JP2003045494A - Flat non-aqueous electrolyte secondary battery - Google Patents

Flat non-aqueous electrolyte secondary battery

Info

Publication number
JP2003045494A
JP2003045494A JP2001225993A JP2001225993A JP2003045494A JP 2003045494 A JP2003045494 A JP 2003045494A JP 2001225993 A JP2001225993 A JP 2001225993A JP 2001225993 A JP2001225993 A JP 2001225993A JP 2003045494 A JP2003045494 A JP 2003045494A
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
electrode
negative electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001225993A
Other languages
Japanese (ja)
Inventor
Munehito Hayami
宗人 早見
Yuichi Kikuma
祐一 菊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2001225993A priority Critical patent/JP2003045494A/en
Publication of JP2003045494A publication Critical patent/JP2003045494A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To prevent bursting of a flat non-aqueous electrolyte secondary battery under abnormal conditions for improving safety. SOLUTION: This flat non-aqueous electrolyte secondary battery has a metal negative electrode case 4 also serving as a negative electrode terminal and a metal positive electrode case 1 also serving as a positive electrode terminal engaged and sealed via an insulating gasket 6, contains an electrode group and non-aqueous electrolyte internally including a negative electrode 4, a positive electrode 2 and a separator 3 and has larger total positive and negative electrode facing area inside the electrode group than an opening area of the insulating gasket for improving heavy-load discharging property. The volume of the electrode group inside the battery is 40-75% of the total volume of the battery and the volume of the non-aqueous electrolyte inside the battery is 10-25% of the total volume of the battery, and accordingly battery bursting can be prevented while maintaining battery performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は安全性の向上した扁
平形非水電解質二次電池に関する。
TECHNICAL FIELD The present invention relates to a flat type non-aqueous electrolyte secondary battery with improved safety.

【0002】[0002]

【従来の技術】正極作用物質にMnO2やV25等の金
属酸化物、あるいはフッ化黒鉛等の無機化合物、あるい
はポリアニリンやポリアセン構造体等の有機化合物を用
い、負極に金属リチウム、あるいはリチウム合金、ある
いはポリアセン構造体等の有機化合物、あるいはリチウ
ムを吸蔵、放出可能な炭素質材料、あるいはチタン酸リ
チウムやリチウム含有珪素酸化物のような酸化物を用
い、電解質にプロピレンカーボネート、エチレンカーボ
ネート、ブチレンカーボネート、ジエチルカーボネー
ト、ジメチルカーボネート、メチルエチルカーボネー
ト、ジメトキシエタン、γ−ブチルラクトン等の支持塩
を溶解した非水電解質を用いたコイン形やボタン形の扁
平形非水電解質二次電池は、数〜数十μA程度の軽負荷
で放電を行うSRAMのバックアップや、腕時計の主電源等
に用いられている。
2. Description of the Related Art A metal oxide such as MnO 2 or V 2 O 5 or an inorganic compound such as fluorinated graphite, or an organic compound such as polyaniline or polyacene structure is used as a positive electrode active material, and metal lithium or negative electrode is used as a negative electrode. A lithium alloy, or an organic compound such as a polyacene structure, or a carbonaceous material capable of occluding and releasing lithium, or an oxide such as lithium titanate or a lithium-containing silicon oxide, and propylene carbonate, ethylene carbonate as an electrolyte, Coin-shaped and button-shaped flat non-aqueous electrolyte secondary batteries using a non-aqueous electrolyte in which supporting salts such as butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, and γ-butyl lactone are dissolved ~ Back of SRAM that discharges with a light load of several tens of μA -Up and have been used in the main power supply or the like of the watch.

【0003】これら従来のコイン形やボタン形の扁平形
非水電解質二次電池は製造が簡便であり、量産性に優
れ、長期信頼性や安全性に優れるという長所をもつ。さ
らに構造が簡便なので小型化が可能である。
These conventional coin-shaped and button-shaped flat non-aqueous electrolyte secondary batteries have the advantages that they are easy to manufacture, have excellent mass productivity, and have excellent long-term reliability and safety. Furthermore, the structure is simple, so it can be miniaturized.

【0004】しかしその反面、電極面積が制限されるた
め中〜重負荷放電は不可能であり、小型電池のニーズが
大きい携帯電話やPDA等の情報端末の主電源としては採
用することができなかった。そこで本発明者らは、電池
形状は変更せずに電極面積を大きくすることによって、
重負荷放電が可能なコイン形やボタン形の扁平形非水電
解質二次電池を提供した。すなわちこの電池は、正極と
負極がセパレータを介して対向している正負極対向面が
電池の扁平面方向に3面以上ある電極群を有しており、
かつ電極群内の正負極対向面積の総和を絶縁ガスケット
の開口面積よりも大きくしたもので、これによって重負
荷放電特性を著しく向上させることができた。しかしこ
のような電池は大電流が得られる反面、使用法を誤った
場合には短絡等が発生し、破裂を招くおそれがあった。
On the other hand, however, since the electrode area is limited, medium-to-heavy load discharge is impossible, and it cannot be adopted as the main power source of information terminals such as mobile phones and PDAs for which there is a great need for small batteries. It was Therefore, the present inventors, by increasing the electrode area without changing the battery shape,
Provided are coin-shaped and button-shaped flat non-aqueous electrolyte secondary batteries capable of heavy load discharge. That is, this battery has an electrode group in which the positive and negative electrodes facing each other with the separator interposed therebetween have three or more positive and negative electrode facing surfaces in the flat plane direction of the battery,
In addition, the total area of the positive and negative electrodes facing each other in the electrode group was made larger than the opening area of the insulating gasket, whereby the heavy load discharge characteristics could be significantly improved. However, while a large current can be obtained from such a battery, a short circuit or the like may occur if it is used incorrectly, which may cause a burst.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記問題に対
処してなされたもので、上記の重負荷放電特性を著しく
向上させた扁平形非水電解質二次電池において、誤使用
等の異常環境下に置かれた場合でも、安全性を確保する
ことを目的とする。さらに、上記電池は小型化された電
池であるので、従来の円筒型や角型のリチウムイオン二
次電池で用いられているような、安全素子や弁を用いず
に済むことが望ましい。したがって本発明は、これらの
素子等を用いずに電池の安全性を高めることを他の目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and in a flat type non-aqueous electrolyte secondary battery with significantly improved heavy load discharge characteristics, an abnormal environment such as misuse is caused. The purpose is to ensure safety even when placed below. Further, since the above battery is a miniaturized battery, it is desirable not to use a safety element or a valve, which is used in a conventional cylindrical or prismatic lithium ion secondary battery. Therefore, another object of the present invention is to enhance the safety of the battery without using these elements and the like.

【0006】[0006]

【課題を解決するための手段】本発明者らは先の課題を
解決するために、非水電解質二次電池の安全性向上に関
し鋭意研究を重ねた結果、電池内の発電要素(電極群)
の容積が該電池の全内容積に対して0.40〜0.75の範囲に
あり、かつ該電池内の非水電解質の容積が該電池の全内
容積に対して0.10〜0.25の範囲にあれば、異常環境下に
置かれた場合でも安全性を確保できることを見出した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have earnestly studied to improve the safety of a non-aqueous electrolyte secondary battery, and as a result, the power generation element (electrode group) in the battery
Is in the range of 0.40 to 0.75 with respect to the total internal volume of the battery, and the volume of the non-aqueous electrolyte in the battery is in the range of 0.10 to 0.25 with respect to the total internal volume of the battery, It was found that safety can be ensured even when placed in the environment.

【0007】すなわち本発明は、負極端子を兼ねる金属
製の負極ケースと、正極端子を兼ねる金属製の正極ケー
スが、絶縁ガスケットを介し嵌合されて封口され、その
内部に負極、正極およびセパレータを含む電極群と非水
電解質とを内包し、電極群内の正負極対向面積の総和が
絶縁ガスケットの開口面積よりも大きい扁平形非水電解
質二次電池において、該電池内の電極群の容積が該電池
の全内容積の40%〜75%であり、かつ該電池内の非水電
解質の容積が該電池の全容積の10%〜25%であることを
特徴とする。
That is, according to the present invention, a metal negative electrode case also serving as a negative electrode terminal and a metal positive electrode case also serving as a positive electrode terminal are fitted and sealed via an insulating gasket, and the negative electrode, the positive electrode and the separator are housed therein. In a flat non-aqueous electrolyte secondary battery including an electrode group and a non-aqueous electrolyte containing, the sum of the positive and negative electrode facing areas in the electrode group is larger than the opening area of the insulating gasket, the volume of the electrode group in the battery is 40% to 75% of the total internal volume of the battery, and the volume of the non-aqueous electrolyte in the battery is 10% to 25% of the total volume of the battery.

【0008】以下、本発明者らが本発明を如何にして実
現したかを説明する。破裂のメカニズムについては、電
池内外の温度上昇、異常な過充電、過放電による場合が
多いが、どちらの場合においても、電池内の非水電解質
の分解によるガス発生に起因している。異常時のガス発
生量が、電池内の容積を超えるとガスの逃げ場が無くな
り、破裂を起こす。破裂を防止するには、電池内の容積
と、電池内に注入する非水電解質量の最適化を図ること
である。また、ガスが発生した場合においても、電池内
に空隙があると、その空隙がガスだまりとなり、破裂を
防止できる。空隙は、発電要素および非水電解質以外の
電池内体積であるから、発電要素および非水電解質の量
によってきまる。
The following is a description of how the present inventors realized the present invention. The rupture mechanism is often due to temperature rise inside and outside the battery, abnormal overcharge, and overdischarge, but in both cases, it is due to gas generation due to decomposition of the non-aqueous electrolyte in the battery. If the amount of gas generated at the time of abnormality exceeds the volume in the battery, there will be no escape place for the gas, causing rupture. In order to prevent the burst, it is necessary to optimize the volume inside the battery and the non-aqueous electrolytic mass injected into the battery. Further, even when gas is generated, if there is a void in the battery, the void becomes a gas pool, and the burst can be prevented. Since the void is the internal volume of the battery other than the power generation element and the non-aqueous electrolyte, it is determined by the amounts of the power generation element and the non-aqueous electrolyte.

【0009】そこで、電池内における発電要素と非水電
解質の容積を検討した結果、これらの容積を上記範囲と
することによって、電池の性能を損なわずに、異常環境
下での安全性を確保できることがわかった。そしてこの
ような方法をとることによって、従来の円筒型や角型の
リチウムイオン二次電池で用いられているような、安全
素子や弁を用いずに済むことができることが可能となっ
た。
Therefore, as a result of studying the volumes of the power generating element and the non-aqueous electrolyte in the battery, it is possible to secure the safety under abnormal environment without impairing the performance of the battery by setting these volumes within the above range. I understood. By adopting such a method, it becomes possible to dispense with a safety element or a valve which is used in a conventional cylindrical or prismatic lithium ion secondary battery.

【0010】なお、本発明の電池は電極を含めた電池の
構造に主点を置いたものであり、正極作用物質について
は限定されるものではないが、MnO2、V25、Nb2
5、LiTi24、LiTi512、LiFe24、コ
バルト酸リチウム、ニッケル酸リチウム、マンガン酸リ
チウムなどの金属酸化物、あるいはフッ化黒鉛、FeS
2などの無機化合物、あるいはポリアニリンやポリアセ
ン構造体などの有機化合物などあらゆるものが適用可能
である。ただし、この中で作動電位が高く、サイクル特
性に優れるという点でコバルト酸リチウム、ニッケル酸
リチウム、マンガン酸リチウムやそれらの混合物やそれ
らの元素の一部を他の金属元素で置換したリチウム含有
酸化物がより好ましい。さらに、本発明の電池は長期間
にわたり使用されるという点を考慮すると、高容量でか
つ非水電解質や水分との反応性が低く化学的に安定であ
るという点で、コバルト酸リチウムが一層好ましい。
The battery of the present invention focuses on the structure of the battery including the electrodes, and the positive electrode active material is not limited, but MnO 2 , V 2 O 5 , Nb 2 is used.
Metal oxides such as O 5 , LiTi 2 O 4 , LiTi 5 O 12 , LiFe 2 O 4 , lithium cobalt oxide, lithium nickel oxide and lithium manganate, or fluorinated graphite, FeS
Inorganic compounds such as 2 or organic compounds such as polyaniline and polyacene structures are all applicable. However, among these, lithium cobalt oxide, lithium nickel oxide, lithium manganate, a mixture thereof, or a lithium-containing oxide obtained by substituting a part of these elements with another metal element, in terms of high operating potential and excellent cycle characteristics. The thing is more preferable. Further, in consideration of the fact that the battery of the present invention is used for a long period of time, lithium cobalt oxide is more preferable because it has a high capacity, low reactivity with a non-aqueous electrolyte and moisture, and is chemically stable. .

【0011】次に、本発明電池の負極作用物質として
は、例えば、金属リチウム、あるいはLi−Al、Li
−In、Li−Sn、Li−Si、Li−Ge、Li−
Bi、Li−Pbなどのリチウム合金、あるいはポリア
セン構造体などの有機化合物、あるいはリチウムを吸蔵
・放出可能な炭素質材料、あるいはNb25、LiTi
24、Li4Ti512やLi含有珪素酸化物のような酸
化物などが挙げられるが、これらに限定されるものでは
ない。これらの中でもサイクル特性に優れ、作動電位が
低く、高容量であるという点で、Liを吸蔵・放出可能
な炭素質材料が好ましく、特に放電末期においても電池
作動電圧の低下が少ないという点で、天然黒鉛、人造黒
鉛、膨張黒鉛、メソフェーズピッチ焼成体、メソフェー
ズピッチ繊維焼成体などのd002の面間隔が0.338nm以下
の黒鉛構造が発達した炭素質材料がより好ましい。
Next, as a negative electrode acting substance of the battery of the present invention
Is, for example, metallic lithium, or Li-Al, Li
-In, Li-Sn, Li-Si, Li-Ge, Li-
Li, Li-Pb and other lithium alloys, or poly alloys
Occlusion of organic compounds such as sen structure or lithium
.Releasable carbonaceous material or Nb2OFive, LiTi
2OFour, LiFourTiFiveO12Acid such as Li-containing silicon oxide
Compounds and the like, but are not limited to these.
Absent. Of these, the cycle characteristics are excellent and the operating potential is
Capable of occluding and releasing Li because of its low capacity and high capacity
Carbonaceous materials are preferable, especially in the end of discharge
Natural graphite and artificial black in that the operating voltage does not drop much
Lead, expanded graphite, mesophase pitch fired body, mesophase
D pitch fiber fired body d002Spacing is 0.338 nm or less
A carbonaceous material having a developed graphite structure is more preferable.

【0012】次に、電極の形態については、正負極とも
従来の作用物質含有顆粒合剤を成形したものや、金属ネ
ット製基盤に合剤を充填したものを用いてもよいが、肉
薄電極が作製し易いという点で金属箔にスラリー状の合
剤を塗布・乾燥したものがよく、さらにそれを圧延した
ものも用いることもできる。上記のような金属箔に合剤
層を塗工した電極を用いる場合は、電極群の内部に位置
する電極は金属箔の両面に合剤層を形成したものを用い
るのが容積効率の上から好ましく、電極群の外面に位置
する電極は、接触抵抗を低減させるために、金属箔を露
出させるのが好ましい。すなわち、最外側となる電極
は、片面にのみ合剤層を形成したものが好ましく、この
場合,当初から片面のみに合剤層を塗工してもよいし,
一旦両面に合剤層を形成した後、片面のみ合剤層を除去
してもよい。
Next, regarding the form of the electrode, a positive electrode and a negative electrode may be formed by molding a conventional active substance-containing granule mixture or a metal net base filled with the mixture, but a thin electrode is preferable. From the viewpoint of easy production, a metal foil coated with a slurry mixture and dried is preferable, and a rolled metal foil can also be used. When using an electrode coated with a mixture layer on a metal foil as described above, it is preferable to use a mixture layer formed on both sides of the metal foil for the electrodes located inside the electrode group from the viewpoint of volumetric efficiency. Preferably, the electrodes located on the outer surface of the electrode group expose the metal foil in order to reduce the contact resistance. That is, it is preferable that the outermost electrode has a mixture layer formed on only one side, and in this case, the mixture layer may be coated on only one side from the beginning,
After the mixture layer is formed on both sides, the mixture layer may be removed only on one side.

【0013】電極群の形態としては、正極と負極とをセ
パレータを介して積層したものや、捲回したものがある
が、正負極どちらか一方の電極を予めセパレータで包み
込み、他極の電極をそれと交差するように配置して、そ
れらを交互に折り返すという方式でもよい。
As the form of the electrode group, there are one in which a positive electrode and a negative electrode are laminated with a separator in between, and one in which they are wound. One of the positive and negative electrodes is wrapped in a separator in advance, and the other electrode is A method of arranging so as to intersect with it and folding them back alternately may be used.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施例及び比較例
について詳細に説明する。 (実施例1)本実施例の電池の断面図を図1に示す。以
下本実施例の電池の製造方法を説明する。まず、LiC
oO2 100質量部に対し導電材としてアセチレンブラッ
ク5質量部と黒鉛粉末5質量部を加え、結着剤としてポ
リフッ化ビニリデンを5質量部加え、N−メチルピロリ
ドンで希釈、混合し、スラリー状の正極合剤を得た。次
にこの正極合剤を、正極集電体である厚さ0.02mmのアル
ミ箔の片面にドクターブレード法により塗工した後乾燥
を行い、アルミ箔表面に正極作用物質含有層を形成し
た。以後、正極作用物質含有層の塗膜厚さが両面で0.15
mmとなるまで塗工、乾燥を繰り返し、両面塗工した正極
板2を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION Examples and comparative examples of the present invention will be described in detail below. (Example 1) FIG. 1 shows a cross-sectional view of a battery of this example. The method of manufacturing the battery of this example will be described below. First, LiC
To 100 parts by mass of oO 2, 5 parts by mass of acetylene black and 5 parts by mass of graphite powder were added as a conductive material, 5 parts by mass of polyvinylidene fluoride was added as a binder, diluted with N-methylpyrrolidone and mixed to form a slurry. A positive electrode mixture was obtained. Next, this positive electrode mixture was applied to one surface of a 0.02 mm-thick aluminum foil, which is a positive electrode current collector, by a doctor blade method and then dried to form a positive electrode active substance-containing layer on the aluminum foil surface. After that, the coating thickness of the positive electrode active substance-containing layer was 0.15 on both sides.
Coating and drying were repeated until the thickness became mm, and the positive electrode plate 2 coated on both sides was produced.

【0015】次に黒鉛化メソフェーズピッチ炭素繊維粉
末100質量部に結着剤としてスチレンブタジエンゴム
(SBR)とカルボキシメチルセルロース(CMC)を
それぞれ2.5質量部を添加し、イオン交換水で希釈、混
合し、スラリー状の負極合剤を得た。得られた負極合剤
を、負極集電体である厚さ0.02mmの銅箔に作用物質含有
層の厚さが0.15mmとなるように正極の場合と同様に塗
工、乾燥を繰り返して、両面塗工した負極板4を作製し
た。
Next, 2.5 parts by weight each of styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) as a binder were added to 100 parts by weight of the graphitized mesophase pitch carbon fiber powder, diluted with ion-exchanged water and mixed, A slurry-like negative electrode mixture was obtained. The obtained negative electrode mixture was applied to a copper foil having a thickness of 0.02 mm, which is a negative electrode current collector, so that the thickness of the active substance-containing layer was 0.15 mm, as in the case of the positive electrode, and repeated drying, A double-sided coated negative electrode plate 4 was produced.

【0016】次に正・負極をそれぞれ直径12.5mmの円型
に打ち抜き、作用物質層塗工部に幅2mmの作用物質層が
塗工されていない通電部2a,4aが付随した複数電極
を、セパレータ3を介して交互に積層していき、正負極
板の各通電部2a,4aを抵抗溶接により束ねて、電極
群を製作した。なお、積層電極群の最外面上下2面は電
極集電体に片面にのみ作用物質を塗布した電極を用い、
集電体のみが露出した部分を各電極ケースに接触させ
て、集電方式とした。
Next, the positive electrode and the negative electrode were punched into a circular shape having a diameter of 12.5 mm, respectively, and a plurality of electrodes having the active substance layer coated portion with the current-carrying portions 2a and 4a not coated with the active substance layer having a width of 2 mm were attached. Electrodes were manufactured by stacking them alternately with the separators 3 in between, and energizing the current-carrying portions 2a and 4a of the positive and negative electrode plates by resistance welding. In addition, the outermost two upper and lower surfaces of the laminated electrode group are electrodes in which an active material is applied to only one surface of an electrode current collector,
A portion where only the current collector was exposed was brought into contact with each electrode case to provide a current collecting system.

【0017】作製した電極群を85℃で12時間乾燥した
後、絶縁ガスケット6を一体化した負極金属ケース5の
内底面に、電極群の片面塗工負極板の未塗工側が金属ネ
ットに接するように配置し、非水電解質(エチレンカー
ボネートとγ−ブチロラクトンを体積比1:1の割合で
混合した溶媒に、支持塩としてLiBF4を1mol/lの割
合で溶解せしめたもの)を0.14ml注液し、さらに電極群
の片面塗工正極板の未塗工側に接するようにステンレス
製の正極ケース1を勘合し、上下反転後、正極ケースに
加締め加工を実施し、封口した。これによって、厚さ3
mm、直径24.5mm、電池内容積0.94mlの扁平形非水電解質
二次電池を製作した。この際の電池内容積に対する電極
群と非水電解質の容積比は、それぞれ1:0.60および
1:0.15であった。
After the prepared electrode group is dried at 85 ° C. for 12 hours, the uncoated side of the one-side coated negative electrode plate of the electrode group contacts the metal net on the inner bottom surface of the negative electrode metal case 5 integrated with the insulating gasket 6. 0.14 ml of nonaqueous electrolyte (LiBF 4 as a supporting salt dissolved at a ratio of 1 mol / l in a solvent in which ethylene carbonate and γ-butyrolactone are mixed at a volume ratio of 1: 1) The positive electrode case 1 made of stainless steel was fitted so as to be in contact with the uncoated side of the one-side coated positive electrode plate of the electrode group, and after turning upside down, the positive electrode case was caulked and sealed. This gives a thickness of 3
A flat non-aqueous electrolyte secondary battery with a diameter of 24.5 mm and a battery internal volume of 0.94 ml was manufactured. The volume ratios of the electrode group and the non-aqueous electrolyte to the battery internal volume at this time were 1: 0.60 and 1: 0.15, respectively.

【0018】(実施例2)各電極の直径が8.3mmの電極
を用いて積層電極群を作製し、非水電解質の注液量を0.
24ml注液した以外は実施例1と同様に電池を作成した。
この際の電池内容積に対する電極群と非水電解質の容積
比はそれぞれ1:0.40および1:0.25であった。
(Example 2) A laminated electrode group was prepared by using electrodes each having a diameter of 8.3 mm, and the injection amount of the non-aqueous electrolyte was adjusted to 0.
A battery was prepared in the same manner as in Example 1 except that 24 ml was injected.
At this time, the volume ratios of the electrode group and the non-aqueous electrolyte to the internal volume of the battery were 1: 0.40 and 1: 0.25, respectively.

【0019】(実施例3)各電極の直径が14.5mmの電極
を用いて積層電極群を作製し、非水電解質の注液量を0.
10ml注液した以外は実施例1と同様に電池を作成した。
この際の電池内容積に対する電極群と非水電解質の容積
比はそれぞれ1:0.75および1:0.10であった。
(Example 3) A laminated electrode group was prepared using electrodes each having a diameter of 14.5 mm, and the injection amount of the non-aqueous electrolyte was adjusted to 0.
A battery was prepared in the same manner as in Example 1 except that 10 ml was injected.
At this time, the volume ratios of the electrode group and the non-aqueous electrolyte to the internal volume of the battery were 1: 0.75 and 1: 0.10.

