawn with a hexagonal die to form a hexagonal wire having a near distance of 2.65 mm. In step 207, the hexagonal wire was straightened by straightening, and then cut into a length of 150 mm. A schematic perspective view of the cut hexagonal line is denoted by reference numeral 21.
[0031]
In step 208, 61 hexagonal wires 21 are selected, and in step 209, the 61 hexagonal wires 21 are incorporated into a Cu pipe 22 having an inner diameter of 25.5 mm and an outer diameter of 28 mm (see schematic perspective view). In Fig. 1, a Fe plug was set at the rear end of the pipe after incorporation and a Cu plug was set at the front end, and a multi-core billet having an outer diameter of 28 mm was extruded to an outer diameter of 15 mm by hydrostatic extrusion.
[0032]
In step 211, the extruded material was drawn to a wire diameter of 1 mm, and finally, in step 212, MgB 2 generation heat treatment was performed in an Ar atmosphere at 700 ° C. for 50 hours. This gave MgB 2 multi-core superconducting wire using MgB 2 superconducting wire precursor 10. This is hereinafter referred to as the superconducting wire of the present embodiment.
[0033]
Next, in order to verify the improvement in the characteristics of the superconducting wire of this embodiment, a MgB 2 multicore superconducting wire was produced using the conventional MgB 2 superconducting wire precursor 30 shown in FIG. In this production method, the same mixed powder 11 as in the superconducting wire production method of the present embodiment is filled in the Ta pipe 13a having an inner diameter of 18 mm and an outer diameter of 22 mm in the step 202, and this is pressed in the step 203 to obtain a powder. The filling rate was 62%. Further, a Cu pipe 14 having an inner diameter of 22.1 mm and an outer diameter of 28 mm was coated on the outside of the Ta pipe 13a filled with powder. Thus, a conventional MgB 2 superconducting wire precursor 30 was obtained. Hereinafter, the MgB 2 multi-core superconducting wire using the conventional MgB 2 superconducting wire precursor 30 was obtained by processing in the same manner as the above steps 204 to 212. This is hereinafter referred to as a conventional superconducting wire.
[0034]
Next, the result of comparing both the superconducting wire of the present embodiment and the conventional superconducting wire will be described. As a result of observing a cross section of a multifilamentary wire having a wire diameter of 1 mm, the filament shape of the conventional superconducting wire having a Ta / Cu structure was uneven, and the size of the 61 filaments was also highly varied. In addition, the calculated thickness of the Ta barrier covering the periphery of the filament is about 12 μm, and the thickness distribution is not uniform and the barrier is partially broken. Due to this breakage, the Cu and Mg + B powder are in direct contact with each other. Observed.
[0035]
On the other hand, the filament shape of the superconducting wire of this embodiment having a Ta / Nb-Ta / Cu structure is greatly improved in uniformity and smaller in size variation than the conventional superconducting wire, and a Ta / Nb / Ta barrier. There was no part torn.
[0036]
The characteristics (Jc-B characteristics) between the critical current density Jc (A / mm 2 ) and the external magnetic field B (T) in the liquid helium of each of the superconducting wire of this embodiment and the conventional superconducting wire are shown in FIG. Shown in
[0037]
Jc at 5T, relative 480A / mm 2 of conventional superconducting wire 42, forms the superconducting wire 41 of the present embodiment was about 2.5 times the 1220A / mm 2. The superconducting wire 41 of the present embodiment exhibited a Jc of about twice or more in all magnetic field regions as compared with the conventional superconducting wire 42. The reason for this is considered that the superconducting wire 41 of the present embodiment was superior in filament uniformity and barrier soundness in the wire cross section.
[0038]
Therefore, according to the present superconducting wire, a high critical current density can be obtained.
[0039]
If a superconducting magnet is formed by winding such a superconducting wire of this embodiment, this superconducting magnet can stably generate a high magnetic field. Further, since the superconducting wire of the present embodiment has a high critical temperature of 39K, the cooling temperature is increased to about 10K as compared with a conductive cooling magnet (cooling to about 5K) using a conventional metal superconducting magnet. As a result, in the refrigerator using the superconducting magnet, the load can be significantly reduced.
[0040]
【The invention's effect】
As described above, according to the present invention, the mixed powder of Mg and B is filled in a Ta pipe that does not dissolve in Mg (does not react) and reacts only with B at a high temperature. In order to improve wire drawing workability, the outer periphery of the Ta pipe was covered with an Nb pipe or an Nb-Ta alloy pipe, and the outer periphery of the Nb pipe or Nb-Ta alloy pipe was further covered with a Cu pipe. In this structure, Nb is a good bonding between the Cu compared to Ta, the difference in deformation resistance during working is small and also, Nb-Ta alloy containing several a t% of Ta crystal grain fine Therefore, it is possible to prevent cracking and turbulence during plastic working such as wire drawing or rolling, so that a high critical current density can be obtained. Therefore, a multiconductor superconducting wire having a high critical current density can be produced .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a MgB 2 superconducting wire precursor according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a production process of an MgB 2 multiconductor superconducting wire using the MgB 2 superconducting wire precursor and the MgB 2 superconducting wire precursor according to the embodiment.
FIG. 3 is a cross-sectional view showing a configuration of a conventional MgB 2 superconducting wire precursor .
FIG. 4 shows a critical current density Jc (A / mm 2 ) and an external magnetic field B (in a liquid helium of an MgB 2 multicore superconducting wire using the MgB 2 superconducting wire precursor of both the present embodiment and the conventional example. It is a figure which shows the characteristic (Jc-B characteristic) with T).
[Explanation of symbols]
10 MgB 2 superconducting wire precursor of this embodiment 11 Mixed powder of Mg and B 12 Nb-Ta alloy pipe 13, 13a Ta pipe 14, 22 Cu pipe 21 Hexagonal wire 30 Conventional MgB 2 superconducting wire precursor 41 This implementation Multiconducting superconducting wire of the form 42 Conventional multiconducting superconducting wire

