JP2003013103A - Method for manufacturing electroconductive powder, electroconductive powder, electroconductive paste and laminated ceramic electronic component - Google Patents

Method for manufacturing electroconductive powder, electroconductive powder, electroconductive paste and laminated ceramic electronic component

Info

Publication number
JP2003013103A
JP2003013103A JP2001193007A JP2001193007A JP2003013103A JP 2003013103 A JP2003013103 A JP 2003013103A JP 2001193007 A JP2001193007 A JP 2001193007A JP 2001193007 A JP2001193007 A JP 2001193007A JP 2003013103 A JP2003013103 A JP 2003013103A
Authority
JP
Japan
Prior art keywords
powder
base metal
conductive
metal powder
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001193007A
Other languages
Japanese (ja)
Inventor
Hisamitsu Hongo
央光 本郷
Masayoshi Maeda
昌禎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001193007A priority Critical patent/JP2003013103A/en
Publication of JP2003013103A publication Critical patent/JP2003013103A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing an electroconductive powder having oxidation resistance, the electroconductive powder, and an electroconductive paste using such electroconductive powder, thereby to enable a binder removing treatment in an oxidative atmosphere at a temperature favorable for decomposing and removing organic materials, and to improve the yield and the productivity of a laminated ceramic electronic component in forming an inner electrode with the use of the electroconductive paste. SOLUTION: The method for manufacturing the electroconductive powder is characterized by adding and mixing reduced solution containing hydrogenated boride or/and amine borane to and with a metallic solution which contains at least one base-metal powder selected from the group consisting of Ni powder, Cu powder, and alloy powders mainly consisting of Ni and/or Cu, as well as a Co salt, to precipitate Co-B alloy powder of 50 pts. wt. against the base-metal powder 100 pts. wt., having an average particle diameter smaller than that of the base-metal powder, on the base-metal powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐酸化性を有する
導電粉末の製造方法、上述の製造方法によって得られる
導電粉末、上述の導電粉末を含有してなる導電性ペース
ト、および上述の導電性ペーストを用いて内部電極が形
成された積層セラミック電子部品に関するものであり、
特に、積層セラミックコンデンサの内部電極形成に好適
な導電性ペーストに用いられる耐酸化性を有する導電粉
末の製造方法、導電粉末、導電性ペーストおよび積層セ
ラミックコンデンサに関する。
TECHNICAL FIELD The present invention relates to a method for producing a conductive powder having oxidation resistance, a conductive powder obtained by the above-mentioned production method, a conductive paste containing the above-mentioned conductive powder, and the above-mentioned conductive powder. The present invention relates to a laminated ceramic electronic component in which internal electrodes are formed using a paste,
In particular, the present invention relates to a method for producing an electrically conductive powder having oxidation resistance, which is used as an electrically conductive paste suitable for forming internal electrodes of a laminated ceramic capacitor, an electrically conductive powder, an electrically conductive paste, and a laminated ceramic capacitor.

【0002】[0002]

【従来の技術】従来、積層セラミック電子部品、例えば
積層セラミックコンデンサのように、生のセラミック積
層体とペースト塗布膜を同時焼成して焼結させる場合に
用いられる、内部電極形成用の導電性ペーストとして
は、高温下でも酸化に対して安定で、かつ素体セラミッ
ク焼成温度より融点の高いPd,Ag−Pd,Pt等の
貴金属粉末と、有機ビヒクルと、を含有してなる導電性
ペーストが用いられてきた。しかし、これら貴金属粉末
は高価であり、かつ価格が安定しないことから、近年で
はNi粉末,Cu粉末,またはこれらを主成分として含
有する粉末等の卑金属粉末を含有してなる導電性ペース
トを用いて内部電極を形成した、低コストな積層セラミ
ックコンデンサや多層セラミック基板等の積層セラミッ
ク電子部品が生産されている。
2. Description of the Related Art Conventionally, a conductive paste for forming internal electrodes, which is used when a raw ceramic laminate and a paste coating film are simultaneously fired and sintered, such as a monolithic ceramic electronic component such as a monolithic ceramic capacitor. As the conductive paste, a conductive paste containing a noble metal powder such as Pd, Ag—Pd, Pt, etc., which is stable against oxidation even at high temperature and has a melting point higher than the firing temperature of the elemental ceramic, and an organic vehicle is used. Has been. However, since these precious metal powders are expensive and the price is not stable, in recent years, Ni powder, Cu powder, or a conductive paste containing a base metal powder such as a powder containing these as a main component is used. Multilayer ceramic electronic components such as low-cost monolithic ceramic capacitors and multilayer ceramic substrates on which internal electrodes are formed are produced.

【0003】上述のような積層セラミック電子部品の製
造工程においては、Ni粉末やCu粉末の酸化を防止す
るため、脱バインダー工程および本焼成工程における雰
囲気制御が非常に重要となる。このうち、脱バインダー
工程においては、これら卑金属粉末の酸化を防止するた
め、窒素気流中等の中性雰囲気か、もしくはこれら卑金
属粉末が酸化しない程度のごく低温の酸化雰囲気によ
り、有機物の分解を目的とした熱処理が行われている。
In the manufacturing process of the above-mentioned monolithic ceramic electronic component, in order to prevent the oxidation of Ni powder and Cu powder, the atmosphere control in the debinding process and the main firing process is very important. Among these, in the binder removal step, in order to prevent the oxidation of these base metal powders, a neutral atmosphere such as in a nitrogen stream, or an oxidizing atmosphere at a very low temperature such that these base metal powders are not oxidized is used for the purpose of decomposing organic substances. The heat treatment is performed.

【0004】[0004]

【発明が解決しようとする課題】有機物を熱分解させる
ためには、その燃焼に必要な十分な酸素量と温度が要求
されるが、従来の卑金属粉末を含有してなる導電性ペー
ストを用いる場合には、上述したように、窒素気流中等
の中性雰囲気か、もしくはこれら卑金属粉末が酸化しな
い程度のごく低温の酸化雰囲気中で脱バインダーを行な
わなければならない。したがって、工程雰囲気のバラツ
キによる有機物の分解や除去が不十分となると、残留し
たカーボン成分が本焼成時にセラミックの焼結を阻害
し、セラミックが焼結不足となり、十分な静電容量や絶
縁抵抗が得られないという問題が発生する。
In order to thermally decompose an organic substance, a sufficient amount of oxygen and temperature necessary for its combustion are required, but in the case of using a conventional conductive paste containing a base metal powder. However, as described above, the binder removal must be performed in a neutral atmosphere such as a nitrogen stream or in an oxidizing atmosphere at an extremely low temperature at which these base metal powders are not oxidized. Therefore, if the decomposition or removal of organic substances due to variations in the process atmosphere becomes insufficient, the residual carbon component hinders the sintering of the ceramic during the main firing, resulting in insufficient sintering of the ceramic, resulting in insufficient capacitance and insulation resistance. There is a problem that it cannot be obtained.

【0005】また、逆に、有機物の熱分解を確実に行な
うために、十分な酸素を与え高温で熱処理を行なうと、
脱バインダー時に卑金属粉末が酸化し、卑金属粉末の酸
化膨張による脱バインダー時の層剥がれといった構造不
良や、酸化による卑金属粉末の焼結不足による取得容量
の低下や、等価直列抵抗ならびにtanδの増加等の不
具合が発生する。したがって、脱バインダー時において
微妙な雰囲気管理が必要となり、工程管理が煩雑となり
工程不良原因となる問題がある。
On the contrary, in order to ensure the thermal decomposition of the organic matter, if sufficient oxygen is supplied and the heat treatment is performed at a high temperature,
The base metal powder is oxidized at the time of debinding, and the structural failure such as layer peeling at the time of debinding due to the oxidative expansion of the base metal powder, the decrease in acquisition capacity due to insufficient sintering of the base metal powder due to oxidation, the increase in equivalent series resistance and tan δ, etc. A problem occurs. Therefore, there is a problem that delicate atmosphere management is required at the time of binder removal, process management becomes complicated and causes process defects.

【0006】このような問題を解決する方法として、特
開平1−258306号公報,特開平1−265406
号公報ならびに特開平1−80008号公報において、
卑金属粉末の酸化防止のため、Ni粉末にB粉末または
B化合物粉末の1種もしくは1種以上を含ませるととも
に、無機質フィラーおよび有機ビヒクルを含有させた導
電性ペーストが開示されている。しかしながら、この方
法では、ペースト混練が不十分である場合、B粉末また
はB化合物の分散状態が不均一になり、卑金属粉末の耐
酸化性がばらつくという問題がある。
As a method for solving such a problem, Japanese Patent Laid-Open Nos. 1-258306 and 1-265406 are available.
In Japanese Patent Laid-Open No. 1-80008 and Japanese Patent Laid-Open No. 1-80008,
To prevent oxidation of the base metal powder, a conductive paste containing Ni powder containing one or more kinds of B powder or B compound powder and an inorganic filler and an organic vehicle is disclosed. However, this method has a problem that when the paste kneading is insufficient, the dispersion state of the B powder or the B compound becomes non-uniform, and the oxidation resistance of the base metal powder varies.

