JP2003109574A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003109574A
JP2003109574A JP2001301328A JP2001301328A JP2003109574A JP 2003109574 A JP2003109574 A JP 2003109574A JP 2001301328 A JP2001301328 A JP 2001301328A JP 2001301328 A JP2001301328 A JP 2001301328A JP 2003109574 A JP2003109574 A JP 2003109574A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
aqueous electrolyte
battery
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001301328A
Other languages
Japanese (ja)
Inventor
Keiji Saisho
圭司 最相
Ikuro Nakane
育朗 中根
Satoshi Ubukawa
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001301328A priority Critical patent/JP2003109574A/en
Publication of JP2003109574A publication Critical patent/JP2003109574A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve a safety of nonaqueous electrolyte secondary battery by a self completing method utilizing intrinsic mechanism of the itself, without incorporating separately prepared protection circuit. SOLUTION: For a nonaqueous electrolyte secondary battery having a separator and using lithium as a main active material, the separator has through holes for inserting lithium dendrite with a diameter not smaller than 5 μm and not larger than 100 μm, and a gelled polymer layer, for example, made of poly (vinylidene fluoride), poly(ethylene oxide), polyacrylonitrile, poly(methyl methacrylate), and the like, is formed at least to the surface of a positive electrode or a negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンを
吸蔵離脱可能な正負極活物質および非水電解液を用いた
非水電解質二次電池に関し、より詳しくは安全性の改善
に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery using a positive and negative electrode active material capable of inserting and extracting lithium ions and a non-aqueous electrolyte solution, and more particularly to improvement of safety.

【0002】[0002]

【従来の技術】近年、携帯電話やノートパソコン等の移
動情報端末の小型・軽量化が急速に進展しているが、こ
のような状況にあって、軽量かつ高容量の非水電解質二
次電池の利用が拡大している。
2. Description of the Related Art In recent years, mobile information terminals such as mobile phones and laptop computers have been rapidly reduced in size and weight. Under such circumstances, a lightweight and high-capacity non-aqueous electrolyte secondary battery is provided. The use of is expanding.

【0003】非水電解質二次電池は、正負極間でのリチ
ウムの移動により充放電を行う電池であり、この種の電
池には、一般にリチウムイオンを挿入離脱することがで
きる炭素系材料(負極活物質)と、コバルト酸リチウ
ム、ニッケル酸リチウム、マンガン酸リチウム等の遷移
金属酸化物(正極活物質)と、リチウム塩を含む非水電
解液が使用されている。このような構成の非水電解質二
次電池は、適正な範囲で充放電が行われている限り優れ
た充放電特性を示す。
A non-aqueous electrolyte secondary battery is a battery that is charged and discharged by the movement of lithium between the positive and negative electrodes. In this type of battery, a carbon-based material (negative electrode) that can generally insert and release lithium ions is used. An active material), a transition metal oxide (positive electrode active material) such as lithium cobalt oxide, lithium nickel oxide, or lithium manganate, and a nonaqueous electrolytic solution containing a lithium salt are used. The non-aqueous electrolyte secondary battery having such a structure exhibits excellent charge / discharge characteristics as long as charge / discharge is performed within an appropriate range.

【0004】しかしながら、過剰充電された場合には、
負極で吸蔵しきれないリチウムイオンが負極上で金属リ
チウムとして析出し、この析出物が針状(デンドライ
ト)に発達し、遂にはセパレータを突き破って正極に達
し内部短絡を引き起こす。そして、従来の非水電解質二
次電池では、十分に成長したデンドライトが一気にセパ
レータを突き破るため、セパレータが大きく損傷される
とともに、内部短絡により電池性能が害されるほどに電
池温度が上昇する。
However, when overcharged,
Lithium ions that cannot be occluded in the negative electrode are deposited as metallic lithium on the negative electrode, and these deposits develop into acicular (dendrites) and finally penetrate the separator to reach the positive electrode, causing an internal short circuit. Then, in the conventional non-aqueous electrolyte secondary battery, the sufficiently grown dendrites pierce the separator all at once, so that the separator is greatly damaged and the battery temperature rises to such an extent that the internal short circuit impairs the battery performance.

【0005】また、過充電により正極の電位が高まる結
果(例えば5Vを越えて上昇する)、正極において電解
液の分解が生じる。電解液の分解は、電解液不足ととも
に電池内圧の上昇を招き、これに上記電池温度が加わる
と電極活物質と電解液との急激な反応を招くことにな
る。
Further, as a result of the potential of the positive electrode increasing due to overcharging (for example, exceeding 5 V), decomposition of the electrolytic solution occurs in the positive electrode. The decomposition of the electrolytic solution causes a rise in the internal pressure of the battery as well as a shortage of the electrolytic solution, and when the battery temperature is added to this, a rapid reaction between the electrode active material and the electrolytic solution is caused.

【0006】このため、従来の非水電解質二次電池にお
いては、別途で作製した保護回路を組み込み、電池電圧
が過度に上昇したときには電流を遮断する等して電池の
安全性を担保している。しかし、保護回路の組み込み
は、電池価格の上昇を招くとともに、電池の一層の小型
・軽量化を図る上での障害になる。
Therefore, in the conventional non-aqueous electrolyte secondary battery, a separately prepared protection circuit is incorporated, and when the battery voltage rises excessively, the current is cut off to ensure the safety of the battery. . However, the incorporation of the protection circuit raises the price of the battery and is an obstacle to further downsizing and weight saving of the battery.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記に鑑
み、保護回路を別個に組み込むことなく、電池本来の機
構を利用した手段でもって簡便に非水電解質二次電池の
安全性と保存性およびサイクル寿命の向上を図ろうとす
るものである。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a safe and storable non-aqueous electrolyte secondary battery simply by a means utilizing the original mechanism of the battery without separately incorporating a protection circuit. And, it is intended to improve the cycle life.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は下記構成を採用する。第1の発明は、リチウ
ムを挿入離脱可能な化合物を正極活物質とする正極と、
リチウムを挿入離脱可能な材料を負極活物質とする負極
と、非水電解質と、前記正負極の間に介装されたセパレ
ータと、を有する非水電解質二次電池において、前記セ
パレータが、リチウムデンドライトを挿通するための貫
通孔を有し、正負電極の少なくとも一方電極の表面に
は、電解液を含んでなるゲル状ポリマー層が設けられて
いることを特徴とする。
To achieve the above object, the present invention adopts the following constitution. A first invention is a positive electrode using a compound capable of inserting and releasing lithium as a positive electrode active material,
In a non-aqueous electrolyte secondary battery having a negative electrode having a material capable of inserting and releasing lithium as a negative electrode active material, a non-aqueous electrolyte, and a separator interposed between the positive and negative electrodes, the separator is a lithium dendrite. And a gel polymer layer containing an electrolytic solution is provided on the surface of at least one of the positive and negative electrodes.

【0009】過充電により負極の容量以上に正極からリ
チウムが放出された場合や、低温で負極の活性が低下し
ている状態で充電が行われた場合、負極上にリチウムデ
ンドライトが析出する。このようなリチウムデンドライ
トの発生初期の段階でデンドライトがセパレータを挿通
して正負極間が通電された場合には、細いデンドライト
であるので短絡電流が小さい。よって、電池電圧の急激
な低下や電池温度の急激な上昇がない一方、更なる過充
電を防止できる。
When lithium is released from the positive electrode beyond the capacity of the negative electrode due to overcharging, or when charging is performed at a low temperature while the negative electrode activity is reduced, lithium dendrite is deposited on the negative electrode. When the dendrite is inserted through the separator and the positive and negative electrodes are energized at the early stage of generation of such lithium dendrite, the short-circuit current is small because the dendrite is thin. Therefore, while the battery voltage does not drop sharply and the battery temperature does not rise sharply, it is possible to prevent further overcharge.

【0010】したがって、上記構成の如く、セパレータ
にリチウムデンドライトを挿通するための貫通孔を設け
て、デンドライトの成長方向を異極側に誘導すると、デ
ンドライトが十分に成長する前の初期段階において円滑
に内部短絡が生じるので、安全に更なる過充電を防止す
ることができる。しかし、セパレータに貫通孔を設ける
と、貫通孔部分では正負電極が直接対向することになる
ために、当該部分における電気化学的反応性が顕著に高
まり、その結果として自己放電性等が高まる。
Therefore, if the through-holes for inserting the lithium dendrites are provided in the separator and the growth direction of the dendrites is guided to the different polarity side as in the above-mentioned structure, the dendrites can be smoothly grown in the initial stage. Since an internal short circuit occurs, it is possible to safely prevent further overcharge. However, when the through-hole is provided in the separator, the positive and negative electrodes directly face each other in the through-hole portion, so that the electrochemical reactivity in the portion significantly increases, and as a result, the self-discharge property and the like increase.