【0020】(比較例1)各電極の直径が12.5mmの電極
を用いて積層電極群を作製し、非水電解質の注液量を0.
33ml注液した以外は実施例1と同様に電池を作成した。
この際の電池内容積に対する電極群と非水電解質の容積
比はそれぞれ1:0.60および1:0.35であった。
(Comparative Example 1) A laminated electrode group was prepared using electrodes each having a diameter of 12.5 mm, and the injection amount of the non-aqueous electrolyte was adjusted to 0.
A battery was prepared in the same manner as in Example 1 except that 33 ml was injected.
At this time, the volume ratio of the electrode group and the non-aqueous electrolyte to the internal volume of the battery was 1: 0.60 and 1: 0.35, respectively.

【0021】(比較例2)各電極の直径が14.5mmの電極
を用いて積層電極群を作製し、非水電解質の注液量を0.
05ml注液した以外は実施例1と同様に電池を作成した。
この際の電池内容積に対する電極群と非水電解質の容積
比はそれぞれ1:0.75および1:0.05であった。
(Comparative Example 2) A laminated electrode group was prepared using electrodes each having a diameter of 14.5 mm, and the injection amount of the non-aqueous electrolyte was adjusted to 0.
A battery was prepared in the same manner as in Example 1 except that 05 ml was injected.
At this time, the volume ratios of the electrode group and the non-aqueous electrolyte to the battery internal volume were 1: 0.75 and 1: 0.05, respectively.

【0022】以上の通り作製した各実施例及び各比較例
の電池各30個について、4.2V、3mAの定電流定電圧で4
8時間初充電を実施した。その後以下に示すような条件
で電池特性を検討した。結果を表1に示す。
For each of the 30 batteries of each of the examples and comparative examples prepared as described above, 4 V at 4.2 V and a constant current and constant voltage of 3 mA were used.
The first charge was carried out for 8 hours. Then, the battery characteristics were examined under the following conditions. The results are shown in Table 1.

【0023】(1)初期放電容量の測定 20℃の雰囲気下で60mAの定電流にて放電を行い、閉路電
圧が3.0Vになるまでの放電容量を測定した。
(1) Measurement of initial discharge capacity Discharge was carried out at a constant current of 60 mA in an atmosphere of 20 ° C., and the discharge capacity until the closed circuit voltage became 3.0 V was measured.

【0024】(2)過充特性(安全性の確認) 20℃の雰囲気下で、それぞれの電池の3.0CmAで12Vの異
常な電圧を印加し、その時の、電池の破裂、発火の個数
を確認した。
(2) Overcharging characteristics (confirmation of safety) Under an atmosphere of 20 ° C, an abnormal voltage of 12V was applied at 3.0CmA of each battery, and the number of ruptures and ignitions of the battery at that time was confirmed. did.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例の電池はいずれも、過充電試験にお
いて破裂が起こらず、放電容量に関しては電極群の容積
に対する容量比が100Ah/l以上となる。一方、比較例1に
示されるように、非水電解質の量が多くなると、過充電
時の破裂が起き、比較例2に示されるように、非水電解
質量が少なくなると、電極群に対する非水電解質量が足
りなくなり、放電容量が得られなくなる。また、電極群
の容積に関しては、少なくなると十分な放電容量が得ら
れなくなるので、対電池内容積比で0.40(実施例2)が
限界である。
In each of the batteries of the examples, no rupture occurred in the overcharge test, and the discharge capacity was 100 Ah / l or more with respect to the capacity of the electrode group. On the other hand, as shown in Comparative Example 1, when the amount of the non-aqueous electrolyte increases, bursting occurs during overcharge, and as shown in Comparative Example 2, when the non-aqueous electrolytic mass decreases, the non-aqueous electrolyte for the electrode group is reduced. The electrolytic mass is insufficient, and the discharge capacity cannot be obtained. Further, with respect to the volume of the electrode group, a sufficient discharge capacity cannot be obtained if the volume of the electrode group becomes small, so that the volume ratio to the internal volume of the battery is 0.40 (Example 2).

【0027】なお、本発明の実施例は、非水電解質に非
水溶媒を用いた扁平形非水溶媒二次電池を用いて説明し
たが、非水電解質にポリマー電解質を用いたポリマー二
次電池や固体電解質を用いた固体電解質二次電池につい
ても適用可能であり、樹脂製セパレータの代わりにポリ
マー薄膜や固体電解質膜を用いることも可能である。ま
た、電池形状については、正極ケースの加締め加工によ
り封口するコイン形非水電解質をもとに説明したが、正
負極電極を入れ替え、負極ケースの加締め加工により封
口することも可能である。さらに、電池形状についても
真円である必要はなく小判形や角型など特殊形状を有す
る扁平形非水電解質二次電池においても適用可能であ
る。
Although the embodiments of the present invention have been described using the flat non-aqueous solvent secondary battery using the non-aqueous solvent as the non-aqueous electrolyte, the polymer secondary battery using the polymer electrolyte as the non-aqueous electrolyte. The present invention is also applicable to a solid electrolyte secondary battery using a solid electrolyte and a polymer thin film or a solid electrolyte membrane in place of the resin separator. Further, the shape of the battery has been described based on the coin-shaped non-aqueous electrolyte that is sealed by crimping the positive electrode case, but it is also possible to replace the positive and negative electrodes and crimp the negative electrode case. Further, the battery shape does not have to be a perfect circle, and the present invention can be applied to a flat nonaqueous electrolyte secondary battery having a special shape such as an oval shape or a square shape.

【0028】[0028]

【発明の効果】以上説明したとおり、本発明によれば、
重負荷放電特性を著しく向上させた非水電解質二次電池
において、電池の性能を維持しつつ、過充電などの異常
状態に置かれた場合の電池破裂を防止することができ、
安全性を向上することができる。
As described above, according to the present invention,
In a non-aqueous electrolyte secondary battery with significantly improved heavy load discharge characteristics, while maintaining battery performance, it is possible to prevent battery rupture when placed in an abnormal state such as overcharge,
The safety can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である扁平形非水電解質二次
電池の断面図。
FIG. 1 is a cross-sectional view of a flat non-aqueous electrolyte secondary battery that is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…正極ケース、2…正極板、2a…正極通電部、3…
セパレータ、4…負極板、4a…負極通電部、5…負極
ケース、6…絶縁ガスケット。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode case, 2 ... Positive electrode plate, 2a ... Positive electrode conducting part, 3 ...
Separator, 4 ... Negative electrode plate, 4a ... Negative electrode conducting part, 5 ... Negative electrode case, 6 ... Insulation gasket.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H011 AA13 BB04 CC06 FF03 GG02 KK02 5H029 AJ12 AK01 AK02 AK03 AK16 AL02 AL03 AL06 AL07 AL08 AL12 AM03 AM05 AM07 BJ03 BJ14 BJ15 CJ03 CJ07 DJ02 DJ03 DJ04 DJ09 HJ07 5H050 AA15 BA16 BA17 CA01 CA02 CA07 CA08 CA09 CA11 CA20 CB02 CB03 CB07 CB08 CB09 CB12 CB20 DA13 DA19 FA05 FA06 HA07    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5H011 AA13 BB04 CC06 FF03 GG02                       KK02                 5H029 AJ12 AK01 AK02 AK03 AK16                       AL02 AL03 AL06 AL07 AL08                       AL12 AM03 AM05 AM07 BJ03                       BJ14 BJ15 CJ03 CJ07 DJ02                       DJ03 DJ04 DJ09 HJ07                 5H050 AA15 BA16 BA17 CA01 CA02                       CA07 CA08 CA09 CA11 CA20                       CB02 CB03 CB07 CB08 CB09                       CB12 CB20 DA13 DA19 FA05                       FA06 HA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 負極端子を兼ねる金属製の負極ケース
と、正極端子を兼ねる金属製の正極ケースが、絶縁ガス
ケットを介し嵌合されて封口され、その内部に負極、正
極およびセパレータを含む電極群と非水電解質とを内包
し、電極群内の正負極対向面積の総和が絶縁ガスケット
の開口面積よりも大きい扁平形非水電解質二次電池にお
いて、該電池内の電極群の容積が該電池の全内容積の40
%〜75%であり、かつ該電池内の非水電解質の容積が該
電池の全容積の10%〜25%であることを特徴とする扁平
形非水電解質二次電池。
1. A metal negative electrode case also serving as a negative electrode terminal and a metal positive electrode case also serving as a positive electrode terminal are fitted and sealed with an insulating gasket interposed therebetween, and an electrode group including a negative electrode, a positive electrode and a separator therein. In a flat non-aqueous electrolyte secondary battery including a non-aqueous electrolyte and a total area of positive and negative electrodes facing each other in the electrode group larger than the opening area of the insulating gasket, the volume of the electrode group in the battery is 40 of the total internal volume
% To 75%, and the volume of the non-aqueous electrolyte in the battery is 10% to 25% of the total volume of the battery, a flat non-aqueous electrolyte secondary battery.
【請求項2】 電極群が、セパレータを介して正極およ
び負極を積層することによって形成されている請求項1
記載の扁平形非水電解質二次電池。
2. The electrode group is formed by stacking a positive electrode and a negative electrode via a separator.
The flat non-aqueous electrolyte secondary battery described.
【請求項3】 電極群が、セパレータを介して正極およ
び負極を捲回することによって形成されている請求項1
記載の扁平形非水電解質二次電池。
3. The electrode group is formed by winding a positive electrode and a negative electrode with a separator interposed therebetween.
The flat non-aqueous electrolyte secondary battery described.
【請求項4】 電極群が、正負極いずれか一方の電極を
セパレータで包み、他の電極をそれと交差させて交互に
折り返すことによって形成されている請求項1記載の扁
平形非水電解質二次電池。
4. The flat non-aqueous electrolyte secondary according to claim 1, wherein the electrode group is formed by wrapping one of the positive and negative electrodes with a separator and alternately folding the other electrode so as to intersect it. battery.
JP2001225993A 2001-07-26 2001-07-26 Flat non-aqueous electrolyte secondary battery Withdrawn JP2003045494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001225993A JP2003045494A (en) 2001-07-26 2001-07-26 Flat non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001225993A JP2003045494A (en) 2001-07-26 2001-07-26 Flat non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2003045494A true JP2003045494A (en) 2003-02-14

Family

ID=19058893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001225993A Withdrawn JP2003045494A (en) 2001-07-26 2001-07-26 Flat non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2003045494A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392892C (en) * 2003-10-10 2008-06-04 日产自动车株式会社 Flat cell, battery, combined battery, and vehicle
JP2009289621A (en) * 2008-05-29 2009-12-10 Hitachi Maxell Ltd Flat battery
JP2011009118A (en) * 2009-06-26 2011-01-13 Hitachi Maxell Ltd Coin type secondary battery
WO2011065345A1 (en) * 2009-11-27 2011-06-03 日立マクセル株式会社 Flat nonaqueous secondary battery
JP2011113844A (en) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd Flat nonaqueous secondary battery
JP2011113843A (en) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd Flat nonaqueous secondary battery
CN104956537A (en) * 2013-04-11 2015-09-30 株式会社Lg化学 Electrode laminate comprising electrodes having different areas and secondary battery comprising same
JP2019536254A (en) * 2016-12-30 2019-12-12 チョンチン ブイディーエル エレクトロニクス カンパニー,リミテッド Button battery and manufacturing method thereof
WO2022209063A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392892C (en) * 2003-10-10 2008-06-04 日产自动车株式会社 Flat cell, battery, combined battery, and vehicle
JP2009289621A (en) * 2008-05-29 2009-12-10 Hitachi Maxell Ltd Flat battery
JP2011009118A (en) * 2009-06-26 2011-01-13 Hitachi Maxell Ltd Coin type secondary battery
KR101827895B1 (en) * 2009-06-26 2018-02-09 맥셀 홀딩스 가부시키가이샤 Coin type secondary battery
JP2011113844A (en) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd Flat nonaqueous secondary battery
JP2011113843A (en) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd Flat nonaqueous secondary battery
CN102630356A (en) * 2009-11-27 2012-08-08 日立麦克赛尔能源株式会社 Flat nonaqueous secondary battery
CN104916793A (en) * 2009-11-27 2015-09-16 日立麦克赛尔能源株式会社 Flat nonaqueous secondary battery Y
WO2011065345A1 (en) * 2009-11-27 2011-06-03 日立マクセル株式会社 Flat nonaqueous secondary battery
CN104956537A (en) * 2013-04-11 2015-09-30 株式会社Lg化学 Electrode laminate comprising electrodes having different areas and secondary battery comprising same
JP2016506603A (en) * 2013-04-11 2016-03-03 エルジー・ケム・リミテッド Electrode laminate including electrodes having different areas and secondary battery including the same
EP2919314A4 (en) * 2013-04-11 2016-05-25 Lg Chemical Ltd Electrode laminate comprising electrodes having different areas and secondary battery comprising same
US9666909B2 (en) 2013-04-11 2017-05-30 Lg Chem, Ltd. Electrode laminate comprising electrodes with different surface areas and secondary battery employed with the same
JP2019536254A (en) * 2016-12-30 2019-12-12 チョンチン ブイディーエル エレクトロニクス カンパニー,リミテッド Button battery and manufacturing method thereof
US11165088B2 (en) 2016-12-30 2021-11-02 Chongqing Vdl Electronics Co., Ltd. Button battery and manufacturing method therefor
WO2022209063A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Secondary battery

Similar Documents

Publication Publication Date Title
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP2006079960A (en) Flat nonaqueous electrolyte secondary battery
JP2010015852A (en) Secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JP2002100408A (en) Flat nonaqueous electrolyte secondary battery
JP4420484B2 (en) Sealed battery
JP3414729B1 (en) Lithium ion secondary battery
JP2002289260A (en) Flat nonaqueous electrolyte secondary battery
JP4901017B2 (en) Flat nonaqueous electrolyte secondary battery with lead terminals
JP2001291519A (en) Nonaqueous second battery
JP2730641B2 (en) Lithium secondary battery
JP2003031266A (en) Flat nonaqueous secondary battery
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery
CN111316495A (en) Cylindrical secondary battery
JP5072122B2 (en) Flat non-aqueous electrolyte secondary battery
JP2001143763A (en) Flat non-aqueous electrolyte secondary battery
JP3987320B2 (en) Non-aqueous electrolyte secondary battery
JP4565530B2 (en) Flat non-aqueous electrolyte secondary battery
JP4827111B2 (en) Flat non-aqueous electrolyte secondary battery
JP7209196B2 (en) Cylindrical secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007