【0007】そこで、卑金属粉末の表面にB粉末または
B化合物を析出させることで、B粉末またはB化合物の
分散状態を向上させる方法が考えられる。卑金属粉末の
表面に金属(合金)を析出させる方法として、例えば特
開昭63−27567号公報で開示されているような、
従来の無電解めっき法が挙げられる。いわゆる無電解め
っき法とは、金属塩,還元剤,錯化剤,pH調整剤など
を適宜調整して得た、1液からなる無電解めっき液に被
めっき物を浸漬して、推測あるいは経験則により定めら
れた時間反応させた後に、反応を停止させる方法であ
る。しかしながら、従来の無電解めっき法の場合、被め
っき物が粉末であると例えば板状の被めっき物と比べて
比表面積が大きいため、めっき反応の速度が異常に速
く、所望の金属析出量の制御が困難な問題がある。ま
た、従来の無電解めっき液は、金属塩濃度が希薄であ
り、粉末のような比表面積が大きな被めっき物の場合、
粉末の投入時にめっき液が急速に分解し、粉末表面への
金属の析出が不充分になる問題がある。
Therefore, a method of improving the dispersion state of the B powder or the B compound by depositing the B powder or the B compound on the surface of the base metal powder can be considered. As a method of depositing a metal (alloy) on the surface of the base metal powder, for example, as disclosed in JP-A-63-27567,
A conventional electroless plating method can be mentioned. The so-called electroless plating method is a guess or experience by immersing an object to be plated in an electroless plating solution consisting of one solution obtained by appropriately adjusting a metal salt, a reducing agent, a complexing agent, a pH adjusting agent and the like. It is a method of stopping the reaction after the reaction for a time determined by the rule. However, in the case of the conventional electroless plating method, when the object to be plated is a powder, for example, since the specific surface area is larger than that of a plate-shaped object to be plated, the rate of the plating reaction is abnormally fast, and the desired metal deposition amount There is a problem that is difficult to control. In addition, the conventional electroless plating solution has a low metal salt concentration, and in the case of an object to be plated having a large specific surface area such as powder,
There is a problem that the plating solution is rapidly decomposed when the powder is charged, and the deposition of metal on the powder surface becomes insufficient.

【0008】このようなさらなる問題を解決する手段と
して、例えば特開昭60−59070号公報において、
被めっき物である粉末を分散させた溶液に、無電解めっ
き液を添加する方法が開示されており、また特開昭62
−30885号公報において、被めっき物である粉末を
分散させた水溶液に、還元溶液と金属溶液の2液を同時
に添加する方法が開示されている。しかしながら、いず
れの方法による場合であっても、被めっき物である粉末
の表面近傍以外の場所、例えば反応容器の内壁、あるい
は単独で反応析出が生じるという問題がある。
As means for solving such a further problem, for example, in JP-A-60-59070,
A method of adding an electroless plating solution to a solution in which powder to be plated is dispersed is disclosed, and JP-A-62-62 is disclosed.
No. 30885 discloses a method of simultaneously adding two solutions, a reducing solution and a metal solution, to an aqueous solution in which a powder to be plated is dispersed. However, whichever method is used, there is a problem that reaction precipitation occurs in a place other than the vicinity of the surface of the powder to be plated, for example, the inner wall of the reaction vessel or by itself.

【0009】本発明の目的は、上述の問題点を解消すべ
くなされたもので、耐酸化性を有する導電粉末を製造す
る方法、導電粉末、およびこのような導電粉末を用いた
導電性ペーストを提供することで、有機物の分解ならび
に除去に十分な温度の酸化雰囲気中での脱バインダー処
理を可能とし、このような導電性ペーストを用いて内部
電極を形成する積層セラミック電子部品の歩留まりなら
びに生産性を向上させることにある。
An object of the present invention is to solve the above-mentioned problems, and to provide a method for producing a conductive powder having oxidation resistance, a conductive powder, and a conductive paste using such a conductive powder. By providing a debinding process in an oxidizing atmosphere at a temperature sufficient for decomposing and removing organic substances, the yield and productivity of multilayer ceramic electronic components that form internal electrodes using such a conductive paste can be improved. To improve.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の導電粉末の製造方法は、Ni粉末,Cu粉
末,Niまたは/およびCuを主成分とする合金粉末か
らなる群より選ばれる少なくとも1種の卑金属粉末とC
o塩とを含む金属溶液に、水素化硼化物または/および
アミンボランを含む還元溶液を添加・混合して、卑金属
粉末の表面に、卑金属粉末の平均粒径よりも小さく、卑
金属粉末100重量部に対して50重量部以下のCo−
B合金粉末を析出させることを特徴とする。
In order to achieve the above object, the method for producing a conductive powder of the present invention is selected from the group consisting of Ni powder, Cu powder, and alloy powder containing Ni or / and Cu as a main component. At least one base metal powder and C
A reducing solution containing a borohydride or / and an amine borane is added to and mixed with a metal solution containing an o salt to form 100 parts by weight of the base metal powder on the surface of the base metal powder, which is smaller than the average particle size of the base metal powder. 50 parts by weight or less of Co-
It is characterized in that B alloy powder is deposited.

【0011】また、本発明の導電粉末の製造方法は、上
述の析出工程の後に、Co−B合金粉末が表面に析出し
た卑金属粉末を100℃以上で熱処理する熱処理工程を
さらに備えることが好ましい。
The conductive powder manufacturing method of the present invention preferably further comprises a heat treatment step of heat-treating the base metal powder having the Co-B alloy powder deposited on the surface thereof at 100 ° C. or higher after the above-mentioned precipitation step.

【0012】また、本発明の導電粉末の製造方法は、上
述の析出工程の後に、Co−B合金粉末が表面に析出し
た卑金属粉末を粉砕処理する粉砕工程をさらに備えるこ
とが好ましい。
Further, it is preferable that the method for producing a conductive powder of the present invention further comprises a crushing step of crushing the base metal powder having Co-B alloy powder deposited on the surface after the above-mentioned precipitation step.

【0013】また、本発明の導電粉末の製造方法におけ
る、卑金属粉末の平均粒径は、1.0μm以下であるこ
とが好ましい。
In the method for producing a conductive powder of the present invention, the average particle size of the base metal powder is preferably 1.0 μm or less.

【0014】また、本発明の導電粉末の製造方法におけ
る、Co−B合金粉末の平均粒径は、0.1μm以下で
あり、かつ卑金属粉末の平均粒径の1/2以下であるこ
とが好ましい。
Further, in the method for producing the conductive powder of the present invention, the average particle size of the Co--B alloy powder is preferably 0.1 μm or less and 1/2 or less of the average particle size of the base metal powder. .

【0015】本発明の導電粉末は、上述の本発明の製造
方法によって得られたことを特徴とする。
The conductive powder of the present invention is characterized by being obtained by the above-mentioned production method of the present invention.

【0016】本発明の導電性ペーストは、上述の本発明
の導電粉末と、有機ビヒクルと、を含有してなることを
特徴とする。
The conductive paste of the present invention is characterized by containing the above-mentioned conductive powder of the present invention and an organic vehicle.

【0017】本発明の積層セラミック電子部品は、複数
のセラミック層が積層されてなるセラミック積層体と、
セラミック層間に形成された複数の内部電極と、を備え
る積層セラミック電子部品であって、内部電極は、本発
明の導電性ペーストを用いて形成されていることを特徴
とする。
The laminated ceramic electronic component of the present invention comprises a ceramic laminated body formed by laminating a plurality of ceramic layers,
A multilayer ceramic electronic component including a plurality of internal electrodes formed between ceramic layers, wherein the internal electrodes are formed using the conductive paste of the present invention.

【0018】[0018]

【発明の実施の形態】本発明の導電粉末の製造方法は、
被めっき物である卑金属粉末、具体的にはNi粉末,C
u粉末,Niまたは/およびCuを主成分とする合金粉
末からなる群より選ばれる少なくとも1種の卑金属粉末
と、さらにCo塩を含有してなる金属溶液を準備し、こ
れに水素化硼化物または/およびアミンボランを含む還
元溶液を添加・混合することで、卑金属粉末の表面に、
卑金属粉末の平均粒径よりも小さく、卑金属粉末100
重量部に対して50重量部以下のCo−B合金粉末を析
出させることを特徴とする。卑金属粉末とCo塩をあら
かじめ混合しておくことにより、還元溶液の添加・混合
時に、卑金属粉末表面の触媒作用によって還元剤が粉末
表面で分解し、電子を放出する。したがって、卑金属粉
末の近傍にはNiイオンが高濃度で存在するため、Ni
イオンの還元がすぐに生じて、卑金属粉末の表面にCo
−B合金粉末が析出する。なお、還元溶液中の水素化硼
化物やアミンボラン等の濃度ならびに液相還元反応の反
応温度等を調整することにより、Co−B合金粉末の平
均粒径や析出量を調整することができ、特に限定はしな
いが、例えば0.10μm以下のCo−B合金粉末を析
出させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION
Base metal powder to be plated, specifically Ni powder, C
A metal solution containing at least one base metal powder selected from the group consisting of u powder, an alloy powder containing Ni and / or Cu as a main component, and a Co salt is prepared, and a borohydride or By adding and mixing a reducing solution containing / and amine borane, on the surface of the base metal powder,
Smaller than the average particle size of the base metal powder, 100 base metal powder
It is characterized in that 50 parts by weight or less of Co-B alloy powder is deposited with respect to parts by weight. By mixing the base metal powder and the Co salt in advance, the reducing agent is decomposed on the powder surface by the catalytic action of the surface of the base metal powder and electrons are emitted when the reducing solution is added and mixed. Therefore, since Ni ions are present in high concentration near the base metal powder,
Immediate reduction of ions occurs, causing Co on the surface of the base metal powder.
-B alloy powder is precipitated. The average particle size and the amount of precipitation of the Co-B alloy powder can be adjusted by adjusting the concentration of borohydride or amine borane in the reducing solution and the reaction temperature of the liquid-phase reduction reaction. Although not limited, for example, a Co-B alloy powder of 0.10 μm or less can be deposited.