【0011】ところが、上記構成では、リチウムデンド
ライトを挿通するための貫通孔を有するセパレータとと
もに、正負電極の少なくとも一方電極の表面に電解液を
含んでなるゲル状ポリマー層を配置する構成が採用され
ている。この構成であると、ゲル状ポリマー層が貫通孔
部分においてセパレータ的に機能するとともに、電極表
面の電解液を保持固定するように作用するので、過剰な
電気化学反応(電解液の分解反応等)が貫通孔内部およ
びその近傍に留まる。したがって、貫通孔を設けたこと
に起因する自己放電の増加や、電解液の分解およびこれ
に伴う電池内圧の上昇が顕著に抑制される。つまり、上
記構成によると、保存性能の低下を防止しつつ、自己完
結的作用により電池の安全性を高めることができる。
However, in the above structure, a gel polymer layer containing an electrolytic solution is arranged on the surface of at least one of the positive and negative electrodes together with a separator having a through hole for inserting a lithium dendrite. There is. With this configuration, the gel-like polymer layer functions as a separator in the through-hole portion and acts to hold and fix the electrolytic solution on the electrode surface, so that an excessive electrochemical reaction (decomposition reaction of the electrolytic solution, etc.) Remain inside the through-hole and its vicinity. Therefore, the increase in self-discharge due to the provision of the through holes, the decomposition of the electrolytic solution, and the increase in the battery internal pressure due to the decomposition are significantly suppressed. That is, according to the above configuration, the safety of the battery can be improved by the self-contained action while preventing the deterioration of the storage performance.

【0012】第2の発明は、上記第1の発明にかかる非
水電解質二次電池において、前記ゲル状ポリマー層を構
成するポリマーが、ポリフッ化ビニリデンであることを
特徴とする。
A second invention is characterized in that, in the non-aqueous electrolyte secondary battery according to the first invention, the polymer constituting the gel polymer layer is polyvinylidene fluoride.

【0013】ポリフッ化ビニリデンは、電解液を保持し
固定化する作用に優れており、電池内で電解液を吸液し
膨潤してゲル状ポリフッ化ビニリデン層を形成する。こ
のゲル状ポリフッ化ビニリデン層は、微細な金属リチウ
ム結晶からなるデンドライトが貫通できるほどに柔らか
い。したがって、ポリフッ化ビニリデンを用いると、貫
通孔部分における過剰な電池化学反応を抑制しつつ、円
滑にデンドライト通電路を形成させることができる。ま
た、ポリフッ化ビニリデンは結着性にも優れているの
で、充放電サイクルに伴う活物質の脱落を防止する働き
もある。以上からポリフッ化ビニリデンは、本発明の作
用効果を実現するためのポリマー材料として好適であ
る。
Polyvinylidene fluoride has an excellent function of holding and fixing the electrolytic solution, and absorbs the electrolytic solution and swells in the battery to form a gel polyvinylidene fluoride layer. This gel-like polyvinylidene fluoride layer is soft enough to allow dendrites made of fine metal lithium crystals to penetrate. Therefore, when polyvinylidene fluoride is used, it is possible to smoothly form the dendrite conduction path while suppressing excessive battery chemical reaction in the through hole portion. Further, since polyvinylidene fluoride is also excellent in binding property, it also has a function of preventing the active material from falling off due to charge / discharge cycles. From the above, polyvinylidene fluoride is suitable as a polymer material for achieving the effects of the present invention.

【0014】第3の発明は、上記第2の発明にかかる非
水電解質二次電池において、前記ポリフッ化ビニリデン
が、フッ化ビニリデンホモポリマー、またはフッ化ビニ
リデンと、三フッ化塩化エチレン、四フッ化エチレン、
六フッ化プロピレン、エチレンよりなる群から選択され
る一種以上の化合物との共重合体であることを特徴とす
る。
A third invention is the non-aqueous electrolyte secondary battery according to the second invention, wherein the polyvinylidene fluoride is a vinylidene fluoride homopolymer or vinylidene fluoride, ethylene trifluoride chloride and tetrafluoride. Ethylene oxide,
It is characterized by being a copolymer with one or more compounds selected from the group consisting of propylene hexafluoride and ethylene.

【0015】これらのポリフッ化ビニリデンは、本発明
の作用効果を実現する上で好適に使用することができ
る。
These polyvinylidene fluorides can be preferably used for realizing the effects of the present invention.

【0016】第4の発明は、上記第1の発明にかかる非
水電解質二次電池において、前記ゲル状ポリマー層を構
成するポリマーが、ポリエチレンオキシド、ポリアクリ
ロニトリル、またはポリメチルメタクリレートであるこ
とを特徴とする。
A fourth invention is the nonaqueous electrolyte secondary battery according to the first invention, wherein the polymer forming the gel polymer layer is polyethylene oxide, polyacrylonitrile, or polymethylmethacrylate. And

【0017】これらのポリマーは、上記ポリフッ化ビニ
リデンに代え、またはこれらとともに好適に使用するこ
とができる。
These polymers can be preferably used in place of or together with the above polyvinylidene fluoride.

【0018】第5の発明は、上記第1ないし4の発明に
かかる非水電解質二次電池において、前記ゲル状ポリマ
ー層の厚みが、2μm以上、100μm以下であることを
特徴とする。
A fifth invention is characterized in that, in the nonaqueous electrolyte secondary battery according to the first to fourth inventions, the thickness of the gel polymer layer is 2 μm or more and 100 μm or less.

【0019】ゲル状ポリマー層の厚みが2μm以上であ
ると、2μm未満である場合に比較し顕著に電池の保存
性能が向上する。また、ゲル状ポリマー層の厚みが10
0μm以下であると、100μmを超える場合に比較し、
より初期の段階で過充電を防止できる。よって、上記構
成であると、自己放電が少なく、しかも自己完結的に過
充電を防止し得た非水電解質二次電池を確実に実現でき
る。
When the thickness of the gel polymer layer is 2 μm or more, the storage performance of the battery is remarkably improved as compared with the case where the thickness is less than 2 μm. The thickness of the gel polymer layer is 10
If it is 0 μm or less, it is compared with the case of exceeding 100 μm,
Overcharge can be prevented at an early stage. Therefore, with the above configuration, it is possible to reliably realize a non-aqueous electrolyte secondary battery that has less self-discharge and is capable of self-contained and preventing overcharge.

【0020】第6の発明は、上記第1ないし5の発明に
かかる非水電解質二次電池において、前記貫通孔は、前
記正負極間を直線状で結ぶ構造であることを特徴とす
る。
A sixth invention is characterized in that, in the non-aqueous electrolyte secondary battery according to the first to fifth inventions, the through hole has a structure in which the positive and negative electrodes are linearly connected.

【0021】正負極間を直線状で結んだ貫通孔である
と、リチウムデンドライトが貫通孔に沿って異極側に円
滑に成長することができる。よって、リチウムデンドラ
イトの発生初期段階で正負極問の通電が図られるので、
一層電池の安全性が高まる。
When the positive and negative electrodes are linearly connected through holes, lithium dendrites can smoothly grow along the through holes to the opposite electrode side. Therefore, since the positive and negative electrodes can be energized at the initial stage of lithium dendrite generation,
The safety of the battery is further enhanced.

【0022】第7の発明は、上記第1ないし5の発明に
かかる非水電解質二次電池において、前記貫通孔は、前
記正負極間を最短で結ぶ構造であることを特徴とする。
A seventh invention is characterized in that, in the non-aqueous electrolyte secondary battery according to the first to fifth inventions, the through hole has a structure connecting the positive and negative electrodes in the shortest distance.

【0023】正負極間を最短で結ぶ貫通孔であると、導
通経路が最短になるので、一層過充電の初期段階で正負
極問の通電が図られる。したがって、より一層電池の安
全性が高まる。
With the through hole connecting the positive and negative electrodes in the shortest distance, the conduction path becomes the shortest, so that the positive and negative electrodes can be energized in the initial stage of overcharging. Therefore, the safety of the battery is further enhanced.

【0024】第8の発明は、上記第1ないし7の発明に
かかる非水電解質二次電池において、前記貫通孔の直径
が5μm以上、100μm以下であり、且つセパレータ
の貫通孔密度は1個/cm2 以上であることを特徴とす
る。
An eighth invention is the non-aqueous electrolyte secondary battery according to any one of the first to seventh inventions, wherein the diameter of the through holes is 5 μm or more and 100 μm or less, and the through hole density of the separator is 1 /. It is characterized by being at least cm 2 .

【0025】このように規制するのは、貫通孔の直径が
5μm以上であれば、リチウムデンドライトの成長を貫
通孔方向に誘導することができ、他方、100μm以下
であれば、通常の使用状態(過充電状態等でない状態)
において、無用な内部短絡を生じることがない。更に、
貫通孔の密度を1個/cm2 以上とすると、複数個の通
電路を形成させることができるので、各通電路における
負荷が減少する。よって極めて細いリチウムデンドライ
トによる通電路であっても全体として十分に機能する。
つまり、早期に過充電を停止させることができることに
なる。
The reason for restricting in this way is that if the diameter of the through-hole is 5 μm or more, the growth of lithium dendrite can be guided in the direction of the through-hole, while if it is 100 μm or less, the normal use condition ( (Not overcharged, etc.)
In, there is no useless internal short circuit. Furthermore,
When the density of the through holes is 1 / cm 2 or more, a plurality of current paths can be formed, so that the load on each current path is reduced. Therefore, even if it is an energization path using an extremely thin lithium dendrite, it functions sufficiently as a whole.
That is, the overcharge can be stopped early.

【0026】[0026]

【発明の実施の形態】実施例群により本発明の実施の形
態を説明する。 [第1実施例群]
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to examples. [First embodiment group]

【0027】(実施例1−1)実施例1−1にかかる非
水電解質二次電池を、次のようにして作製した。 〈正極板の作製〉炭酸リチウム(Li2 CO3 )と酸化
コバルト(Co3 4 )とを700〜900℃の温度で
焼成して正極活物質としてのコバルト酸リチウム(Li
CoO2)を作製した。このコバルト酸リチウムと、導
電助剤としての黒鉛およびケッチェンブラックと、結着
剤としてのフッ素樹脂とを、質量比で90:3:2:5
の割合で混合し、これをN−メチル−2−ピロリドン
(NMP)に溶解して活物質ベーストとした。
(Example 1-1) A non-aqueous electrolyte secondary battery according to Example 1-1 was produced as follows. <Production of Positive Electrode Plate> Lithium carbonate (Li 2 CO 3 ) and cobalt oxide (Co 3 O 4 ) are fired at a temperature of 700 to 900 ° C. to obtain lithium cobalt oxide (Li) as a positive electrode active material.
CoO 2 ) was prepared. The lithium cobalt oxide, graphite and Ketjen black as a conduction aid, and a fluororesin as a binder were mixed in a mass ratio of 90: 3: 2: 5.
Was mixed at a ratio of 1, and this was dissolved in N-methyl-2-pyrrolidone (NMP) to obtain an active material base.

【0028】この活物質ペーストをドクターブレード法
により厚み20μmのアルミ箔(金属芯体)の両面に均
一に塗布した後、加熱した乾燥炉中を通過させて、10
0〜150℃の温度で真空乾燥することにより、ペース
ト作製時に必要であった有機溶媒(NMP)を除去し
た。次いで、この極板を厚みが0.17mmになるよう
にロールプレス機により圧延して正極板を作製した。
This active material paste was evenly applied to both sides of an aluminum foil (metal core) having a thickness of 20 μm by the doctor blade method and then passed through a heated drying oven to obtain 10
By vacuum drying at a temperature of 0 to 150 ° C., the organic solvent (NMP) required at the time of making the paste was removed. Next, this electrode plate was rolled by a roll pressing machine so as to have a thickness of 0.17 mm to produce a positive electrode plate.

【0029】〈ポリマー層の形成〉次いで、ポリフッ化
ビニリデン(PVdF)とアセトンを質量比で5:95
の割合で混合したポリマー溶液を、正極の両面に例えば
ドクターブレード法を用いて均一に塗布し、60〜10
0℃の温度で真空熱処理して正極表面にPVdF膜から
なるポリマー層を形成した。ポリマー層の形成に際して
は、その厚みをゲル化後の厚みが2μmとなるように設
定した。なお、電極表面に形成されたポリマー層は、電
池組み立て後に電池内の電解液を吸ってゲル状ポリマー
層となり、その際厚みが若干増加するが、その程度は小
さい。
<Formation of Polymer Layer> Next, polyvinylidene fluoride (PVdF) and acetone are mixed at a mass ratio of 5:95.
The polymer solution mixed in a ratio of 60 to 10 is evenly applied to both surfaces of the positive electrode by using, for example, a doctor blade method.
A vacuum heat treatment was performed at a temperature of 0 ° C. to form a polymer layer made of a PVdF film on the surface of the positive electrode. When forming the polymer layer, the thickness was set so that the thickness after gelling was 2 μm. The polymer layer formed on the surface of the electrode absorbs the electrolytic solution in the battery to form a gel polymer layer after the battery is assembled. At that time, the thickness slightly increases, but the extent thereof is small.

【0030】上記ポリフッ化ビニリデンとしては、フッ
化ビニリデンホモポリマー、またはフッ化ビニリデンと
三フッ化塩化エチレン、四フッ化エチレン、六フッ化プ
ロピレン、またはエチレンから選択される一種以上との
化合物との共重合体(フッ化ビニリデン共重合体)など
を用いることができ、ここではフッ化ビニリデンと六フ
ッ化プロピレンを用いた。
The above-mentioned polyvinylidene fluoride is a vinylidene fluoride homopolymer or a compound of vinylidene fluoride and one or more compounds selected from ethylene trifluoride chloride, ethylene tetrafluoride, hexafluoropropylene, or ethylene. A copolymer (vinylidene fluoride copolymer) or the like can be used, and here, vinylidene fluoride and propylene hexafluoride were used.

【0031】〈負極板の作製〉リチウムイオンを吸蔵・
脱離することのできる天然黒鉛(d=3.36Å)から
なる負極活物質と、結着剤としてのフッ素樹脂とを、質
量比で95:5の割合で混合し、これをN−メチル−2
−ピロリドン(NMP)に溶解してペーストとした。この
ペーストを例えばドクターブレード法により金属芯体と
しての銅箔(厚み20μm)の両面に均一に塗布した
後、加熱した乾燥炉中を通過させて、100〜150℃
の温度で真空乾燥することにより、ペースト作製時に必
要であった有機溶媒(NMP)を除去した。次いで、この
極板を厚みが0.14mmになるようにロールプレス機
により圧延して負極板を作製した。
<Preparation of negative electrode plate> Storage of lithium ions
A negative electrode active material made of desorbable natural graphite (d = 3.36Å) and a fluororesin as a binder were mixed in a mass ratio of 95: 5, and the mixture was mixed with N-methyl- Two
-Dissolved in pyrrolidone (NMP) to give a paste. This paste is evenly applied to both sides of a copper foil (thickness 20 μm) as a metal core by a doctor blade method, for example, and then passed through a heated drying oven to obtain 100 to 150 ° C.
The organic solvent (NMP) required at the time of preparing the paste was removed by vacuum drying at the temperature of. Then, this electrode plate was rolled by a roll press machine to have a thickness of 0.14 mm to prepare a negative electrode plate.

【0032】〈セパレータの作製〉粉末シリカ表面にエ
ステルを吸着させたものと、ポリエチレン粉末とを混合
し、溶融押出法により製膜を行って、厚さ200μmの
シートを得た。次いで、得られたシートを、20%の苛
性ソーダ水溶液と有機溶媒に浸漬して、シリカ粉末とエ
ステルとを抽出除去し、更に水洗乾燥した後、MD方向
(Machine Direction)、TD方向(Trans Direction)
に延伸して、厚さ20μmのポリエチレン製微多孔膜を
得た。このポリエチレン製微多孔膜に対して、発振波長
248nmのKrFエキシマレーザーと10μm孔径の
細孔を有するステンレス製マスクとを使用して、直径1
0μmの貫通孔を形成した。尚、このようにして形成さ
れた貫通孔の方向と、孔径と、密度とは、以下の通りで
ある。
<Production of Separator> A powder silica surface adsorbed with an ester and a polyethylene powder were mixed, and a film was formed by a melt extrusion method to obtain a sheet having a thickness of 200 μm. Then, the obtained sheet is immersed in a 20% aqueous solution of caustic soda and an organic solvent to extract and remove silica powder and ester, and further washed with water and dried, and then MD direction (Machine Direction), TD direction (Trans Direction)
The film was stretched to obtain a polyethylene microporous film having a thickness of 20 μm. For this polyethylene microporous film, a KrF excimer laser with an oscillation wavelength of 248 nm and a stainless steel mask having pores with a pore size of 10 μm were used to obtain a diameter of 1
A 0 μm through hole was formed. The direction of the through holes formed in this way, the hole diameter, and the density are as follows.

【0033】・貫通孔の方向:図4(a)に示すように
正負極間を最短で結ぶ方向〔負極表面に対する角度θ=
90°〕 ・貫通孔の孔径:平均10μm ・貫通孔の密度:2個/cm2
Direction of through-hole: As shown in FIG. 4A, the direction in which the positive and negative electrodes are connected in the shortest direction [angle θ with respect to the negative electrode surface =
90 °] ・ Pore diameter of through holes: average 10 μm ・ Density of through holes: 2 pieces / cm 2

【0034】〈電解液の作製〉エチレンカーボネート
(EC)とジエチルカーボネート(DEC)とを体積比
1:1となるように混合した混合溶媒に、電解質塩とし
LiPF6 を1モル/リットル濃度に溶解し電解液とな
した。
<Preparation of Electrolyte Solution> LiPF 6 as an electrolyte salt was dissolved at a concentration of 1 mol / liter in a mixed solvent prepared by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 1. And made into electrolyte.

【0035】〈電池外装体の作製〉外側から順にポリエ
チレンテレフタレート(PET)、接着剤、アルミニウ
ム、接着剤、ポリプロピレンからなる接着剤層を含めた
5層構造のラミネート材の端部を重ね合わせ、これらの
一対の端部同士をヒートシールして封口部を形成して筒
状外装体を作製した。
<Preparation of Battery Outer Body> The end portions of a laminated material having a five-layer structure including an adhesive layer made of polyethylene terephthalate (PET), adhesive, aluminum, adhesive and polypropylene are stacked in this order from the outside, and The pair of end portions were heat-sealed to form a sealing portion, and a cylindrical outer casing was produced.

【0036】〈電池の組み立て〉以下、図1〜3を参照
しながら説明する。上述のようにして作製した正極板5
に正極集電タブ7を取り付け、負極板6に負極集電タブ
8を取り付け、セパレータを間にして重ね合わせた後、
巻き取り機を用いて捲回し、最外周をテープ止めして渦
巻状の電極体とし、この渦巻状の電極体を扁平に押しつ
ぶして板状渦巻電極体1を作製した。
<Assembly of Battery> Hereinafter, description will be given with reference to FIGS. Positive electrode plate 5 produced as described above
After attaching the positive electrode current collector tab 7 to the negative electrode plate 6 and the negative electrode current collector tab 8 to the negative electrode plate 6 and stacking them with a separator in between,
It was wound using a winder and the outermost periphery was taped to form a spiral electrode body, and the spiral electrode body was flatly crushed to produce a plate-shaped spiral electrode body 1.

【0037】次いで、図2に示すように、板状渦巻電極
体1を筒状ラミネート外装体3の収納空間2内に、正負
集電タブ7・8が外側に突き出るようにして収納した。
そして、図2に示すように正負集電タブ7・8側の開口
4aを加熱溶着した後、もう一方の開口から上記電解液
を5ml注液し、当該開口を同様に加熱溶着し封止(4
b)した。なお、4cはラミネート材を筒状とするとき
の溶着部位を示す。
Next, as shown in FIG. 2, the plate-shaped spirally wound electrode body 1 was housed in the housing space 2 of the tubular laminate outer casing 3 such that the positive and negative current collecting tabs 7 and 8 were projected to the outside.
Then, as shown in FIG. 2, after heating and welding the opening 4a on the positive and negative current collecting tabs 7 and 8 side, 5 ml of the electrolytic solution is injected from the other opening, and the opening is similarly heat-welded and sealed ( Four
b) done. In addition, 4c shows the welding site | part when making a laminated material into a cylindrical shape.

【0038】以上のようにして実容量500mAhの実
施例1−1にかかる非水電解質二次電池を作製した。
As described above, a non-aqueous electrolyte secondary battery according to Example 1-1 having an actual capacity of 500 mAh was produced.

【0039】(実施例1−2)上記実施例1−1では正
極表面にポリマー層を形成したが、実施例1−2ではポ
リマー層を正極表面に形成することなく、負極表面にポ
リマー層を形成し、これ以外の事項については実施例1
−1と同様にして実施例1−2に係る非水電解質二次電
池を作製した。
(Example 1-2) In Example 1-1, the polymer layer was formed on the surface of the positive electrode, but in Example 1-2, the polymer layer was not formed on the surface of the positive electrode, but the polymer layer was formed on the surface of the negative electrode. Example 1 for forming other matters
A nonaqueous electrolyte secondary battery according to Example 1-2 was produced in the same manner as in -1.

【0040】(実施例1−3)実施例1−3では正負両
電極の表面にポリマー層を形成したこと以外の事項につ
いては、実施例1−1と同様にして実施例1−3に係る
非水電解質二次電池を作製した。
Example 1-3 Example 1-3 is similar to Example 1-1, except that a polymer layer is formed on the surfaces of the positive and negative electrodes. A non-aqueous electrolyte secondary battery was produced.

【0041】(比較例1−1)デンドライトを挿通する
ための細孔を形成しないセパレータを用いたこと、およ
び電極の表面にポリマー層を形成しなかったこと以外
は、上記実施例1−1と同様にして比較例1−1に係る
非水電解質二次電池を作製した。
Comparative Example 1-1 As in Example 1-1, except that a separator having no pores for inserting dendrite was used and no polymer layer was formed on the surface of the electrode. Similarly, a non-aqueous electrolyte secondary battery according to Comparative Example 1-1 was produced.

【0042】(比較例1−2)電極の表面にポリマー層
を形成しなかったこと以外は、上記実施例1−1と同様
にして比較例1−2に係る非水電解質二次電池を作製し
た。この比較例1−2は、貫通孔を有するセパレータを
用いているが、正負極の何れの表面にもゲル状ポリマー
層が配置されていない。
(Comparative Example 1-2) A non-aqueous electrolyte secondary battery according to Comparative Example 1-2 was prepared in the same manner as in Example 1-1 except that the polymer layer was not formed on the surface of the electrode. did. In Comparative Example 1-2, a separator having a through hole is used, but the gel polymer layer is not arranged on any surface of the positive and negative electrodes.

【0043】〔電池評価試験1〕上記実施例1−1〜1
−3および比較例1−1〜1−2について、高温保存試
験を行い、高温保存した場合における電池電圧変化およ
び容量維持率を調べた。保存試験の条件は次のようにし
た。室温条件下で500mA(1.0 C)の充電電流で
4.2Vになるまで定電流充電し、その後4.2Vの定
電圧で2時間充電して満充電状態とした。その後、室温
に10分間放置した後、500mA(1.0 C)の定電
流で終止電圧が2.75Vになるまで放電し、放電時間
から放電容量を算出した。その後、再び満充電としこの
時の電池電圧を測定し、この電池を60℃で20日間保
存した。保存期間満了後に電池電圧を測定するととも
に、500mA(1.0 C)の定電流で終止電圧が2.
75Vになるまで放電して放電容量を求め、下記式に従
って容量維持率を求めた。
[Battery Evaluation Test 1] Above Examples 1-1 to 1
-3 and Comparative Examples 1-1 and 1-2 were subjected to a high temperature storage test, and the battery voltage change and the capacity retention rate when stored at high temperature were examined. The conditions of the storage test were as follows. Under room temperature conditions, a constant current charge was performed at a charging current of 500 mA (1.0 C) until the voltage reached 4.2 V, and then the battery was charged at a constant voltage of 4.2 V for 2 hours to be in a fully charged state. Then, after leaving it at room temperature for 10 minutes, it was discharged at a constant current of 500 mA (1.0 C) until the final voltage reached 2.75 V, and the discharge capacity was calculated from the discharge time. Then, the battery was fully charged again, the battery voltage at this time was measured, and the battery was stored at 60 ° C. for 20 days. The battery voltage was measured after the expiration of the storage period, and the final voltage was 2. at a constant current of 500 mA (1.0 C).
The discharge capacity was obtained by discharging to 75 V, and the capacity retention rate was obtained according to the following formula.

【0044】容量維持率(%)=〔保存後の放電容量/
保存前の放電容量〕×100
Capacity retention rate (%) = [discharge capacity after storage /
Discharge capacity before storage] x 100

【0045】保存試験の結果を表1に示した。表1にお
いて、貫通孔を有するセパレータを用い、表面にPVd
Fを塗布しない比較例1−2は、保存前後における電圧
変化量(−0.65V)が大きく、また容量維持率が顕
著に小さかった。これに対し貫通孔を有するセパレータ
を用い、且つ表面にPVdFを塗布した実施例1−1〜
1−3は、保存前後の電圧変化量、容量維持率ともに良
好であった。そして実施例1−1〜1−3は、貫通孔を
有しないセパレータを用い且つ表面にPVdFを塗布し
ない比較例1−1(従来電池に相当)との比較において
も、全く遜色のない保存性能を示した。
The results of the storage test are shown in Table 1. In Table 1, a separator having through holes was used, and PVd was used on the surface.
In Comparative Example 1-2 in which F was not applied, the amount of change in voltage (−0.65 V) before and after storage was large, and the capacity retention ratio was significantly small. On the other hand, Example 1-1 in which a separator having through holes was used and PVdF was applied to the surface
In No. 1-3, both the amount of voltage change before and after storage and the capacity retention ratio were good. And, in Examples 1-1 to 1-3, even when compared with Comparative Example 1-1 (corresponding to a conventional battery) in which a separator having no through holes is used and PVdF is not applied to the surface, the storage performance is not inferior. showed that.

【0046】比較例1−2の保存性能が悪かったのは次
の理由によると考えられる。リチウム二次電池に貫通孔
を有するセパレータを用いると、微細な金属リチウムの
析出物(デンドライト)が貫通孔に誘導されて円滑に異
極側にまで延びる。この結果、過充電の初期段階で正負
極間が導通され、更なる過充電による電池温度の上昇や
ガス発生による電池内圧の上昇が防止される。しかし、
貫通孔を有するセパレータを用いると、貫通孔部分には
正負極間を遮るものがないため、当該部分において正負
極間をイオンが容易に移動するため自己放電や電解液の
分解が進行する。そして、この分解は、電解液が電池内
を容易に移動できることから、貫通孔近傍の電解液のみ
ならず電池内の電解液全体に及ぶ。
The poor storage performance of Comparative Example 1-2 is considered to be due to the following reason. When a separator having a through hole is used in a lithium secondary battery, fine metal lithium deposits (dendrites) are guided to the through hole and smoothly extend to the different electrode side. As a result, the positive and negative electrodes are electrically connected in the initial stage of overcharging, and the rise in battery temperature due to further overcharging and the rise in battery internal pressure due to gas generation are prevented. But,
When a separator having a through hole is used, there is nothing to block between the positive and negative electrodes in the through hole portion, so that ions easily move between the positive and negative electrodes in that portion, so that self-discharge and decomposition of the electrolytic solution proceed. Then, this decomposition extends not only to the electrolytic solution in the vicinity of the through hole but also to the entire electrolytic solution in the battery because the electrolytic solution can easily move in the battery.

【0047】ここにおいて、実施例電池は、貫通孔を有
するセパレータとともに、表面にポリフッ化ビニリデン
を塗布した電極を用いている。このような構造の電池で
あると、ポリフッ化ビニリデンが貫通孔部分における正
負極間の導通を妨げるように作用し、またポリフッ化ビ
ニリデンが電極表面の電解液を保持固定し電池内での移
動を抑制する。よって、電解液の分解が孔の内部やその
近傍に留まるため、貫通孔を設けたことに起因する保存
性能の低下が防止される。
Here, in the batteries of the examples, an electrode having polyvinylidene fluoride coated on the surface is used together with a separator having a through hole. In a battery having such a structure, polyvinylidene fluoride acts so as to prevent conduction between the positive and negative electrodes in the through-hole portion, and polyvinylidene fluoride holds and fixes the electrolytic solution on the electrode surface to prevent movement within the battery. Suppress. Therefore, the decomposition of the electrolytic solution remains inside the hole or in the vicinity thereof, so that the deterioration of the storage performance due to the provision of the through hole is prevented.

【0048】また、実施例1−3の保存性能が特に良好
であったのは、正負極の全表面がゲル状ポリフッ化ビニ
リデン層で覆われており、上記効果(電解液分解抑制効
果)が一層発揮されるからである。
Further, the storage performance of Example 1-3 was particularly good because the entire surface of the positive and negative electrodes was covered with the gel-like polyvinylidene fluoride layer, and the above effect (electrolysis solution decomposition suppressing effect) was obtained. This is because it is exerted even more.

【0049】[0049]

【表1】 [Table 1]

【0050】〔電池評価試験2〕上記実施例1−1(P
VdFを正極に塗布)と実施例1−2(PVdFを負極に
塗布)について、室温(25℃)条件下で充電電流50
0mA(1.0C)・5時間の過充電試験を行い、電圧
が平坦化した平坦化発生深度およびその時の電位並びに
過充電試験前後における電池厚みの変化を調べ、その結
果を表3に示した。
[Battery Evaluation Test 2] Above Example 1-1 (P
VdF was applied to the positive electrode) and Example 1-2 (PVdF was applied to the negative electrode) at room temperature (25 ° C.) under a charging current of 50.
An overcharge test of 0 mA (1.0 C) for 5 hours was performed to examine the flattening occurrence depth at which the voltage was flattened, the potential at that time, and changes in the battery thickness before and after the overcharge test. The results are shown in Table 3. .

【0051】なお、電圧が平坦化するのは、正負極間が
デンドライト(金属リチウムの針状析出物)で導通され
たことを意味しており、平坦化発生深度とは、電圧が平
坦化した時点における充電容量を満充電容量で割った値
に100を掛けた値である。なお、満充電容量は、室温
条件下で500mA(1.0 C)の充電電流で4.2V
になるまで定電流充電し、その後4.2Vの定電圧で2
時間充電する条件で測定した値を用いた。
The flattening of the voltage means that the positive and negative electrodes were electrically connected by dendrite (a needle-like deposit of metallic lithium), and the flattening occurrence depth means the flattening of the voltage. It is a value obtained by multiplying the value obtained by dividing the charge capacity at the time point by the full charge capacity by 100. The full charge capacity is 4.2 V at a charging current of 500 mA (1.0 C) under room temperature conditions.
Charge with constant current until it becomes, and then 2 with constant voltage of 4.2V.
The value measured under the condition of charging for an hour was used.

【0052】[0052]

【表2】 [Table 2]

【0053】表2において、実施例1−1よりも実施例
1−2における方が、平坦化発生深度が大きくなり、平
坦化電位も高かった。また、過充電による電池厚みの膨
張程度も大きかった。これらの結果は、PVdFを負極
表面に塗布した場合には、PVdFを正極表面に塗布し
た場合に比較して、デンドライトによる正負電極間の導
通が遅れ、その結果として過充電がより進行したためと
考えられる。この理由としては下記が考えられる。
In Table 2, in Example 1-2, the leveling occurrence depth was larger and the leveling potential was also higher in Example 1-2 than in Example 1-1. Also, the degree of expansion of the battery thickness due to overcharge was large. These results are considered to be because when PVdF was applied to the negative electrode surface, conduction between the positive and negative electrodes due to dendrite was delayed compared to when PVdF was applied to the positive electrode surface, and as a result, overcharging proceeded further. To be The reason for this is considered as follows.

【0054】負極規制型の電池においては、過充電時に
負極表面で金属リチウムが析出するが、負極表面にPV
dF層があると、負極表面とセパレータの間に距離が生
まれるため、負極表面で析出した金属リチウムの一部
は、セパレータの貫通孔方向に拘束されることなく、正
極と平行方向にも成長する。つまり、PVdFを負極表
面に塗布した場合には、貫通孔の誘導効果が正極表面に
塗布した場合に比較し貫通孔の誘導効果が小さくなるの
で、その分、過充電が進行し、過充電に起因する分解ガ
スも多くなる。
In the negative electrode regulated battery, metallic lithium is deposited on the surface of the negative electrode during overcharge, but PV is deposited on the surface of the negative electrode.
The presence of the dF layer creates a distance between the negative electrode surface and the separator, so that some of the metallic lithium deposited on the negative electrode surface grows in the direction parallel to the positive electrode without being restricted in the through hole direction of the separator. . That is, when PVdF is applied to the surface of the negative electrode, the induction effect of the through holes is smaller than that when applied to the surface of the positive electrode. A large amount of decomposition gas is caused.

【0055】以上から、ポリマー層は、負極よりも正極
表面近傍に配置するのが好ましい。
From the above, it is preferable to arrange the polymer layer closer to the surface of the positive electrode than to the negative electrode.

【0056】[第2実施例群]上記では電解液を含みゲ
ル化するポリマーとして、ポリフッ化ビニリデンを用い
たが、ポリフッ化ビニリデンに代えて、またはポリフッ
化ビニリデンとともに、ポリエチレンオキシド(PE
O)、ポリアクリロニトリル(PAN)、またはポリメチ
ルメタクリレート(PMMA)等を用いることができ
た。そして、これらのポリマーを用いた場合において
も、上記表1、表2に記載したと同様な電池特性が得ら
れることが確かめられた。そこで、第2実施例群ではポ
リマーの種類の違いが電池サイクル特性に及ぼす影響を
調べた。
[Second Embodiment Group] In the above description, polyvinylidene fluoride was used as a polymer containing an electrolytic solution and gelled. However, instead of polyvinylidene fluoride or together with polyvinylidene fluoride, polyethylene oxide (PE) was used.
O), polyacrylonitrile (PAN), polymethylmethacrylate (PMMA), etc. could be used. It was confirmed that even when these polymers were used, the same battery characteristics as described in Tables 1 and 2 were obtained. Therefore, in the second example group, the influence of the difference in the type of polymer on the battery cycle characteristics was examined.

【0057】(実施例2−1)上記実施例1−1と全く
同様な電池を実施例2−1の電池とした。
(Example 2-1) The same battery as in Example 1-1 was used as the battery of Example 2-1.

【0058】(実施例2−2)ポリフッ化ビニリデンに
代えて、ポリエチレンオキシド(PEO)を用いたこと
以外は上記実施例1−1と同様にして、実施例2−2の
電池を作製した。
Example 2-2 A battery of Example 2-2 was produced in the same manner as in Example 1-1 except that polyethylene oxide (PEO) was used instead of polyvinylidene fluoride.

【0059】(実施例2−3)ポリフッ化ビニリデンに
代えて、ポリアクリロニトリル(PAN)を用いたこと以
外は上記実施例1−1と同様にして、実施例2−3の電
池を作製した。
Example 2-3 A battery of Example 2-3 was prepared in the same manner as in Example 1-1 except that polyacrylonitrile (PAN) was used instead of polyvinylidene fluoride.

【0060】(実施例2−4)ポリフッ化ビニリデンに
代えて、ポリメチルメタクリレート(PMMA)を用い
たこと以外は上記実施例1−1と同様にして、実施例2
−4の電池を作製した。
Example 2-4 Example 2 was repeated in the same manner as in Example 1-1 except that polymethylmethacrylate (PMMA) was used instead of polyvinylidene fluoride.
-4 batteries were produced.

【0061】(比較例2−1)上記比較例1−2と全く
同様な電池を比較例2−1の電池とした。なお、比較例
2−1の電池は、貫通孔を有するセパレータを用いてい
るが、正負極の何れの表面にもゲル状ポリマー層が配置
されていない。
(Comparative Example 2-1) The same battery as Comparative Example 1-2 was used as the battery of Comparative Example 2-1. The battery of Comparative Example 2-1 uses a separator having a through hole, but the gel polymer layer is not arranged on any surface of the positive and negative electrodes.

【0062】〔電池評価試験3〕上記実施例2−1〜2
−4および比較例2−1について、次の条件でサイクル
劣化試験を行った。60℃雰囲気下で、500mA
(1.0 C)の充電電流で4.2Vになるまで定電流充
電し、その後4.2Vの定電圧で2時間充電して満充電
状態とした。その後、同上雰囲気下で10分間放置した
後、500mA(1.0 C)の定電流で終止電圧が2.
75Vになるまで放電するという充放電サイクルを30
0回行った。そして1サイクル目の放電容量に対する3
00サイクル目の放電容量の割合(百分率)を求め、こ
れをサイクル容量率とした。この試験結果を表3に示し
た。
[Battery Evaluation Test 3] Examples 2-1 to 2 above
-4 and Comparative Example 2-1 were subjected to a cycle deterioration test under the following conditions. 500mA in 60 ℃ atmosphere
The battery was charged at a constant current with a charging current of (1.0 C) until it reached 4.2 V, and then charged at a constant voltage of 4.2 V for 2 hours to be in a fully charged state. Then, after leaving it for 10 minutes in the same atmosphere, the final voltage was 2. at a constant current of 500 mA (1.0 C).
30 charge / discharge cycles of discharging to 75V
I went 0 times. And 3 for the discharge capacity of the first cycle
The ratio (percentage) of the discharge capacity at the 00th cycle was calculated and used as the cycle capacity ratio. The test results are shown in Table 3.

【0063】[0063]

【表3】 [Table 3]

【0064】表3において、ポリマーとしてPVdFを
用いた実施例2−1が最もサイクル容量率が大きかっ
た。PEO、PAN、PMMAを用いた実施例2−2〜
2−4については、ポリマー層を設けなかった比較例2
−1と概ね同様のサイクル容量率であった。
In Table 3, Example 2-1 using PVdF as the polymer had the highest cycle capacity ratio. Example 2-2 using PEO, PAN, PMMA
Regarding 2-4, Comparative Example 2 in which the polymer layer was not provided
The cycle capacity ratio was almost the same as -1.

【0065】300サイクル後の各電池を解体して、正
極の状態を観察したところ、PVdFを用いた電池(実
施例2−1)のセパレータは電池組み立て時の状態と大
差なかったが、その他の電池(実施例2−2〜2−4お
よび比較例2−1)においては、セパレータに微細な活
物質片が付着しているのが観察された。これらのことか
ら、ゲル状ポリマー層を形成するポリマーとしては、P
VdFが好ましい。
When each battery after 300 cycles was disassembled and the state of the positive electrode was observed, the separator of the battery using PVdF (Example 2-1) was not much different from the state when the battery was assembled. In the batteries (Examples 2-2 to 2-4 and Comparative example 2-1), it was observed that fine active material pieces were attached to the separator. From these facts, as the polymer forming the gel-like polymer layer, P
VdF is preferred.

【0066】なお、上記結果は次のように考察できる。
リチウム二次電池においては、正負活物質にリチウムを
脱挿入可能な材料が用いられるが、これらの材料はリチ
ウムの脱挿入に伴って結晶格子が伸縮する。よって、サ
イクルごとに極板全体の膨張伸縮が繰り返され、これに
より極板から活物質が脱落するが、脱落した活物質は充
放電反応に寄与できないので、この脱落がサイクル劣化
原因となる。然るに、PVdFは活物質との密着性や結
着性が良いので、電極表面にPVdF層が形成されてい
ると、PVdF層が極板の膨張伸縮に伴う活物質の脱落
を防止するように作用する。よって、この結果として電
池のサイクル容量率が向上する。
The above results can be considered as follows.
In lithium secondary batteries, materials capable of inserting and removing lithium are used as positive and negative active materials, and the crystal lattice of these materials expands and contracts as lithium is inserted and removed. Therefore, the expansion and contraction of the entire electrode plate is repeated every cycle, and the active material is dropped from the electrode plate by this, but the dropped active material cannot contribute to the charge / discharge reaction, and this drop causes cycle deterioration. However, since PVdF has good adhesion and binding property with the active material, if the PVdF layer is formed on the electrode surface, the PVdF layer acts to prevent the active material from falling off due to expansion and expansion of the electrode plate. To do. Therefore, as a result, the cycle capacity ratio of the battery is improved.

【0067】[第3実施例群]第3実施例群では、デン
ドライトを挿通させるための貫通孔を有するセパレータ
を用い、かつ正極に対するPVdFの塗布厚みを変化さ
せたこと以外は実施例1−1における場合と同様にし
て、実施例3−1〜3−5および比較例3−1(塗布せ
ず)の電池を作製し、これらの電池について上記電池評
価試験1と同様な条件で20日保存後の容量維持率
(%)および電圧変化量を調べた。この試験結果を表4
に一覧表示した。
[Third Embodiment Group] In the third embodiment group, a separator having a through hole for inserting a dendrite was used, and the coating thickness of PVdF on the positive electrode was changed, and Example 1-1 was used. Batteries of Examples 3-1 to 3-5 and Comparative Example 3-1 (without coating) were prepared in the same manner as in 1., and stored for 20 days under the same conditions as in the battery evaluation test 1 for these batteries. After that, the capacity retention rate (%) and the voltage change amount were examined. The test results are shown in Table 4.
Listed in.

【0068】[0068]

【表4】 [Table 4]

【0069】表4から、PVdF層(ゲル状ポリマー
層)の厚みが1μmの実施例3−1においては、PVd
F層を設けていない比較例3−1に比較し電圧変化量お
よび容量維持率の向上がわずかであった。他方、PVd
F層の厚みが2μm以上の電池においては、保存特性が
顕著に向上した。
From Table 4, in Example 3-1 in which the PVdF layer (gel polymer layer) has a thickness of 1 μm, PVd
Compared to Comparative Example 3-1 in which the F layer was not provided, the voltage change amount and the capacity retention ratio were slightly improved. On the other hand, PVd
The storage characteristics were remarkably improved in the battery in which the thickness of the F layer was 2 μm or more.

【0070】以上の結果から、ゲル状ポリマー層は好ま
しくは2μm以上とするのがよい。なお、ゲル状ポリマ
ー層を2μm未満としたときに上記性能特性が悪くなる
のは、ポリマー層が薄すぎると電池内の電解液が十分に
保持固定されないため、保持固定されていない電解液が
高温保存時に活物質と反応するためであると考えられ
る。
From the above results, the gel polymer layer preferably has a thickness of 2 μm or more. In addition, when the gel-like polymer layer is less than 2 μm, the above performance characteristics are deteriorated because the electrolyte solution in the battery is not sufficiently retained and fixed when the polymer layer is too thin. It is considered that this is because it reacts with the active material during storage.

【0071】なお、ここでは詳細なデータを省略する
が、PVdFに代えて、ポリエチレンオキシド(PE
O)、ポリアクリロニトリル(PAN)、またはポリメチ
ルメタクリレート(PMMA)を用いて同様な試験を行
ったところ、表4とほぼ同様な結果が得られることが確
認できた。
Although detailed data are omitted here, polyethylene oxide (PE
O), polyacrylonitrile (PAN), or polymethylmethacrylate (PMMA) was used for the same test, and it was confirmed that almost the same results as in Table 4 were obtained.

【0072】[第4実施例群]第4実施例群では、表5
に示す厚みのゲル状PVdF層を正極に配置した実施例
4−1〜4−6電池を作製し、これらの電池について上
記電池評価試験2と同様な条件の過充電試験を行った。
この試験結果を表5に一覧表示した。
[Fourth Embodiment Group] In the fourth embodiment group, Table 5
The batteries of Examples 4-1 to 4-6 in which the gel-like PVdF layer having the thickness shown in FIG.
The test results are listed in Table 5.

【0073】[0073]

【表5】 [Table 5]

【0074】表5から、ゲル状PVdF層の厚みが2μ
m〜100μmである実施例4−1〜4−5の電池では過
充電が良好に抑制されたが、ゲル状PVdF層の厚みが
150μmの実施例4−6においては、平坦化深度およ
び平坦化電位が大きく上昇し、電池厚みの変化量も顕著
に増加した。この結果から、ゲル状ポリマー層の厚み
は、100μm以下であることが好ましい。
From Table 5, the thickness of the gel PVdF layer is 2 μm.
In the batteries of Examples 4-1 to 4-5 having m to 100 μm, overcharge was satisfactorily suppressed, but in Example 4-6 in which the thickness of the gel PVdF layer was 150 μm, the flattening depth and flattening were achieved. The potential increased significantly and the amount of change in battery thickness also increased significantly. From this result, the thickness of the gel polymer layer is preferably 100 μm or less.

【0075】なお、ゲル状ポリマー層の厚みが100μ
mを超えると、過充電抑制機能が低下するのは次の理由
によると考えられる。例えば負極支配の電池において
は、過充電時に負極において金属リチウムの析出が起き
るが、この析出物は細い針状結晶であり、極めて折れや
すい。そして、ポリマー層の厚みが厚いとその分物理的
抵抗力が大きくなるため、デンドライトが正極表面にま
で成長する前に折れてしまう。よって、ゲル状ポリマー
層の厚みが厚いと、過充電防止機能が十分に機能しなく
なる。
The thickness of the gel polymer layer was 100 μm.
It is considered that the reason why the overcharge suppressing function deteriorates when m is exceeded is as follows. For example, in a battery dominated by a negative electrode, metal lithium deposits on the negative electrode during overcharge, but the deposit is a fine needle-shaped crystal and is extremely fragile. Then, if the polymer layer is thick, the physical resistance increases accordingly, so that the dendrite breaks before growing to the surface of the positive electrode. Therefore, if the thickness of the gel polymer layer is large, the overcharge preventing function does not sufficiently function.

【0076】(その他の事項) (1)上記実施例ではデンドライトを挿通するための貫
通孔を10μmとし、孔密度を2個/cm2としたが、貫
通孔の孔径および孔密度はこれに限定されるものではな
い。セパレータの材質や厚み、電池容量の大きさ等を考
慮して適正に設定すればよい。本発明者らの実験による
と、デンドライトを挿通するための貫通孔の孔径として
は、おおよそ100μm以下、好ましくは70μm以下、
より好ましくは50μm以下、更に好ましくは30μm以
下とするのが良い。但し、孔径が小さすぎると、デンド
ライトの発達方向を誘導できなくなるので、好ましくは
平均直径5μm以上の孔径とする。
(Other Matters) (1) Although the through holes for inserting the dendrites were set to 10 μm and the hole density was set to 2 holes / cm 2 in the above embodiment, the hole diameter and the hole density of the through holes are limited to this. It is not something that will be done. It may be set appropriately in consideration of the material and thickness of the separator, the size of the battery capacity, and the like. According to the experiments conducted by the present inventors, the diameter of the through hole for inserting the dendrite is approximately 100 μm or less, preferably 70 μm or less,
The thickness is more preferably 50 μm or less, further preferably 30 μm or less. However, if the pore diameter is too small, the dendrite development direction cannot be induced, so the pore diameter is preferably 5 μm or more.

【0077】また、セパレータの孔密度が小さすぎる
と、通電路の形成数が少なくなるために、導通が不安定
になり過充電防止に対する信頼性が低下する。よって、
セパレータの孔密度としては、1個/cm2 以上とする
のが好ましい。
If the pore density of the separator is too small, the number of current-carrying paths is reduced, which makes the conduction unstable and lowers the reliability for preventing overcharge. Therefore,
The pore density of the separator is preferably 1 / cm 2 or more.

【0078】(2)セパレータに形成するデンドライト
を挿通するための貫通孔の代表的な態様を、図4に図示
する。図4aおよびbが正負極間を直線状で結ぶ構造の
孔であり、aが正負極間を最短で結ぶ構造の孔である。
なお、cおよびdは本願明細書でいう正負極間を直線状
で結ぶ構造の孔に該当しない。 (3)上記実施例では、電解液を組成する非水溶媒とし
て、エチレンカーボネートとジエチルカーボネートの混
合液を用いたが、本発明で使用することができる非水溶
媒はこれに限定されるものではない。例えばエチレンカ
ーボネート、プロピレンカーボネート、ブチレンカーボ
ネート、ビニレンカーボネート等の環状炭酸エステル、
またはジエチルカーボネート、ジメチルカーボネート、
エチルメチルカーボネート等の鎖状炭酸エステル、また
はγ−ブチロラクトン、γ−バレロラクトン等の環状カ
ルボン酸エステル、またはジメトキシエタン、ジメトキ
シメタン等の鎖状エーテル、テトラヒドロフラン、1,
3−ジオキソラン等の環状エーテル、またはアセトニト
リル、スルホラン等、の各種溶媒を単独または混合して
使用することができる。
(2) A typical mode of the through hole for inserting the dendrite formed in the separator is shown in FIG. 4a and 4b are holes having a structure in which the positive and negative electrodes are linearly connected, and a is a hole in which the positive and negative electrodes are connected in the shortest distance.
It should be noted that c and d do not correspond to the holes having a structure in which the positive and negative electrodes are linearly connected to each other in the present specification. (3) In the above examples, a mixed solution of ethylene carbonate and diethyl carbonate was used as the non-aqueous solvent that constitutes the electrolytic solution, but the non-aqueous solvent that can be used in the present invention is not limited to this. Absent. For example, cyclic carbonate such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate,
Or diethyl carbonate, dimethyl carbonate,
Chain carbonic acid ester such as ethylmethyl carbonate, or γ-butyrolactone, cyclic carboxylic acid ester such as γ-valerolactone, or chain ether such as dimethoxyethane or dimethoxymethane, tetrahydrofuran, 1,
Cyclic ethers such as 3-dioxolane, or various solvents such as acetonitrile and sulfolane can be used alone or in combination.

【0079】[0079]

【発明の効果】以上で説明したように、内部短絡を積極
的に利用して過充電を防止する本発明によると、特別な
部材を用いることなくして自立的に、過充電に起因する
電池温度の上昇や、電池内でのガス発生を抑制すること
ができる。しかも本発明によると、セパレータに貫通孔
を設けたたことによる自己放電量の増加を有効に抑制で
きるので、安全性、保存性に優れた信頼性の高い非水電
解質二次電池を安価に提供することができる。
As described above, according to the present invention in which the internal short circuit is positively utilized to prevent overcharge, the battery temperature caused by the overcharge can be autonomously achieved without using a special member. It is possible to suppress the rise of the gas and the generation of gas in the battery. Moreover, according to the present invention, since it is possible to effectively suppress an increase in the amount of self-discharge due to the provision of through holes in the separator, it is possible to inexpensively provide a highly reliable non-aqueous electrolyte secondary battery having excellent safety and storage stability. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1にかかる板状渦巻電極体を示す図であ
る。
FIG. 1 is a diagram illustrating a plate-shaped spirally wound electrode body according to a first embodiment.

【図2】実施例1にかかるラミネート外装体を示す断面
図である。
FIG. 2 is a cross-sectional view showing a laminated outer casing according to a first embodiment.

【図3】実施例1にかかる非水電解質二次電池の正面図
である。
FIG. 3 is a front view of the non-aqueous electrolyte secondary battery according to the first embodiment.

【図4】セパレータに設けるデンドライトを挿通するた
めの貫通孔の形状を例示的に示した図である。
FIG. 4 is a view exemplifying a shape of a through hole for inserting a dendrite provided in a separator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生川 訓 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H021 AA06 BB02 BB05 BB12 BB13 BB15 EE04 HH03 HH05 5H029 AJ04 AJ05 AJ12 AK03 AL07 AM03 AM05 AM07 BJ04 CJ01 CJ22 DJ04 EJ12 HJ04 HJ06 HJ09 5H050 AA07 AA09 AA15 BA17 CA08 CB08 DA02 DA03 DA09 DA19 EA24 FA02 FA04 GA01 GA10 GA22 HA04 HA06 HA09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor, Kun Ikukawa             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F term (reference) 5H021 AA06 BB02 BB05 BB12 BB13                       BB15 EE04 HH03 HH05                 5H029 AJ04 AJ05 AJ12 AK03 AL07                       AM03 AM05 AM07 BJ04 CJ01                       CJ22 DJ04 EJ12 HJ04 HJ06                       HJ09                 5H050 AA07 AA09 AA15 BA17 CA08                       CB08 DA02 DA03 DA09 DA19                       EA24 FA02 FA04 GA01 GA10                       GA22 HA04 HA06 HA09

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを挿入離脱可能な化合物を正極
活物質とする正極と、リチウムを挿入離脱可能な材料を
負極活物質とする負極と、非水電解質と、前記正負極の
間に介装されたセパレータと、を有する非水電解質二次
電池において、 前記セパレータは、リチウムデンドライトを挿通するた
めの貫通孔を有し、正負電極の少なくとも一方電極の表
面には、電解液を含んでなるゲル状ポリマー層が設けら
れていることを特徴とする非水電解質二次電池。
1. A positive electrode using a compound capable of inserting and releasing lithium as a positive electrode active material, a negative electrode using a material capable of inserting and releasing lithium as a negative electrode active material, a non-aqueous electrolyte, and the positive and negative electrodes. In the non-aqueous electrolyte secondary battery having a separator, the separator has a through hole for inserting a lithium dendrite, the surface of at least one of the positive and negative electrodes, a gel containing an electrolytic solution. A non-aqueous electrolyte secondary battery, in which a polymer layer is provided.
【請求項2】 前記ゲル状ポリマー層を構成するポリマ
ーが、ポリフッ化ビニリデンである、請求項1に記載の
非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the polymer forming the gel polymer layer is polyvinylidene fluoride.
【請求項3】 前記ポリフッ化ビニリデンが、フッ化ビ
ニリデンホモポリマー、またはフッ化ビニリデンと、三
フッ化塩化エチレン、四フッ化エチレン、六フッ化プロ
ピレン、エチレンよりなる群から選択される一種以上の
化合物との共重合体である、請求項2に記載の非水電解
質二次電池。
3. The polyvinylidene fluoride is one or more selected from the group consisting of vinylidene fluoride homopolymer or vinylidene fluoride and ethylene trifluoride chloride, ethylene tetrafluoride, propylene hexafluoride, and ethylene. The non-aqueous electrolyte secondary battery according to claim 2, which is a copolymer with a compound.
【請求項4】 前記ゲル状ポリマー層を構成するポリ
マーが、ポリエチレンオキシド、ポリアクリロニトリ
ル、またはポリメチルメタクリレートである、請求項1
に記載の非水電解質二次電池。
4. The polymer constituting the gel-like polymer layer is polyethylene oxide, polyacrylonitrile, or polymethylmethacrylate.
The non-aqueous electrolyte secondary battery according to.
【請求項5】 前記ゲル状ポリマー層の厚みが、2μm
以上、100μm以下である、請求項1ないし4に記載
の非水電解質二次電池。
5. The gel polymer layer has a thickness of 2 μm.
The nonaqueous electrolyte secondary battery according to claim 1, which has a thickness of 100 μm or less.
【請求項6】 前記貫通孔は、前記正負極間を直線状で
結ぶ構造である、請求項1ないし5に記載の非水電解質
二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the through hole has a structure in which the positive and negative electrodes are linearly connected.
【請求項7】 前記貫通孔は、前記正負極間を最短で結
ぶ構造である、請求項1ないし5に記載の非水電解質二
次電池。
7. The non-aqueous electrolyte secondary battery according to claim 1, wherein the through hole has a structure that connects the positive and negative electrodes in the shortest distance.
【請求項8】 前記貫通孔の直径が5μm以上、100
μm以下であり、且つセパレータの貫通孔密度が、1個
/cm2 以上である、請求項1ないし7に記載の非水電
解質二次電池。
8. The diameter of the through hole is 5 μm or more and 100.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the separator has a through hole density of 1 μm / cm 2 or more, and the separator has a through hole density of 1 μm / cm 2 or more.
JP2001301328A 2001-09-28 2001-09-28 Nonaqueous electrolyte secondary battery Pending JP2003109574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301328A JP2003109574A (en) 2001-09-28 2001-09-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301328A JP2003109574A (en) 2001-09-28 2001-09-28 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2003109574A true JP2003109574A (en) 2003-04-11

Family

ID=19121763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301328A Pending JP2003109574A (en) 2001-09-28 2001-09-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2003109574A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346810A (en) * 2002-05-18 2003-12-05 Samsung Sdi Co Ltd Lithium secondary battery with suppressed decomposition of electrolytic solution and production method thereof
JP2006019146A (en) * 2004-07-01 2006-01-19 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
JP2007220376A (en) * 2006-02-14 2007-08-30 Nippon Soda Co Ltd Electrode protection membrane
JP2007280781A (en) * 2006-04-07 2007-10-25 Sony Corp Nonaqueous electrolyte secondary battery
JP2008071730A (en) * 2006-08-14 2008-03-27 Sony Corp Nonaqueous electrolyte secondary battery
JP2008084742A (en) * 2006-09-28 2008-04-10 Nec Tokin Corp Lithium-ion secondary battery
WO2015186517A1 (en) * 2014-06-05 2015-12-10 ソニー株式会社 Secondary cell electrolyte, secondary cell, cell pack, electric vehicle, electric power-storing system, electric tool, and electronic device
KR20200141019A (en) * 2019-06-03 2020-12-17 닝더 엠프렉스 테크놀로지 리미티드 Electrochemical device
US11942629B2 (en) 2019-01-11 2024-03-26 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110128A (en) * 1988-10-20 1990-04-23 New Japan Chem Co Ltd Powdered epoxy resin composition
JPH06295717A (en) * 1993-02-09 1994-10-21 Sumitomo Electric Ind Ltd Battery diaphragm and battery
JPH0835192A (en) * 1994-07-18 1996-02-06 Daifuku Seishi Kk Polyolefin-based fiber paper and its production
JPH09132667A (en) * 1995-11-09 1997-05-20 Fuji Photo Film Co Ltd Production of porous film, and porous film
JPH10134793A (en) * 1996-11-01 1998-05-22 Asahi Chem Ind Co Ltd Porous membrane
JPH10255818A (en) * 1997-03-14 1998-09-25 Nitto Denko Corp Wound battery
JP2000248088A (en) * 1999-03-03 2000-09-12 Tonen Chem Corp Polyolefin microporous membrane and its production
JP2001043897A (en) * 1999-05-26 2001-02-16 Sony Corp Solid electrolyte battery
JP2001072788A (en) * 1999-09-06 2001-03-21 Tonen Chem Corp Microporous polyolefin film and its production
JP2001110449A (en) * 1999-10-13 2001-04-20 Fujikura Ltd Ion conductive sheet
JP2001138455A (en) * 1999-11-15 2001-05-22 Tonen Chem Corp Laminated composite film
JP2001162742A (en) * 1999-12-10 2001-06-19 Tonen Chem Corp Laminated composite film
JP2001176482A (en) * 1999-12-15 2001-06-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2002042867A (en) * 2000-07-31 2002-02-08 Sanyo Electric Co Ltd Lithium ion secondary battery
JP2002190294A (en) * 2000-12-22 2002-07-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary cell

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110128A (en) * 1988-10-20 1990-04-23 New Japan Chem Co Ltd Powdered epoxy resin composition
JPH06295717A (en) * 1993-02-09 1994-10-21 Sumitomo Electric Ind Ltd Battery diaphragm and battery
JPH0835192A (en) * 1994-07-18 1996-02-06 Daifuku Seishi Kk Polyolefin-based fiber paper and its production
JPH09132667A (en) * 1995-11-09 1997-05-20 Fuji Photo Film Co Ltd Production of porous film, and porous film
JPH10134793A (en) * 1996-11-01 1998-05-22 Asahi Chem Ind Co Ltd Porous membrane
JPH10255818A (en) * 1997-03-14 1998-09-25 Nitto Denko Corp Wound battery
JP2000248088A (en) * 1999-03-03 2000-09-12 Tonen Chem Corp Polyolefin microporous membrane and its production
JP2001043897A (en) * 1999-05-26 2001-02-16 Sony Corp Solid electrolyte battery
JP2001072788A (en) * 1999-09-06 2001-03-21 Tonen Chem Corp Microporous polyolefin film and its production
JP2001110449A (en) * 1999-10-13 2001-04-20 Fujikura Ltd Ion conductive sheet
JP2001138455A (en) * 1999-11-15 2001-05-22 Tonen Chem Corp Laminated composite film
JP2001162742A (en) * 1999-12-10 2001-06-19 Tonen Chem Corp Laminated composite film
JP2001176482A (en) * 1999-12-15 2001-06-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2002042867A (en) * 2000-07-31 2002-02-08 Sanyo Electric Co Ltd Lithium ion secondary battery
JP2002190294A (en) * 2000-12-22 2002-07-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346810A (en) * 2002-05-18 2003-12-05 Samsung Sdi Co Ltd Lithium secondary battery with suppressed decomposition of electrolytic solution and production method thereof
JP2006019146A (en) * 2004-07-01 2006-01-19 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
JP2007220376A (en) * 2006-02-14 2007-08-30 Nippon Soda Co Ltd Electrode protection membrane
JP2007280781A (en) * 2006-04-07 2007-10-25 Sony Corp Nonaqueous electrolyte secondary battery
JP2008071730A (en) * 2006-08-14 2008-03-27 Sony Corp Nonaqueous electrolyte secondary battery
JP2008084742A (en) * 2006-09-28 2008-04-10 Nec Tokin Corp Lithium-ion secondary battery
WO2015186517A1 (en) * 2014-06-05 2015-12-10 ソニー株式会社 Secondary cell electrolyte, secondary cell, cell pack, electric vehicle, electric power-storing system, electric tool, and electronic device
JPWO2015186517A1 (en) * 2014-06-05 2017-04-20 ソニー株式会社 Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
US11942629B2 (en) 2019-01-11 2024-03-26 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same
KR20200141019A (en) * 2019-06-03 2020-12-17 닝더 엠프렉스 테크놀로지 리미티드 Electrochemical device
KR102351040B1 (en) 2019-06-03 2022-01-12 닝더 엠프렉스 테크놀로지 리미티드 electrochemical device
US11349124B2 (en) 2019-06-03 2022-05-31 Ningde Amperex Technology Limited Electrochemical device

Similar Documents

Publication Publication Date Title
WO2018001274A1 (en) Application of fluorophosphate in preparation of lithium ion battery electrode, lithium ion battery electrode and preparation method therefor and application thereof
JP2001176497A (en) Nonaqueous electrolyte secondary battery
JP2008041504A (en) Nonaqueous electrolyte battery
JP2003151535A (en) Electrochemical device
JP2005093078A (en) Nonaqueous electrolyte secondary battery
JP2002042867A (en) Lithium ion secondary battery
JP2001185213A (en) Nonaqueous electrolyte battery and manufacturing method therefor
JP2001202931A (en) Thin battery
JP2003109574A (en) Nonaqueous electrolyte secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP4979049B2 (en) Non-aqueous secondary battery
JPH0922700A (en) Polymer electrolyte secondary battery
JP2002190294A (en) Nonaqueous electrolyte secondary cell
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP2006216371A (en) Anode and battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP4538866B2 (en) Non-aqueous electrolyte electrochemical device
JP2002025619A (en) Lithium secondary battery
JP2007080619A (en) Battery
JP4565530B2 (en) Flat non-aqueous electrolyte secondary battery
JP2001167794A (en) Nonaqueous electrolyte cell
JP2003229133A (en) Non-aqueous electrolyte battery
JP2000208167A (en) Nonaqueous electrolyte secondary battery
JP7209196B2 (en) Cylindrical secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130