Claims (5)

Mg(マグネシウム)とB(ホウ素)の混合粉末、またはMg、B、およびその他の添加元素または化合物粉末を混合した混合粉末を、Nb(ニオブ)パイプまたはNb−Ta(タンタル)合金パイプで被覆し、このパイプをCu(銅)パイプまたはCu合金パイプで被覆してなるものにおいて、前記NbまたはNb−Ta合金パイプの内側にTaパイプを配置することにより、(Mg+B)/Ta/Nb/Cu(またはCu合金)、あるいは(Mg+B)/Ta/Nb−Ta/Cu(またはCu合金)構造としたことを特徴とする二ホウ化マグネシウム超電導線材前駆体A mixed powder of Mg (magnesium) and B (boron), or mixed powder of Mg, B, and other additive element or compound powder is coated with an Nb (niobium) pipe or an Nb-Ta (tantalum) alloy pipe. In the case where this pipe is coated with a Cu (copper) pipe or a Cu alloy pipe, by placing a Ta pipe inside the Nb or Nb-Ta alloy pipe, (Mg + B) / Ta / Nb / Cu ( Or a Cu alloy), or a (Mg + B) / Ta / Nb-Ta / Cu (or Cu alloy) structure, a magnesium diboride superconducting wire precursor . 前記(Mg+B)/Ta/Nb/Cu(またはCu合金)、あるいは(Mg+B)/Ta/Nb−Ta/Cu(またはCu合金)の構造を有する線材の複数が集合されたものであることを特徴とする請求項1に記載の二ホウ化マグネシウム超電導線材前駆体A plurality of wires having a structure of (Mg + B) / Ta / Nb / Cu (or Cu alloy) or (Mg + B) / Ta / Nb-Ta / Cu (or Cu alloy) are collected. The magnesium diboride superconducting wire precursor according to claim 1. 前記線材の全断面積に対する混合粉末部の占積率(混合粉末部断面積/単芯線全断面積=コア比)が0.55以下であることを特徴とする請求項1または2に記載の二ホウ化マグネシウム超電導線材前駆体The space factor of the mixed powder part with respect to the total cross-sectional area of the wire (mixed powder part cross-sectional area / single-core wire total cross-sectional area = core ratio) is 0.55 or less. Magnesium diboride superconducting wire precursor . 前記線材における混合粉末部以外の被覆厚さ(t)と、混合粉末部分の半径(=コア半径:r)との比(t/r)が0.12以上であることを特徴とする請求項1〜3のいずれか1に記載の二ホウ化マグネシウム超電導線材前駆体The ratio (t / r) between the coating thickness (t) of the wire other than the mixed powder portion and the radius of the mixed powder portion (= core radius: r) is 0.12 or more. The magnesium diboride superconducting wire precursor according to any one of 1 to 3. 請求項1〜4のいずれか1に記載の二ホウ化マグネシウム超電導線材前駆体に、600℃以上、900℃以下の熱処理を施しMgB 2 (二ホウ化マグネシウム)を生成したことを特徴とする二ホウ化マグネシウム超電導線材。 The magnesium diboride superconducting wire precursor according to any one of claims 1 to 4 is heat-treated at 600 ° C to 900 ° C to produce MgB 2 (magnesium diboride). Magnesium boride superconducting wire.
JP2002014718A 2002-01-23 2002-01-23 Magnesium diboride superconducting wire precursor and magnesium diboride superconducting wire Expired - Fee Related JP4058951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014718A JP4058951B2 (en) 2002-01-23 2002-01-23 Magnesium diboride superconducting wire precursor and magnesium diboride superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014718A JP4058951B2 (en) 2002-01-23 2002-01-23 Magnesium diboride superconducting wire precursor and magnesium diboride superconducting wire

Publications (2)

Publication Number Publication Date
JP2003217370A JP2003217370A (en) 2003-07-31
JP4058951B2 true JP4058951B2 (en) 2008-03-12

Family

ID=27651317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014718A Expired - Fee Related JP4058951B2 (en) 2002-01-23 2002-01-23 Magnesium diboride superconducting wire precursor and magnesium diboride superconducting wire

Country Status (1)

Country Link
JP (1) JP4058951B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708637A (en) * 2015-06-30 2018-02-16 尤妮佳股份有限公司 Absorbent commodity by the non-woven fabrics of figuration, containing this by the manufacture method of the absorbent commodity of the non-woven fabrics of figuration and the above-mentioned non-woven fabrics by figuration

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104144A1 (en) * 2004-04-22 2005-11-03 Tokyo Wire Works, Ltd. Process for producing mgb2 superconductive wire excelling in critical current performance
EP1774602A1 (en) * 2004-07-30 2007-04-18 Columbus Superconductors S.r.l. Superconducting composite wire made from magnesium diboride
JP4500901B2 (en) * 2004-10-01 2010-07-14 独立行政法人物質・材料研究機構 Composite sheathed magnesium diboride superconducting wire and its manufacturing method
JP2007221013A (en) * 2006-02-20 2007-08-30 Hitachi Ltd Persistent current switch
JP2009004794A (en) * 2008-07-10 2009-01-08 Hitachi Ltd Persistent current switch
DE102008056824A1 (en) * 2008-11-11 2010-05-20 H.C. Starck Gmbh Inorganic compounds
KR101044890B1 (en) 2009-02-18 2011-06-28 한국원자력연구원 FABRICATION METHOD OF MgB2 SUPERCONDUCTING WIRE
JP5356132B2 (en) * 2009-06-30 2013-12-04 株式会社日立製作所 Superconducting wire
JP2011076821A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Magnesium diboride wire, and manufacturing method thereof
KR101212111B1 (en) * 2010-06-10 2012-12-13 한국기계연구원 Preparing method of MgB2 superconducting conductor and MgB2 superconducting conductor prepared thereby
WO2015049776A1 (en) * 2013-10-04 2015-04-09 株式会社日立製作所 MgB2 SUPERCONDUCTING WIRE ROD, SUPERCONDUCTING CONNECTION STRUCTURE, SUPERCONDUCTING MAGNET USING MgB2 SUPERCONDUCTING WIRE ROD, AND SUPERCONDUCTING CABLE USING MgB2 SUPERCONDUCTING WIRE ROD
CN113963854B (en) * 2021-11-30 2022-10-28 西北有色金属研究院 Kilometer-level MgB with rectangular cross section 2 Method for producing superconducting wire
CN114596996B (en) * 2022-03-21 2023-06-27 西北有色金属研究院 Kilometer-level multi-core MgB 2 Method for producing superconducting wire
CN116779240B (en) * 2023-08-16 2023-10-20 西安聚能超导线材科技有限公司 Preparation method of magnesium diboride superconducting wire and magnesium diboride superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708637A (en) * 2015-06-30 2018-02-16 尤妮佳股份有限公司 Absorbent commodity by the non-woven fabrics of figuration, containing this by the manufacture method of the absorbent commodity of the non-woven fabrics of figuration and the above-mentioned non-woven fabrics by figuration
CN107708637B (en) * 2015-06-30 2019-01-08 尤妮佳股份有限公司 The non-woven fabrics and its manufacturing method and absorbent commodity of absorbent commodity

Also Published As

Publication number Publication date
JP2003217370A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
JP4058951B2 (en) Magnesium diboride superconducting wire precursor and magnesium diboride superconducting wire
JP3658844B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JP5045396B2 (en) Manufacturing method of MgB2 superconducting wire
JP2008226501A (en) MgB2 SUPERCONDUCTIVE WIRE
JP3775304B2 (en) Magnesium diboride superconducting wire manufacturing method
JPS6331884B2 (en)
JP4163719B2 (en) Powder method Nb3Sn superconducting wire precursor and manufacturing method
JP2019186167A (en) PRECURSOR OF Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
CN115312258A (en) Improved preparation method of iron-based superconducting long wire
EP3961658B1 (en) Blank for producing a long nb3 sn-based superconducting wire
JP3778971B2 (en) Oxide superconducting wire and method for producing the same
JP2003297162A (en) METHOD FOR MANUFACTURING Nb3Ga EXTRAFINE MULTI-CORE WIRE ROD
JP3724128B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
WO2023089919A1 (en) Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire
JP3736425B2 (en) Manufacturing method of oxide superconducting multi-core wire
JP3692657B2 (en) Oxide superconducting wire
JP4214200B2 (en) Powder method Nb3Sn superconducting wire
JP3948291B2 (en) Nb3Al compound superconducting wire and method for producing the same
JP2655918B2 (en) A. Method for manufacturing stabilized superconducting wire
JPH07114838A (en) Oxide superconducting cable
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JP2517867B2 (en) V3 Si superconducting ultra-fine multi-core wire manufacturing method
JP3603535B2 (en) Method for producing Nb3Al-based superconducting conductor
JPH1139963A (en) Oxide superconductive wire material, stranded wire, method for producing material and stranded wire thereof, and oxide superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees