JP2003217108A - Magnetic material for magnetic recording medium - Google Patents

Magnetic material for magnetic recording medium

Info

Publication number
JP2003217108A
JP2003217108A JP2002012413A JP2002012413A JP2003217108A JP 2003217108 A JP2003217108 A JP 2003217108A JP 2002012413 A JP2002012413 A JP 2002012413A JP 2002012413 A JP2002012413 A JP 2002012413A JP 2003217108 A JP2003217108 A JP 2003217108A
Authority
JP
Japan
Prior art keywords
magnetic
nanoparticles
recording medium
fept
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002012413A
Other languages
Japanese (ja)
Other versions
JP4051451B2 (en
Inventor
Masahiro Goto
昌大 後藤
Kenji Shoda
憲司 正田
Shuichi Mafune
修一 間舩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2002012413A priority Critical patent/JP4051451B2/en
Publication of JP2003217108A publication Critical patent/JP2003217108A/en
Application granted granted Critical
Publication of JP4051451B2 publication Critical patent/JP4051451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent sintering generated when FePt based alloy nano particles are subjected to heat treatment. <P>SOLUTION: A magnetic material for a magnetic recording medium wherein 1 to 200 (at.%) element A by atomic percentage of A/(F+M) is contained in an alloy whose component composition is represented by FXM<SB>100-</SB>X, wherein F represents one or two transition metals of Fe and Co; M represents one or two platinum group metals of Pt and Pd; X is in the range of 30≤X≤70 and the element A represents at least one element selected from the group consisting of Si, Al and R (wherein R represents one or two or more rare earth elements including Y). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,高密度記録に適し
た磁気記録媒体用磁性材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic material for a magnetic recording medium suitable for high density recording.

【0002】[0002]

【従来の技術】オーディオ用,ビデオ用,コンピュータ
用などの磁気テープや磁気ディスク等の磁気記録媒体
は,記録容量の高密度化による小型化,高性能化が一段
と進み,それに伴って磁気記録媒体用の磁性粉も微粒子
化が進んでいる。
2. Description of the Related Art Magnetic recording media such as magnetic tapes and magnetic disks for audio, video and computer use have been further miniaturized and improved in performance due to higher recording capacity. The magnetic powder for use is also becoming finer.

【0003】記録密度の上昇のためには記録単位のサイ
ズ低下が必要であるが,従来型の磁性粉を用いた媒体で
は高記録密度化の限界に近づいている。このようなこと
から,近年では,高密度磁気記録媒体として,高い結晶
磁気異方性を有し且つ大きな保磁力を示す磁性金属ナノ
粒子が注目されている。
To increase the recording density, it is necessary to reduce the size of the recording unit, but in the medium using the conventional magnetic powder, the limit of high recording density is approaching. Therefore, in recent years, magnetic metal nanoparticles having high crystal magnetic anisotropy and large coercive force have been attracting attention as a high-density magnetic recording medium.

【0004】遷移金属と白金族金属の一部の合金は高温
熱処理による規則格子化により高い磁気異方性を発現す
ることが知られており,特にFePt規則合金はKu =
7×107erg/ccと大きな結晶磁気異方性エネルギーを有
し,熱揺らぎの問題を解決する有力な磁性材料として注
目を集めている。FePtナノ粒子の合成に関する技術
として,例えば以下のものが報告された。
It is known that some alloys of transition metals and platinum group metals exhibit high magnetic anisotropy due to ordered lattice formation by high temperature heat treatment, and in particular FePt ordered alloys have Ku =
It has a large crystal magnetic anisotropy energy of 7 × 10 7 erg / cc and is attracting attention as a powerful magnetic material that solves the problem of thermal fluctuation. The following techniques, for example, have been reported as techniques for synthesizing FePt nanoparticles.

【0005】(1)ショウヘン・スンらにより,化学的
手法を用いたFePtナノ粒子の合成法がScience, 200
0, Vol.287, p.1989に報告された。この方法によると,
非親水性溶媒であるジオクチルエーテル中において, Pt
(acac)2をアルコールにより還元し,Fe(CO)5を熱分解す
ることにより,FePtナノ粒子が合成される。作製さ
れたFePtナノ粒子は組成制御が可能で,そのサイズ
も3〜10nmの間で制御できるとされている。
(1) Shouhen Seung et al. Have described a method of synthesizing FePt nanoparticles using a chemical method, Science, 200
0, Vol.287, p.1989. According to this method,
In dioctyl ether, a non-hydrophilic solvent, Pt
FePt nanoparticles are synthesized by reducing (acac) 2 with alcohol and thermally decomposing Fe (CO) 5 . It is said that the composition of the produced FePt nanoparticles can be controlled, and the size thereof can be controlled within the range of 3 to 10 nm.

【0006】(2)城後らは,2001年度第25回応
用磁気学会学術講演会において,逆ミセル法を用いたF
ePtナノ粒子の合成法を発表した(該講演概要集200
1, 26aC-6, P.155)。この方法によると,非親水性溶媒
であるイソオクタンを溶媒に使用し,界面活性剤にビス
(2-エチルヘキシル)スルホコハク酸ナトリウムを使用
してミセル場を形成し,このミセル内の水溶液中におい
てFeおよびPtの塩化物をNaBH4により還元する
ことによりFePtナノ粒子を合成している。この方法
では,反応場に逆ミセルを使用することにより分散性の
良いナノ粒子が得られる。
(2) Jogo et al., At the 25th Annual Meeting of the Applied Magnetics Society of Japan, used the F method using the reverse micelle method.
Announced a method for synthesizing ePt nanoparticles.
1, 26aC-6, P.155). According to this method, a non-hydrophilic solvent, isooctane, is used as a solvent, and sodium bis (2-ethylhexyl) sulfosuccinate is used as a surfactant to form a micellar field. FePt nanoparticles are synthesized by reducing Pt chloride with NaBH 4 . In this method, nanoparticles with good dispersibility can be obtained by using reverse micelles in the reaction field.

【0007】(3)黒部らは,同じく2001年度第2
5回応用磁気学会学術講演会において,アルコール還元
法によるFePtナノ粒子の合成法を発表した(該講演
概要集2001, 26aC-5, P.154)。この方法によると,Fe
供給源にFe(acac)3を,Pt供給源にPt(acac)2を使用
し,粒子表面を保護する保護高分子としてポリ(N-ビニ
ル-2-ピロリドン)を使用し,溶媒と還元剤の作用を併
せ持つエチレングリコールによるアルコール還元法によ
りFePtナノ粒子を合成している。
(3) Kurobe et al.
At the 5th Annual Meeting of the Magnetic Society of Japan, we presented a method for synthesizing FePt nanoparticles by the alcohol reduction method (Summary of the lecture 2001, 26aC-5, P.154). According to this method, Fe
Fe (acac) 3 is used as a source, Pt (acac) 2 is used as a Pt source, poly (N-vinyl-2-pyrrolidone) is used as a protective polymer for protecting the particle surface, and a solvent and a reducing agent are used. FePt nanoparticles are synthesized by an alcohol reduction method using ethylene glycol, which also has the above-mentioned action.

【0008】このようにして得られるナノ粒子(FeP
t)を基盤上に自己配列させた記録媒体では,Tbit/in
2オーダーまで記録密度を上げられるポテンシャルを有
することが知られている (前掲のScience, 2000, Vol.2
87, p.1989,およびJournalof the Magnetics Society
of Japan, 2001, V.25, No.8, p.1434)。
The nanoparticles thus obtained (FeP
In the recording medium in which t) is self-aligned on the substrate, Tbit / in
It is known to have the potential to increase the recording density up to 2 orders (Science, 2000, Vol. 2 above).
87, p.1989, and Journal of the Magnetics Society
of Japan, 2001, V.25, No.8, p.1434).

【0009】[0009]

【発明が解決しようとする課題】前記のようなナノ粒子
からなる強磁性合金で記録媒体を作成する場合には,ナ
ノ粒子を規則格子化させるための熱処理が必要である。
そのさい,規則格子化を基盤上で行う場合には,その熱
処理温度に耐える基盤が必要となる。従来のハードディ
スクの基盤は主にガラス基盤やAl基盤が用いられてい
るが,これらを用いたのでは,該熱処理温度で変形する
おそれがある。
When a recording medium is made of a ferromagnetic alloy composed of nanoparticles as described above, it is necessary to perform heat treatment for forming nanoparticles into a regular lattice.
At that time, when the ordered lattice is formed on the substrate, a substrate that can withstand the heat treatment temperature is required. A conventional hard disk base is mainly a glass base or an Al base, but if these are used, there is a risk of deformation at the heat treatment temperature.

【0010】他方,基盤を用いずに熱処理すると,すな
わち,基盤上に塗布することなく分離・乾燥した粒子の
状態で熱処理する場合には,前述の基盤変形の問題はな
いものの,粒子同士の焼結(ランダムに粒子が融着し合
う現象)が起こり,ナノスケールサイズが保持できなく
なって,高密度記録媒体用の磁性粉としては不適当なも
のになりかねない。
On the other hand, when the heat treatment is performed without using the base, that is, when the heat treatment is performed in the state of separated and dried particles without coating on the base, there is no problem of the base deformation described above, but the particles are burned together. Cohesion (a phenomenon in which particles are fused at random) occurs, making it impossible to maintain the nanoscale size, which may result in unsuitable magnetic powder for high-density recording media.

【0011】したがって,本発明の課題は,このような
ナノ粒子を粉状のままで熱処理しても粒子同士の焼結が
起きがたいものに変性することにある。
[0011] Therefore, an object of the present invention is to modify such nanoparticles into particles which are hard to sinter even if they are heat-treated in a powder state.

【0012】[0012]

【課題を解決するための手段】本発明によれば,成分組
成がFx100-xで表される合金に,元素Aが,A/(F
+M)の原子百分率で1〜200(at.%)の範囲で含ま
れている磁気記録媒体用磁性材料を提供する。ただし,
FはFeまたはCoの1種または2種の遷移金属,Mは
PtまたはPdの1種または2種の白金族金属,30≦
x≦70であり,元素AはSi,AlおよびR(RはY
を含む希土類元素の1種または2種以上を表す)からな
る群から選ばれた少なくとも1種の元素を表す。この磁
性材料は平均粒子径が1〜100nmの範囲にあり,そ
の粒子のコア部がFx100-xの合金(ただし30≦x≦
70)からなり,この合金粒子の表面部に元素Aが偏在
している粒子であるのが好ましい。
According to the present invention, the element A is added to the alloy represented by F x M 100-x by adding A / (F
A magnetic material for a magnetic recording medium is contained in the range of 1 to 200 (at.%) In terms of atomic percentage of (+ M). However,
F is one or two transition metals of Fe or Co, M is one or two platinum group metals of Pt or Pd, 30 ≦
x ≦ 70, the element A is Si, Al and R (R is Y
It represents at least one element selected from the group consisting of one or two or more rare earth elements including. This magnetic material has an average particle size in the range of 1 to 100 nm, and the core portion of the particle is an alloy of F x M 100-x (where 30 ≦ x ≦
70) and the element A is unevenly distributed on the surface of the alloy particles.

【0013】[0013]

【発明の実施の形態】成分組成がFx100-xで表される
合金のナノ粒子それ自身(ただし,FはFeまたはCo
の1種以上,MはPtまたはPdの1種以上で,30≦
x≦70)は,前述(1) 〜(3) の製法やその他の製法に
よって得ることができるが,このものをCuAu型構造
の規則格子をもつ強磁性合金とするには前記のように熱
処理するのが好ましい。適正な熱処理温度は,ナノ粒子
の粒径,形状,成分組成等によって異なるが少なくとも
450℃以上を必要とする。そのさい,Fx100-x合金
ナノ粒子の表面部に適正な元素Aが適量存在している
と,粒子同士が融着(焼結)する現象を抑制することが
でき,ナノスケールサイズを保持したまま規則格子化を
達成しやすくなる。
BEST MODE FOR CARRYING OUT THE INVENTION The nanoparticles of the alloy represented by the composition F x M 100-x itself (where F is Fe or Co)
1 or more, M is one or more of Pt or Pd, and 30 ≦
x ≦ 70) can be obtained by the above-mentioned manufacturing methods (1) to (3) and other manufacturing methods. In order to make this into a ferromagnetic alloy having an ordered lattice of CuAu type structure, heat treatment is performed as described above. Preferably. The appropriate heat treatment temperature depends on the particle size, shape, composition of the nanoparticles, etc., but at least 450 ° C. or higher is required. At that time, if an appropriate amount of the element A is present on the surface of the F x M 100-x alloy nanoparticles, the phenomenon of fusion (sintering) between particles can be suppressed, and the nanoscale size can be reduced. It becomes easy to achieve regular lattice formation while keeping it.

【0014】元素Aとしては,Si,AlおよびR(R
はYを含む希土類元素の1種または2種以上を表す)か
らなる群から選ばれた少なくとも1種であるのがよい。
Rのうちで,好ましいのはYまたはNdである。
As the element A, Si, Al and R (R
Is at least one selected from the group consisting of one or two or more rare earth elements including Y).
Of R, preferred is Y or Nd.

【0015】本発明に従う磁性材料を得るには,まずF
x100-x合金ナノ粒子を製造してから,このナノ粒子に
元素Aを含有させる処理を施すのがよい。Fx100-x
金ナノ粒子の製造には,非親水性溶媒中で有機金属を熱
分解・還元する方法(前記(1) の方法),非親水性溶媒
中で界面活性剤を用いてミセルを成形して還元する逆ミ
セル法(前記(2) の方法),親水性のアルコール溶媒中
で還元を行うアルコール還元法(前記(3) の方法),親
水性溶媒中でFの塩化物,硫酸塩等とMの塩化物とを溶
存させて還元剤で還元する方法(同一出願人に係る特願
2001−400216号に記載の方法),そのほかの
湿式還元法,気相法などあらゆる製法が適用できるが,
非親水性溶媒を用いてFx100-x合金ナノ粒子を製造し
た場合には,その合金ナノ粒子が生成している非親水性
溶媒に,元素Aのアルコシド類,例えばテトラエチルオ
ルトシリケート,アルミニウムトリイソプロポキシドな
ど添加して,該合金ナノ粒子表面部に元素Aを含有させ
るのがよい。他方,親水性溶媒を用いてFx100-x合金
ナノ粒子を製造した場合には,その合金ナノ粒子が生成
している親水性溶媒に,元素Aの硫酸塩や,ケイ酸塩,
アルミン酸塩などの金属塩を添加して,該合金ナノ粒子
表面部に元素Aを含有させるのがよい。
To obtain the magnetic material according to the present invention, first, F
After producing the xM100 -x alloy nanoparticles, the nanoparticles may be subjected to a treatment for containing the element A. For the production of F x M 100-x alloy nanoparticles, a method of thermally decomposing / reducing an organic metal in a non-hydrophilic solvent (the method of (1) above) and a surfactant in a non-hydrophilic solvent are used. Reverse micelle method of forming and reducing micelles (method of (2) above), alcohol reduction method of reducing in hydrophilic alcohol solvent (method of (3) above), chloride of F in hydrophilic solvent , A method of dissolving a sulfate or the like and a chloride of M and reducing with a reducing agent (method described in Japanese Patent Application No. 2001-400216 of the same applicant), other wet reduction methods, vapor phase methods Is applicable,
When F x M 100-x alloy nanoparticles are produced using a non-hydrophilic solvent, the non-hydrophilic solvent in which the alloy nanoparticles are produced contains the alcosides of element A, such as tetraethylorthosilicate and aluminum. It is preferable that the element A is contained in the surface portion of the alloy nanoparticles by adding triisopropoxide or the like. On the other hand, when F x M 100-x alloy nanoparticles are produced by using a hydrophilic solvent, the hydrophilic solvent in which the alloy nanoparticles are produced contains the sulfate of element A, silicate,
It is preferable to add a metal salt such as an aluminate so that the surface of the alloy nanoparticles contains the element A.

【0016】Fx100-x合金ナノ粒子に元素Aを含有さ
せる量としては,A/(F+M)の原子百分率が1〜2
00(at.%),好ましくは1〜150(at.%),さらに
好ましくは1〜100(at.%)となる量とするのがよ
い。この原子百分率が1未満では焼結を抑制する効果が
現れず,200を超える場合には,ナノ粒子の分散性が
低下するようになる。
As for the amount of the element A contained in the F x M 100-x alloy nanoparticles, the atomic percentage of A / (F + M) is 1 to 2
The amount is 00 (at.%), Preferably 1 to 150 (at.%), And more preferably 1 to 100 (at.%). If this atomic percentage is less than 1, the effect of suppressing sintering does not appear, and if it exceeds 200, the dispersibility of the nanoparticles decreases.

【0017】[0017]

【実施例】〔実施例1〕40ミリL(Lはリットルを表
す)のジオクチルエーテル中に1ミリモルのPt(acac)
2を混合し,エチレングリコールを3ミリモル添加し
た。次いで,この混合液を100℃で30分間保持した
後,オレイン酸を1ミリモル,オレイルアミンを1ミリ
モルおよびFe(CO)5を1.6ミリモル添加し,250
℃に昇温して30分保持することにより,FePt微粒
子を合成した。
Example 1 1 mmol of Pt (acac) in 40 ml of dioctyl ether (L represents liter).
2 was mixed and 3 mmol of ethylene glycol was added. Then, this mixture was kept at 100 ° C. for 30 minutes, and then 1 mmol of oleic acid, 1 mmol of oleylamine and 1.6 mmol of Fe (CO) 5 were added, and
FePt fine particles were synthesized by raising the temperature to 0 ° C. and holding for 30 minutes.

【0018】このFePt微粒子を含有したままの液を
ヘキサンで10倍に希釈し,この希釈液に対し,アルミ
ニウムトリイソプロポシキドを2−プロパノールに溶解
した含アルミニウム溶液を,Al/(Fe+Pt)の原
子百分率が46.5at.%に相当する割合で添加し,30
℃で60分攪拌した。次いで,液から粒子を分離し,2
−プロパノールで洗浄し,窒素ガス中で乾燥して微粉を
得た。得られた微粉の平均粒径はほぼ4nmであった。
The solution containing the FePt fine particles was diluted 10 times with hexane, and an aluminum-containing solution in which aluminum triisopropoxide was dissolved in 2-propanol was added to the diluted solution to obtain Al / (Fe + Pt). The atomic percentage of 46.5at.
The mixture was stirred at 0 ° C for 60 minutes. Then separate the particles from the liquid, 2
-Washed with propanol and dried in nitrogen gas to obtain a fine powder. The average particle size of the obtained fine powder was about 4 nm.

【0019】この微粉をN2雰囲気中で550℃に30
分間保持する熱処理を施し,焼結が殆んど起きていない
平均粒径がほぼ4nmのFePt強磁性粒子を得た。こ
の粒子の電子顕微鏡写真を図1に示した。また,このF
ePt強磁性粒子から,保磁力(Hc)=2927(O
e ),飽和磁化(σs)=30.9(emu/g )の磁気特
性が得られた。
This fine powder was heated to 550 ° C. in an N 2 atmosphere at 30 ° C.
A heat treatment of holding for a minute was performed to obtain FePt ferromagnetic particles having an average particle diameter of about 4 nm in which almost no sintering occurred. An electron micrograph of the particles is shown in FIG. Also, this F
From ePt ferromagnetic particles, coercive force (Hc) = 2927 (O
e) and saturation magnetization (σs) = 30.9 (emu / g) magnetic properties were obtained.

【0020】〔実施例2〕40ミリLのジオクチルエー
テル中に1ミリモルのPt(acac)2を混合し,エチレン
グリコールを3ミリモル添加した。次いで,この混合液
を100℃で30分間保持した後,オレイン酸を1ミリ
モル,オレイルアミンを1ミリモルおよびFe(CO)5
を1.6ミリモル添加し,250℃に昇温して30分保
持することにより,FePt微粒子を合成した。
Example 2 1 mmol of Pt (acac) 2 was mixed in 40 ml of dioctyl ether, and 3 mmol of ethylene glycol was added. Then, the mixture was kept at 100 ° C. for 30 minutes, and then 1 mmol of oleic acid, 1 mmol of oleylamine and Fe (CO) 5
Was added and the temperature was raised to 250 ° C. and kept for 30 minutes to synthesize FePt fine particles.

【0021】このFePt微粒子を含有したままの液を
ヘキサンで10倍に希釈し,この希釈液に対し,テトラ
エチルオルトシリケートをエタノールに溶解した含Si
溶液を,Si/(Fe+Pt)の原子百分率が100a
t.%に相当する割合で添加した。次いで,この混合液に
ナトリウムエチラートをpH12となるまで添加した
後,水蒸気を含む Airでバブリングしながら30℃で1
80分攪拌した。次いで,液から粒子を分離し,エタノ
ールで洗浄し,窒素ガス中で乾燥して微粉を得た。得ら
れた微粉の平均粒径はほぼ4nmであった。
The solution containing the FePt fine particles was diluted 10 times with hexane, and tetraethyl orthosilicate was dissolved in ethanol to this diluted solution.
The solution has a Si / (Fe + Pt) atomic percentage of 100a
It was added at a rate corresponding to t.%. Next, sodium ethylate was added to this mixed solution until the pH reached 12, and the mixture was stirred at 30 ° C for 1 hour while bubbling with Air containing steam.
Stir for 80 minutes. Then, the particles were separated from the liquid, washed with ethanol, and dried in nitrogen gas to obtain fine powder. The average particle size of the obtained fine powder was about 4 nm.

【0022】この微粉をN2雰囲気中で550℃に30
分間保持する熱処理を施し,焼結が殆んど起きていない
平均粒径がほぼ4nmのFePt強磁性粒子を得た。こ
のFePt強磁性粒子から,保磁力(Hc)=2566
(Oe ),飽和磁化(σs)=23.0(emu/g )の磁
気特性が得られた。
This fine powder was heated to 550 ° C. in an N 2 atmosphere at 30 ° C.
A heat treatment of holding for a minute was performed to obtain FePt ferromagnetic particles having an average particle diameter of about 4 nm in which almost no sintering occurred. From this FePt ferromagnetic particle, coercive force (Hc) = 2566
Magnetic properties of (Oe) and saturation magnetization (σs) = 23.0 (emu / g) were obtained.

【0023】〔実施例3〕40ミリLのジオクチルエー
テル中に1ミリモルのPt(acac)2を混合し,エチレン
グリコールを3ミリモル添加した。次いで,この混合液
を100℃で30分間保持した後,オレイン酸を1ミリ
モル,オレイルアミンを1ミリモルおよびFe(CO)5
を1.6ミリモル添加し,250℃に昇温して30分保
持することにより,FePt微粒子を合成した。
Example 3 1 mmol of Pt (acac) 2 was mixed in 40 ml of dioctyl ether, and 3 mmol of ethylene glycol was added. Then, the mixture was kept at 100 ° C. for 30 minutes, and then 1 mmol of oleic acid, 1 mmol of oleylamine and Fe (CO) 5
Was added and the temperature was raised to 250 ° C. and kept for 30 minutes to synthesize FePt fine particles.

【0024】このFePt微粒子を含有したままの液を
ヘキサンで10倍に希釈し,この希釈液に対し,イット
リウムイソプロポキシドをトルエンに溶解した含Y溶液
を,Y/(Fe+Pt)の原子百分率が20at.%に相当
する割合で添加し,30℃で60分攪拌した。次いで,
液から粒子を分離し,トルエンで洗浄し,窒素ガス中で
乾燥して微粉を得た。得られた微粉の平均粒径はほぼ4
nmであった。
The solution containing the FePt fine particles was diluted 10-fold with hexane, and a Y-containing solution in which yttrium isopropoxide was dissolved in toluene was added to the diluted solution to obtain a Y / (Fe + Pt) atomic percentage. The mixture was added at a rate corresponding to 20 at.% And stirred at 30 ° C for 60 minutes. Then,
The particles were separated from the liquid, washed with toluene, and dried in nitrogen gas to obtain fine powder. The average particle size of the obtained fine powder is about 4
was nm.

【0025】この微粉をN2雰囲気中で550℃に30
分間保持する熱処理を施し,焼結が殆んど起きていない
平均粒径がほぼ4nmのFePt強磁性粒子を得た。こ
のFePt強磁性粒子から,保磁力(Hc)=2732
(Oe ),飽和磁化(σs)=27.3(emu/g )の磁
気特性が得られた。
This fine powder was heated to 550 ° C. in an N 2 atmosphere at 30 ° C.
A heat treatment of holding for a minute was performed to obtain FePt ferromagnetic particles having an average particle diameter of about 4 nm in which almost no sintering occurred. From this FePt ferromagnetic particle, coercive force (Hc) = 2732
Magnetic properties of (Oe) and saturation magnetization (σs) = 27.3 (emu / g) were obtained.

【0026】〔比較例〕40ミリLのジオクチルエーテ
ル中に1ミリモルのPt(acac)2を混合し,エチレング
リコールを3ミリモル添加した。次いで,この混合液を
100℃で30分間保持した後,オレイン酸を1ミリモ
ル,オレイルアミンを1ミリモルおよびFe(CO)5
1.6ミリモル添加し,250℃に昇温して30分保持
することにより,FePt微粒子を合成した。
Comparative Example 1 mmol of Pt (acac) 2 was mixed in 40 ml of dioctyl ether, and 3 mmol of ethylene glycol was added. Then, this mixture was kept at 100 ° C. for 30 minutes, then 1 mmol of oleic acid, 1 mmol of oleylamine and 1.6 mmol of Fe (CO) 5 were added, and the temperature was raised to 250 ° C. and kept for 30 minutes. As a result, FePt fine particles were synthesized.

【0027】このFePt微粒子を含有する液にエタノ
ールを添加してFePt微粒子を凝集させたあと,遠心
分離によって液から粒子を分離し,窒素ガス中で乾燥し
て微粉を得た。得られた微粉の平均粒径はほぼ4nmで
あった。
Ethanol was added to the liquid containing the FePt fine particles to agglomerate the FePt fine particles, the particles were separated from the liquid by centrifugation, and dried in nitrogen gas to obtain fine powder. The average particle size of the obtained fine powder was about 4 nm.

【0028】この微粉をN2雰囲気中で550℃に30
分間保持する熱処理を施したところ,10〜250nm
の大きさに焼結したFePt強磁性粒子を得た。このF
ePt強磁性粒子から,保磁力(Hc)=3409(O
e ),飽和磁化(σs)=36.5(emu/g )の磁気特
性が得られた。
This fine powder was heated to 550 ° C. in an N 2 atmosphere at 30 ° C.
When heat-treated for holding for 10 minutes, 10-250 nm
FePt ferromagnetic particles sintered to have the size of This F
From ePt ferromagnetic particles, coercive force (Hc) = 3409 (O
e) and saturation magnetization (σs) = 36.5 (emu / g) magnetic properties were obtained.

【0029】[0029]

【発明の効果】以上説明したように,本発明によると,
x100-x合金ナノ粒子を規則格子化して強磁性材料と
する場合の熱処理において,ナノ粒子同士のランダムな
焼結の進行を抑制することができる。したがって,Fx
100-x合金ナノ粒子を用いた磁気記録媒体用の強磁性
材料を歩留りよく製造することができる。
As described above, according to the present invention,
It is possible to suppress the progress of random sintering between nanoparticles in the heat treatment when the F x M 100-x alloy nanoparticles are formed into a regular lattice to form a ferromagnetic material. Therefore, F x
A ferromagnetic material for a magnetic recording medium using M 100-x alloy nanoparticles can be manufactured with high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従うFePt合金強磁性ナノ粒子の透
過電子顕微鏡写真である。
FIG. 1 is a transmission electron micrograph of FePt alloy ferromagnetic nanoparticles according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 間舩 修一 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 5D006 BA01 BA08 DA03 EA01 5E040 AA01 AA03 CA06 HB15 NN01   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shuichi Mafune             1-8-2 Marunouchi, Chiyoda-ku, Tokyo             Within Wa Mining Co., Ltd. F-term (reference) 5D006 BA01 BA08 DA03 EA01                 5E040 AA01 AA03 CA06 HB15 NN01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 成分組成がFx100-xで表される合金
に,元素Aが,A/(F+M)の原子百分率で1〜20
0(at.%)の範囲で含まれている磁気記録媒体用磁性材
料。ただし,Fは,FeまたはCoの1種または2種の
遷移金属,Mは,PtまたはPdの1種または2種の白
金族金属, 30≦x≦70, 元素Aは,Si,AlおよびR(RはYを含む希土類元
素の1種または2種以上を表す)からなる群から選ばれ
た少なくとも1種の元素,を表す。
1. An alloy having a component composition of F x M 100-x , wherein the element A is 1 to 20 in atomic percentage of A / (F + M).
A magnetic material for a magnetic recording medium, which is included in the range of 0 (at.%). However, F is one or two kinds of transition metals of Fe or Co, M is one or two kinds of platinum group metals of Pt or Pd, 30 ≦ x ≦ 70, element A is Si, Al and R (R represents one or more rare earth elements including Y) and at least one element selected from the group consisting of
【請求項2】 Fx100-xの合金からなる粒子の表面部
に元素Aが偏在している請求項1に記載の磁気記録媒体
用磁性材料。
2. The magnetic material for a magnetic recording medium according to claim 1, wherein the element A is unevenly distributed on the surface portion of the particles made of an alloy of F x M 100-x .
【請求項3】 平均粒子径が1〜100nmである請求
項2に記載の磁気記録媒体用磁性材料。
3. The magnetic material for a magnetic recording medium according to claim 2, which has an average particle diameter of 1 to 100 nm.
JP2002012413A 2002-01-22 2002-01-22 Magnetic materials for magnetic recording media Expired - Fee Related JP4051451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002012413A JP4051451B2 (en) 2002-01-22 2002-01-22 Magnetic materials for magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002012413A JP4051451B2 (en) 2002-01-22 2002-01-22 Magnetic materials for magnetic recording media

Publications (2)

Publication Number Publication Date
JP2003217108A true JP2003217108A (en) 2003-07-31
JP4051451B2 JP4051451B2 (en) 2008-02-27

Family

ID=27649626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002012413A Expired - Fee Related JP4051451B2 (en) 2002-01-22 2002-01-22 Magnetic materials for magnetic recording media

Country Status (1)

Country Link
JP (1) JP4051451B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231577A (en) * 2008-04-09 2008-10-02 National Institute For Materials Science TERNARY ALLOY OF FePtP
US7592042B1 (en) 2005-12-19 2009-09-22 Fujifilm Corporation Reverse micelle method of producing core/shell particles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060391B (en) * 2017-12-15 2019-12-27 桂林电子科技大学 Method for accelerating phase transition of FePd thin film
CN110560704B (en) * 2019-10-11 2021-10-22 东北大学 Method for inductively synthesizing fct-FePt nano particles by doping low-melting-point elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592042B1 (en) 2005-12-19 2009-09-22 Fujifilm Corporation Reverse micelle method of producing core/shell particles
JP2008231577A (en) * 2008-04-09 2008-10-02 National Institute For Materials Science TERNARY ALLOY OF FePtP

Also Published As

Publication number Publication date
JP4051451B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JP5130534B2 (en) Ε iron oxide powder with improved magnetic properties
JP4938285B2 (en) Method for producing core / shell composite nanoparticles
JP2008063200A (en) epsi-IRON OXIDE POWDER HAVING GOOD DISPERSIBILITY
CN101674906A (en) Make the method for core/shell composite nanoparticle
JP5136751B2 (en) Method for producing FePt nanoparticles and method for producing a magnetic recording medium having an array of FePt magnetic nanoparticles
JP6337963B2 (en) Magnetic material carrying magnetic alloy particles and method for producing the magnetic material
JPWO2006070572A1 (en) Ordered alloy phase nanoparticles and method for producing the same, ultra high density magnetic recording medium and method for producing the same
US7964013B2 (en) FeRh-FePt core shell nanostructure for ultra-high density storage media
JP2003166040A (en) Fine particles of metal alloy and manufacturing method therefor
JP2004319923A (en) Iron nitride-based magnetic powder
JP4051451B2 (en) Magnetic materials for magnetic recording media
JPS62287604A (en) Magnetic material and manufacture of the same and magnetic recording medium
JP3896443B2 (en) Method for producing alloy fine particles for magnetic recording medium
JP2625708B2 (en) Method for producing ultra-high coercivity metal powder
JPH0118961B2 (en)
JP2007250824A (en) Hard magnetic nanoparticles, manufacturing method therefor, magnetic fluid, and magnetic recording medium
KR19990077521A (en) Spindle-shaped goethite particles and process for producing the same
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JP3142324B2 (en) Manufacturing method of metal magnetic powder
JP2004052068A (en) Metallic nanoparticle cluster, its manufacturing method, its treatment method and recording medium using at least magnetism
JP2008204524A (en) Magnetic recording medium
JP2001123207A (en) METHOD FOR PRODUCING SPINDLE-SHAPED ALLOY MAGNETIC PARTICLE POWDER FOR MAGNETIC RECORDING ESSENTIALLY CONSISTING OF Fe and Co
JPH03253505A (en) Production of ferromagnetic metal powder
JP2005330526A (en) Method for producing nanoparticle group
JP3242102B2 (en) Magnetic powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4051451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees