JP2003151862A - Continuous formation of film - Google Patents

Continuous formation of film

Info

Publication number
JP2003151862A
JP2003151862A JP2001385308A JP2001385308A JP2003151862A JP 2003151862 A JP2003151862 A JP 2003151862A JP 2001385308 A JP2001385308 A JP 2001385308A JP 2001385308 A JP2001385308 A JP 2001385308A JP 2003151862 A JP2003151862 A JP 2003151862A
Authority
JP
Japan
Prior art keywords
carbon
metal
compound
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001385308A
Other languages
Japanese (ja)
Inventor
Hiroko Ishikawa
浩子 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001385308A priority Critical patent/JP2003151862A/en
Publication of JP2003151862A publication Critical patent/JP2003151862A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To solve the problem that there is a limit in a method of improving the area of double-layer interface for the improvement of the capacity of an electric double layer and also a limit in high speed discharge and large capacity charge in a method of forming the electric double layer using a graphite and carbon tube of a carbon compound and unshaped carbon used as an electrode, and also to solve the problem of a cost in a prior art. SOLUTION: A carbon compound having a higher electric double-layer capacity is formed to achieve the reduction of a cost per unit area and also the reduction of a cost as the product through improvement of productivity by introducing the method of forming electrode film with a coating method, the method of forming carbon compound using in direct an organic gas to a metal roll, and the method of forming an organic compound, metal alloy layer and metal oxide layer as an under layer to the metal roll, and then forming thereon the carbon compound using the organic gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料自動車や電気
自動車、ガソリン普通車や家庭の電力貯蔵に用いられる
燃料電池、二次電池、電気二重層キャパシター、スーパ
ーキャパシター等に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, an electric vehicle, a gasoline vehicle, a fuel cell used for electric power storage in a home, a secondary battery, an electric double layer capacitor, a supercapacitor and the like.

【0002】[0002]

【従来の技術】瞬間的に大電流を流したい場合には、通
常の2次電池や一次電池の反応や活物質内の拡散を伴う
ものに比較して、電気二重層という活性炭の表面に電荷
イオンを集め、放電するような方法が一般的には用いら
れている。具体的には活性炭の粉末に電解質成分を含ん
だ非水性電解液をしみこませ、活性炭と電解液の界面に
できるイオンによる電気二重層の静電容量を利用した電
気二重層キャパシタが知られている。このキャパシター
は電解液の分解電圧、蒸気圧や温度特性の関係から耐電
圧、最高使用温度が限定されている。一般には定格電圧
は5V以下と低くいが、大きい静電容量が容易に得られ
るのでコンデンサーのようなものとして使用されてい
る。近年、電池の代わりとして半導体メモリ(DRA
M)のバックアップや電流密度の高い用途、例えば車載
鉛蓄電池の代わりにも使用することが研究されている。
特に電気自動車などの場合には、モーター駆動用エネル
ギー源あるいはエネルギー回収システムとして、単位面
積当たりのエネルギー密度が大きく、かつパワー密度が
大きい電気二重層コンデンサが要求されている。
2. Description of the Related Art When it is desired to instantaneously apply a large current, electric charges are formed on the surface of an activated carbon called an electric double layer, as compared with a normal secondary battery or primary battery which involves reaction or diffusion in an active material. A method of collecting and discharging ions is generally used. Specifically, an electric double layer capacitor is known in which a non-aqueous electrolytic solution containing an electrolyte component is soaked in activated carbon powder and the capacitance of the electric double layer due to ions formed at the interface between the activated carbon and the electrolytic solution is used. . The withstand voltage and maximum operating temperature of this capacitor are limited due to the decomposition voltage of the electrolyte, vapor pressure and temperature characteristics. Generally, the rated voltage is as low as 5 V or less, but it is used as a capacitor because a large electrostatic capacity is easily obtained. In recent years, semiconductor memory (DRA
The use of M) as a backup or in high current density applications, for example, in place of in-vehicle lead-acid batteries, has been studied.
Particularly in the case of an electric vehicle or the like, an electric double layer capacitor having a large energy density per unit area and a large power density is required as an energy source for driving a motor or an energy recovery system.

【0003】通常、電気二重層キャパシタに使用する電
極は、従来、活性炭素粉末の焼結固形化や活性炭素粉末
をテフロン(登録商標)バインダーで集電体表面に粘着
固定して製造していた。この際に電気二重層キャパシタ
用電極に添加物を混合して、導電性や表面積の改善によ
る容量を改善することが提案されている。活性炭素繊維
を使用するものは、特開昭63−226019号公報、
同様に気相成長炭素繊維(VGCF)を使用するもの
は、特開平9−171946号公報、特開平11−12
1301号公報などが知られている。例えば、このよう
な電気二重層の電極構成として、特開平8−55761
号公報には、分極性電極が含フッ素ポリマーからなるバ
インダーで結合された高比表面積活性炭と導電性付与剤
とを主要構成材料とする電気二重層コンデンサが開示さ
れている。活性炭としてはフェノール樹脂系活性炭、ヤ
シ殻系活性炭、石油コークス系活性炭があり、主にフェ
ノール樹脂系活性炭が使われている。電気二重層コンデ
ンサは、結合剤、またはバインターとしてポリ弗化ビニ
リデン、フルオロオレフィンビニルエーテル共重合ポリ
マーまたはテトラフルオロエチレン−プロピレン共重合
ポリマーのような含フッ素ポリマーを有し、高比表面積
活性炭及び導電性付与剤としてのアセチレンブラックま
たはケッチェンブラックが一般的に使用されている。
Conventionally, an electrode used for an electric double layer capacitor has conventionally been manufactured by sintering and solidifying activated carbon powder or fixing activated carbon powder to a current collector surface with a Teflon (registered trademark) binder. . At this time, it has been proposed to mix an additive with the electrode for an electric double layer capacitor to improve the capacitance by improving the conductivity and the surface area. Those using activated carbon fibers are disclosed in JP-A-63-226019.
Similarly, those using vapor-grown carbon fibers (VGCF) are disclosed in JP-A-9-171946 and JP-A-11-12.
No. 1301 is known. For example, as an electrode configuration of such an electric double layer, Japanese Patent Laid-Open No. 8-55761
The publication discloses an electric double layer capacitor mainly composed of a high specific surface area activated carbon in which a polarizable electrode is bound with a binder made of a fluoropolymer and a conductivity-imparting agent. As the activated carbon, there are phenol resin activated carbon, coconut shell activated carbon and petroleum coke activated carbon, and the phenol resin activated carbon is mainly used. The electric double layer capacitor has a fluorine-containing polymer such as polyvinylidene fluoride, fluoroolefin vinyl ether copolymer or tetrafluoroethylene-propylene copolymer as a binder or binder, and has high specific surface area activated carbon and conductivity imparting property. Acetylene black or Ketjen black is commonly used as an agent.

【0004】気相成長の炭素に関しては、特開平9−1
71946号公報に気相成長炭素と樹脂とを混合した
後、加熱して炭化したものを分極性電極として用いる電
気二重層コンデンサおよびその製造方法が開示されてい
る。
Regarding the carbon of vapor phase growth, Japanese Patent Laid-Open No. 9-1
Japanese Patent No. 71946 discloses an electric double layer capacitor in which vapor-grown carbon and a resin are mixed and then heated and carbonized to be used as a polarizable electrode, and a manufacturing method thereof.

【0005】特開平8−55761号公報に開示されて
いる電気二重層コンデンサの場合、内部抵抗の低減が十
分でないという問題点があった。その理由は、アセチレ
ンブラック及びケッチェンブラックの粒子径は高比表面
積活性炭の粒子径に比較して非常に大きく、高比表面積
活性炭の粒子が凝集して二次粒子化し、活性炭粒子間の
接触抵抗の低減が十分でないためである。特開平9−1
71946号公報に記載されている、気相成長炭素と樹
脂とを混合し、加熱して炭化した後、賦活処理を行った
場合には電気二重層コンデンサの静電容量および内部抵
抗のバラツキが大きいという問題点があった。その理由
は、賦活処理を行うと、集電体と電極剤の熱膨張率の差
に起因した剥離や電極剤の膨張等により電極の強度が低
下し、所定の形状を維持することが出来なくなる問題点
があった。また特願平11−305790の場合には活
物質や導電付与剤の添加の仕方で、粒径の制御や導電性
カーボンの気相成長による粉末形成を導入することによ
り、電気二重層の容量改善や内部抵抗の減少によるロス
分、高速放電を可能にすることが検討されているが、生
産時の生産フローが長くなりコストが掛かる問題があ
る。更には塗布方法と乾式のドライプロセスが共存する
ために、生産時には各フローでの品質管理が難しい問題
があった。
In the case of the electric double layer capacitor disclosed in Japanese Unexamined Patent Publication No. 8-55761, there is a problem that the internal resistance is not sufficiently reduced. The reason is that the particle size of acetylene black and Ketjen black is much larger than the particle size of high specific surface area activated carbon, and the particles of high specific surface area activated carbon agglomerate into secondary particles, resulting in contact resistance between the activated carbon particles. Is not sufficiently reduced. JP-A-9-1
When the activation process is performed after the vapor growth carbon and the resin are mixed, heated and carbonized, as disclosed in Japanese Patent No. 71946, the electric double layer capacitors have large variations in capacitance and internal resistance. There was a problem. The reason is that when the activation treatment is performed, the strength of the electrode decreases due to peeling or expansion of the electrode agent due to the difference in thermal expansion coefficient between the current collector and the electrode agent, and it becomes impossible to maintain a predetermined shape. There was a problem. In the case of Japanese Patent Application No. 11-305790, the capacity of the electric double layer is improved by controlling the particle size and introducing powder formation by vapor phase growth of conductive carbon by adding an active material or a conductivity-imparting agent. Although it has been considered to enable high-speed discharge by the amount of loss due to reduction of internal resistance, there is a problem that the production flow at the time of production becomes long and the cost increases. Further, since the coating method and the dry process coexist, there is a problem that quality control in each flow is difficult during production.

【0006】また、通常の塗布による電極膜の作製にお
いてVGCF(気相成長炭素繊維)の添加による効果改
善として、熱伝導を活かした放熱性改善やシートの強
度、導電性等の改善がなされることは知られている。し
かしながら、気相成長法において炭素繊維を成長させる
ことは難しく、一般的には繊維状に形成した有機繊維を
適当な雰囲気中で焼成することにより炭素繊維を作る方
法があるが、この種の製造方法では繊維径が大きく、ナ
ノサイズ、メソサイズの繊維径を持つ炭素繊維を作るこ
とは不可能であった。したがって、通常、用いられる炭
素繊維では大きな比表面積を持つことはなく、単純に熱
伝導を活かした放熱性改善やシートの強度、導電性等の
改善に限られたものであり、電気二重層容量を改善する
ものではなかった。
Further, in the production of an electrode film by ordinary coating, as an effect improvement by the addition of VGCF (vapor growth carbon fiber), heat dissipation is improved by utilizing heat conduction, and the strength and conductivity of the sheet are improved. It is known. However, it is difficult to grow carbon fibers in the vapor phase growth method, and generally, there is a method of producing carbon fibers by firing fibrous organic fibers in an appropriate atmosphere. By the method, the fiber diameter was large, and it was impossible to produce carbon fibers having nano-sized or meso-sized fiber diameters. Therefore, the carbon fiber that is usually used does not have a large specific surface area, and is limited to improving heat dissipation by simply utilizing heat conduction and improving the strength and conductivity of the sheet. Did not improve.

【0007】更には、通常の電気二重層キャパシターの
場合には、イオン吸着の際に、ナノサイズやメソサイズ
孔にトラップされているイオンが、大電流で放電する
と、その速度についていけず、基本的に放電電流密度を
上げていくと、放電容量が下がるという特徴があり、急
速放電ができないという根本的な問題がある。
Further, in the case of an ordinary electric double layer capacitor, when the ions trapped in the nano-sized or meso-sized pores are adsorbed with a large current during the adsorption of ions, they cannot keep up with the speed, which is basically the case. When the discharge current density is increased, the discharge capacity decreases, which is a fundamental problem that rapid discharge cannot be performed.

【0008】従来の二重層電極の作製方法ではないもの
として、炭素薄膜/金属複合材料に関し、J.Elec
trochem.Soc.,Vol.137(199
0)p2499.にはNi電極上に電解重合によりポリ
アクリロニトリル薄膜を形成した後、500℃以下の温
度で熱処理した時の膜の一次構造について報告してい
る。この温度領域ではグラファイト構造を完全に形成し
たものではなく、このもの自体で大きな電気二重層容量
を持たないために、電気二重層キャパシタとしては用い
ることができない問題があった。
Regarding the carbon thin film / metal composite material, as described in J. Elec
trochem. Soc. , Vol. 137 (199
0) p2499. Report on the primary structure of the film when a polyacrylonitrile thin film is formed on a Ni electrode by electrolytic polymerization and then heat-treated at a temperature of 500 ° C. or lower. In this temperature range, the graphite structure is not completely formed, and since this one itself does not have a large electric double layer capacitance, there is a problem that it cannot be used as an electric double layer capacitor.

【0009】[0009]

【発明が解決しようとする課題】一般的には炭素系化合
物のグラファイトやカーボンナノチューブ、不定形炭素
でも電気二重層を形成するための、電極として使用でき
ることは報告されており、すでに実用化されている。し
かしながら、今までの電気二重層の考え方の基本である
二重層界面の面積改善手法では限界があり、高速放電や
大容量充電には限界があった。また、従来技術ではコス
トも問題となっていた。本発明は二重層容量の問題を解
決するものであり、製造フローが短く、且つ低コストで
高性能な電気二重層電極及びその製造方法を提供するこ
とを目的とする。
In general, it has been reported that even carbonaceous compounds such as graphite, carbon nanotubes, and amorphous carbon can be used as electrodes for forming an electric double layer, and they have already been put to practical use. There is. However, the method of improving the area of the double-layer interface, which is the basic idea of the electric double layer up to now, has a limit, and the high-speed discharge and the large capacity charge have a limit. Further, cost has been a problem in the prior art. The present invention solves the problem of double layer capacitance, and an object thereof is to provide an electric double layer electrode having a short manufacturing flow, low cost, and high performance, and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】生産性の良い電極材を形
成するには通常用いられている金属ロールを用いて、完
全にドライ雰囲気にして管理した方が良い。但し、現行
の方法でも著しく特性が改善できた場合には電極面積を
小さくすることができ、単位面積当たりのコストは高く
なっても電極面積が小さくなる分、製品としてのコスト
は下げられる。例えばカーボンナノチューブのような比
表面積が大きく、このようなイオンの吸着サイトが多い
ものを低コストで簡易に形成することで工程が長くなっ
ても、性能が改善されるために結果として製品コストが
下げられる。本方法は大別すると4つの種類があり、1
つは現行の塗布法を取り入れた電極膜の成膜方法、2つ
めは金属ロールに直接、有機ガスを用いて炭素系化合物
を成膜する方法、3つめは金属ロールに、初めの工程で
蒸着法、クラスタービーム法、もしくはCVD法を用い
て、下地層として有機化合物や金属合金層、金属酸化物
層を形成し、その上に有機ガスを用いて炭素系化合物を
成膜する方法である。4つめは下地層に塗布法、または
蒸着法で1ミクロン以下の金属粉が凝集した層を形成さ
せ、この粉の表面に炭素系化合物を形成する方法であ
る。
In order to form an electrode material having high productivity, it is better to use a metal roll which is usually used and to manage it in a completely dry atmosphere. However, if the characteristics can be remarkably improved by the current method, the electrode area can be reduced, and even if the cost per unit area is increased, the electrode area is reduced, so that the cost as a product can be reduced. For example, carbon nanotubes with a large specific surface area and many such adsorption sites for ions can be easily formed at low cost even if the process is lengthened. Can be lowered. This method is roughly classified into four types.
One is a method of forming an electrode film that adopts the current coating method, the second is a method of forming a carbon-based compound directly on a metal roll using an organic gas, and the third is a method of vapor deposition in the first step on a metal roll. Method, a cluster beam method, or a CVD method, an organic compound, a metal alloy layer, or a metal oxide layer is formed as a base layer, and a carbon-based compound is formed thereon by using an organic gas. The fourth is a method of forming a layer in which metal powder of 1 micron or less is aggregated on the underlayer by a coating method or a vapor deposition method, and forming a carbon-based compound on the surface of the powder.

【0011】続いて、各方法の具体的な作製方法につい
て説明する。本発明の方法の一番目の方法は、ロール状
に巻いた金属薄板に、ポリ弗化ビニリデン、フルオロオ
レフィンビニルエーテル共重合ポリマーまたはテトラフ
ルオロエチレン−プロピレン共重合ポリマーのような含
フッ素ポリマーを用いたフッ素系バインダーと導電性カ
ーボンと、カーボンナノチューブ等の炭素系化合物を表
面に成長させたPt,Pd,Ru,Rh,Os,Ir,
Cu,Ag,Au,La,Y,Fe,Ni,Co等から
1種類以上を含む金属粉を有機溶液中で分散させた後、
金属薄板に塗布して有機溶液を熱乾燥で除去させ、ロー
ル加圧で電極密度を上げる方法である。この方法に用い
る金属としては正極、負極で用いる金属材料としては電
極界面での酸化還元反応による腐食劣化が起きにくいよ
うにするため、正極や負極表面に白金族系や貴金属系金
属を表面コートする方法でも良いが、正極にはAlを含
んだ合金を用いて、負極にはCuを含んだ合金を用いる
ことが望ましい。非水系で電圧が低い場合にはFe,C
u,Al,Ni,Co,Cr,Mn等からなる1種以上
の金属を含むものでも良い。また、コストが掛かるがP
t,Pd,Ru,Rh,Os,Ir,Ag,Auの白金
族系や貴金属系金属からなるものでも良い。
Next, a specific manufacturing method of each method will be described. The first method of the present invention is to use a fluorine-containing polymer such as polyvinylidene fluoride, a fluoroolefin vinyl ether copolymer or a tetrafluoroethylene-propylene copolymer on a thin metal sheet wound in a roll. -Based binder, conductive carbon, and Pt, Pd, Ru, Rh, Os, Ir, and carbon-based compounds such as carbon nanotubes grown on the surface
After dispersing a metal powder containing one or more kinds of Cu, Ag, Au, La, Y, Fe, Ni, Co, etc. in an organic solution,
This is a method in which an electrode solution is applied to a thin metal plate to remove the organic solution by heat drying and the electrode density is increased by applying pressure to a roll. The metal used in this method is the positive electrode, and the metal material used in the negative electrode is coated with a platinum group metal or a noble metal based metal on the surface of the positive electrode or the negative electrode to prevent corrosion deterioration due to the redox reaction at the electrode interface. Although the method may be used, it is preferable to use an alloy containing Al for the positive electrode and an alloy containing Cu for the negative electrode. Fe, C when the voltage is non-aqueous and the voltage is low
It may contain one or more metals such as u, Al, Ni, Co, Cr, and Mn. In addition, it costs P
It may be made of a platinum group metal such as t, Pd, Ru, Rh, Os, Ir, Ag or Au or a noble metal.

【0012】カーボンナノチューブ等の炭素系化合物を
表面に成長させたPt,Pd,Ru,Rh,Os,I
r,Cu,Ag,Au,La,Y,Fe,Ni,Co等
から1種類以上を含む金属粉の作製方法としては、この
金属紛をAr,H2,He等のガスにメタン、アセチレ
ン、ベンゼン等の有機系還元性ガスを混合して、熱を少
なくとも300℃以上、好ましくは800℃以上で熱処
理をすることにより金属粉の表面に形成される。熱を用
いなくても炭素材料にレーザー蒸発法やスパッター法、
または高周波プラズマを用いても可能である。特にカー
ボンナノチューブの平均長さとして0.01ミクロン以
上に成長させると二重層容量として大きくなり、好まし
くは0.1ミクロン以上が良い
Pt, Pd, Ru, Rh, Os, I grown on the surface of a carbon-based compound such as carbon nanotube
As a method for producing a metal powder containing one or more kinds from r, Cu, Ag, Au, La, Y, Fe, Ni, Co, etc., this metal powder is mixed with a gas such as Ar, H2, He or the like, methane, acetylene, benzene. It is formed on the surface of the metal powder by mixing an organic reducing gas such as the above with heat treatment at a temperature of at least 300 ° C. or higher, preferably 800 ° C. or higher. Laser evaporation method or sputtering method for carbon materials without heat
Alternatively, it is possible to use high frequency plasma. In particular, when the average length of carbon nanotubes is grown to 0.01 micron or more, the double-layer capacity increases, and preferably 0.1 micron or more.

【0013】2番目の方法では、金属ロールに直接、有
機ガスを用いて炭素系化合物を成膜する方法に用いる金
属薄板は、1つめの方法と同じ金属組成である。有機ガ
スを用いて炭素系化合物を成膜する方法は、ロール状に
巻いた金属薄板をAr,H2,He等のガスにメタン、
アセチレン、ベンゼン等の有機系還元性ガスを混合し
て、熱を少なくとも300℃以上、好ましくは800℃
以上で熱処理炉に通して金属薄板の表面にカーボンナノ
チューブ等の炭素系化合物を形成する。1つめの方法と
同じように熱を用いなくても炭素材料にレーザー蒸発法
やスパッター法、または高周波プラズマを用いてガスを
励起して金属薄板の表面にカーボンナノチューブ等の炭
素系化合物を形成することも可能であるが、好ましくは
熱処理としてヒーター加熱で単純にでき、管理も簡単で
あるので望ましい。。特にカーボンナノチューブの長さ
として平均0.01ミクロン以上に成長させると二重層
容量として大きくなり、好ましくは0.1ミクロン以上
が良い
In the second method, the metal thin plate used in the method of forming a carbon-based compound film directly on the metal roll by using the organic gas has the same metal composition as that of the first method. The method of forming a carbon-based compound film by using an organic gas is as follows. A metal thin plate wound in a roll shape is used as a gas such as Ar, H2, He, or methane,
Mix an organic reducing gas such as acetylene or benzene to heat at least 300 ° C, preferably 800 ° C.
As described above, the carbon-based compound such as carbon nanotubes is formed on the surface of the thin metal plate by passing through the heat treatment furnace. As in the first method, a carbon material such as carbon nanotubes is formed on the surface of a thin metal plate by exciting a gas using a laser evaporation method, a sputtering method, or high frequency plasma in a carbon material without using heat. However, it is preferable that the heat treatment can be simplified by heating with a heater and the management is easy. . In particular, when the carbon nanotubes are grown to an average length of 0.01 micron or more, the double-layer capacity increases, preferably 0.1 micron or more.

【0014】3番目の方法は金属ロールに、初めの工程
で蒸着法、クラスタービーム法、もしくはCVD法を用
いて、下地層として有機化合物や金属合金層、金属酸化
物層を形成し、その上に有機ガスを用いて炭素系化合物
を成膜する方法である。この方法では、前記ロール状に
巻いた金属薄板を圧力とガス成分を制御できるチャンバ
ーに入れ、金属薄板を巻いたものから、巻き上げるロー
ルの間で蒸着法、クラスタービーム法、レーザー蒸発法
やスパッター法、または高周波プラズマ、CVD法等を
用いて、金属薄板の表面に下地層となる有機化合物や金
属合金層、金属酸化物層を形成するものである。例えば
正極、負極で用いる金属材料としては正極や負極表面に
白金族系や貴金属系金属を表面コートする方法でも良い
が、正極にはAlを含んだ合金を用いて、負極にはCu
を含んだ合金を用いることが望ましい。非水系で電圧が
低い場合には金属薄板の組成として、Fe,Cu,A
l,Ni,Co,Cr,Mn等からなる1種以上の金属
を含むものでも良い。また、コストが掛かるがPt,P
d,Ru,Rh,Os,Ir,Ag,Auの白金族系や
貴金属系金属からなるものでも良い。下地層の有機化合
物、金属合金層、金属酸化物層としては、ロール状に巻
いた金属薄板の組成及び成膜する材料で異なる。特にナ
ノチューブを成長させたい場合には、例えば金属薄板に
用いた金属がPt,Pd,Ru,Rh,Os,Ir,C
u,Ag,Au,La,Y,Fe,Ni,Co以外であ
る時には、金属薄板の表面にPt,Pd,Ru,Rh,
Os,Ir,Cu,Ag,Au,La,Y,Fe,N
i,Coのいずれか、もしくは1種以上の合金を形成さ
せることが望ましい。下地層を形成した金属薄板を2つ
めの方法で示した成膜方法で下地層の表面にカーボンナ
ノチューブ等炭素系化合物を形成する。この際、カーボ
ンナノチューブの平均長さとして0.01ミクロン以上
に成長させると二重層容量として大きくなり、好ましく
は0.1ミクロン以上が良い。
The third method is to form an organic compound, a metal alloy layer, or a metal oxide layer as a base layer on the metal roll by using the vapor deposition method, the cluster beam method, or the CVD method in the first step, and then, Is a method of forming a carbon-based compound film by using an organic gas. In this method, the rolled metal thin plate is placed in a chamber capable of controlling the pressure and gas components, and the metal thin plate is wound, and then a vapor deposition method, a cluster beam method, a laser evaporation method or a sputtering method is applied between rolls to be wound. Alternatively, a high-frequency plasma, a CVD method, or the like is used to form an organic compound, a metal alloy layer, or a metal oxide layer to be a base layer on the surface of the metal thin plate. For example, the metal material used for the positive electrode and the negative electrode may be a method in which the surface of the positive electrode or the negative electrode is coated with a platinum group metal or a noble metal, but an alloy containing Al is used for the positive electrode and Cu for the negative electrode.
It is desirable to use an alloy containing When the voltage is low in a non-aqueous system, the composition of the thin metal plate is Fe, Cu, A.
It may contain one or more metals such as 1, Ni, Co, Cr and Mn. Also, it costs Pt, P
It may be made of a platinum group metal or noble metal such as d, Ru, Rh, Os, Ir, Ag and Au. The organic compound, the metal alloy layer, and the metal oxide layer of the underlayer differ depending on the composition of the metal thin plate wound in a roll shape and the material to be deposited. Especially when it is desired to grow nanotubes, for example, the metal used for the thin metal plate is Pt, Pd, Ru, Rh, Os, Ir, C.
When it is other than u, Ag, Au, La, Y, Fe, Ni and Co, Pt, Pd, Ru, Rh,
Os, Ir, Cu, Ag, Au, La, Y, Fe, N
It is desirable to form either i or Co or one or more alloys. A carbon-based compound such as carbon nanotubes is formed on the surface of the underlayer by the film forming method shown in the second method of the metal thin plate on which the underlayer is formed. At this time, when the average length of the carbon nanotubes is grown to 0.01 μm or more, the double layer capacity increases, and preferably 0.1 μm or more.

【0015】4番目の方法は下地層に塗布法、または蒸
着法で10ミクロン以下の金属粉が凝集した層を形成さ
せ、この粉の表面に炭素系化合物を形成する方法であ
る。この方法で下地層を形成する場合は、前述した3番
目の方法の下地層を形成する条件として真空度を低真空
化にして、例えば蒸着法を用いた場合には、真空度を低
真空の1〜100torrにして、基板にクラスター化
したものを直接堆積することが良い。またはスパッター
法では基板温度を下げてスパッターレートを上げると、
成膜される組織が島状成長して、粗密な組織を持つ膜が
形成されるため、これを用いても同様である。更にはク
ラスターイオンビームなど、クラスター化したものを用
いても直接、粉状のものが下地層として堆積するので、
同様な効果を持つ。下地層として堆積する粉の平均サイ
ズとしては10ミクロン以下が望ましく、好ましくは1
ミクロン以下が良い。このように下地層として、粗密な
組織、もしくは粉が堆積したような組織を形成した後
に、この金属薄板を二番目の方法として前述したように
Ar,H,He,N等のガスにメタン、アセチレ
ン、ベンゼン等の有機系還元性ガスを混合して、熱を少
なくとも300℃以上、好ましくは800℃以上で熱処
理炉に通して金属薄板の表面にカーボンナノチューブ等
の炭素系化合物を形成する。この際、熱を用いなくても
炭素材料にレーザー蒸発法やスパッター法、または高周
波プラズマを用いてガスを励起して金属薄板の表面にカ
ーボンナノチューブ等の炭素系化合物を形成することも
可能であるが、好ましくは熱処理としてヒーター加熱で
単純にでき、管理も簡単であるので望ましい。この際に
カーボンナノチューブの平均長さとして0.01ミクロ
ン以上に成長させると二重層容量として大きくなり、好
ましくは0.1ミクロン以上が良い。
The fourth method is a method of forming a layer of metal powder having a particle size of 10 μm or less aggregated on the underlayer by a coating method or a vapor deposition method, and forming a carbon compound on the surface of the powder. When the underlayer is formed by this method, the degree of vacuum is set to be low as a condition for forming the underlayer of the above-mentioned third method. For example, when the vapor deposition method is used, the degree of vacuum is set to be low. It is preferable to directly deposit the clustered material on the substrate at a pressure of 1 to 100 torr. Or in the sputtering method, lowering the substrate temperature and increasing the sputtering rate
The structure to be deposited grows in an island shape to form a film having a coarse and dense structure. Furthermore, even if a clustered one such as a cluster ion beam is used, a powdery one is directly deposited as an underlayer,
Has a similar effect. The average size of the powder deposited as the underlayer is preferably 10 microns or less, preferably 1
Micron or less is good. In this way, after forming a dense structure or a structure in which powder is deposited as the underlayer, this metal thin plate is exposed to a gas such as Ar, H 2 , He, N 2 as described above as the second method. An organic reducing gas such as methane, acetylene or benzene is mixed and heat is passed through a heat treatment furnace at a temperature of at least 300 ° C. or higher, preferably 800 ° C. or higher to form a carbon-based compound such as carbon nanotubes on the surface of a thin metal plate. . At this time, it is also possible to form a carbon-based compound such as carbon nanotubes on the surface of the thin metal plate by exciting the gas using a laser evaporation method, a sputtering method, or high frequency plasma on the carbon material without using heat. However, it is preferable that the heat treatment can be simplified by heating with a heater and the management is easy. At this time, if the average length of the carbon nanotubes is grown to be 0.01 micron or more, the double layer capacity becomes large, preferably 0.1 micron or more.

【0016】前述した炭素系化合物の組成としては炭素
化合物の含有炭素量が90質量%以上であり、水素含有
量が10質量%未満であることが特性的に望ましく、ま
た、金属薄板と成膜される炭素化合物の接合界面、また
は下地層との炭素化合物の接合界面において酸素含有量
が10質量%未満であることが、ナノチューブ等炭素化
合物の成長に効果があることが分かったために、望まし
く酸素含有量が3質量%以下であることが良い。
As for the composition of the above-mentioned carbon-based compound, it is characteristically desirable that the carbon content of the carbon compound is 90 mass% or more and the hydrogen content is less than 10 mass%, and the thin metal plate and the film are formed. It was found that the oxygen content of less than 10% by mass at the bonded interface of the carbon compound or the bonded interface of the carbon compound with the underlayer has an effect on the growth of the carbon compound such as nanotubes. The content is preferably 3% by mass or less.

【0017】前述した炭素系化合物としては単層ナノチ
ューブ構造、もしくは複層ナノチューブであることが望
ましく、チューブ径が10nm以下、好ましくは2nm
以下が電気二重層特性として良好であった。
The carbon-based compound described above preferably has a single-walled nanotube structure or a multi-walled nanotube, and has a tube diameter of 10 nm or less, preferably 2 nm.
The following were good electric double layer characteristics.

【0018】[0018]

【実施例】以下、実施例により本発明を更に詳細に説明
する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【実施例1】厚さ100μmのCu薄板にプロパノール
中に賦活処理を行ったアセチレンブラック5重量%と、
バインターのポリテトラフルオロエチレン(PTFE)
1重量%、1μmのY粉にカーボンナノチューブを0.
1〜1ミクロンまで成長させたものを5重量%で分散さ
せペースト化したものを厚さ100μm程度に塗布し
て、100℃にて10時間減圧乾燥した。この電極に対
して、上記と同重量になるように1μm以下のグラファ
イトをカーボンナノチューブを0.1〜1ミクロンまで
成長させた粉の代わりに添加して比較評価を行った結
果、グラファイトを用いた電極に比較して、電気二重層
容量は10倍程度、大きいことが分かった。また、カー
ボンナノチューブの平均長さを0.01,0.1,0.
2,0.4μm前後で変えて電気二重層容量の変化を
0.01μmを基準に評価した結果、カーボンの含有量
の違いはあるにしても以下の表1の結果となった。この
結果から、平均長さとしては0.1μm以上あることが
望ましいと分かった。
Example 1 5% by weight of acetylene black obtained by subjecting a Cu thin plate having a thickness of 100 μm to activation treatment in propanol,
Binter polytetrafluoroethylene (PTFE)
Carbon powder was added to 1% by weight of 1 μm of Y powder.
What was grown up to 1 to 1 micron was dispersed at 5% by weight and made into a paste, which was applied to a thickness of about 100 μm and dried under reduced pressure at 100 ° C. for 10 hours. Graphite of 1 μm or less was added to this electrode in place of the powder of carbon nanotubes grown to 0.1 to 1 micron so as to have the same weight as above, and comparative evaluation was performed. As a result, graphite was used. It was found that the electric double layer capacity was about 10 times larger than that of the electrode. In addition, the average length of the carbon nanotubes is 0.01, 0.1, 0.
As a result of evaluating the change of the electric double layer capacitance by 0.01 μm while changing the value around 2,0.4 μm, the results shown in Table 1 below are obtained even if there is a difference in the carbon content. From this result, it was found that the average length is preferably 0.1 μm or more.

【0019】[0019]

【実施例2】厚さ100μmのAl薄板にスパッター法
で、Cu,Pt,Pd,Au,Agをそれぞれ20μm
程度の厚みになるように、Ar雰囲気中100torr
の真空度で、パワー2W/cm2で成膜した。この金属
薄板を実施例1のように評価して、グラファイトとカー
ボンナノチューブを0.1〜1ミクロンまで成長させた
粉を用いた場合の電気二重層容量の比較を行った結果、
実施例1とほぼ変わらない結果が得られた。この時、下
地層の厚みを変えても特性には変化がなく、同様な効果
が得られた。また、下地層を付けないAl薄板だけでも
同じ結果が得られた。
Example 2 Cu, Pt, Pd, Au, and Ag each having a thickness of 20 μm are sputtered onto an Al thin plate having a thickness of 100 μm.
To a thickness of 100 torr in Ar atmosphere
The film was formed at a vacuum degree of 2 W / cm 2. This thin metal plate was evaluated as in Example 1, and the electric double layer capacity was compared when powders obtained by growing graphite and carbon nanotubes to 0.1 to 1 micron were used.
The result was almost the same as that of Example 1. At this time, the characteristics did not change even if the thickness of the underlayer was changed, and similar effects were obtained. Also, the same result was obtained with only an Al thin plate without an underlayer.

【0020】[0020]

【実施例3】厚さ200μm程度のFe薄板をArとH
が1:1の混合ガスを10CC/minにベンゼンを
1CC/minの流量で混合して流す石英ガラスチャン
バーに入れ、この鉄薄板を高周波加熱で少なくとも50
0℃以上に加熱した。この結果、薄板の上にカーボンナ
ノチューブが形成した。一部グラファイトも形成してい
た。この時、反応時間を変えて、ナノチューブの平均長
さが0.01ミクロンから10ミクロンの範囲で変わっ
たものを作製した。これを用いて電気二重層容量を評価
した。電解液は、LiPFを1.0mol/lの濃度
でプロピレンカーボネートに溶解することによって調製
した。この電解液を含浸した電極をガラス製不織布のセ
パレータを介して対向させ、電気二重層キャパシタを作
製した。二重層容量を評価した結果、表2のようにな
り、ナノチューブの平均長さとして0.1ミクロン以上
は必要であることが分かった。表ではカーボン量が異な
るが、0.01ミクロンのカーボンナノチューブを1と
して規格化して比較したものを示した。
Example 3 A thin Fe plate having a thickness of about 200 μm was used as Ar and H.
The mixed gas of 2 : 1: 1 was put into a quartz glass chamber in which benzene was mixed with 10 CC / min at a flow rate of 1 CC / min, and the iron thin plate was heated at least 50 times by high frequency heating.
Heated above 0 ° C. As a result, carbon nanotubes were formed on the thin plate. Some graphite was also formed. At this time, the reaction time was changed to prepare nanotubes having an average length in the range of 0.01 to 10 microns. This was used to evaluate the electric double layer capacity. The electrolytic solution was prepared by dissolving LiPF 6 in propylene carbonate at a concentration of 1.0 mol / l. The electrodes impregnated with this electrolytic solution were opposed to each other with a glass nonwoven fabric separator interposed therebetween to produce an electric double layer capacitor. As a result of evaluating the double-layer capacity, the results are shown in Table 2 and it was found that the average length of the nanotubes is required to be 0.1 micron or more. In the table, the carbon amount is different, but the standardized carbon nanotubes of 0.01 micron are set as 1 and compared.

【0020】次に実施例3の厚さ200μm程度のFe
薄板の表面をEPMAで分析し、表面の酸素のat%を
測定し、薄板の表面の酸素を逆スパッターでエッチング
して飛ばし、酸素のat%を変えたものを用いて、実施
例3と同じ条件でカーボンナノチューブを形成した時の
比較を行った。時間は一定で、酸素が3at%以下のも
のを基準にカーボンナノチューブの平均長さを比較した
結果を表3に示した。この結果から、少なくとも金属薄
板の表面にある酸素含有量は20at%以内であること
が望ましい。次に厚さ200μm程度のFe薄板の表面
にスパッター法で10μm程度の厚みでNi,Co,A
l,Pd,Y,Laのそれぞれで成膜したサンプルを作
製し、評価同様に酸素の影響を調べた結果、LaやYで
は、酸素による影響がもっと大きく、少なくとも20a
t%以内であることが望ましいことが分かった。
Next, Fe of Example 3 having a thickness of about 200 μm is used.
The surface of the thin plate was analyzed by EPMA, the at% of oxygen on the surface was measured, the oxygen on the surface of the thin plate was etched by reverse sputtering to be blown, and the at% of oxygen was changed, the same as in Example 3. Comparison was made when carbon nanotubes were formed under the conditions. Table 3 shows the results of comparing the average lengths of carbon nanotubes with the time being constant and oxygen being 3 at% or less as a reference. From this result, it is desirable that the oxygen content at least on the surface of the thin metal plate is within 20 at%. Then, on the surface of the Fe thin plate having a thickness of about 200 μm, Ni, Co, A having a thickness of about 10 μm was formed by the sputtering method.
As a result of investigating the effect of oxygen in the same manner as in the evaluation, the sample formed by forming each of 1, Pd, Y, and La was examined.
It has been found that it is desirable to be within t%.

【0021】[0021]

【実施例4】厚さ200μm程度のPt薄板を真空蒸着
装置に入れ、100torrのArガス中でPdを加熱
蒸発させ、Pt薄板上に10nm程度のPd粉を堆積さ
せた。このPt薄板を300℃以上で1時間、He中で
熱処理した後、この薄板をベンゼンを1CC/minの
流量で混合して流す石英ガラスチャンバーに入れ、この
Pt薄板をヒーター加熱で少なくとも600℃以上に加
熱した。この結果、薄板の上にあるPdにカーボンナノ
チューブが形成した。一部グラファイトも形成してい
た。このサンプルを用いて、カーボン量が同じになるグ
ラファイトを用いた電極と比較した結果、電気二重層容
量はグラファイトに比較して1桁以上大きいことが分か
った。
Example 4 A Pt thin plate having a thickness of about 200 μm was placed in a vacuum vapor deposition apparatus, Pd was heated and evaporated in Ar gas of 100 torr, and Pd powder of about 10 nm was deposited on the Pt thin plate. After heat-treating the Pt thin plate in He at 300 ° C. or higher for 1 hour, the Pt thin plate is placed in a quartz glass chamber in which benzene is mixed and flowed at a flow rate of 1 CC / min. Heated to. As a result, carbon nanotubes were formed on Pd on the thin plate. Some graphite was also formed. As a result of using this sample and comparing it with an electrode using graphite having the same carbon amount, it was found that the electric double layer capacity was one digit or more larger than that of graphite.

【0022】[0022]

【実施例5】実施例3の厚さ200μm程度のFe薄板
をCo薄板に変えて、Arガス10CC/minにアセ
チレンを1CC/minの流量で混合して流す石英ガラ
スチャンバーに入れ、このCo薄板をヒーター加熱で少
なくとも300℃以上に加熱した。この時、ヒーター加
熱を変えて、成膜される炭素含有量、水素含有量を変え
たものを試作した。このサンプルを用いて、酸素で燃焼
させ、出てきたガスからカーボン、水素を測定し2つの
元素でのat%を計算し、電気二重層容量を比較した結
果、表4のようになった。この結果、温度が高い方で作
製した含有水素量が少ないと電気二重層容量が高いこと
が分かった。
Example 5 The thin Fe plate having a thickness of about 200 μm in Example 3 was replaced with a thin Co plate, and the Co thin plate was placed in a quartz glass chamber in which Ar gas was mixed with acetylene at a flow rate of 1 CC / min. Was heated to at least 300 ° C. by heating with a heater. At this time, the heating of the heater was changed, and the carbon content and the hydrogen content of the film formed were changed for trial manufacture. Using this sample, combustion was carried out with oxygen, carbon and hydrogen were measured from the gas that came out, the at% of the two elements was calculated, and the electric double layer capacities were compared. As a result, it was found that the electric double layer capacity was high when the hydrogen content produced at the higher temperature was small.

【0023】[0023]

【発明の効果】本方法により金属薄板の表面にカーボン
ナノチューブ等の炭素系化合物を形成することが簡易に
でき、且つ二重層容量として大きな電極材料が得られ
た。
According to the present method, a carbon-based compound such as carbon nanotube can be easily formed on the surface of a thin metal plate, and an electrode material having a large double layer capacity can be obtained.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】金属薄板を非酸化性雰囲気のチャンバーに
通し有機ガスを導入して、熱、光、電場等からなる1種
以上の励起エネルギーを用いて有機ガスを分解し、金属
薄板に炭素化合物を成膜させたことを特徴とする電極。
1. A thin metal plate is passed through a chamber of a non-oxidizing atmosphere to introduce organic gas, and the organic gas is decomposed by using at least one kind of excitation energy consisting of heat, light, electric field, etc. An electrode characterized in that a compound is formed into a film.
【請求項2】平均粒径10ミクロン以下にした、Pt,
Pd,Ru,Rh,Os,Ir,Cu,Ag,Au,L
a,Y,Fe,Ni,Co等から1種類以上を含む金属
粉を用いて金属薄板の上に固定した層を形成し、非酸化
性雰囲気下に通し、その非酸化性雰囲気中で有機ガスを
導入して、熱、光、電場等からなる1種以上の励起エネ
ルギーを用いて有機ガスを分解し、固定化した金属粉層
に炭素化合物を成膜させたことを特徴とする電極。
2. Pt, having an average particle size of 10 microns or less,
Pd, Ru, Rh, Os, Ir, Cu, Ag, Au, L
A layer fixed on a thin metal plate is formed by using a metal powder containing at least one of a, Y, Fe, Ni, Co, etc., and the layer is passed under a non-oxidizing atmosphere, and an organic gas is added in the non-oxidizing atmosphere. And an organic gas is decomposed by using at least one kind of excitation energy composed of heat, light, an electric field, etc., and a carbon compound is deposited on the fixed metal powder layer.
【請求項3】請求項1または2において非酸化性雰囲気
中で有機ガスを導入して、熱、光、電場等からなる1種
以上の励起エネルギーを用いて有機ガスを分解し、炭素
化合物を成膜させた後に酸化性雰囲気で処理することを
特徴とする電極。
3. The organic gas is introduced in a non-oxidizing atmosphere according to claim 1 or 2, and the organic gas is decomposed by using at least one kind of excitation energy consisting of heat, light, electric field, etc. An electrode characterized by being treated in an oxidizing atmosphere after forming a film.
【請求項4】請求項1または2において金属薄板の上に
Pt,Pd,Ru,Rh,Os,Ir,Cu,Ag,A
u,La,Y,Fe,Ni,Coから1種類以上を含む
金属合金の下地層を先に成膜し、その上にカーボンチュ
ーブ等の炭素系化合物を形成したものであることを特徴
とする電極。
4. The Pt, Pd, Ru, Rh, Os, Ir, Cu, Ag, A on the thin metal plate according to claim 1 or 2.
It is characterized in that an underlayer of a metal alloy containing at least one of u, La, Y, Fe, Ni, and Co is first formed, and a carbon-based compound such as a carbon tube is formed thereon. electrode.
【請求項5】請求項1または2において金属薄板の上に
Pt,Pd,Ru,Rh,Os,Ir,Cu,Ag,A
u,La,Y,Fe,Ni,Coから1種類以上を含む
金属合金の下地層を先に成膜し、その上に炭化水素系の
下地層を形成した後にカーボンチューブ等の炭素系化合
物を形成したものであることを特徴とする電極。
5. The Pt, Pd, Ru, Rh, Os, Ir, Cu, Ag, A on the thin metal plate according to claim 1 or 2.
An underlayer of a metal alloy containing at least one of u, La, Y, Fe, Ni, and Co is first formed, and then a hydrocarbon-based underlayer is formed thereon, and then a carbon-based compound such as a carbon tube is added. An electrode characterized by being formed.
【請求項6】請求項1または2において成膜される炭素
化合物の含有炭素量が90質量%以上であり、水素含有
量が10質量%未満であることを特徴とする成膜組成。
6. A film forming composition according to claim 1, wherein the carbon compound formed into a film has a carbon content of 90% by mass or more and a hydrogen content of less than 10% by mass.
【請求項7】請求項1または2において金属薄板と成膜
される炭素化合物の接合界面、または下地層との炭素化
合物の接合界面において下地層の酸素含有量が20at
%以下であることを特徴とする成膜組成。
7. The oxygen content of the underlayer is 20 at at the joining interface between the thin metal plate and the carbon compound to be deposited or the joining interface between the underlayer and the carbon compound.
% Or less, a film-forming composition.
【請求項8】請求項1または2において用いる金属薄板
としてFe,Ni,Co,Al,Cu,Cr,Mnのい
ずれかを含むことを特徴とする金属薄板
8. The metal thin plate used in claim 1 or 2, which contains any one of Fe, Ni, Co, Al, Cu, Cr and Mn.
【請求項9】請求項4または5において形成するカーボ
ンチューブの長さとして0.01ミクロン以上であるこ
とを特徴とする組織。
9. A tissue characterized in that the length of the carbon tube formed in claim 4 or 5 is 0.01 micron or more.
【請求項10】カーボンチューブの平均長さとして0.
01ミクロン以上あるものがPt,Pd,Ru,Rh,
Os,Ir,Cu,Ag,Au,La,Y,Fe,N
i,Co等から1種類以上を含む金属粉の表面に形成し
たものを金属板の上に固定化したことを特徴とする電
極。
10. A carbon tube having an average length of 0.
Pt, Pd, Ru, Rh
Os, Ir, Cu, Ag, Au, La, Y, Fe, N
An electrode characterized in that a metal powder containing one or more kinds of i, Co, etc. formed on the surface is fixed on a metal plate.
JP2001385308A 2001-11-12 2001-11-12 Continuous formation of film Pending JP2003151862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001385308A JP2003151862A (en) 2001-11-12 2001-11-12 Continuous formation of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001385308A JP2003151862A (en) 2001-11-12 2001-11-12 Continuous formation of film

Publications (1)

Publication Number Publication Date
JP2003151862A true JP2003151862A (en) 2003-05-23

Family

ID=19187831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001385308A Pending JP2003151862A (en) 2001-11-12 2001-11-12 Continuous formation of film

Country Status (1)

Country Link
JP (1) JP2003151862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231432A (en) * 2017-12-29 2018-06-29 武汉艾特米克超能新材料科技有限公司 A kind of method for improving ultracapacitor self discharge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231432A (en) * 2017-12-29 2018-06-29 武汉艾特米克超能新材料科技有限公司 A kind of method for improving ultracapacitor self discharge

Similar Documents

Publication Publication Date Title
US8278010B2 (en) Carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder and process for preparing the same
JP4597666B2 (en) Particles comprising a non-conductive core or a semi-conductive core coated with a hybrid conductive layer, a method for its production, and its use in electrochemical devices
US6205016B1 (en) Fibril composite electrode for electrochemical capacitors
US7553341B2 (en) High power density supercapacitors with carbon nanotube electrodes
KR100584671B1 (en) Process for the preparation of carbon nanotube or carbon nanofiber electrodes by using sulfur or metal nanoparticle as a binder and electrode prepared thereby
EP1870912B1 (en) Electrode material for electric double layer capacitor and process for producing the same, electrode for electric double layer capacitor, and electric double layer capacitor
JP5557564B2 (en) Nitrogen-containing carbon alloy and carbon catalyst using the same
EP1118090B1 (en) Fibril composite electrode for electrochemical capacitors
KR101745449B1 (en) Hierarchical architecture with nanosized metal oxide and porous graphene for lithium ion battery anode with ultra-fast charge/discharge rate and extremely robust cycle life using thereof
Li et al. Transition metal doped MnO2 nanosheets grown on internal surface of macroporous carbon for supercapacitors and oxygen reduction reaction electrocatalysts
JP2021116191A (en) Composite carbon material and lithium-ion secondary battery
KR102226920B1 (en) Electrode for lithium-air battery and method for producing the same
CN111033660B (en) Anode material of pseudo capacitor and preparation method thereof
CN109192522B (en) Fe2O3Nano carbon tube composite material, preparation method thereof and super capacitor
KR101653962B1 (en) Method of doped carbon coating on nanoparticle, method of doped carbon nano structure, doped carbon coated nano particle, doped carbon nanoscale structure produced by the same, and use thereof
JP2009537434A (en) CATALYST COMPOSITION COMPRISING ACTIVATED CARBON AND CARBON NANOTUBE, PROCESS FOR PRODUCING THE SAME, ELECTRODE CONTAINING CATALYTIC COMPOUND, AND SUPERCONDUCTOR
Ho et al. A silicon-impregnated carbon nanotube mat as a lithium-ion cell anode
KR20130047885A (en) Method for fabrication of charge storage in multi-walled carbon nanotube-niooh nano composites
TW202106618A (en) Composite carbon particles, method for manufacturing same and use thereof
KR100733580B1 (en) Electrode composition containing active carbon particles in which carbon nano fibers are growed, and method for manufacturing the same
JP2003151862A (en) Continuous formation of film
CN114789996A (en) High-dispersibility carbon nanotube, preparation method thereof and secondary battery
TW202104073A (en) Composite carbon particle, method for manufacturing same, and use thereof
CN113964325B (en) Nitrogen-deficient g-C3N4Loaded with Mg3N2Application of composite material as negative electrode material and lithium-based battery
JP2000331672A (en) Electrode for battery comprising carbon particles containing nano-size mixed substances and battery, and manufacture and electrolysis thereof