JPH03253505A - Production of ferromagnetic metal powder - Google Patents

Production of ferromagnetic metal powder

Info

Publication number
JPH03253505A
JPH03253505A JP2049325A JP4932590A JPH03253505A JP H03253505 A JPH03253505 A JP H03253505A JP 2049325 A JP2049325 A JP 2049325A JP 4932590 A JP4932590 A JP 4932590A JP H03253505 A JPH03253505 A JP H03253505A
Authority
JP
Japan
Prior art keywords
iron
ferromagnetic metal
metal powder
reduction
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2049325A
Other languages
Japanese (ja)
Inventor
Kazuto Sudou
須藤 和冬
Yasuharu Sakurai
康晴 桜井
Toshio Miura
俊夫 三浦
Mitsuo Tanaka
光夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2049325A priority Critical patent/JPH03253505A/en
Publication of JPH03253505A publication Critical patent/JPH03253505A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce ferromagnetic metal powder having little fine holes and large saturation magnetizing value by repeating oxidizing treatment at plural times after executing heat reduction to iron-base metal compound under reducing atmosphere. CONSTITUTION:At the time of producing the ferromagnetic metal powder by executing heat reduction to the metal compound containing iron or iron compound (oxy-iron hydroxide, iron oxide, etc.) as main body under reducing atmosphere, the oxidizing treatment is executed after the first reducing reaction completes, to generate oxide film on surface of the ferromagnetic metal powder. Further, after again executing the heat reduction treatment, operation of the oxidizing treatment is executed and such heat reduction and oxidizing treatment are repeated at two or more times. By this method, the ferromagnetic metal powder having excellent shape holding, magnetic characteristic and oxidizing stability is easily obtd. and available as magnetic base material for magnetic recording medium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度記録に適した磁気記録媒体に於ける磁
性素材としての強磁性金属粉微粒子の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing fine ferromagnetic metal powder particles as a magnetic material in a magnetic recording medium suitable for high-density recording.

〔従来技術〕[Prior art]

磁気テープ、磁気記録媒体として有用な磁性粉末はγ−
酸化鉄が主体であったが、近年VTR用や高級オーディ
オ用の高密度記録媒体が望まれるようになり、オキシ水
酸化鉄あるいは酸化鉄を主体とする粉末を還元性ガスに
より気相接触還元して得られる金属鉄や、またはコバル
ト或いはニッケルと鉄との合金を主体とする高い保磁力
を有する磁性金属粉末が用いられる様になってきた。
Magnetic powder useful for magnetic tapes and magnetic recording media is γ-
Iron oxide was the main ingredient, but in recent years there has been a demand for high-density recording media for VTRs and high-end audio, so iron oxyhydroxide or iron oxide-based powder is now being reduced in the vapor phase using a reducing gas. Magnetic metal powders having a high coercive force and mainly consisting of metallic iron obtained from the above, or alloys of cobalt or nickel and iron have come to be used.

金属磁性微粒子の保磁力は形状異方性が強い為粒子サイ
ズ、針状性等に依存するが、磁気記録用媒体はオーディ
オ用、ビデオ用を問わず広い記録周波数帯域での高出力
化、低ノイズ化をめざしており、磁性金属粉末としては
その形状は微細化の傾向にあり、尚かつ粉末粒子の細孔
を少なくして飽和磁化を上げること及び塗料用樹脂との
親和性や分散性、塗膜の配向性、充填性も向上する事が
望まれ、バインダー樹脂、各種添加剤の改良及び塗料分
散、媒体加工技術の改良研究も行われている。
The coercive force of metal magnetic fine particles has strong shape anisotropy and therefore depends on particle size, acicularity, etc., but magnetic recording media, whether used for audio or video, are capable of achieving high output and low output in a wide recording frequency band. The aim is to reduce noise, and the shape of magnetic metal powder tends to become finer.In addition, we aim to increase saturation magnetization by reducing the pores of powder particles, and improve affinity and dispersibility with paint resins. It is desired to improve the orientation and filling properties of the coating film, and research is also being conducted to improve binder resins, various additives, paint dispersion, and media processing technology.

このような状況において、鉄もしくは鉄化合物を主体と
する金属化合物を出発原料として還元性雰囲気中で加熱
還元し、鉄もしくは鉄を主体とする強磁性金属粉末を得
る為に、いくつかの重要な技術が開発されてきた。例え
ば、還元性雰囲気中で加熱還元により生しる焼結を防止
し原料形状を保持する為に、焼結防止成分としてリン、
珪素、アルミニウム、クロム及びホウ素化合物等を出発
原料である鉄もしくは鉄を主体とした水酸化物もしくは
酸化物に共沈或いは被着した後、還元する方法が知られ
ている。
Under these circumstances, several important steps have been taken to obtain iron or iron-based ferromagnetic metal powder by heating and reducing iron or iron-based metal compounds as starting materials in a reducing atmosphere. technology has been developed. For example, in order to prevent sintering that occurs due to thermal reduction in a reducing atmosphere and maintain the shape of the raw material, phosphorus is used as a sintering prevention component.
A method is known in which silicon, aluminum, chromium, boron compounds, etc. are coprecipitated or deposited on a starting material of iron or an iron-based hydroxide or oxide, and then reduced.

通常、還元反応は水素もしくは水素を主体とした還元性
ガスで行われるが、還元初期に還元性ガスに水蒸気を同
伴させ、加熱還元によって得られた鉄もしくは鉄を主体
とした金属の比表面積を低下させる方法(特公昭6l−
36048)が提案されている。又、加熱還元によって
得られた鉄もしくは鉄を主体とした金属はそのままでは
大気中で酸化燃焼してしまうので、大気中で安全に取り
扱う事を可能にし、強磁性金属の酸化が進行する事によ
る磁気特性の経時劣化を防止するための技術は重要であ
る。従来、酸化安定性を確保する手段としては気相接触
反応あるいは液相反応により強磁性金属微粒子表層部に
酸化被膜を形成する方法が知られており、更に酸化安定
性を向上する為に酸化被膜を形成後に高温において加熱
処理する方法(特開昭6l−154112)、強磁性金
属微粒子表層部に金属化合物の被膜を形成する方法(特
開昭63−184306)や強磁性金属微粒子表層部に
マグネタイト被膜を形成する方法(特公昭63−540
41)等が提案されている。
Normally, the reduction reaction is carried out using hydrogen or a reducing gas mainly composed of hydrogen, but by entraining water vapor to the reducing gas in the early stage of the reduction, the specific surface area of iron or iron-based metal obtained by thermal reduction is reduced. Method of lowering (Tokuko Sho 6l-
36048) has been proposed. In addition, since iron or iron-based metals obtained by thermal reduction will oxidize and burn in the atmosphere, it is possible to safely handle them in the atmosphere, and the oxidation of ferromagnetic metals will progress. Techniques to prevent deterioration of magnetic properties over time are important. Conventionally, a method of forming an oxide film on the surface layer of ferromagnetic metal particles by gas phase contact reaction or liquid phase reaction has been known as a means to ensure oxidation stability. A method of heat-treating at a high temperature after formation (Japanese Patent Application Laid-Open No. 61-154112), a method of forming a film of a metal compound on the surface layer of ferromagnetic metal fine particles (Japanese Patent Laid-Open No. 63-184306), Method of forming a film (Special Publication No. 63-540
41) etc. have been proposed.

〔発明が解決しようとする課B] 上記の如く、鉄又は鉄を主体とした強磁性金属微粒子を
良好な特性の磁気記録用素材とするには極めて複雑な工
程を必要とする。これらに於いて表面変性したオキシ水
酸化鉄をそのまま還元すると多孔質な金属粉末となり、
あるいは針状形状がこわれてしまうので還元に先だって
500〜800℃において仮焼し細孔の少ない酸化鉄(
α−Feze3、peso4)にしてから還元すること
が行われている。
[Problem B to be Solved by the Invention] As described above, an extremely complicated process is required to make iron or ferromagnetic metal fine particles mainly composed of iron into a magnetic recording material with good characteristics. In these cases, if the surface-modified iron oxyhydroxide is directly reduced, it becomes a porous metal powder.
Alternatively, since the needle-like shape will be broken, iron oxide with fewer pores is calcined at 500 to 800°C prior to reduction.
α-Feze3, peso4) and then reduction is performed.

また細孔の少ない酸化鉄を表面変性してから還元するこ
とが行われている。
Also, iron oxide with few pores is surface-modified and then reduced.

しかし、これらの方法では還元における酸化鉄からα−
Feへの反応過程で発生する細孔は防止することが出来
ない。
However, in these methods, α-
Pores generated during the reaction process to Fe cannot be prevented.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、上記問題について鋭意研究を行った結果
、飽和磁化が大きく優れた磁気特性を有し、酸化安定性
にも優れた本発明に到達した。即ち本発明の強磁性金属
粉末の製造方法は、鉄もしくは鉄化合物を主体とする金
属化合物を還元性雰囲気中で加熱還元して強磁性金属粉
末を製造するに際し、最初の還元反応終了後酸化処理を
行って該強磁性金属粉末の表面に酸化被膜をつくり、し
かる後に再び加熱還元処理を行って更に酸化処理をも行
い、この樺な加熱還元、酸化処理を二度以上繰り返すこ
とを特徴とするものである。
As a result of intensive research into the above-mentioned problems, the present inventors have arrived at the present invention, which has excellent magnetic properties with large saturation magnetization and excellent oxidation stability. That is, in the method for producing ferromagnetic metal powder of the present invention, when producing ferromagnetic metal powder by heating and reducing iron or a metal compound mainly consisting of an iron compound in a reducing atmosphere, an oxidation treatment is performed after the completion of the first reduction reaction. The method is characterized in that an oxide film is formed on the surface of the ferromagnetic metal powder, and then a heat reduction treatment is performed again, and further an oxidation treatment is performed, and this heat reduction and oxidation treatment are repeated two or more times. It is something.

本発明の特徴とするところは、鉄もしくは鉄を主体とす
る化合物例えばオキシ水酸化物或いは酸化物を形状保持
、粒子間焼結の防止などの目的で珪素・アルミニウム化
合物などによる表面処理を行ったのち、これを水素もし
くは水素を主体とした還元性雰囲気中で加熱還元を行い
、更に酸化性ガスによる気相接触反応あるいは液相反応
により強磁性金属微粒子表層部に酸化被膜を形成させ安
定化する一連の酸化、還元操作を2度以上行う事にある
A feature of the present invention is that iron or iron-based compounds such as oxyhydroxides or oxides are surface-treated with silicon/aluminum compounds for the purpose of retaining their shape and preventing interparticle sintering. This is then thermally reduced in hydrogen or a reducing atmosphere mainly composed of hydrogen, and further stabilized by forming an oxide film on the surface layer of the ferromagnetic metal particles through a gas phase contact reaction or liquid phase reaction using an oxidizing gas. It involves performing a series of oxidation and reduction operations two or more times.

通常、出発原料であるオキシ水酸化鉄あるいは酸化鉄は
形状保持、粒子間焼結の防止の為に種々の金属化合物を
共沈あるいは被着させているので適正な磁気特性を得る
還元温度は耐熱成分の種類や量により異なり保磁力、飽
和磁化、比表面積のバランスのとれる還元温度が選ばれ
る。従って、適正還元温度以上における還元は、強磁性
金属微粒子の粒子内あるいは粒子間の焼結が進み過ぎて
磁気特性、特に保磁力の低下を招くので好ましくない。
Normally, the starting material iron oxyhydroxide or iron oxide is co-precipitated or coated with various metal compounds in order to maintain its shape and prevent interparticle sintering, so the reduction temperature required to obtain appropriate magnetic properties is heat resistant. Depending on the type and amount of the components, a reduction temperature that provides a balance between coercive force, saturation magnetization, and specific surface area is selected. Therefore, reduction at a temperature higher than the appropriate reduction temperature is not preferable because sintering within or between the ferromagnetic metal fine particles progresses too much, leading to a decrease in magnetic properties, particularly coercive force.

本発明は該強磁性金属微粒子を酸化性ガスによる気相接
触反応あるいは液相反応により強磁性金属微粒子表層部
に酸化被膜を形成させた後に、更に再び水素もしくは水
素を主体とした還元性雰囲気中で加熱還元を行う事を特
徴としている。
In the present invention, after forming an oxide film on the surface layer of the ferromagnetic metal fine particles by a vapor phase contact reaction or liquid phase reaction with an oxidizing gas, the ferromagnetic metal fine particles are further placed in hydrogen or a reducing atmosphere mainly composed of hydrogen. It is characterized by thermal reduction.

もちろん、得られた強磁性金属微粒子はそのまま空気中
に暴露すれば、酸化燃焼してしまうので酸化性ガスによ
る気相接触反応あるいは液相反応により強磁性金属微粒
子表層部に酸化被膜を形成させる安定化処理しなければ
ならない。すなわち、本発明は還元−酸化一還元一酸化
を2度以上くり返す事を特徴とする。1度目の酸化処理
は例えば1度目の還元反応終了後同一反応器において還
元性ガスを不活性ガスに切替えてから酸化性ガスである
酸素あるいは水を同伴させる事により酸化処理を行う程
度で良く、あるいは1度目の還元反応終了後同一反応器
において温度250〜500℃において還元性ガスと水
蒸気の混合ガスを流通し強磁性金属微粒子もしくはその
表層部をマグネタイトにした後、2度目の還元反応を行
えばよい、1度目の酸化処理の程度は出発原料である酸
化鉄あるいはオキシ酸化鉄の比表面積、サイズ、軸比等
により、又出発原料の表面処理成分の種類、量により異
なるので特定できないが通常の還元反応を経た強磁性金
属微粒子の飽和磁化よりも20emu/g以上低くすれ
ば、その効果を充分に発現する事ができる。かならずし
も大気中に出しても発火しなくなるまで酸化処理をする
必要はない。本発明の効果は還元−酸化を2度以上(り
返す事により細孔の少ない焼き締まった強磁性金属微粒
子を製造する事ができる事である。 再度の還元後得ら
れた強磁性金属微粒子を例えばトルエン等の有機溶剤に
浸漬し空気等の酸化性ガスを通気する湿式の酸化安定処
理、あるいは例えば窒素ガス等の不活性ガスを通気し、
徐々に酸素ガス等の酸化性ガスの流量を増加していく乾
式の酸化安定化処理により優れた特性の強磁性金属微粒
子を製造する事ができる。
Of course, if the obtained ferromagnetic metal fine particles are exposed to the air as they are, they will oxidize and burn, so a stable oxide film is formed on the surface of the ferromagnetic metal fine particles through a gas phase contact reaction or liquid phase reaction with an oxidizing gas. It must be processed by chemical treatment. That is, the present invention is characterized in that reduction, oxidation, monoreduction, and monoxidation are repeated two or more times. For example, the first oxidation treatment may be performed by switching the reducing gas to an inert gas in the same reactor after the first reduction reaction is completed, and then carrying out the oxidation treatment by entraining the oxidizing gas, such as oxygen or water. Alternatively, after the first reduction reaction is completed, a mixed gas of reducing gas and water vapor is passed through the same reactor at a temperature of 250 to 500°C to turn the ferromagnetic metal fine particles or their surface layer into magnetite, and then the second reduction reaction is performed. The degree of the first oxidation treatment cannot be determined because it varies depending on the specific surface area, size, axial ratio, etc. of the starting material iron oxide or iron oxyoxide, as well as the type and amount of the surface treatment component of the starting material, but it is normal. If the saturation magnetization of the ferromagnetic metal fine particles subjected to the reduction reaction is lowered by 20 emu/g or more, the effect can be fully exhibited. There is no need to oxidize the material until it no longer ignites even if exposed to the atmosphere. The effect of the present invention is that by repeating reduction and oxidation two or more times, it is possible to produce hardened ferromagnetic metal fine particles with few pores. For example, wet oxidation stabilization treatment is performed by dipping in an organic solvent such as toluene and aerating an oxidizing gas such as air, or by aerating an inert gas such as nitrogen gas.
Ferromagnetic metal fine particles with excellent characteristics can be produced by dry oxidation stabilization treatment in which the flow rate of oxidizing gas such as oxygen gas is gradually increased.

本発明の方法は還元−酸化を2度以上くり返す事が特徴
であり、強磁性金属微粒子の粒子内の焼結を促進する事
が目的である。その作用は比表面積測定やX線回折によ
る結晶部分である鉄を主体とした金属の結晶子(グレイ
ン)のサイズの測定等で確かめる事ができる。すなわち
、本発明の方法を実施する事により強磁性金属微粒子の
比表面積は低下し、X線回折により求められた金属の結
晶子サイズは大きくなる事により、結晶子の成長及び粒
子内の結晶子間のネッキングの成長により粒子内の焼結
が促進し、その結果として飽和磁化が高く、叉酸化安定
性が増大すると思われる。
The method of the present invention is characterized by repeating reduction and oxidation twice or more, and its purpose is to promote sintering within the ferromagnetic metal fine particles. This effect can be confirmed by measuring the specific surface area or measuring the size of crystallites (grains) of metals mainly made of iron, which are crystalline parts, using X-ray diffraction. In other words, by carrying out the method of the present invention, the specific surface area of the ferromagnetic metal fine particles decreases, and the metal crystallite size determined by X-ray diffraction increases, thereby reducing the growth of crystallites and the crystallites within the particles. It is believed that the growth of necking between particles promotes sintering within the grains, resulting in higher saturation magnetization and increased cross-oxidation stability.

〔実施例〕〔Example〕

以下、実施例及び比較例により本発明の方法及びその効
果を詳細に説明する。
Hereinafter, the method of the present invention and its effects will be explained in detail using Examples and Comparative Examples.

実施例1 耐熱成分として珪素を含有するα−オキシ水酸化鉄(S
i/Fe=3.5/100wtりを水素ガスを流通しな
がら400℃で、8時間遅元した。冷却後、不活性ガス
雰囲気で注意深くセルに詰め試料振動型磁力針(VSM
−111束英工業社製)で得られた強磁性金属鉄微粒子
の磁気特性を測定したところ、保磁力(IC)1482
0e 、飽和磁化(tr s) 179e+wu/g、
角形比(R)0.51であった。得られた強磁性金属鉄
微粒子を窒素ガスを流通しながら空気を入れ(窒素/空
気=9/1)、徐々に空気量を増加させて10時間後に
空気だけを流通し酸化安定化処理を行った。
Example 1 α-Iron oxyhydroxide (S) containing silicon as a heat-resistant component
i/Fe=3.5/100wt was heated at 400° C. for 8 hours while flowing hydrogen gas. After cooling, the sample is carefully packed into a cell in an inert gas atmosphere and placed in a vibrating magnetic needle (VSM).
-111 (manufactured by Fukuei Kogyo Co., Ltd.), the magnetic properties of the ferromagnetic metal iron fine particles obtained were measured, and the coercive force (IC) was 1482.
0e, saturation magnetization (tr s) 179e+wu/g,
The squareness ratio (R) was 0.51. The obtained ferromagnetic metal iron fine particles were introduced with air while flowing nitrogen gas (nitrogen/air = 9/1), the amount of air was gradually increased, and after 10 hours, only air was passed through to perform oxidation stabilization treatment. Ta.

得られた強磁性金属鉄微粒子の磁気特性は保磁力(He
)15650e 、飽和磁化(a s) 130emu
/g、角形比(II)0.52であり比表面積は56.
1rrr/gであった。
The magnetic properties of the obtained ferromagnetic metallic iron fine particles are determined by coercive force (He
) 15650e, saturation magnetization (as) 130emu
/g, the squareness ratio (II) is 0.52, and the specific surface area is 56.
It was 1rrr/g.

更に、得られた強磁性金属鉄微粒子を水素ガスを流通し
ながら400℃で、4時間遅元した。冷却後得られた強
磁性金属鉄微粒子の磁気特性を測定した所、保磁力(H
e)15060e 、飽和磁化(tr s) 182e
llu/g、角形比(R)0.51であった。得られた
強磁性金属鉄微粒子を窒素ガスを流通しながら空気を入
れ(窒素/空気=9/1)、徐々に空気量を増加させて
10時間後に空気だけを流通し酸化安定化処理を行った
。得られた強磁性金属鉄微粒子の磁気特性は保磁力(H
e)15810e 、飽和磁化(ty s) 135e
+*u/g、角形比(R)0.53であり、比表面積は
50.3ボ/gであった。該強磁性金属鉄微粒子を透過
型電子顕微鏡で観察すると、イメージ上は破損、破壊は
見られず、粒子も1本1本の形状を保持した細孔のほと
んどないイメージである事がわかった。すなわち、還元
−酸化を2度くり返す事により比表面積が大きく低下し
、その結果として飽和磁化を高くする事ができた。
Further, the obtained ferromagnetic metal iron fine particles were heated at 400° C. for 4 hours while flowing hydrogen gas. When the magnetic properties of the ferromagnetic metallic iron fine particles obtained after cooling were measured, the coercive force (H
e) 15060e, saturation magnetization (tr s) 182e
llu/g, and the squareness ratio (R) was 0.51. The obtained ferromagnetic metal iron fine particles were introduced with air while flowing nitrogen gas (nitrogen/air = 9/1), the amount of air was gradually increased, and after 10 hours, only air was passed through to perform oxidation stabilization treatment. Ta. The magnetic properties of the obtained ferromagnetic metal iron fine particles are determined by the coercive force (H
e) 15810e, saturation magnetization (ty s) 135e
+*u/g, the squareness ratio (R) was 0.53, and the specific surface area was 50.3 bo/g. When the ferromagnetic metal iron fine particles were observed with a transmission electron microscope, no damage or destruction was observed in the image, and the image showed that each particle retained its individual shape and had almost no pores. That is, by repeating reduction and oxidation twice, the specific surface area was greatly reduced, and as a result, the saturation magnetization was able to be increased.

実施例2 耐熱成分としてアルミニウムを含有するα−オキシ水酸
化鉄(A I/Fe=5.2/ 100w H)を、窒
素ガスを流通しながら500°Cで2時間仮焼し、35
0°Cで水素ガスを流通しながら8時間還元し、更に窒
素ガスを流通しながら300℃に温度を下げ、酸素を0
.01 vo1%含有する窒素ガスを1時間流通した。
Example 2 α-Iron oxyhydroxide (AI/Fe=5.2/100wH) containing aluminum as a heat-resistant component was calcined at 500°C for 2 hours while flowing nitrogen gas,
Reduction was carried out at 0°C for 8 hours while passing hydrogen gas, and then the temperature was lowered to 300°C while passing nitrogen gas, and the oxygen was reduced to 0.
.. Nitrogen gas containing 1% of 01 vol was passed for 1 hour.

冷却後、得られた強磁性金属鉄微粒子の磁気特性を測定
したところ、保磁力(He)13710e 、飽和磁化
(a s) 146esu/g、角形比(1?)0.4
9であった。更に得られた強磁性金属鉄微粒子を水素ガ
スを流通しながら400℃で4時間還元した。
After cooling, the magnetic properties of the obtained ferromagnetic metallic iron particles were measured and found that the coercive force (He) was 13710e, the saturation magnetization (as) was 146 esu/g, and the squareness ratio (1?) was 0.4.
It was 9. Furthermore, the obtained ferromagnetic metal iron fine particles were reduced at 400° C. for 4 hours while flowing hydrogen gas.

冷却後得られた強磁性金属鉄微粒子の磁気特性を測定し
たところ、保磁力()lcH4730e 、飽和磁化(
a s) 182emu/g、角形比(R)であった。
When the magnetic properties of the ferromagnetic metallic iron fine particles obtained after cooling were measured, the coercive force () lcH4730e and the saturation magnetization (
a s) 182 emu/g, squareness ratio (R).

得られた強磁性金属鉄微粒子を窒素ガスを流通しながら
空気を入れ(窒素/空気=99 /1)、徐々に空気量
を増加させて10時間後に空気だけを流通し酸化安定化
処理を行った。得られた強磁性金属鉄微粒子の磁気特性
は保磁力(He)15070e 、飽和磁化(ys)1
45emu/g  、角形比(R)0.51であり、比
表面積は44.9ポ/gであった。
The obtained ferromagnetic metallic iron fine particles were introduced with air while flowing nitrogen gas (nitrogen/air = 99/1), the amount of air was gradually increased, and after 10 hours, only air was passed through to perform oxidation stabilization treatment. Ta. The magnetic properties of the obtained ferromagnetic metallic iron particles are coercive force (He) of 15070e and saturation magnetization (ys) of 1.
45 emu/g, the squareness ratio (R) was 0.51, and the specific surface area was 44.9 po/g.

該強磁性金属鉄微粒子を透過型電子顕微鏡で観察すると
、イメージ上は破損、破壊は見られず、粒子も1本1本
の形状を保持したボアのほとんどないイメージである事
がわかった。すなわち、還元−酸化を2度くり返す事に
より比表面積が大きく低下し、その結果として飽和磁化
を高くする事ができた。
When the ferromagnetic metal iron fine particles were observed with a transmission electron microscope, it was found that no damage or destruction was observed in the image, and the image showed that each particle retained its individual shape and had almost no bores. That is, by repeating reduction and oxidation twice, the specific surface area was greatly reduced, and as a result, the saturation magnetization was able to be increased.

比較例1 実施例2と同様のアルえニウム含有α−オキシ水酸化鉄
(AI/Fe=5.2/100wtχ)を窒素ガスを流
通しながら500℃で、2時間仮焼し、350 ”Cで
水素ガスを流通しながら、8時間還元を行った。冷却後
、得られた強磁性金属鉄微粒子の磁気特性を測定した所
、保磁力(He)14320e 、飽和磁化(as) 
180emu/g、角形比(R)0.49であった。還
元反応で得られた強磁性金属鉄微粒子を窒素ガスを流通
しながら空気を入れ(窒素/空気=99 /1)、徐々
に空気量を増加させて10時間後に空気だけを流通し酸
化安定化処理を行った。得られた強磁性金属鉄微粒子の
磁気特性は保磁力(Hc)15190e 、飽和磁化(
a s) 126emu/g、角形比(R)0.51で
あり、比表面積は55.3ボアgであった。
Comparative Example 1 Alenium-containing α-iron oxyhydroxide (AI/Fe=5.2/100wtχ) similar to Example 2 was calcined at 500°C for 2 hours while flowing nitrogen gas, and heated to 350"C. Reduction was carried out for 8 hours while flowing hydrogen gas.After cooling, the magnetic properties of the obtained ferromagnetic metallic iron particles were measured and found to be coercive force (He) of 14320e and saturation magnetization (as).
It was 180 emu/g and the squareness ratio (R) was 0.49. Ferromagnetic metallic iron fine particles obtained by reduction reaction are introduced with air while flowing nitrogen gas (nitrogen/air = 99/1), gradually increasing the amount of air, and after 10 hours, oxidation is stabilized by passing only air. processed. The magnetic properties of the obtained ferromagnetic metal iron fine particles include a coercive force (Hc) of 15190e and a saturation magnetization (
a s) 126 emu/g, the squareness ratio (R) was 0.51, and the specific surface area was 55.3 bore g.

比較例2 実施例2と同様のアルミニウム含有α−オキシ水酸化鉄
(At/Fe=5.2/100wtX)を窒素ガスを流
通しながら500℃で、2時間仮焼し、400℃で水素
ガスを流通しながら、8時間還元を行った。冷却後、得
られた強磁性金属鉄微粒子の磁気特性を測定した所、保
磁力(Hc)13510e 、飽和磁化Ca5) 18
0e*u/g、角形比(1?)0.48であった。還元
反応で得られた強磁性金属鉄微粒子を窒素ガスを流通し
ながら空気を入れ(窒素/空気・99 /1)、徐々に
空気量を増加させて10時間後に空気だけを流通し酸化
安定化処理を行った。得られた強磁性金属鉄微粒子の磁
気特性は保磁力(Hc)14370e 、飽和磁化(r
s) 136emu/g 、角形比([1)0.49で
あり、比表面積は49.4ボアgであった。
Comparative Example 2 The same aluminum-containing α-iron oxyhydroxide (At/Fe=5.2/100wt Reduction was carried out for 8 hours while circulating. After cooling, the magnetic properties of the obtained ferromagnetic metallic iron particles were measured and found that the coercive force (Hc) was 13510e and the saturation magnetization Ca5) 18
It was 0e*u/g and the squareness ratio (1?) was 0.48. Ferromagnetic metal iron fine particles obtained by reduction reaction are introduced with air while flowing nitrogen gas (nitrogen/air, 99/1), gradually increasing the amount of air, and after 10 hours, only air is passed through to stabilize the oxidation. processed. The magnetic properties of the obtained ferromagnetic metallic iron fine particles include a coercive force (Hc) of 14370e and a saturation magnetization (r
s) 136 emu/g, the squareness ratio ([1) was 0.49, and the specific surface area was 49.4 bore g.

該強磁性金属鉄微粒子を透過型電子顕微鏡で観察すると
、イメージ上は破損、破壊は見られなかったが、粒子1
本は溶けそうなイメージであり、粒子間焼結も激しい事
がわかった。
When the ferromagnetic metal iron fine particles were observed with a transmission electron microscope, no damage or destruction was observed in the image, but particle 1
The book looked like it was going to melt, and it was clear that interparticle sintering was severe.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、細孔の少ない飽和磁化値の大き
い、形状保持及び磁気特性に優れ、酸化安定性にも優れ
た鉄又は鉄を主体とする強磁性金属粉末を容易に製造す
る事が出来る。
According to the method of the present invention, it is possible to easily produce iron or iron-based ferromagnetic metal powder that has few pores, a high saturation magnetization value, excellent shape retention and magnetic properties, and excellent oxidation stability. I can do it.

Claims (1)

【特許請求の範囲】[Claims]  鉄もしくは鉄化合物を主体とする金属化合物を還元性
雰囲気中で加熱還元して強磁性金属粉末を製造するに際
し、最初の還元反応終了後酸化処理を行って該強磁性金
属粉末の表面に酸化被膜をつくり、しかる後に再び加熱
還元処理を行って酸化処理をも行い、この様な加熱還元
、酸化処理を二度以上繰り返すことを特徴とする強磁性
金属粉末の製造方法。
When producing ferromagnetic metal powder by thermally reducing iron or a metal compound mainly composed of iron compounds in a reducing atmosphere, oxidation treatment is performed after the initial reduction reaction to form an oxide film on the surface of the ferromagnetic metal powder. 1. A method for producing ferromagnetic metal powder, which is characterized by producing a ferromagnetic metal powder, followed by subjecting it to a heat reduction treatment and oxidation treatment again, and repeating such heat reduction and oxidation treatment twice or more.
JP2049325A 1990-03-02 1990-03-02 Production of ferromagnetic metal powder Pending JPH03253505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2049325A JPH03253505A (en) 1990-03-02 1990-03-02 Production of ferromagnetic metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2049325A JPH03253505A (en) 1990-03-02 1990-03-02 Production of ferromagnetic metal powder

Publications (1)

Publication Number Publication Date
JPH03253505A true JPH03253505A (en) 1991-11-12

Family

ID=12827832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2049325A Pending JPH03253505A (en) 1990-03-02 1990-03-02 Production of ferromagnetic metal powder

Country Status (1)

Country Link
JP (1) JPH03253505A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056091A (en) * 2002-05-31 2004-02-19 Fuji Photo Film Co Ltd Magnetic particle and its manufacturing method, and magnetic recording medium and its manufacturing method
JP2009256717A (en) * 2008-04-15 2009-11-05 Toda Kogyo Corp Manufacturing method of magnetic recording metal magnetic grain powder, and magnetic recording medium
JP2010225268A (en) * 2010-05-06 2010-10-07 Dowa Holdings Co Ltd Magnetic powder for magnetic recording medium, manufacturing method therefor, and magnetic recording medium using the powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056091A (en) * 2002-05-31 2004-02-19 Fuji Photo Film Co Ltd Magnetic particle and its manufacturing method, and magnetic recording medium and its manufacturing method
JP4524078B2 (en) * 2002-05-31 2010-08-11 富士フイルム株式会社 Magnetic particle and method for manufacturing the same, and magnetic recording medium and method for manufacturing the same
JP2009256717A (en) * 2008-04-15 2009-11-05 Toda Kogyo Corp Manufacturing method of magnetic recording metal magnetic grain powder, and magnetic recording medium
JP2010225268A (en) * 2010-05-06 2010-10-07 Dowa Holdings Co Ltd Magnetic powder for magnetic recording medium, manufacturing method therefor, and magnetic recording medium using the powder

Similar Documents

Publication Publication Date Title
JP5623301B2 (en) Magnetic particle, method for producing the same, and magnetic recording medium
EP0717397A2 (en) Spindle-shaped magnetic ironbased alloy particles containing cobalt and iron as the main ingredients and process for producing the same
US4318735A (en) Process for preparing magnetic particles with metallic region therein, and magnetic particles prepared by the process
JPH09295814A (en) Spindle-like geothite particle powder, its production, spindle-like metal magnetic particle powder consisting mainly of iron and obtained by using the same geothite particle powder as starting raw material and its production
JPS61154112A (en) Stabilization method of ferromagnetic metallic particulate
JPH03253505A (en) Production of ferromagnetic metal powder
JP5711086B2 (en) Magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium
JPS61196502A (en) Magnetic material and manufacture thereof
JPH0123402B2 (en)
JPH08109401A (en) Metallic powder for magnetic recording and its production
JPS61234506A (en) Magnetic material and manufacture thereof
JP4182310B2 (en) Method for producing spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for magnetic recording
KR19990077521A (en) Spindle-shaped goethite particles and process for producing the same
JPH0143683B2 (en)
EP0433894B1 (en) Process for producing magnetic metal powder for magnetic recording
JPS5919964B2 (en) Method for producing ferromagnetic metal powder
JP5447767B2 (en) Method for producing ferromagnetic metal particle powder
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP3242102B2 (en) Magnetic powder and method for producing the same
JPH02197501A (en) Production of ferromagnetic metal powder
JPS61216306A (en) Magnetic metal powder and manufacture thereof
JPH03257104A (en) Manufacture of ferromagnetic metal powder
JPH05140620A (en) Production of powdery ferromagnetic metal powder
JP5700191B2 (en) Method for producing ferromagnetic metal particle powder, magnetic recording medium