【0019】なお、卑金属粉末の表面にCo−B合金粉
末を析出させる場合、析出させた後に100℃以上で熱
処理を行ない、さらに粉砕処理を行なうことが好まし
い。熱処理を行なうことで、粉末の粉砕処理時ならびに
ペースト作製時にCo−B合金粉末が卑金属粉末の表面
から離脱することが抑制されて本発明の効果が顕著とな
る。また、Co−B合金粉末の析出や熱処理を行なうこ
とで、粉末の凝集が起こり易いため、熱処理後に粉砕処
理を行なうことが好ましい。
When depositing the Co-B alloy powder on the surface of the base metal powder, it is preferable to perform a heat treatment at 100 ° C. or higher after the precipitation and further perform a crushing treatment. By performing the heat treatment, it is possible to suppress the Co-B alloy powder from being separated from the surface of the base metal powder during the pulverization process of the powder and during the paste preparation, and the effect of the present invention becomes remarkable. Further, the precipitation of the Co-B alloy powder and the heat treatment tend to cause the powder to agglomerate. Therefore, it is preferable to perform the pulverization treatment after the heat treatment.

【0020】また、析出させて得られるCo−B合金粉
末の平均粒径は、卑金属粉末の平均粒径よりも小さいこ
とを要する。卑金属粉末の平均粒径よりも小さい場合
に、上述したように酸化硼素が卑金属粉末を被覆し、卑
金属粉末の耐酸化性が高まるという本発明の効果が得ら
れる。他方、卑金属粉末の平均粒径以上であると、この
ような導電粉末を含有してなる導電性ペーストを用いて
内部電極を形成した積層セラミック電子部品は、卑金属
粉末の酸化膨張による脱バインダー時の層剥がれといっ
た構造不良や、酸化による卑金属粉末の焼結不足による
取得容量の低下や、等価直列抵抗ならびにtanδの増
加等の不具合が発生する。
The average particle size of the Co-B alloy powder obtained by precipitation needs to be smaller than the average particle size of the base metal powder. When the average particle size is smaller than that of the base metal powder, the effect of the present invention is obtained in that the boron oxide coats the base metal powder as described above, and the oxidation resistance of the base metal powder is enhanced. On the other hand, when the average particle diameter of the base metal powder is equal to or larger than the average particle diameter of the base metal powder, the multilayer ceramic electronic component in which the internal electrode is formed by using the conductive paste containing the conductive powder has a property of removing the binder due to oxidative expansion of the base metal powder. Problems such as structural failure such as layer peeling, decrease in acquisition capacity due to insufficient sintering of base metal powder due to oxidation, and increase in equivalent series resistance and tan δ occur.

【0021】また、Co−B合金粉末の卑金属粉末表面
への析出量は、卑金属粉末100重量部に対して、50
重量部以下であることを要する。Co−B合金粉末の析
出量が50重量%以下であれば、適量のCo−B合金粉
末が熔融し、内部電極が電極としての機能を損なうこと
がない。なお、Co−B合金粉末の析出量の下限値は特
に限定はしないが、Co−B合金粉末の析出量が0.1
重量%程度あれば、導電粉末の酸化開始温度が上昇し、
すなわち卑金属粉末の耐酸化性を向上させる効果が得ら
れ、このような導電粉末を粉末を含有してなる導電性ペ
ーストを用いて内部電極を形成した積層セラミック電子
部品において、導電粉末の酸化膨張による脱バインダー
時の層剥がれといった構造不良の発生、酸化による導電
粉末の焼結不足による取得容量の低下、等価直列抵抗な
らびにtanδの増加等の不具合の発生を抑制すること
ができる。
The amount of the Co-B alloy powder deposited on the surface of the base metal powder is 50 with respect to 100 parts by weight of the base metal powder.
It is necessary to be less than or equal to parts by weight. When the precipitation amount of the Co-B alloy powder is 50% by weight or less, an appropriate amount of Co-B alloy powder is melted and the internal electrode does not impair the function as an electrode. The lower limit of the precipitation amount of the Co-B alloy powder is not particularly limited, but the precipitation amount of the Co-B alloy powder is 0.1.
If it is about wt%, the oxidation start temperature of the conductive powder will rise,
That is, the effect of improving the oxidation resistance of the base metal powder is obtained, and in a laminated ceramic electronic component in which internal electrodes are formed using a conductive paste containing such a conductive powder, the conductive powder is oxidized by expansion. It is possible to suppress the occurrence of structural defects such as layer peeling at the time of debinding, the decrease in acquisition capacity due to insufficient sintering of conductive powder due to oxidation, the increase in equivalent series resistance and tan δ, and the like.

【0022】また、卑金属粉末の平均粒径は、1.0μ
m以下であることが好ましい。一般的に、卑金属粉末は
平均粒径が小さくなるほど比表面積が増えて活性にな
り、酸化が起こりやすくなる。特に、卑金属粉末の平均
粒径が1.0μm以下の場合に酸化が起こりやすくなる
傾向がある。そのため、本発明において、卑金属粉末の
平均粒径が1.0μm以下である場合に本発明の耐酸化
効果が十分に発揮される。卑金属粉末の平均粒径が1.
0μmを超える粉末を用いた場合も本発明の耐酸化効果
は得られるが、もともと比表面積が小さく酸化に対して
敏感でないため、その耐酸化効果は1.0μm以下の粉
末の場合ほど顕著ではない。
The average particle size of the base metal powder is 1.0 μm.
It is preferably m or less. Generally, as the average particle size of the base metal powder becomes smaller, the specific surface area increases and becomes active, so that oxidation easily occurs. In particular, when the average particle size of the base metal powder is 1.0 μm or less, oxidation tends to occur. Therefore, in the present invention, the oxidation resistance effect of the present invention is sufficiently exhibited when the average particle size of the base metal powder is 1.0 μm or less. The average particle size of the base metal powder is 1.
Although the oxidation resistance effect of the present invention can be obtained even when a powder having a particle size of more than 0 μm is used, the oxidation resistance effect is not so remarkable as that of the powder having a particle size of 1.0 μm or less because the specific surface area is originally small and it is not sensitive to oxidation. .

【0023】また、Co−B合金粉末の平均粒径は0.
10μm以下で、かつ卑金属粉末の平均粒径の1/2以
下であることが好ましい。上述の範囲内である場合、C
o−B合金粉末が卑金属粉末の表面をより均一に被覆す
ることができ、卑金属粉末の耐酸化性が十分に得られ
る。
The average particle size of the Co-B alloy powder is 0.
It is preferably 10 μm or less and 1/2 or less of the average particle diameter of the base metal powder. If within the above range, C
The o-B alloy powder can coat the surface of the base metal powder more uniformly, and the oxidation resistance of the base metal powder can be sufficiently obtained.

【0024】次に、本発明による一つの実施形態におけ
る導電粉末について、図1(a)および図1(b)に基
づいて詳細に説明する。導電粉末1は、図1(a)に示
すように、卑金属粉末2と、Co−B合金粉末3aと、
からなる。
Next, the conductive powder in one embodiment according to the present invention will be described in detail with reference to FIGS. 1 (a) and 1 (b). As shown in FIG. 1A, the conductive powder 1 includes a base metal powder 2, a Co-B alloy powder 3a,
Consists of.

【0025】卑金属粉末2は、例えば、Ni粉末,Cu
粉末,Ni−P合金粉末,Ni−Cr合金粉末,Cu−
Zn合金粉末,Pd粉末が付着したNi粉末,Agが付
着したNi粉末,Pd−Ag合金粉末が付着したNi粉
末、Pt粉末が付着したNi粉末、Pd粉末が付着した
Cu粉末,Agが付着したCu粉末,Pd−Ag合金粉
末が付着したCu粉末、Pt粉末が付着したCu粉末等
が挙げられ、積層セラミック電子部品のセラミック特性
に合わせ適宜選択される。
The base metal powder 2 is, for example, Ni powder or Cu.
Powder, Ni-P alloy powder, Ni-Cr alloy powder, Cu-
Zn alloy powder, Ni powder with Pd powder attached, Ni powder with Ag attached, Ni powder with Pd-Ag alloy powder attached, Ni powder with Pt powder attached, Cu powder with Pd powder attached, Ag attached Examples thereof include Cu powder, Cu powder to which Pd-Ag alloy powder is attached, Cu powder to which Pt powder is attached, and the like, which are appropriately selected according to the ceramic characteristics of the laminated ceramic electronic component.

【0026】Co−B合金粉末3aは、卑金属粉末2の
表面に析出しており、卑金属粉末2の平均粒径よりも小
さく、析出量は卑金属粉末100重量部に対して50重
量部以下である。本発明の導電粉末を構成するCo−B
合金粉末3aを分析した結果、この合金粉末は非晶質で
あり、また合金粉末中に含まれているB成分の構成割合
は約25モル%であった。なお、Co−B合金粉末に含
まれるB成分の構成割合については、特に限定はしな
い。
The Co-B alloy powder 3a is deposited on the surface of the base metal powder 2 and is smaller than the average particle size of the base metal powder 2, and the deposition amount is 50 parts by weight or less based on 100 parts by weight of the base metal powder. . Co-B constituting the conductive powder of the present invention
As a result of analyzing the alloy powder 3a, the alloy powder was amorphous, and the composition ratio of the B component contained in the alloy powder was about 25 mol%. The composition ratio of the B component contained in the Co-B alloy powder is not particularly limited.

【0027】次に、本発明による一つの実施形態におけ
る、上述の導電粉末1に熱を加えた場合について、図1
(b)に基づいて詳細に説明する。加熱された導電粉末
1aは、卑金属粉末2と、酸化硼素膜3bとからなる。
Next, the case where heat is applied to the above-mentioned conductive powder 1 in one embodiment according to the present invention is shown in FIG.
A detailed description will be given based on (b). The heated conductive powder 1a is composed of the base metal powder 2 and the boron oxide film 3b.

【0028】酸化硼素膜3bは、Co−B合金粉末3a
に含まれるB成分を酸化させた後、熔融させて卑金属粉
末の表面を略被覆するように残留させたものである。C
o−B合金粉末3aは、温度が上昇すると、まずB成分
が酸化して酸化硼素になり、さらに温度が上昇すると酸
化硼素が熔融する。このように酸化硼素が卑金属粉末の
表面を略被覆することによって、卑金属粉末の酸化を防
止する。つまり、Co−B合金粉末を卑金属粉末の表面
に析出させた導電粉末を含有する導電性ペーストは、ペ
ースト中にB粉末またはB化合物を添加して分散させた
導電性ペーストに比べて、ペースト中にCo−B合金粉
末が均一に分散され、卑金属粉末の耐酸化性のばらつき
が少なくなる。また、卑金属粉末の近傍にCo−B合金
粉末が存在することで、酸化硼素が卑金属粉末を被覆す
る割合が高くなり、このような導電粉末を含有してなる
導電性ペーストを用いて内部電極を形成した積層セラミ
ック電子部品は、その製造過程である焼成工程におい
て、酸化硼素が卑金属粉末の表面を略被覆することか
ら、卑金属粉末の耐酸化性が高まる。
The boron oxide film 3b is a Co-B alloy powder 3a.
After oxidizing the B component contained in (3), it is melted and left so as to substantially cover the surface of the base metal powder. C
In the o-B alloy powder 3a, when the temperature rises, the B component is first oxidized to boron oxide, and when the temperature further rises, the boron oxide melts. As described above, the boron oxide substantially covers the surface of the base metal powder to prevent the base metal powder from being oxidized. That is, the conductive paste containing the conductive powder in which the Co-B alloy powder is deposited on the surface of the base metal powder is in the paste as compared with the conductive paste in which the B powder or the B compound is added and dispersed. The Co-B alloy powder is uniformly dispersed in the powder, and the variation in the oxidation resistance of the base metal powder is reduced. Further, the presence of the Co-B alloy powder in the vicinity of the base metal powder increases the ratio of boron oxide coating the base metal powder, and the internal electrode is formed by using a conductive paste containing such conductive powder. In the formed multilayer ceramic electronic component, since the surface of the base metal powder is substantially covered with boron oxide in the firing step which is a manufacturing process thereof, the oxidation resistance of the base metal powder is enhanced.

【0029】次に、本発明の導電性ペーストを説明す
る。本発明の導電性ペーストは、上述した本発明の導電
粉末と、有機ビヒクルと、を含有してなる。有機ビヒク
ルの材料は、特に限定はしないが、従来より積層セラミ
ック電子部品の内部電極形成に好適な導電性ペーストに
一般的に用いられている有機ビヒクル、具体的には、例
えばエチルセルロース樹脂等の有機バインダーをテルピ
ネオール等の溶剤に溶解させたもの等を適宜用いること
ができる。
Next, the conductive paste of the present invention will be described. The conductive paste of the present invention contains the above-mentioned conductive powder of the present invention and an organic vehicle. The material of the organic vehicle is not particularly limited, but is conventionally an organic vehicle that is generally used for a conductive paste suitable for forming internal electrodes of multilayer ceramic electronic components, specifically, an organic vehicle such as ethyl cellulose resin. It is possible to appropriately use a binder dissolved in a solvent such as terpineol.

【0030】次に、本発明の積層セラミック電子部品の
一つの実施形態について、図2に基づいて詳細に説明す
る。すなわち、積層セラミック電子部品11は、セラミ
ック積層体12と、内部電極13,13と、端子電極1
4,14と、めっき膜15,15とから構成される。
Next, one embodiment of the monolithic ceramic electronic component of the present invention will be described in detail with reference to FIG. That is, the laminated ceramic electronic component 11 includes the ceramic laminated body 12, the internal electrodes 13 and 13, and the terminal electrode 1.
4, 14 and plated films 15, 15.

【0031】セラミック積層体12は、BaTiO3
主成分とする誘電体材料からなるセラミック層12aが
複数積層された生のセラミック積層体が焼成されてな
る。
The ceramic laminated body 12 is formed by firing a raw ceramic laminated body in which a plurality of ceramic layers 12a made of a dielectric material containing BaTiO 3 as a main component are laminated.

【0032】内部電極13,13は、セラミック積層体
12内のセラミック層12a間にあって、複数の生のセ
ラミック層12a上に本発明の導電性ペーストが印刷さ
れ、生のセラミック層とともに積層されてなる生のセラ
ミック積層体と同時焼成されてなり、内部電極13,1
3のそれぞれの端縁は、セラミック積層体12の何れか
の端面に露出するように形成されている。
The internal electrodes 13, 13 are located between the ceramic layers 12a in the ceramic laminate 12, and the conductive paste of the present invention is printed on a plurality of raw ceramic layers 12a and laminated together with the raw ceramic layers. The internal electrodes 13, 1 are made by co-firing with the raw ceramic laminate.
The respective edges of 3 are formed so as to be exposed on either end surface of the ceramic laminate 12.

【0033】端子電極14,14は、セラミック積層体
12の端面に露出した内部電極13,13の一端と電気
的かつ機械的に接合されるように、端子電極形成用の導
電性ペーストがセラミック積層体12の端面に塗布され
焼付けられてなる。
The conductive paste for forming the terminal electrodes is laminated on the ceramic so that the terminal electrodes 14, 14 are electrically and mechanically bonded to one end of the internal electrodes 13, 13 exposed on the end surface of the ceramic laminated body 12. It is applied to the end surface of the body 12 and baked.

【0034】めっき膜15,15は、例えば、SnやN
i等の無電解めっきや、はんだめっき等からなり、端子
電極14,14上に少なくとも1層形成されてなる。
The plating films 15 and 15 are made of, for example, Sn or N.
At least one layer is formed on the terminal electrodes 14, 14 by electroless plating such as i or solder plating.

【0035】なお、本発明の積層セラミック電子部品の
セラミック積層体12の材料は、上述の実施形態に限定
されることなく、例えばPbZrO3等その他の誘電体
材料や、絶縁体、磁性体、半導体材料からなっても構わ
ない。また、本発明の積層セラミック電子部品の内部電
極13の枚数は、上述の実施形態に限定されることな
く、何層形成されていても構わない。また、端子電極の
形成位置ならびに個数は、上述の実施形態に限定されな
い。また、めっき膜5,5は、必ずしも備えている必要
はなく、また何層形成されていても構わない。
The material of the ceramic laminated body 12 of the laminated ceramic electronic component of the present invention is not limited to the above-mentioned embodiment, and other dielectric materials such as PbZrO 3 and insulators, magnetic bodies, semiconductors, etc. It does not matter if it is made of material. Further, the number of the internal electrodes 13 of the laminated ceramic electronic component of the present invention is not limited to the above-mentioned embodiment, and any number of layers may be formed. Further, the formation position and the number of terminal electrodes are not limited to those in the above-described embodiment. Further, the plating films 5 and 5 are not necessarily provided, and any number of layers may be formed.

【0036】[0036]

【実施例】(実施例1)まず、表1に示した平均粒径
(0.5μmまたは1.0μm)のNi粉末とCo塩
(CoSO4・7H2O)とを純水中に溶解させた金属溶
液と、水素化硼素ナトリウムおよび水酸化ナトリウムを
純水中に溶解させた還元溶液と、を調整し、金属溶液に
還元溶液を添加して、表1に示したCo−B合金粉末の
析出量ならびに平均粒径となるように、Ni粉末の表面
にCo−B合金粉末を還元析出させ、これを純水で十分
に洗浄して、Co−B合金粉末を析出させた試料1〜7
の導電粉末を得た。
Example 1 First, Ni powder having an average particle size (0.5 μm or 1.0 μm) shown in Table 1 and a Co salt (CoSO 4 .7H 2 O) were dissolved in pure water. Of the Co-B alloy powder shown in Table 1 was prepared by adjusting the metal solution and a reducing solution obtained by dissolving sodium borohydride and sodium hydroxide in pure water, and adding the reducing solution to the metal solution. Samples 1 to 7 in which Co-B alloy powder was reduced and deposited on the surface of Ni powder so that the deposition amount and the average particle size were obtained, and this was thoroughly washed with pure water to deposit Co-B alloy powder.
Was obtained.

【0037】また、3液混合の比較例として、平均粒径
0.5μmのNi粉末を純水中に分散させたNi水溶液
と、Co塩(CoSO4・7H2O)を純水中に溶解させ
た金属溶液と、水素化硼素ナトリウムおよび水酸化ナト
リウムを純水中に溶解させた還元溶液と、を準備し、N
i水溶液に、金属溶液と還元溶液を同時に添加して、N
i粉末の表面にCo−B合金粉末を還元析出させ、これ
を純水で十分に洗浄して、Co−B合金粉末を析出させ
た試料8の導電粉末を得た。
As a comparative example of three-liquid mixing, a Ni aqueous solution in which Ni powder having an average particle diameter of 0.5 μm is dispersed in pure water and a Co salt (CoSO 4 .7H 2 O) are dissolved in pure water. And a reducing solution prepared by dissolving sodium borohydride and sodium hydroxide in pure water.
At the same time, the metal solution and the reducing solution are added to the i aqueous solution,
Co-B alloy powder was reduced and precipitated on the surface of the i powder, and this was thoroughly washed with pure water to obtain a conductive powder of Sample 8 in which the Co-B alloy powder was precipitated.

【0038】また、2液混合の比較例として、平均粒径
0.5μmのNi粉末と、Co塩(CoSO4・7H
2O)を純水中に溶解させた金属溶液と、水素化硼素ナ
トリウムおよび水酸化ナトリウムを純水中に溶解させた
還元溶液と、を準備し、Ni粉末を還元溶液中に分散さ
せた後、金属溶液を添加して、Ni粉末の表面にCo−
B合金粉末を還元析出させ、これを純水で十分に洗浄し
て、Co−B合金粉末を析出させた試料9の導電粉末を
得た。
As a comparative example of mixing two liquids, Ni powder having an average particle size of 0.5 μm and Co salt (CoSO 4 .7H)
2 O) in a pure water and a reducing solution in which pure sodium borohydride and sodium hydroxide are dissolved in pure water are prepared, and Ni powder is dispersed in the reducing solution. , A metal solution was added to the surface of the Ni powder to form Co-
The B alloy powder was reduced and precipitated, and was thoroughly washed with pure water to obtain a conductive powder of Sample 9 in which the Co—B alloy powder was precipitated.

【0039】また、従来の導電粉末として、表1に示し
た平均粒径のNi粉末を準備し、これを試料10〜14
の導電粉末とした。
As the conventional conductive powder, Ni powder having the average particle diameter shown in Table 1 was prepared, and this powder was used as samples 10-14.
Of conductive powder.

【0040】そこで、Co−B合金粉末が析出したNi
粉末の耐酸化性の確認のため、試料1〜9,13,14
の導電粉末の酸化開始温度を、示差熱天秤を用いて空気
気流中での室温より1000℃までの質量変化を測定
し、導電粉末の酸化による重量増加が始まる温度を酸化
開始温度と規定し、これを表1にまとめた。なお、試料
10〜12の導電粉末については、導電性ペーストを作
製後にこれを乾燥させて再び粉末化させ、同じく示差熱
天秤を用いて上述の試料1〜9,13,14と同様に測
定を行ない、これを表1にまとめた。
Therefore, the Ni containing the Co--B alloy powder is precipitated.
In order to confirm the oxidation resistance of the powder, samples 1-9, 13, 14
As for the oxidation start temperature of the conductive powder, the mass change from room temperature to 1000 ° C. in an air stream is measured using a differential thermal balance, and the temperature at which the weight increase due to the oxidation of the conductive powder starts is defined as the oxidation start temperature, This is summarized in Table 1. Regarding the conductive powders of Samples 10 to 12, after the conductive paste was prepared, it was dried and pulverized again, and the same measurement as that of Samples 1 to 9, 13 and 14 was performed using the differential thermal balance. This was summarized in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】表1から明らかであるように、Ni粉末と
Co塩を含む金属溶液に還元剤を含む還元溶液を添加し
て得た試料2の導電粉末の酸化開始温度は355℃であ
るが、Ni粉末を含む水溶液にCo塩を含む金属溶液と
還元剤を含む還元溶液を同時添加して得た試料8の導電
粉末の酸化開始温度は315℃、Ni粉末と還元剤を含
む還元溶液にCo塩を含む金属溶液を添加して得た試料
9の導電粉末の酸化開始温度も315℃であり、試料2
の導電粉末の酸化開始温度が高いことが分かる。試料
2,8,9の導電粉末は、Ni粉末の平均粒径、Co−
B合金粉末とNi粉末の粒径比、ならびにCo−B合金
粉末の析出量が、それぞれ0.5μm,0.10,1.
0重量%で共通していることから、反応析出の方法、す
なわちNi粉末とCo塩を含む金属溶液に還元剤を含む
還元溶液を添加することで、導電粉末の耐酸化性効率が
高まることが分かる。
As is clear from Table 1, the oxidation starting temperature of the conductive powder of Sample 2 obtained by adding the reducing solution containing the reducing agent to the metal solution containing the Ni powder and the Co salt is 355 ° C. The oxidation starting temperature of the conductive powder of Sample 8 obtained by simultaneously adding the metal solution containing the Co salt and the reducing solution containing the reducing agent to the aqueous solution containing the Ni powder was 315 ° C., and the reducing solution containing the Ni powder and the reducing agent contained Co. The oxidation starting temperature of the conductive powder of Sample 9 obtained by adding the metal solution containing salt was also 315 ° C.
It can be seen that the oxidation start temperature of the conductive powder is high. The conductive powders of Samples 2, 8 and 9 are the average particle diameter of Ni powder, Co-
The grain size ratio between the B alloy powder and the Ni powder, and the amount of the Co—B alloy powder deposited were 0.5 μm, 0.10, 1.
Since 0 wt% is common, the oxidation resistance efficiency of the conductive powder can be increased by the method of reaction deposition, that is, by adding a reducing solution containing a reducing agent to a metal solution containing Ni powder and Co salt. I understand.

【0043】また、Ni粉末の平均粒径が0.5μmで
あり、Co−B合金粉末が表面に析出している試料1〜
5の導電粉末は、Ni粉末の平均粒径が同じく0.5μ
mであり、Co−B合金粉末が析出していない試料13
の導電粉末と比較して、酸化開始温度が高温方向へ推移
しており、その程度はCo−B合金粉末の析出量に比例
していることが分かる。
In addition, the average particle diameter of the Ni powder was 0.5 μm, and Co-B alloy powder was deposited on the surface of Samples 1 to 1.
In the conductive powder of No. 5, the average particle size of Ni powder is 0.5 μm
m, and sample 13 in which Co-B alloy powder is not deposited
It can be seen that the oxidation starting temperature is shifted to a higher temperature than that of the conductive powder of No. 1 and the degree thereof is proportional to the amount of precipitation of the Co-B alloy powder.

【0044】また、Ni粉末の平均粒径が0.5μm、
Co−B合金粉末の平均粒径が0.05μm、Co−B
合金粉末の析出量ならびに添加量がそれぞれ0.1重量
%,1.0重量%,10.0重量%である、試料1と試
料10,試料2と試料11,試料3と試料12の導電粉
末を比較すると、酸化開始温度はそれぞれ325℃と3
05℃,355℃と310℃,495℃と455℃であ
り、Ni粉末の表面にCo−B合金粉末を析出させた試
料1〜3の導電粉末のほうが、耐酸化性が高く優れるこ
とが分かる。
The average particle size of the Ni powder is 0.5 μm,
Co-B alloy powder having an average particle diameter of 0.05 μm, Co-B
Conductive powders of Sample 1 and Sample 10, Sample 2 and Sample 11, Sample 3 and Sample 12 in which the amount of precipitation and the amount of addition of alloy powder are 0.1% by weight, 1.0% by weight and 10.0% by weight, respectively. Comparing these, the oxidation initiation temperatures were 325 ° C and 3 respectively.
It is 05 ° C., 355 ° C. and 310 ° C., 495 ° C. and 455 ° C., and it can be seen that the conductive powders of Samples 1 to 3 in which the Co—B alloy powder is deposited on the surface of the Ni powder are superior in oxidation resistance. .

【0045】また、Ni粉末の平均粒径が1.0μmで
あり、Co−B合金粉末が表面に析出している試料7の
導電粉末についても、Ni粉末の平均粒径が同じく1.
0μmであり、Co−B合金粉末が析出していない試料
14の導電粉末と比較して、酸化開始温度が高温方向へ
推移していることが分かる。 (実施例2)次いで、試料1〜14の導電粉末を用い
て、導電性ペーストを作製した。すなわち、表2に示す
ように、導電粉末50重量%と、有機バインダーである
エチルセルロース樹脂20重量部と溶剤であるテルピネ
オール80重量部とを混合してなる有機ビヒクル50重
量%と、を混合した後に三本ロールにて分散処理を行な
い、試料1〜14の導電性ペーストを作製した。なお、
試料10〜12の導電性ペーストについては、上述の混
合の際に、それぞれ0.1重量%,1.0重量%,1
0.0重量%のCo−B合金粉末をさらに添加し同時に
混合した後に三本ロールにて分散処理を行ない、試料1
0〜12の導電性ペーストとした。
Also, with respect to the conductive powder of Sample 7 in which the average particle diameter of the Ni powder was 1.0 μm and the Co-B alloy powder was deposited on the surface, the average particle diameter of the Ni powder was 1.
It is 0 μm, and it can be seen that the oxidation start temperature shifts toward a high temperature as compared with the conductive powder of Sample 14 in which the Co—B alloy powder is not precipitated. (Example 2) Next, a conductive paste was prepared using the conductive powders of Samples 1 to 14. That is, as shown in Table 2, after mixing 50% by weight of the conductive powder, 50% by weight of an organic vehicle obtained by mixing 20 parts by weight of an ethyl cellulose resin as an organic binder and 80 parts by weight of a terpineol as a solvent, Dispersion treatment was performed with three rolls to prepare conductive pastes of Samples 1 to 14. In addition,
Regarding the conductive pastes of Samples 10 to 12, 0.1% by weight, 1.0% by weight, and 1% by weight, respectively, were added during the above mixing.
Sample 1 was prepared by further adding 0.0 wt% Co-B alloy powder and mixing them at the same time, and then performing dispersion treatment with a three-roll mill.
The conductive paste was 0-12.

【0046】[0046]

【表2】 [Table 2]

【0047】次いで、試料1〜14の導電性ペーストを
用いて内部電極を形成した、設計段階の静電容量が2.
0μFである積層セラミックコンデンサを作製する。す
なわち、BaTiO3を主成分とするセラミック層を準
備し、所定枚数のセラミック層の表面上に一方の端縁が
セラミック層の何れかの端面側に露出するように、試料
1〜14の導電性ペーストを用いて内部電極となるべき
電極膜を印刷し、これら複数のセラミック層を所定枚数
積層し圧着して、試料1〜14の生のセラミック積層体
を複数準備した。
Then, the internal electrodes were formed using the conductive pastes of Samples 1 to 14, and the capacitance at the design stage was 2.
A multilayer ceramic capacitor of 0 μF is manufactured. That is, a ceramic layer containing BaTiO 3 as a main component was prepared, and the conductivity of each of Samples 1 to 14 was adjusted so that one edge was exposed on the surface of a predetermined number of ceramic layers on either side of the ceramic layer. An electrode film to be an internal electrode was printed using a paste, and a predetermined number of these ceramic layers were laminated and pressure-bonded to prepare a plurality of raw ceramic laminates of Samples 1 to 14.

【0048】次いで、試料1〜14の生のセラミック積
層体を脱バインダーさせるにあたり、条件を表3のよう
に設定した。すなわち、耐酸化性の無い導電粉末を用い
た導電性ペーストの場合に導電粉末の酸化が生じ易い条
件として、トップ温度450℃,キープ1時間,Air
雰囲気と設定し、これを脱バインダー条件Aとした。他
方、導電粉末の酸化は生じにくいが、有機バインダーの
熱分解が不十分となり易い条件として、トップ温度30
0℃,キープ1時間,N2雰囲気と設定し、これを脱バ
インダー条件Bとした。
Next, in debinding the raw ceramic laminates of Samples 1 to 14, conditions were set as shown in Table 3. That is, in the case of a conductive paste using a conductive powder having no oxidation resistance, the conditions are that oxidation of the conductive powder is likely to occur: top temperature: 450 ° C., keep for 1 hour, Air
The atmosphere was set, and this was designated as binder removal condition A. On the other hand, although oxidation of the conductive powder is unlikely to occur, the top temperature of 30
It was set as 0 ° C., keep for 1 hour, and N 2 atmosphere, and this was set as binder removal condition B.

【0049】[0049]

【表3】 [Table 3]

【0050】次いで、上述の脱バインダー処理後に焼成
し、さらにセラミック積層体の両端面にAgを導電成分
とする端子電極形成用の導電性ペーストを浸漬塗布し、
乾燥させた後これを焼付けて、内部電極に電気的かつ機
械的に接合された一対の端子電極を備える、試料1〜1
4の積層セラミックコンデンサを10000個ずつ得
た。
Next, after the above binder removal treatment, firing is performed, and further, a conductive paste for forming a terminal electrode containing Ag as a conductive component is dip-coated on both end faces of the ceramic laminate,
Samples 1 to 1 provided with a pair of terminal electrodes electrically and mechanically bonded to internal electrodes after drying after baking
10,000 monolithic ceramic capacitors of No. 4 were obtained.

【0051】そこで、まず試料1〜14の導電性ペース
トをガラス板上にドクターブレードを用いて5μmの厚
さに塗布して、これを100℃で乾燥させた後、触針式
膜厚計で十点表面粗さ(Rz)を測定し、これを表4に
まとめた。次いで、試料1〜14の積層セラミックコン
デンサを100個ずつ抜き取り、静電容量(100個平
均),ショート不良発生率,層剥がれ不良発生率を測定
し、先に表4にまとめた十点表面粗さ(Rz)を含む4
項目を総合して評価を付し、これらを表4にまとめた。
Therefore, first, the conductive pastes of Samples 1 to 14 were applied on a glass plate with a doctor blade to a thickness of 5 μm, dried at 100 ° C., and then applied with a stylus type film thickness meter. Ten-point surface roughness (Rz) was measured and summarized in Table 4. Next, 100 monolithic ceramic capacitors of Samples 1 to 14 were sampled one by one, and the capacitance (average of 100), short-circuit failure occurrence rate, and layer peeling failure occurrence rate were measured. 4 including Sa (Rz)
The items are comprehensively evaluated and summarized in Table 4.

【0052】なお、評価は、静電容量が2.0±0.2
μF、ショート不良発生率が0%、層剥がれ不良発生率
が0%であり、Co−B合金粉末を析出させていない試
料13,14の導電粉末を用いた積層セラミックコンデ
ンサと比較して表面粗さが略同等である、本発明の範囲
内である試料について○を、本発明の範囲外の試料につ
いて×を付した。
The evaluation is that the capacitance is 2.0 ± 0.2.
μF, short-circuit failure occurrence rate 0%, layer peeling failure occurrence rate 0%, and surface roughness compared to the multilayer ceramic capacitors using the conductive powders of Samples 13 and 14 in which Co-B alloy powder was not deposited. Samples within the range of the present invention having substantially the same value are marked with a circle, and samples outside the range of the invention are marked with a circle.

【0053】[0053]

【表4】 [Table 4]

【0054】表4から明らかであるように、本発明の反
応析出方法である、Ni粉末とCo塩を含む金属溶液に
還元剤を含む還元溶液を添加する方法により、Ni粉末
の平均粒径よりも小さく、Ni粉末100重量部に対し
て50重量部以下のCo−B合金粉末を析出させた試料
1〜4,7の導電粉末を用いた積層セラミックコンデン
サは、静電容量が1.8〜2.0μFであり、ショート
不良発生率,層剥がれ不良発生率が何れも0%であり、
Co−B合金粉末を析出させていない試料13,14の
導電粉末を用いた積層セラミックコンデンサと比較して
表面粗さも略同等あるいは低く優れることから、本発明
の範囲内となった。
As is apparent from Table 4, the average particle size of the Ni powder was measured by the reaction precipitation method of the present invention, which is a method of adding a reducing solution containing a reducing agent to a metal solution containing Ni powder and a Co salt. The multilayer ceramic capacitors using the conductive powders of Samples 1 to 4 and 7, in which 50 parts by weight or less of the Co-B alloy powder was deposited with respect to 100 parts by weight of Ni powder, had a capacitance of 1.8 to. 2.0 μF, the short-circuit defect occurrence rate and the layer peeling defect occurrence rate are both 0%,
Compared with the monolithic ceramic capacitors using the conductive powders of Samples 13 and 14 in which the Co-B alloy powder was not precipitated, the surface roughness was substantially equal to or lower than that of the monolithic ceramic capacitor, and thus it was within the scope of the present invention.

【0055】これに対して、3液混合の比較例である、
Ni粉末を含む水溶液にCo塩を含む金属溶液と還元剤
を含む還元溶液を同時添加する方法により、Ni粉末の
平均粒径よりも小さく、Ni粉末100重量部に対して
50重量部以下のCo−B合金粉末を析出させた試料8
の導電粉末を用いた積層セラミックコンデンサは、静電
容量が1.8μFであり、ショート不良発生率が0%で
あったが、層剥がれ不良発生率が3%生じたため、本発
明の範囲外となった。
On the other hand, it is a comparative example of three-liquid mixing,
By the method of simultaneously adding the metal solution containing the Co salt and the reducing solution containing the reducing agent to the aqueous solution containing the Ni powder, the Co particle size is smaller than the average particle size of the Ni powder and is 50 parts by weight or less based on 100 parts by weight of the Ni powder. -Sample 8 in which B alloy powder was deposited
The multilayer ceramic capacitor using the conductive powder of No. 1 had a capacitance of 1.8 μF and a short circuit defect occurrence rate of 0%, but a layer peeling defect occurrence rate of 3% occurred. became.

【0056】また、2液混合の比較例である、Ni粉末
と還元剤を含む還元溶液にCo塩を含む金属溶液を添加
する方法により、Ni粉末の平均粒径よりも小さく、N
i粉末100重量部に対して50重量部以下のCo−B
合金粉末を析出させた試料9の導電粉末を用いた積層セ
ラミックコンデンサは、静電容量が1.8μFであり、
ショート不良発生率が0%であったが、層剥がれ不良発
生率が5%生じたため、本発明の範囲外となった。
Further, by the method of adding a metal solution containing a Co salt to a reducing solution containing Ni powder and a reducing agent, which is a comparative example of mixing two liquids, the average particle diameter of Ni powder is smaller than that of Ni powder.
50 parts by weight or less of Co-B based on 100 parts by weight of i powder
The multilayer ceramic capacitor using the conductive powder of Sample 9 in which the alloy powder was deposited had a capacitance of 1.8 μF,
Although the short-circuit failure occurrence rate was 0%, the layer peeling failure occurrence rate was 5%, which was outside the scope of the present invention.

【0057】また、本発明の反応析出方法により、Ni
粉末の平均粒径よりも小さいが、Ni粉末100重量部
に対して70重量部のCo−B合金粉末を析出させた試
料5の導電粉末を用いた積層セラミックコンデンサは、
静電容量が0.9μFで低く許容範囲外であったため、
本発明の範囲外となった。
Further, according to the reactive deposition method of the present invention, Ni
A multilayer ceramic capacitor using the conductive powder of Sample 5 in which 70 parts by weight of Co-B alloy powder was deposited with respect to 100 parts by weight of Ni powder, although the average particle size of the powder was smaller,
Since the capacitance was low at 0.9 μF and outside the allowable range,
It was outside the scope of the present invention.

【0058】また、本発明の反応析出方法により、Ni
粉末100重量部に対して50重量部以下のCo−B合
金粉末を析出させているが、Co−B合金粉末の平均粒
径がNi粉末の平均粒径と同等である試料6の導電粉末
を用いた積層セラミックコンデンサは、静電容量が0.
5μFで低く許容範囲外であり、層剥がれ不良発生率が
35%で高く劣ったため、本発明の範囲外となった。
Further, according to the reactive deposition method of the present invention, Ni
50 parts by weight or less of Co-B alloy powder was deposited with respect to 100 parts by weight of the powder, and the conductive powder of Sample 6 in which the average particle size of the Co-B alloy powder was equal to the average particle size of Ni powder was used. The multilayer ceramic capacitor used has an electrostatic capacity of 0.
It was out of the range of the present invention because the layer peeling defect occurrence rate was as high as 35%, which was low at 5 μF and out of the allowable range.

【0059】また、導電性ペースト中にCo−B合金粉
末を添加した試料10〜12の積層セラミックコンデン
サは、静電容量が1.4μFで低く許容範囲外であり、
層剥がれ不良発生率が25〜35%で高く劣った。
The multilayer ceramic capacitors of Samples 10 to 12 in which the Co--B alloy powder was added to the conductive paste had a low capacitance of 1.4 μF, which was outside the allowable range.
The rate of defective layer peeling was 25 to 35%, which was inferior.

【0060】また、従来のNi粉末である試料13,1
4の導電粉末を用いた試料13A,13B,14A,1
4Bの積層セラミックコンデンサは、脱バインダー条件
がAir雰囲気中でトップ温度が高い場合には、静電容
量が極端に低くなって層剥がれ不良発生率が高くなり、
2雰囲気中でトップ温度が低い場合には、ショート不
良発生率が高くなることが分かる。
Samples 13 and 1 which are conventional Ni powders
Samples 13A, 13B, 14A, 1 using the conductive powder of No. 4
In the 4B multilayer ceramic capacitor, when the binder removal condition is high in the air atmosphere and the top temperature is high, the electrostatic capacitance becomes extremely low and the layer peeling defect occurrence rate increases.
It can be seen that when the top temperature is low in the N 2 atmosphere, the short-circuit defect occurrence rate becomes high.

【0061】[0061]

【発明の効果】以上のように本発明によれば、Ni粉
末,Cu粉末,Niまたは/およびCuを主成分とする
合金粉末からなる群より選ばれる少なくとも1種の卑金
属粉末とCo塩とを含む金属溶液に、水素化硼化物また
は/およびアミンボランを含む還元溶液を添加・混合し
て、卑金属粉末の表面に、卑金属粉末の平均粒径よりも
小さく、卑金属粉末100重量部に対して50重量部以
下のCo−B合金粉末を析出させることを特徴とするこ
とで、耐酸化性を有する導電粉末およびこのような導電
粉末を用いた導電性ペーストを提供することができ、有
機物の分解ならびに除去に十分な温度の酸化雰囲気中で
の脱バインダー処理を可能とし、このような導電性ペー
ストを用いて内部電極を形成する積層セラミック電子部
品の歩留まりならびに生産性を向上させることができ
る。
As described above, according to the present invention, at least one base metal powder selected from the group consisting of Ni powder, Cu powder, alloy powder containing Ni or / and Cu as a main component, and Co salt are used. A reducing solution containing a borohydride or / and an amine borane is added to and mixed with the metal solution containing the base metal powder, and the surface of the base metal powder is smaller than the average particle size of the base metal powder. It is possible to provide a conductive powder having oxidation resistance and a conductive paste using such a conductive powder by precipitating Co-B alloy powder in an amount of 1 part or less, and to decompose and remove organic substances. It is possible to remove the binder in an oxidizing atmosphere at a sufficient temperature, and the yield and yield of multilayer ceramic electronic components that form internal electrodes using such a conductive paste. Thereby improving the productivity.

【0062】また、上述の卑金属粉末の平均粒径は、
1.0μm以下であることを特徴とすることで、一般に
卑金属粉末は粒径が小さくなるほど比表面積が増えて活
性になり、酸化が起こりやすくなるが、卑金属粉末の耐
酸化性を向上させるという本発明の効果が顕著となり、
また積層セラミック電子部品のさらなる薄層化や多層化
に貢献できる効果がある。
The average particle size of the above base metal powder is
Since the base metal powder is characterized by having a particle size of 1.0 μm or less, generally, the smaller the particle size, the larger the specific surface area of the base metal powder, which becomes active and becomes more susceptible to oxidation, but the base metal powder is improved in oxidation resistance. The effect of the invention becomes remarkable,
Further, there is an effect that it can contribute to further thinning and multilayering of the monolithic ceramic electronic component.

【0063】また、上述のCo−B合金粉末の平均粒径
は、0.1μm以下であり、かつ卑金属粉末の平均粒径
の1/2以下であることを特徴とすることで、Co−B
合金粉末が卑金属粉末の表面をより均一に被覆すること
ができ、卑金属粉末の耐酸化性が十分に得られるという
効果がある。
The average particle size of the Co-B alloy powder is 0.1 μm or less, and is 1/2 or less of the average particle size of the base metal powder.
The alloy powder has an effect that the surface of the base metal powder can be coated more uniformly and the oxidation resistance of the base metal powder can be sufficiently obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一つの実施形態の導電粉末の断面
図であり、(a)は卑金属粉末の表面にCo−B合金粉
末が析出した状態の説明図であり、(b)は酸化硼素が
卑金属粉末の表面を略被覆した状態の説明図である。
FIG. 1 is a cross-sectional view of a conductive powder according to one embodiment of the present invention, (a) is an explanatory view of a state in which a Co—B alloy powder is deposited on the surface of a base metal powder, and (b) is an oxide. It is explanatory drawing of the state in which the surface of the base metal powder was substantially covered with boron.

【図2】本発明に係る一つの実施形態の積層セラミック
電子部品の断面図である。
FIG. 2 is a cross-sectional view of a monolithic ceramic electronic component according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 導電粉末 2 卑金属粉末 3a Co−B合金粉末 11 積層セラミック電子部品 12a セラミック層 12 セラミック積層体 13 内部電極 1 Conductive powder 2 Base metal powder 3a Co-B alloy powder 11 Multilayer ceramic electronic components 12a ceramic layer 12 Ceramic laminate 13 internal electrodes

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 1/00 H01B 1/00 L 1/22 1/22 A 13/00 501 13/00 501Z H01G 4/12 361 H01G 4/12 361 4/30 311 4/30 311Z Fターム(参考) 4K017 AA02 BA03 BA05 BB06 DA07 DA08 EA03 4K018 BA02 BA04 BC01 BC22 BD04 5E001 AB03 AH01 AJ01 5E082 AB03 EE31 5G301 DA02 DA06 DA10 DD01 DE03Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H01B 1/00 H01B 1/00 L 1/22 1/22 A 13/00 501 13/00 501Z H01G 4/12 361 H01G 4/12 361 4/30 311 4/30 311Z F term (reference) 4K017 AA02 BA03 BA05 BB06 DA07 DA08 EA03 4K018 BA02 BA04 BC01 BC22 BD04 5E001 AB03 AH01 AJ01 5E082 AB03 EE31 5G301 DA02 DA06 DA10 DD01 DE03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Ni粉末,Cu粉末,Niまたは/およ
びCuを主成分とする合金粉末からなる群より選ばれる
少なくとも1種の卑金属粉末とCo塩とを含む金属溶液
に、水素化硼化物または/およびアミンボランを含む還
元溶液を添加・混合して、 前記卑金属粉末の表面に、前記卑金属粉末の平均粒径よ
りも小さく、前記卑金属粉末100重量部に対して50
重量部以下のCo−B合金粉末を析出させることを特徴
とする、導電粉末の製造方法。
1. A metal solution containing at least one base metal powder selected from the group consisting of Ni powder, Cu powder, Ni or / and alloy powder containing Cu and / or Cu as a main component, and a borohydride or a metal salt. And / or a reducing solution containing amine borane is added and mixed, and the average particle size of the base metal powder is smaller than the average particle size of the base metal powder on the surface of the base metal powder.
A method for producing a conductive powder, which comprises depositing Co-B alloy powder by weight or less.
【請求項2】 前記析出工程の後に、前記Co−B合金
粉末が表面に析出した前記卑金属粉末を100℃以上で
熱処理する熱処理工程をさらに備えることを特徴とす
る、請求項1に記載の導電粉末の製造方法。
2. The conductive material according to claim 1, further comprising a heat treatment step of heat-treating the base metal powder having the Co—B alloy powder deposited on the surface thereof at 100 ° C. or higher after the precipitation step. Powder manufacturing method.
【請求項3】 前記析出工程の後に、前記Co−B合金
粉末が表面に析出した前記卑金属粉末を粉砕処理する粉
砕工程をさらに備えることを特徴とする、請求項1また
は2に記載の導電粉末の製造方法。
3. The conductive powder according to claim 1, further comprising a crushing step of crushing the base metal powder having the Co-B alloy powder deposited on the surface after the depositing step. Manufacturing method.
【請求項4】 前記卑金属粉末の平均粒径は、1.0μ
m以下であることを特徴とする、請求項1〜3の何れか
に記載の導電粉末の製造方法。
4. The average particle size of the base metal powder is 1.0 μm.
It is m or less, The manufacturing method of the electrically conductive powder in any one of Claims 1-3 characterized by the above-mentioned.
【請求項5】 前記Co−B合金粉末の平均粒径は、
0.1μm以下であり、かつ前記卑金属粉末の平均粒径
の1/2以下であることを特徴とする、請求項1〜4の
何れかに記載の導電粉末の製造方法。
5. The average particle diameter of the Co—B alloy powder is
It is 0.1 micrometer or less, and is 1/2 or less of the average particle diameter of the said base metal powder, The manufacturing method of the electrically conductive powder in any one of Claims 1-4 characterized by the above-mentioned.
【請求項6】 請求項1〜5の何れかに記載の製造方法
によって得られたことを特徴とする、導電粉末。
6. A conductive powder obtained by the manufacturing method according to any one of claims 1 to 5.
【請求項7】 請求項6に記載の導電粉末と、有機ビヒ
クルと、を含有してなることを特徴とする、導電性ペー
スト。
7. A conductive paste containing the conductive powder according to claim 6 and an organic vehicle.
【請求項8】 複数のセラミック層が積層されてなるセ
ラミック積層体と、前記セラミック層間に形成された複
数の内部電極と、を備える積層セラミック電子部品であ
って、 前記内部電極は、請求項7に記載の導電性ペーストを用
いて形成されていることを特徴とする、積層セラミック
電子部品。
8. A monolithic ceramic electronic component comprising: a ceramic laminated body formed by laminating a plurality of ceramic layers; and a plurality of internal electrodes formed between the ceramic layers, wherein the internal electrodes are A multilayer ceramic electronic component, characterized by being formed using the conductive paste according to (4).
JP2001193007A 2001-06-26 2001-06-26 Method for manufacturing electroconductive powder, electroconductive powder, electroconductive paste and laminated ceramic electronic component Pending JP2003013103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001193007A JP2003013103A (en) 2001-06-26 2001-06-26 Method for manufacturing electroconductive powder, electroconductive powder, electroconductive paste and laminated ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001193007A JP2003013103A (en) 2001-06-26 2001-06-26 Method for manufacturing electroconductive powder, electroconductive powder, electroconductive paste and laminated ceramic electronic component

Publications (1)

Publication Number Publication Date
JP2003013103A true JP2003013103A (en) 2003-01-15

Family

ID=19031370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001193007A Pending JP2003013103A (en) 2001-06-26 2001-06-26 Method for manufacturing electroconductive powder, electroconductive powder, electroconductive paste and laminated ceramic electronic component

Country Status (1)

Country Link
JP (1) JP2003013103A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004070748A1 (en) * 2003-02-05 2006-05-25 Tdk株式会社 Electronic component and manufacturing method thereof
JP2006319359A (en) * 2003-02-05 2006-11-24 Tdk Corp Electronic component and its manufacturing method
JP2011103301A (en) * 2009-11-11 2011-05-26 Samsung Electronics Co Ltd Conductive paste and solar cell using the same
KR20120015997A (en) * 2010-08-13 2012-02-22 삼성전자주식회사 Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
JP2013181177A (en) * 2012-02-29 2013-09-12 Jx Nippon Mining & Metals Corp Cobalt plated copper fine power, conductive paste produced by using the same, and method of producing the same
US8940195B2 (en) 2011-01-13 2015-01-27 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same
US8974703B2 (en) 2010-10-27 2015-03-10 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the same
US8987586B2 (en) 2010-08-13 2015-03-24 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
WO2015107996A1 (en) * 2014-01-14 2015-07-23 東洋アルミニウム株式会社 Composite conductive particles, conductive resin composition containing same and conductive coated article
US9105370B2 (en) 2011-01-12 2015-08-11 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same
JP5830010B2 (en) * 2010-03-17 2015-12-09 新日鉄住金化学株式会社 Method for producing nickel-cobalt nanoparticles

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319359A (en) * 2003-02-05 2006-11-24 Tdk Corp Electronic component and its manufacturing method
US7324326B2 (en) 2003-02-05 2008-01-29 Tdk Corporation Electronic device and the production method
KR100826388B1 (en) 2003-02-05 2008-05-02 티디케이가부시기가이샤 Electronic parts and method for manufacture thereof
US7518848B2 (en) 2003-02-05 2009-04-14 Tdk Corporation Electronic device and the production method
JP4548392B2 (en) * 2003-02-05 2010-09-22 Tdk株式会社 Alloy powder for forming internal electrode layer of electronic component, conductive particle, conductive paste, and method of manufacturing electronic component using the same
JPWO2004070748A1 (en) * 2003-02-05 2006-05-25 Tdk株式会社 Electronic component and manufacturing method thereof
JP2011103301A (en) * 2009-11-11 2011-05-26 Samsung Electronics Co Ltd Conductive paste and solar cell using the same
US9984787B2 (en) 2009-11-11 2018-05-29 Samsung Electronics Co., Ltd. Conductive paste and solar cell
JP5830010B2 (en) * 2010-03-17 2015-12-09 新日鉄住金化学株式会社 Method for producing nickel-cobalt nanoparticles
KR20120015997A (en) * 2010-08-13 2012-02-22 삼성전자주식회사 Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
KR101960463B1 (en) * 2010-08-13 2019-03-21 삼성전자주식회사 Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US8987586B2 (en) 2010-08-13 2015-03-24 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US8974703B2 (en) 2010-10-27 2015-03-10 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the same
US9105370B2 (en) 2011-01-12 2015-08-11 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same
US8940195B2 (en) 2011-01-13 2015-01-27 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same
JP2013181177A (en) * 2012-02-29 2013-09-12 Jx Nippon Mining & Metals Corp Cobalt plated copper fine power, conductive paste produced by using the same, and method of producing the same
WO2015107996A1 (en) * 2014-01-14 2015-07-23 東洋アルミニウム株式会社 Composite conductive particles, conductive resin composition containing same and conductive coated article
CN105917420A (en) * 2014-01-14 2016-08-31 东洋铝株式会社 Composite conductive particles, conductive resin composition containing same and conductive coated article
JPWO2015107996A1 (en) * 2014-01-14 2017-03-23 東洋アルミニウム株式会社 Composite conductive particles, conductive resin composition containing the same, and conductive coating material
US10227496B2 (en) 2014-01-14 2019-03-12 Toyo Aluminium Kabushiki Kaisha Composite conductive particle, conductive resin composition containing same and conductive coated article
CN105917420B (en) * 2014-01-14 2019-09-03 东洋铝株式会社 Composite conductive particle, the conductive resin composition comprising it and electric conductivity coating material

Similar Documents

Publication Publication Date Title
JP4081987B2 (en) Metal powder manufacturing method, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
KR100859646B1 (en) Conductive particle manufacturing method, conductive paste, and electronic component manufacturing method
JP3644235B2 (en) Multilayer ceramic electronic components
KR100918346B1 (en) Electronic parts and method for manufacture thereof
WO2001033588A1 (en) Multilayer capacitor
JP2003013103A (en) Method for manufacturing electroconductive powder, electroconductive powder, electroconductive paste and laminated ceramic electronic component
KR970004274B1 (en) Seramic capacitor
JP3918450B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
JPH07207185A (en) Coated palladium fine powder and conductive paste
JP4333594B2 (en) Conductive paste and ceramic electronic components
JP2002334614A (en) Conductive particles
JP5206246B2 (en) Nickel powder and method for producing the same
JP2002275511A (en) Method for manufacturing metal powder, metal powder, conductive paste and laminated ceramic electronic parts
JP3698098B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
JP2004183027A (en) Method for manufacturing nickel powder, nickel powder, electroconductive paste, and multilayered ceramic electronic component
JP4595235B2 (en) Method for producing conductive powder having oxidation resistance, conductive powder, conductive paste, and multilayer ceramic electronic component
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
JP4562282B2 (en) Manufacturing method of ceramic circuit board
JPH0696988A (en) Paste for forming internal electrode of multilayer ceramic capacitor and multilayer ceramic capacitor employing the paste
JP2003243249A (en) Laminated ceramic capacitor and its manufacturing method
JP2004068090A (en) Method for manufacturing conductive powder, conductive powder, conductive paste and electronic partt of laminated ceramic
JP2003013101A (en) Method for manufacturing electroconductive powder with oxidation resistance, electroconductive powder, electroconductve paste and laminated ceramic electronic component
JP4096645B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component
JP4085587B2 (en) Metal powder manufacturing method, metal powder, conductive paste and multilayer ceramic electronic component
JPS634332B2 (en)