JP4051451B2 - Magnetic materials for magnetic recording media - Google Patents

Magnetic materials for magnetic recording media Download PDF

Info

Publication number
JP4051451B2
JP4051451B2 JP2002012413A JP2002012413A JP4051451B2 JP 4051451 B2 JP4051451 B2 JP 4051451B2 JP 2002012413 A JP2002012413 A JP 2002012413A JP 2002012413 A JP2002012413 A JP 2002012413A JP 4051451 B2 JP4051451 B2 JP 4051451B2
Authority
JP
Japan
Prior art keywords
fept
nanoparticles
magnetic
particles
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002012413A
Other languages
Japanese (ja)
Other versions
JP2003217108A (en
Inventor
昌大 後藤
憲司 正田
修一 間舩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2002012413A priority Critical patent/JP4051451B2/en
Publication of JP2003217108A publication Critical patent/JP2003217108A/en
Application granted granted Critical
Publication of JP4051451B2 publication Critical patent/JP4051451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は,高密度記録に適した磁気記録媒体用磁性材料に関する。
【0002】
【従来の技術】
オーディオ用,ビデオ用,コンピュータ用などの磁気テープや磁気ディスク等の磁気記録媒体は,記録容量の高密度化による小型化,高性能化が一段と進み,それに伴って磁気記録媒体用の磁性粉も微粒子化が進んでいる。
【0003】
記録密度の上昇のためには記録単位のサイズ低下が必要であるが,従来型の磁性粉を用いた媒体では高記録密度化の限界に近づいている。このようなことから,近年では,高密度磁気記録媒体として,高い結晶磁気異方性を有し且つ大きな保磁力を示す磁性金属ナノ粒子が注目されている。
【0004】
遷移金属と白金族金属の一部の合金は高温熱処理による規則格子化により高い磁気異方性を発現することが知られており、特にFePt規則格子化合金はKu=7×107erg/ccと大きな結晶磁気異方性エネルギーを有し、熱揺らぎの問題を解決する有力な磁性材料として注目を集めている。FePtナノ粒子の合成に関する技術として、例えば以下のものが報告された。
【0005】
(1)ショウヘン・スンらにより,化学的手法を用いたFePtナノ粒子の合成法がScience, 2000, Vol.287, p.1989に報告された。この方法によると,非親水性溶媒であるジオクチルエーテル中において, Pt(acac)2をアルコールにより還元し,Fe(CO)5を熱分解することにより,FePtナノ粒子が合成される。作製されたFePtナノ粒子は組成制御が可能で,そのサイズも3〜10nmの間で制御できるとされている。
【0006】
(2)城後らは,2001年度第25回応用磁気学会学術講演会において,逆ミセル法を用いたFePtナノ粒子の合成法を発表した(該講演概要集2001, 26aC-6, P.155)。この方法によると,非親水性溶媒であるイソオクタンを溶媒に使用し,界面活性剤にビス(2-エチルヘキシル)スルホコハク酸ナトリウムを使用してミセル場を形成し,このミセル内の水溶液中においてFeおよびPtの塩化物をNaBH4により還元することによりFePtナノ粒子を合成している。この方法では,反応場に逆ミセルを使用することにより分散性の良いナノ粒子が得られる。
【0007】
(3)黒部らは,同じく2001年度第25回応用磁気学会学術講演会において,アルコール還元法によるFePtナノ粒子の合成法を発表した(該講演概要集2001, 26aC-5, P.154)。この方法によると,Fe供給源にFe(acac)3を,Pt供給源にPt(acac)2を使用し,粒子表面を保護する保護高分子としてポリ(N-ビニル-2-ピロリドン)を使用し,溶媒と還元剤の作用を併せ持つエチレングリコールによるアルコール還元法によりFePtナノ粒子を合成している。
【0008】
このようにして得られるナノ粒子(FePt)を基盤上に自己配列させた記録媒体では,Tbit/in2オーダーまで記録密度を上げられるポテンシャルを有することが知られている (前掲のScience, 2000, Vol.287, p.1989,およびJournal of the Magnetics Society of Japan, 2001, V.25, No.8, p.1434)。
【0009】
【発明が解決しようとする課題】
前記のようなナノ粒子からなる強磁性合金で記録媒体を作成する場合には,ナノ粒子を規則格子化させるための熱処理が必要である。そのさい,規則格子化を基盤上で行う場合には,その熱処理温度に耐える基盤が必要となる。従来のハードディスクの基盤は主にガラス基盤やAl基盤が用いられているが,これらを用いたのでは,該熱処理温度で変形するおそれがある。
【0010】
他方,基盤を用いずに熱処理すると,すなわち,基盤上に塗布することなく分離・乾燥した粒子の状態で熱処理する場合には,前述の基盤変形の問題はないものの,粒子同士の焼結(ランダムに粒子が融着し合う現象)が起こり,ナノスケールサイズが保持できなくなって,高密度記録媒体用の磁性粉としては不適当なものになりかねない。
【0011】
したがって,本発明の課題は,このようなナノ粒子を粉状のままで熱処理しても粒子同士の焼結が起きがたいものに変性することにある。
【0012】
【課題を解決するための手段】
本発明によれば、FePt規則格子化合金に、元素Aが、A/(Fe+Pt)の原子百分率で1〜100(at.%)の範囲で含まれ、450℃以上で熱処理されてなる磁気記録媒体用強磁性粒子を提供する。ただし、元素Aは、Si、AlおよびR(RはYを含む希土類元素の1種または2種以上を表す)からなる群から選ばれた少なくとも1種の元素、を表す。前記FePt規則格子化合金の粒子は表面部に元素Aが偏在している粒子であるのが好ましい。
【0013】
【発明の実施の形態】
成分組成がFx100-xで表される合金のナノ粒子それ自身(ただし,FはFeまたはCoの1種以上,MはPtまたはPdの1種以上で,30≦x≦70)は,前述(1) 〜(3) の製法やその他の製法によって得ることができるが,このものをCuAu型構造の規則格子をもつ強磁性合金とするには前記のように熱処理するのが好ましい。適正な熱処理温度は,ナノ粒子の粒径,形状,成分組成等によって異なるが少なくとも450℃以上を必要とする。そのさい,Fx100-x合金ナノ粒子の表面部に適正な元素Aが適量存在していると,粒子同士が融着(焼結)する現象を抑制することができ,ナノスケールサイズを保持したまま規則格子化を達成しやすくなる。
【0014】
元素Aとしては,Si,AlおよびR(RはYを含む希土類元素の1種または2種以上を表す)からなる群から選ばれた少なくとも1種であるのがよい。Rのうちで,好ましいのはYまたはNdである。
【0015】
本発明に従う磁性材料を得るには,まずFx100-x合金ナノ粒子を製造してから,このナノ粒子に元素Aを含有させる処理を施すのがよい。Fx100-x合金ナノ粒子の製造には,非親水性溶媒中で有機金属を熱分解・還元する方法(前記(1) の方法),非親水性溶媒中で界面活性剤を用いてミセルを成形して還元する逆ミセル法(前記(2) の方法),親水性のアルコール溶媒中で還元を行うアルコール還元法(前記(3) の方法),親水性溶媒中でFの塩化物,硫酸塩等とMの塩化物とを溶存させて還元剤で還元する方法(同一出願人に係る特願2001−400216号に記載の方法),そのほかの湿式還元法,気相法などあらゆる製法が適用できるが,非親水性溶媒を用いてFx100-x合金ナノ粒子を製造した場合には,その合金ナノ粒子が生成している非親水性溶媒に,元素Aのアルコシド類,例えばテトラエチルオルトシリケート,アルミニウムトリイソプロポキシドなど添加して,該合金ナノ粒子表面部に元素Aを含有させるのがよい。他方,親水性溶媒を用いてFx100-x合金ナノ粒子を製造した場合には,その合金ナノ粒子が生成している親水性溶媒に,元素Aの硫酸塩や,ケイ酸塩,アルミン酸塩などの金属塩を添加して,該合金ナノ粒子表面部に元素Aを含有させるのがよい。
【0016】
x100-x合金ナノ粒子に元素Aを含有させる量としては,A/(F+M)の原子百分率が1〜200(at.%),好ましくは1〜150(at.%),さらに好ましくは1〜100(at.%)となる量とするのがよい。この原子百分率が1未満では焼結を抑制する効果が現れず,200を超える場合には,ナノ粒子の分散性が低下するようになる。
【0017】
【実施例】
〔実施例1〕
40ミリL(Lはリットルを表す)のジオクチルエーテル中に1ミリモルのPt(acac)2を混合し,エチレングリコールを3ミリモル添加した。次いで,この混合液を100℃で30分間保持した後,オレイン酸を1ミリモル,オレイルアミンを1ミリモルおよびFe(CO)5を1.6ミリモル添加し,250℃に昇温して30分保持することにより,FePt微粒子を合成した。
【0018】
このFePt微粒子を含有したままの液をヘキサンで10倍に希釈し,この希釈液に対し,アルミニウムトリイソプロポシキドを2−プロパノールに溶解した含アルミニウム溶液を,Al/(Fe+Pt)の原子百分率が46.5at.%に相当する割合で添加し,30℃で60分攪拌した。次いで,液から粒子を分離し,2−プロパノールで洗浄し,窒素ガス中で乾燥して微粉を得た。得られた微粉の平均粒径はほぼ4nmであった。
【0019】
この微粉をN2雰囲気中で550℃に30分間保持する熱処理を施し,焼結が殆んど起きていない平均粒径がほぼ4nmのFePt強磁性粒子を得た。この粒子の電子顕微鏡写真を図1に示した。また,このFePt強磁性粒子から,保磁力(Hc)=2927(Oe ),飽和磁化(σs)=30.9(emu/g )の磁気特性が得られた。
【0020】
〔実施例2〕
40ミリLのジオクチルエーテル中に1ミリモルのPt(acac)2を混合し,エチレングリコールを3ミリモル添加した。次いで,この混合液を100℃で30分間保持した後,オレイン酸を1ミリモル,オレイルアミンを1ミリモルおよびFe(CO)5を1.6ミリモル添加し,250℃に昇温して30分保持することにより,FePt微粒子を合成した。
【0021】
このFePt微粒子を含有したままの液をヘキサンで10倍に希釈し,この希釈液に対し,テトラエチルオルトシリケートをエタノールに溶解した含Si溶液を,Si/(Fe+Pt)の原子百分率が100at.%に相当する割合で添加した。次いで,この混合液にナトリウムエチラートをpH12となるまで添加した後,水蒸気を含む Airでバブリングしながら30℃で180分攪拌した。次いで,液から粒子を分離し,エタノールで洗浄し,窒素ガス中で乾燥して微粉を得た。得られた微粉の平均粒径はほぼ4nmであった。
【0022】
この微粉をN2雰囲気中で550℃に30分間保持する熱処理を施し,焼結が殆んど起きていない平均粒径がほぼ4nmのFePt強磁性粒子を得た。このFePt強磁性粒子から,保磁力(Hc)=2566(Oe ),飽和磁化(σs)=23.0(emu/g )の磁気特性が得られた。
【0023】
〔実施例3〕
40ミリLのジオクチルエーテル中に1ミリモルのPt(acac)2を混合し,エチレングリコールを3ミリモル添加した。次いで,この混合液を100℃で30分間保持した後,オレイン酸を1ミリモル,オレイルアミンを1ミリモルおよびFe(CO)5を1.6ミリモル添加し,250℃に昇温して30分保持することにより,FePt微粒子を合成した。
【0024】
このFePt微粒子を含有したままの液をヘキサンで10倍に希釈し,この希釈液に対し,イットリウムイソプロポキシドをトルエンに溶解した含Y溶液を,Y/(Fe+Pt)の原子百分率が20at.%に相当する割合で添加し,30℃で60分攪拌した。次いで,液から粒子を分離し,トルエンで洗浄し,窒素ガス中で乾燥して微粉を得た。得られた微粉の平均粒径はほぼ4nmであった。
【0025】
この微粉をN2雰囲気中で550℃に30分間保持する熱処理を施し,焼結が殆んど起きていない平均粒径がほぼ4nmのFePt強磁性粒子を得た。このFePt強磁性粒子から,保磁力(Hc)=2732(Oe ),飽和磁化(σs)=27.3(emu/g )の磁気特性が得られた。
【0026】
〔比較例〕
40ミリLのジオクチルエーテル中に1ミリモルのPt(acac)2を混合し,エチレングリコールを3ミリモル添加した。次いで,この混合液を100℃で30分間保持した後,オレイン酸を1ミリモル,オレイルアミンを1ミリモルおよびFe(CO)5を1.6ミリモル添加し,250℃に昇温して30分保持することにより,FePt微粒子を合成した。
【0027】
このFePt微粒子を含有する液にエタノールを添加してFePt微粒子を凝集させたあと,遠心分離によって液から粒子を分離し,窒素ガス中で乾燥して微粉を得た。得られた微粉の平均粒径はほぼ4nmであった。
【0028】
この微粉をN2雰囲気中で550℃に30分間保持する熱処理を施したところ,10〜250nmの大きさに焼結したFePt強磁性粒子を得た。このFePt強磁性粒子から,保磁力(Hc)=3409(Oe ),飽和磁化(σs)=36.5(emu/g )の磁気特性が得られた。
【0029】
【発明の効果】
以上説明したように,本発明によると,Fx100-x合金ナノ粒子を規則格子化して強磁性材料とする場合の熱処理において,ナノ粒子同士のランダムな焼結の進行を抑制することができる。したがって,Fx100-x合金ナノ粒子を用いた磁気記録媒体用の強磁性材料を歩留りよく製造することができる。
【図面の簡単な説明】
【図1】本発明に従うFePt合金強磁性ナノ粒子の透過電子顕微鏡写真である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic material for a magnetic recording medium suitable for high density recording.
[0002]
[Prior art]
Magnetic recording media such as magnetic tapes and magnetic disks for audio, video, and computers are becoming smaller and higher performance due to higher recording capacities. The fine particles are progressing.
[0003]
In order to increase the recording density, it is necessary to reduce the size of the recording unit, but the medium using the conventional magnetic powder is approaching the limit of increasing the recording density. For these reasons, in recent years, magnetic metal nanoparticles having high crystal magnetic anisotropy and a large coercive force have attracted attention as high-density magnetic recording media.
[0004]
Some alloys of transition metals and platinum group metals are known to exhibit high magnetic anisotropy due to regular lattice formation by high-temperature heat treatment. In particular, FePt ordered lattice alloys are Ku = 7 × 10 7 erg / cc. As a powerful magnetic material that solves the problem of thermal fluctuation, it has attracted attention. For example, the following has been reported as a technique related to the synthesis of FePt nanoparticles.
[0005]
(1) A method of synthesizing FePt nanoparticles using chemical techniques was reported by Science, 2000, Vol.287, p.1989. According to this method, FePt nanoparticles are synthesized by reducing Pt (acac) 2 with alcohol and thermally decomposing Fe (CO) 5 in dioctyl ether, which is a non-hydrophilic solvent. The produced FePt nanoparticles can be controlled in composition and the size can be controlled between 3 and 10 nm.
[0006]
(2) Jogo et al. Presented a synthesis method of FePt nanoparticles using the reverse micelle method at the 2001 Annual Conference of the 25th Society of Applied Magnetics (2001, 26aC-6, P.155). ). According to this method, a non-hydrophilic solvent, isooctane, is used as a solvent, and sodium bis (2-ethylhexyl) sulfosuccinate is used as a surfactant to form a micellar field. In this aqueous solution in the micelle, Fe and FePt nanoparticles are synthesized by reducing Pt chloride with NaBH 4 . In this method, nanoparticles with good dispersibility can be obtained by using reverse micelles in the reaction field.
[0007]
(3) Kurobe et al. Also published a method for synthesizing FePt nanoparticles by the alcohol reduction method at the 25th Annual Conference of the Magnetic Society of Japan (2001), 2001 (26aC-5, P.154). According to this method, Fe (acac) 3 is used for the Fe source, Pt (acac) 2 is used for the Pt source, and poly (N-vinyl-2-pyrrolidone) is used as a protective polymer to protect the particle surface. However, FePt nanoparticles are synthesized by an alcohol reduction method using ethylene glycol, which has both a solvent and a reducing agent.
[0008]
It is known that a recording medium in which nanoparticles (FePt) thus obtained are self-arranged on a substrate has a potential to increase the recording density to the order of Tbit / in 2 (Science, 2000, supra). Vol.287, p.1989, and Journal of the Magnetics Society of Japan, 2001, V.25, No.8, p.1434).
[0009]
[Problems to be solved by the invention]
When a recording medium is made of a ferromagnetic alloy composed of nanoparticles as described above, heat treatment is required for making the nanoparticles into a regular lattice. At that time, when regular lattice formation is performed on the substrate, a substrate that can withstand the heat treatment temperature is required. Conventional hard disk bases are mainly glass bases or Al bases, but if these bases are used, they may be deformed at the heat treatment temperature.
[0010]
On the other hand, when the heat treatment is performed without using the base, that is, when the heat treatment is performed in the form of separated and dried particles without being coated on the base, there is no problem of the base deformation described above, but the particles are sintered (randomly). (A phenomenon in which particles fuse together), and the nanoscale size cannot be maintained, which may be inappropriate as a magnetic powder for high-density recording media.
[0011]
Therefore, an object of the present invention is to modify such nanoparticles so that the particles do not easily sinter even if they are heat-treated while still in powder form.
[0012]
[Means for Solving the Problems]
According to the present invention, the element A is contained in the FePt ordered latticed alloy in an atomic percentage of A / (Fe + Pt) in the range of 1 to 100 (at.%) And is heat-treated at 450 ° C. or higher. Ferromagnetic particles for a medium are provided. However, the element A represents at least one element selected from the group consisting of Si, Al, and R (R represents one or more rare earth elements including Y). The FePt ordered latticed alloy particles are preferably particles in which the element A is unevenly distributed on the surface portion.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The alloy nanoparticles represented by the component composition F x M 100-x itself (where F is one or more of Fe or Co, M is one or more of Pt or Pd, and 30 ≦ x ≦ 70) These can be obtained by the above-mentioned production methods (1) to (3) and other production methods, but it is preferable to heat-treat them as described above in order to obtain a ferromagnetic alloy having a regular lattice of CuAu type structure. An appropriate heat treatment temperature varies depending on the particle size, shape, component composition, etc. of the nanoparticles, but requires at least 450 ° C. or more. At that time, if an appropriate amount of the proper element A is present on the surface of the F x M 100-x alloy nanoparticles, the phenomenon that the particles are fused (sintered) can be suppressed, and the nanoscale size can be reduced. It becomes easy to achieve regular lattice formation while maintaining it.
[0014]
The element A is preferably at least one selected from the group consisting of Si, Al, and R (R represents one or more rare earth elements including Y). Of R, Y or Nd is preferred.
[0015]
In order to obtain a magnetic material according to the present invention, it is preferable to first produce F x M 100-x alloy nanoparticles and then perform a treatment of containing the element A in the nanoparticles. For the production of F x M 100-x alloy nanoparticles, a method of thermally decomposing and reducing an organic metal in a non-hydrophilic solvent (method (1) above), using a surfactant in a non-hydrophilic solvent Reverse micelle method in which micelles are formed and reduced (method (2) above), alcohol reduction method in which reduction is carried out in a hydrophilic alcohol solvent (method (3) above), F chloride in a hydrophilic solvent , A method of dissolving sulfate, etc. and M chloride and reducing with a reducing agent (method described in Japanese Patent Application No. 2001-400216 pertaining to the same applicant), other wet reduction methods, gas phase methods, and other various production methods However, when F x M 100-x alloy nanoparticles are produced using a non-hydrophilic solvent, the non-hydrophilic solvent in which the alloy nanoparticles are formed contains an alkoxide of element A, for example, Add tetraethylorthosilicate, aluminum triisopropoxide, etc. , It is preferable to contain an element A to alloy nanoparticle surface portion. On the other hand, when F x M 100-x alloy nanoparticles are produced using a hydrophilic solvent, the element A sulfate, silicate, or aluminine is added to the hydrophilic solvent in which the alloy nanoparticles are formed. It is preferable to add a metal salt such as an acid salt to contain the element A on the surface of the alloy nanoparticles.
[0016]
The amount of the element A contained in the F x M 100-x alloy nanoparticles is such that the atomic percentage of A / (F + M) is 1 to 200 (at.%), Preferably 1 to 150 (at.%), More preferably Is preferably 1 to 100 (at.%). If this atomic percentage is less than 1, the effect of suppressing sintering does not appear, and if it exceeds 200, the dispersibility of the nanoparticles decreases.
[0017]
【Example】
[Example 1]
1 millimole of Pt (acac) 2 was mixed in 40 milliliters (L represents liters) of dioctyl ether, and 3 millimole of ethylene glycol was added. The mixture is then held at 100 ° C. for 30 minutes, then 1 mmol of oleic acid, 1 mmol of oleylamine and 1.6 mmol of Fe (CO) 5 are added, heated to 250 ° C. and held for 30 minutes. Thus, FePt fine particles were synthesized.
[0018]
The solution containing the FePt fine particles was diluted 10-fold with hexane, and an aluminum-containing solution obtained by dissolving aluminum triisopropoxide in 2-propanol was used as an atomic percentage of Al / (Fe + Pt). Was added at a rate corresponding to 46.5 at.% And stirred at 30 ° C. for 60 minutes. Next, the particles were separated from the liquid, washed with 2-propanol, and dried in nitrogen gas to obtain a fine powder. The average particle size of the fine powder obtained was approximately 4 nm.
[0019]
The fine powder was heat-treated in an N 2 atmosphere at 550 ° C. for 30 minutes to obtain FePt ferromagnetic particles having an average particle diameter of approximately 4 nm with almost no sintering. An electron micrograph of the particles is shown in FIG. Further, magnetic characteristics of coercive force (Hc) = 2927 (Oe) and saturation magnetization (σs) = 30.9 (emu / g) were obtained from the FePt ferromagnetic particles.
[0020]
[Example 2]
1 mmol of Pt (acac) 2 was mixed in 40 mL of dioctyl ether, and 3 mmol of ethylene glycol was added. The mixture is then held at 100 ° C. for 30 minutes, then 1 mmol of oleic acid, 1 mmol of oleylamine and 1.6 mmol of Fe (CO) 5 are added, heated to 250 ° C. and held for 30 minutes. Thus, FePt fine particles were synthesized.
[0021]
The liquid containing the FePt fine particles was diluted 10-fold with hexane, and a Si-containing solution in which tetraethylorthosilicate was dissolved in ethanol was diluted to 100 at.% Of the atomic percentage of Si / (Fe + Pt). Added in corresponding proportions. Next, sodium ethylate was added to this mixed solution until pH 12 was reached, and then stirred at 30 ° C. for 180 minutes while bubbling with air containing water vapor. Next, the particles were separated from the liquid, washed with ethanol, and dried in nitrogen gas to obtain a fine powder. The average particle size of the fine powder obtained was approximately 4 nm.
[0022]
The fine powder was heat-treated in an N 2 atmosphere at 550 ° C. for 30 minutes to obtain FePt ferromagnetic particles having an average particle diameter of approximately 4 nm with almost no sintering. From the FePt ferromagnetic particles, magnetic properties of coercive force (Hc) = 2565 (Oe) and saturation magnetization (σs) = 23.0 (emu / g) were obtained.
[0023]
Example 3
1 mmol of Pt (acac) 2 was mixed in 40 mL of dioctyl ether, and 3 mmol of ethylene glycol was added. The mixture is then held at 100 ° C. for 30 minutes, then 1 mmol of oleic acid, 1 mmol of oleylamine and 1.6 mmol of Fe (CO) 5 are added, heated to 250 ° C. and held for 30 minutes. Thus, FePt fine particles were synthesized.
[0024]
The liquid containing the FePt fine particles was diluted 10-fold with hexane, and a Y-containing solution in which yttrium isopropoxide was dissolved in toluene was added to the diluted liquid. The atomic percentage of Y / (Fe + Pt) was 20 at.%. The mixture was added at a rate corresponding to and stirred at 30 ° C. for 60 minutes. Next, the particles were separated from the liquid, washed with toluene, and dried in nitrogen gas to obtain a fine powder. The average particle size of the fine powder obtained was approximately 4 nm.
[0025]
The fine powder was heat-treated in an N 2 atmosphere at 550 ° C. for 30 minutes to obtain FePt ferromagnetic particles having an average particle diameter of approximately 4 nm with almost no sintering. From the FePt ferromagnetic particles, magnetic properties of coercive force (Hc) = 2732 (Oe) and saturation magnetization (σs) = 27.3 (emu / g) were obtained.
[0026]
[Comparative Example]
1 mmol of Pt (acac) 2 was mixed in 40 mL of dioctyl ether, and 3 mmol of ethylene glycol was added. The mixture is then held at 100 ° C. for 30 minutes, then 1 mmol of oleic acid, 1 mmol of oleylamine and 1.6 mmol of Fe (CO) 5 are added, heated to 250 ° C. and held for 30 minutes. Thus, FePt fine particles were synthesized.
[0027]
Ethanol was added to the liquid containing the FePt fine particles to aggregate the FePt fine particles, and then the particles were separated from the liquid by centrifugation and dried in nitrogen gas to obtain fine powder. The average particle size of the fine powder obtained was approximately 4 nm.
[0028]
When this fine powder was heat-treated at 550 ° C. for 30 minutes in an N 2 atmosphere, FePt ferromagnetic particles sintered to a size of 10 to 250 nm were obtained. From this FePt ferromagnetic particle, magnetic properties of coercive force (Hc) = 3409 (Oe) and saturation magnetization (σs) = 36.5 (emu / g) were obtained.
[0029]
【The invention's effect】
As described above, according to the present invention, it is possible to suppress the progress of random sintering between nanoparticles in the heat treatment when the F x M 100-x alloy nanoparticles are made into a regular lattice to form a ferromagnetic material. it can. Therefore, a ferromagnetic material for a magnetic recording medium using F x M 100-x alloy nanoparticles can be manufactured with high yield.
[Brief description of the drawings]
FIG. 1 is a transmission electron micrograph of FePt alloy ferromagnetic nanoparticles according to the present invention.

Claims (2)

FePt規則格子化合金に、元素Aが、A/(Fe+Pt)の原子百分率で1〜100(at.%)の範囲で含まれ、450℃以上で熱処理されてなる磁気記録媒体用強磁性粒子。
ただし、元素Aは、Si、AlおよびR(RはYを含む希土類元素の1種または2種以上を表す)からなる群から選ばれた少なくとも1種の元素、を表す。
A ferromagnetic particle for a magnetic recording medium, wherein the FePt ordered lattice alloy contains element A in an atomic percentage of A / (Fe + Pt) in the range of 1 to 100 (at.%) And is heat-treated at 450 ° C. or higher.
However, the element A represents at least one element selected from the group consisting of Si, Al, and R (R represents one or more rare earth elements including Y).
前記FePt規則格子化合金の粒子の表面部に元素Aが偏在している請求項1に記載の磁気記録媒体用強磁性粒子。The ferromagnetic particle for magnetic recording media according to claim 1 , wherein the element A is unevenly distributed on a surface portion of the FePt ordered latticed alloy particle.
JP2002012413A 2002-01-22 2002-01-22 Magnetic materials for magnetic recording media Expired - Fee Related JP4051451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002012413A JP4051451B2 (en) 2002-01-22 2002-01-22 Magnetic materials for magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002012413A JP4051451B2 (en) 2002-01-22 2002-01-22 Magnetic materials for magnetic recording media

Publications (2)

Publication Number Publication Date
JP2003217108A JP2003217108A (en) 2003-07-31
JP4051451B2 true JP4051451B2 (en) 2008-02-27

Family

ID=27649626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002012413A Expired - Fee Related JP4051451B2 (en) 2002-01-22 2002-01-22 Magnetic materials for magnetic recording media

Country Status (1)

Country Link
JP (1) JP4051451B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060391A (en) * 2017-12-15 2018-05-22 桂林电子科技大学 A kind of method for accelerating FePd film phase transition
CN110560704A (en) * 2019-10-11 2019-12-13 东北大学 Method for inductively synthesizing fct-FePt nano particles by doping low-melting-point elements

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592042B1 (en) 2005-12-19 2009-09-22 Fujifilm Corporation Reverse micelle method of producing core/shell particles
JP5062754B2 (en) * 2008-04-09 2012-10-31 独立行政法人物質・材料研究機構 FePtP ternary alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060391A (en) * 2017-12-15 2018-05-22 桂林电子科技大学 A kind of method for accelerating FePd film phase transition
CN108060391B (en) * 2017-12-15 2019-12-27 桂林电子科技大学 Method for accelerating phase transition of FePd thin film
CN110560704A (en) * 2019-10-11 2019-12-13 东北大学 Method for inductively synthesizing fct-FePt nano particles by doping low-melting-point elements
CN110560704B (en) * 2019-10-11 2021-10-22 东北大学 Method for inductively synthesizing fct-FePt nano particles by doping low-melting-point elements

Also Published As

Publication number Publication date
JP2003217108A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
JP3693647B2 (en) Metal alloy fine particles and method for producing the same
JP5130534B2 (en) Ε iron oxide powder with improved magnetic properties
KR101157942B1 (en) Process for producing core/shell composite nanoparticle
JP5124826B2 (en) Ε iron oxide powder with good dispersibility
JP4938285B2 (en) Method for producing core / shell composite nanoparticles
JP2000277311A5 (en)
JP5136751B2 (en) Method for producing FePt nanoparticles and method for producing a magnetic recording medium having an array of FePt magnetic nanoparticles
JPWO2006070572A1 (en) Ordered alloy phase nanoparticles and method for producing the same, ultra high density magnetic recording medium and method for producing the same
US7964013B2 (en) FeRh-FePt core shell nanostructure for ultra-high density storage media
JPWO2016009926A1 (en) Magnetic material carrying magnetic alloy particles and method for producing the magnetic material
JP4051451B2 (en) Magnetic materials for magnetic recording media
JP4232817B2 (en) Method for producing FePt-Fe nanocomposite metal magnetic particles
JP2004319923A (en) Iron nitride-based magnetic powder
JP2007250824A (en) Hard magnetic nanoparticles, manufacturing method therefor, magnetic fluid, and magnetic recording medium
JP3896443B2 (en) Method for producing alloy fine particles for magnetic recording medium
JP2006179567A (en) Iron nitride magnetic powder displaying excellent storing stability
JP4147460B2 (en) Nanomagnetic metal particle cluster, manufacturing method thereof, processing method thereof, and recording medium utilizing at least magnetism
JPS5925905A (en) Production of acicular ferrous ferromagnetic metallic powder
JP3142324B2 (en) Manufacturing method of metal magnetic powder
JP3242102B2 (en) Magnetic powder and method for producing the same
JP4558471B2 (en) Nanoparticles and method for producing nanoparticles
JPH03253505A (en) Production of ferromagnetic metal powder
JP2005330526A (en) Method for producing nanoparticle group
JP2008204524A (en) Magnetic recording medium
JP3171223B2 (en) Method for producing acicular magnetic particle powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4051451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees