JP2002025619A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2002025619A
JP2002025619A JP2000202541A JP2000202541A JP2002025619A JP 2002025619 A JP2002025619 A JP 2002025619A JP 2000202541 A JP2000202541 A JP 2000202541A JP 2000202541 A JP2000202541 A JP 2000202541A JP 2002025619 A JP2002025619 A JP 2002025619A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
layer
battery
polymer
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000202541A
Other languages
Japanese (ja)
Other versions
JP4563555B2 (en
Inventor
Naoto Torata
直人 虎太
Naoto Nishimura
直人 西村
Shumei Nishijima
主明 西島
Takehito Mitachi
武仁 見立
Kazuo Yamada
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000202541A priority Critical patent/JP4563555B2/en
Publication of JP2002025619A publication Critical patent/JP2002025619A/en
Application granted granted Critical
Publication of JP4563555B2 publication Critical patent/JP4563555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery with high performance, high energy density, and an excellent high load characteristic as well as preventing the generation of short circuit on the inside of the battery in the assembly process of the battery. SOLUTION: This lithium secondary battery is composed of a positive electrode layer containing at least a lithium-containing metal oxide or a metal oxide as an active material, a negative electrode layer containing at least lithium metal, a lithium alloy, or a carbon material as an active material, and a polymer layer interposed between both layers, and the positive electrode layer and/or the negative electrode layer contain/contains a polymer electrolyte matrix, and the ionic conductivity of a polymer electrolyte constituting the polymer electrolyte layer is made lower than that of a polymer electrolyte constituting the polymer electrolyte matrix.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ポリマー電解質
を用いるリチウム二次電池に関し、さらに詳しくは、周
囲温度下で可逆的に作動するポリマー電解質を用い、特
に正極層と負極層の間に配置されたポリマー電解質層を
構成するポリマー電解質のイオン伝導度が、正極層およ
び/または負極層内部のポリマー電解質マトリックス層
を構成するそれよりも低いことを特徴とするリチウム二
次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery using a polymer electrolyte, and more particularly, to a lithium secondary battery using a polymer electrolyte which operates reversibly at ambient temperature, and is particularly arranged between a positive electrode layer and a negative electrode layer. The present invention relates to a lithium secondary battery characterized in that the ionic conductivity of the polymer electrolyte constituting the polymer electrolyte layer is lower than that of the polymer electrolyte matrix layer inside the positive electrode layer and / or the negative electrode layer.

【0002】[0002]

【従来の技術】ポータブル機器用の電源として経済性な
どの点から二次電池が多く使われている。二次電池には
様々な種類があり、現在最も一般的なのはニッケル−カ
ドミウム電池で、最近になってニッケル水素電池も普及
している。さらに、正極にコバルト酸リチウムLiCo
2、ニッケル酸リチウムLiNiO2、これらの固溶体
Li(Co1-xNix)O2、あるいはスピネル型構造を
有するLiMn24などを、また負極にはLi金属、L
i合金あるいは黒鉛などの炭素材料を、また液体の有機
化合物を溶媒とし、リチウム化合物を溶質とした電解液
を用いたリチウム二次電池は、ニッケル−カドミウム電
池やニッケル水素電池よりも出力電圧が高く、高エネル
ギー密度であるために、特にポータブル機器や携帯情報
などの電源として主力になりつつある。
2. Description of the Related Art Secondary batteries are widely used as power supplies for portable devices from the viewpoint of economy. There are various types of secondary batteries, and the most common one is a nickel-cadmium battery at present, and a nickel-metal hydride battery has recently become widespread. Further, lithium cobaltate LiCo
O 2 , lithium nickel oxide LiNiO 2 , solid solution Li (Co 1-x Ni x ) O 2 , LiMn 2 O 4 having a spinel structure, etc.
The output voltage of a lithium secondary battery using an electrolyte containing a carbon material such as i-alloy or graphite, a liquid organic compound as a solvent, and a lithium compound as a solute has a higher output voltage than a nickel-cadmium battery or a nickel hydride battery. Due to its high energy density, it is becoming the main power source especially for portable devices and portable information.

【0003】このようなリチウム二次電池の電解質に
は、これまでリチウム塩を有機溶媒に溶かした電解液が
用いられてきた。このような電解液は可燃性であるた
め、その安全性の確保が大きな問題となっている。こう
した問題に対して、電解液をポリマー電解質に替えるこ
とにより、液漏れや有機溶媒の揮発性を抑えることが可
能となり、安全性と信頼性が向上することが分かってき
ている。しかしながら、このポリマー電解質を用いた電
池は、ポリマー電解質中のイオン伝導度が低いために、
リチウムイオンの移動が十分に得られない。そのため
に、放電容量、特に高負荷放電時の放電容量が低くなる
問題があった。
As an electrolyte of such a lithium secondary battery, an electrolytic solution obtained by dissolving a lithium salt in an organic solvent has been used. Since such an electrolyte is flammable, securing its safety is a major problem. In response to such a problem, it has been found that by replacing the electrolytic solution with a polymer electrolyte, it is possible to suppress the liquid leakage and the volatility of the organic solvent, thereby improving safety and reliability. However, batteries using this polymer electrolyte have low ionic conductivity in the polymer electrolyte,
Transfer of lithium ions cannot be obtained sufficiently. For this reason, there is a problem that the discharge capacity, particularly the discharge capacity at the time of high load discharge, becomes low.

【0004】ポリマー電解質のイオン伝導度を向上させ
るために、ポリマーに電解液を添加して保持させたゲル
状のポリマー電解質を用いる方法が活発に開発されてい
る。このゲル状のポリマー電解質は、室温で10-3S/
cmのイオン伝導度を有し、電解液に匹敵する高いイオ
ン伝導度を有している。そのために放電容量は高くなる
ものの、機械的強度が低くなる。このために電池を組み
立てる際、電池内で微短絡を生じる確率が増大するとい
う問題があった。
[0004] In order to improve the ionic conductivity of the polymer electrolyte, a method of using a gel polymer electrolyte in which an electrolyte is added to a polymer and held is actively developed. This gel-like polymer electrolyte is 10 -3 S /
cm, and has a high ionic conductivity comparable to an electrolytic solution. As a result, the discharge capacity increases, but the mechanical strength decreases. For this reason, when assembling the battery, there is a problem that the probability of causing a short circuit in the battery increases.

【0005】負極にリチウム(Li)金属を用いた場
合、充電時の短絡を低減するという目的で、以下のよう
な技術がある。特開平8−306389号公報によれ
ば、ポリマー電解質層を数層重ねることにより、短絡の
発生を抑制し、特開平8−329983号公報では、負
極側のポリマー電解質層のイオン伝導度を高くすること
により、デンドライトの析出を抑えている。しかしなが
ら、これらの技術は電池を組み上げた後の充電時のリチ
ウムデンドライト析出による短絡を抑えるための技術で
あり、ポリマー電解質を用いた電池を組み立てる際に
も、電池内の短絡を防ぐ必要がある。
[0005] When lithium (Li) metal is used for the negative electrode, there are the following techniques for the purpose of reducing short circuits during charging. According to JP-A-8-306389, the occurrence of a short circuit is suppressed by stacking several polymer electrolyte layers, and in JP-A-8-329983, the ionic conductivity of the polymer electrolyte layer on the negative electrode side is increased. Thereby, precipitation of dendrite is suppressed. However, these techniques are techniques for suppressing a short circuit due to deposition of lithium dendrite during charging after assembling the battery, and it is necessary to prevent a short circuit in the battery even when assembling the battery using the polymer electrolyte.

【0006】この問題を解決すべく、例えば、特開平1
0−284125号公報によれば、ゲル状のポリマー電
解質が保持された多孔質膜セパレータと、正極と負極と
から構成されるポリマー電池において、その多孔質膜セ
パレータのバブルポイントが0.1〜100kg/cm
2であり、かつ膜の空隙率が40〜90%であるものを
用いることにより、電池内での短絡が発生するのを抑制
しつつ、放電容量の増大が図られることが述べられてい
る。この場合のバブルポイントとは、サンプルの孔内を
エタノールで置換した後、ガス圧を徐々に高めていった
ときに、サンプルの表面から気泡が出始める圧力であ
る。しかしながら、選択された多孔質膜を用いることで
改善はされるものの、正極、負極それぞれとポリマー電
解質とを複合化した電極を用いておらず、電極を構成す
る部材とポリマー電解質の界面の接触抵抗が、まだ十分
に低減されていない。
To solve this problem, for example, Japanese Patent Laid-Open No.
According to Japanese Patent Application Publication No. 0-284125, in a polymer battery including a porous membrane separator holding a gel polymer electrolyte and a positive electrode and a negative electrode, the bubble point of the porous membrane separator is 0.1 to 100 kg. / Cm
It is described that the use of a film having a porosity of 2 and a porosity of the film of 40 to 90% increases the discharge capacity while suppressing the occurrence of a short circuit in the battery. The bubble point in this case is the pressure at which bubbles start to emerge from the surface of the sample when the gas pressure is gradually increased after the inside of the sample is replaced with ethanol. However, although the improvement can be achieved by using the selected porous membrane, the contact resistance of the interface between the member constituting the electrode and the polymer electrolyte is not used because the electrode in which the positive electrode and the negative electrode are combined with the polymer electrolyte is not used. However, it has not yet been sufficiently reduced.

【0007】[0007]

【発明が解決しようとする課題】この発明は、電池組み
立ての際の電池内での短絡の発生を防ぎつつ、高性能、
高エネルギー密度かつ高負荷特性に優れたリチウム二次
電池を提供することを課題としている。
SUMMARY OF THE INVENTION The present invention has a high performance while preventing a short circuit from occurring in a battery during battery assembly.
It is an object to provide a lithium secondary battery having high energy density and excellent load characteristics.

【0008】[0008]

【課題を解決するための手段】発明者らは、上記の問題
を克服するために、種々検討した結果、ポリマー電解質
層を構成するポリマー電解質のイオン伝導度を、電極内
部のポリマー電解質マトリックス層を構成するポリマー
電解質のそれよりも低くすることにより、電池組み立て
の際の電池内での短絡の発生を防ぎつつ、高性能、高エ
ネルギー密度かつ高負荷特性に優れたリチウム二次電池
を提供できることを見い出した。
Means for Solving the Problems The inventors of the present invention have conducted various studies in order to overcome the above-mentioned problems. As a result, the inventors have found that the ionic conductivity of the polymer electrolyte constituting the polymer electrolyte layer is determined by the polymer electrolyte matrix layer inside the electrode. By making it lower than that of the constituent polymer electrolyte, it is possible to provide a lithium secondary battery having excellent performance, high energy density, and high load characteristics while preventing occurrence of short circuit in the battery during battery assembly. I found it.

【0009】この発明は、少なくともリチウム含有金属
酸化物または金属酸化物を活物質とする正極層と、Li
金属、Li合金または炭素材料を少なくとも活物質とす
る負極層と、その間にポリマー電解質層が配置されたリ
チウム二次電池において、正極層および/または負極層
が、ポリマー電解質マトリックス層を含み、前記ポリマ
ー電解質層を構成するポリマー電解質のイオン伝導度
が、ポリマー電解質マトリックス層を構成するポリマー
電解質のイオン伝導度よりも低いことを特徴とする。
According to the present invention, there is provided a positive electrode layer comprising at least a lithium-containing metal oxide or a metal oxide as an active material;
In a lithium secondary battery in which a negative electrode layer containing a metal, a Li alloy, or a carbon material as at least an active material and a polymer electrolyte layer disposed therebetween, the positive electrode layer and / or the negative electrode layer includes a polymer electrolyte matrix layer, It is characterized in that the ionic conductivity of the polymer electrolyte constituting the electrolyte layer is lower than the ionic conductivity of the polymer electrolyte constituting the polymer electrolyte matrix layer.

【0010】すなわち、電解質層のポリマー電解質の組
成について検討を行ったところ、正極層および/または
負極層内部に含ませたポリマー電解質よりもイオン伝導
度の低いポリマー電解質をポリマー電解質層に含ませる
ことで、電池組み立ての際の電池内での短絡の発生を防
ぎつつ、高性能、高エネルギー密度かつ負荷特性に優れ
たリチウム二次電池を提供することができることを見い
だした。
That is, when the composition of the polymer electrolyte of the electrolyte layer was examined, it was found that the polymer electrolyte having a lower ionic conductivity than the polymer electrolyte contained in the positive electrode layer and / or the negative electrode layer was included in the polymer electrolyte layer. Thus, they have found that a lithium secondary battery having high performance, high energy density and excellent load characteristics can be provided while preventing occurrence of a short circuit in the battery during battery assembly.

【0011】このようにポリマー電解質層に、正極層お
よび/または負極層内部に含ませたポリマー電解質より
も低い伝導度を示すポリマー電解質を用いることで、電
解質層の機械的強度が増加するために、電池作製時に電
池内での短絡の発生率が低下する。また、ポリマー電解
質層を構成するポリマー電解質のイオン伝導度は、常温
で0.1mS/cm以上が好ましい。0.1mS/cm
より低い場合は、電池の性能が著しく低下するために好
ましくない。より好ましくは、1〜1000mS/cm
である。一方、正極層および/または負極層に含まれる
ポリマー電解質のイオン伝導度は、ポリマー電解質層を
構成するポリマー電解質のそれの1.4倍以上であるこ
とが好ましく、1.4〜4.1倍であることがより好ま
しい。
By using a polymer electrolyte having a lower conductivity than the polymer electrolyte contained in the positive electrode layer and / or the negative electrode layer as described above, the mechanical strength of the electrolyte layer is increased. In addition, the rate of occurrence of short circuits in the battery during the production of the battery is reduced. The ionic conductivity of the polymer electrolyte constituting the polymer electrolyte layer is preferably 0.1 mS / cm or more at room temperature. 0.1mS / cm
A lower value is not preferable because the performance of the battery is significantly reduced. More preferably, 1 to 1000 mS / cm
It is. On the other hand, the ionic conductivity of the polymer electrolyte contained in the positive electrode layer and / or the negative electrode layer is preferably at least 1.4 times that of the polymer electrolyte constituting the polymer electrolyte layer, and is preferably 1.4 to 4.1 times. Is more preferable.

【0012】この発明は、ポリマー電解質層として、非
水系電解液を保持したゲル状のポリマー電解質層を用
い、電解質層がポリマー繊維または微多孔膜セパレータ
を含むことを特徴とする。ポリマー電解質層の場合、イ
オン伝導度が電解液に比べて低いので、イオン伝導性を
向上させるために、ポリマーマトリックス中に非水電解
液の保持されたゲル状のポリマー電解質を用いること
で、放電容量、特に高負荷放電時の放電容量の増大が可
能になる。しかしながら、ゲル状のポリマー電解質で
は、機械的強度が低いために、電池組み立て時の短絡の
発生率が高くなる。そこでポリマー繊維または微多孔膜
セパレータにゲル状のポリマー電解質を保持させること
により、放電容量、特に高負荷放電時の放電容量の増大
が可能になり、かつ電池組み立て時の短絡の発生も抑え
ることができるので好ましい。
The present invention is characterized in that a gel-like polymer electrolyte layer holding a non-aqueous electrolyte is used as the polymer electrolyte layer, and the electrolyte layer includes a polymer fiber or a microporous membrane separator. In the case of the polymer electrolyte layer, the ionic conductivity is lower than that of the electrolytic solution.In order to improve the ionic conductivity, the discharge is achieved by using a gel-like polymer electrolyte in which a non-aqueous electrolytic solution is held in a polymer matrix. It is possible to increase the capacity, particularly the discharge capacity at the time of high load discharge. However, a gel polymer electrolyte has a low mechanical strength, so that a short-circuit occurrence rate during battery assembly increases. By holding the polymer electrolyte in the form of a gel on the polymer fiber or the microporous membrane separator, it is possible to increase the discharge capacity, especially during high-load discharge, and to suppress the occurrence of short circuits during battery assembly. It is preferable because it is possible.

【0013】ポリマーマトリックス層を構成するイオン
伝導性高分子(ポリマー電解質)とリチウム塩含有非水
電解液の重量比は、2:98よりもイオン伝導性高分子
が多いことが好ましい。すなわち、イオン伝導性高分子
の重量比が2よりも小さくなると、非水電解液を十分に
保持することができなくなり、ゲル状のポリマー電解質
から非水電解液がしみ出すので好ましくない。
The weight ratio of the ion conductive polymer (polymer electrolyte) and the lithium salt-containing nonaqueous electrolyte constituting the polymer matrix layer is preferably larger than 2:98. That is, when the weight ratio of the ion-conductive polymer is smaller than 2, the non-aqueous electrolyte cannot be sufficiently held, and the non-aqueous electrolyte exudes from the gel polymer electrolyte, which is not preferable.

【0014】また、ポリマー繊維として、ポリプロピレ
ン繊維、ポリエチレン繊維、あるいはポリエステル繊維
が使用可能であり、微多孔膜セパレータとして、ポリオ
レフィン系微多孔膜が使用可能である。これらは非水電
解液に対して化学的に安定であるために好ましい。上記
ポリマー繊維、微多孔膜セパレータ厚みとしては、上記
と同じ理由から、150μm以下が好ましく、さらには
20μm以下が好ましい。
As the polymer fiber, polypropylene fiber, polyethylene fiber or polyester fiber can be used, and as the microporous membrane separator, a polyolefin-based microporous membrane can be used. These are preferred because they are chemically stable to non-aqueous electrolytes. The thickness of the polymer fibers and the microporous membrane separator is preferably 150 μm or less, more preferably 20 μm or less, for the same reason as described above.

【0015】この発明は、リチウム二次電池の負極活物
質が炭素材料であり、特に黒鉛粒子の表面に非昌質炭素
を付着させたものであることを特徴とする。負極活物質
がリチウムイオンの吸蔵−放出過程を利用した炭素材料
であるため、充電時にデンドライト状リチウムの析出な
どがなく、電池の短絡などが激減し、安全性が向上す
る。特に、負極活物質が表面に非晶質炭素を付着した黒
鉛粒子であるため、イオン伝導性高分子からなる電解質
層の分解を防ぐことが可能であるため、漏液がなくな
り、ひいては長期信頼性が向上する。
[0015] The present invention is characterized in that the negative electrode active material of the lithium secondary battery is a carbon material, and in particular, non-amorphous carbon is adhered to the surface of graphite particles. Since the negative electrode active material is a carbon material utilizing the process of occluding and releasing lithium ions, there is no precipitation of dendritic lithium during charging, and short-circuiting of the battery is drastically reduced, and safety is improved. In particular, since the negative electrode active material is graphite particles having amorphous carbon adhered to the surface, it is possible to prevent the decomposition of the electrolyte layer made of the ion-conductive polymer, so that liquid leakage is eliminated and, as a result, long-term reliability Is improved.

【0016】ポリマー電解質層または電極内部のポリマ
ー電解質は、イオン伝導性高分子とLi塩とを含んでな
り、任意にポリマー繊維または微多孔膜セパレータと含
む場合もある。さらにポリマーを改質することにより優
れたポリマー電解質が得られる。例えば、他のポリマー
と共重合あるいはブレンド、あるいはポリマーの主骨格
に他のポリマーをグラフト重合した櫛状構造のポリマー
などが挙げられるものの、特に限定されない。イオン伝
導性高分子としては、ポリエチレンオキシド、ポリプロ
ピレンオキシド、ポリエチレンオキシドとポリプロピレ
ンオキシドの混合物、エチレンオキシドとプロピレンオ
キシドの共重合体、アルキレンオキシドを構成成分に末
端基にビニル基を含むPEO系ポリマーの重合体、アル
キレンオキシド−アクリロニトリル共重合体、ジアクリ
レート、トリアクリレート系の多官能基を有する共重合
体などが挙げられる。
The polymer electrolyte layer or the polymer electrolyte inside the electrode contains an ion conductive polymer and a Li salt, and may optionally contain a polymer fiber or a microporous membrane separator. By further modifying the polymer, an excellent polymer electrolyte can be obtained. Examples include, but are not particularly limited to, copolymers or blends with other polymers, or comb-shaped polymers in which another polymer is graft-polymerized to the main skeleton of the polymer. Examples of the ion conductive polymer include polyethylene oxide, polypropylene oxide, a mixture of polyethylene oxide and polypropylene oxide, a copolymer of ethylene oxide and propylene oxide, and a polymer of a PEO-based polymer containing an alkylene oxide as a component and having a vinyl group at a terminal group. , An alkylene oxide-acrylonitrile copolymer, a diacrylate, and a copolymer having a triacrylate-based polyfunctional group.

【0017】Li塩は、LiBF4、LiPF6、LiC
lO4、LiCF3SO3あるいはLiN(CF3SO22
の少なくとも1種が好ましいがこれに限定されるもので
はない。またイオン伝導性高分子は、有機溶媒とLi塩
を含有させることで、ゲルとしても用いることができ
る。上記有機溶媒としては、プロピレンカーボネート
(PC)、エチレンカーボネート(EC)などの環状炭
酸エステル;γ−ブチロラクトン(GBL)などの環状
エステル;プロピオン酸メチル、プロピオン酸エチルな
どの鎖状エステル;ジエチルカーボネート(DEC)、
ジメチルカーボネート(DMC)、メチルエチルカーボ
ネート(EMC)などの鎖状炭酸エステル;テトラヒド
ロフランまたはその誘導体、1,3−ジオキサン、1,
2−ジメトキシエタン、メチルジグライムなどのエーテ
ル類;アセトニトリル、ベンゾニトリルなどのニトリル
類;ジオキソランまたはその誘導体;スルホランまたは
その誘導体などの単独またはそれら2種以上の混合物な
どが挙げられる。しかしこれらに限定されるものではな
い。また、その配合割合および配合方法は限定されるも
のではない。
Li salts include LiBF 4 , LiPF 6 , LiC
10 4 , LiCF 3 SO 3 or LiN (CF 3 SO 2 ) 2
At least one is preferred, but not limited thereto. The ion-conductive polymer can be used as a gel by containing an organic solvent and a Li salt. Examples of the organic solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC); cyclic esters such as γ-butyrolactone (GBL); chain esters such as methyl propionate and ethyl propionate; diethyl carbonate ( DEC),
Chain carbonates such as dimethyl carbonate (DMC) and methyl ethyl carbonate (EMC); tetrahydrofuran or a derivative thereof, 1,3-dioxane,
Ethers such as 2-dimethoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or a derivative thereof; sulfolane or a derivative thereof alone or a mixture of two or more thereof. However, it is not limited to these. Further, the compounding ratio and the compounding method are not limited.

【0018】特に、ECからなる溶媒にPC、GBL、
EMC、DMCあるいはDECから選ばれる1種以上の
溶媒を混合した混合有機溶媒にLi塩を溶解した有機電
解液を含むゲルであることが、表面に非晶質炭素が付着
した黒鉛系の炭素材料を活物質とする負極での分解が少
ないことから好ましい。
In particular, PC, GBL,
A gel containing an organic electrolyte in which a Li salt is dissolved in a mixed organic solvent in which one or more solvents selected from EMC, DMC or DEC are mixed is a graphite-based carbon material having amorphous carbon attached to the surface. Is preferable since the decomposition at the negative electrode using 活 as an active material is small.

【0019】電解質層に加えるポリマー繊維または微多
孔膜セパレータは、透気度が1〜500sec/cm3
の物性を有する不織布であることが好ましい。透気度が
1sec/cm3より低いとイオン伝導度が十分に得ら
れず、500sec/cm3よりも高いと機械的強度が
十分ではなく、電池の短絡を引き起こしやすいので好ま
しくない。さらに、電解質層を構成するイオン伝導性高
分子とポリマー繊維または微多孔膜セパレータの重量比
率が91:9〜50:50の範囲が適当である。イオン
伝導性高分子の重量比率が91よりも高いと機械的に強
度が十分に得られず、50よりも低いとイオン伝導度が
十分に得られないので好ましくない。
The polymer fiber or microporous membrane separator added to the electrolyte layer has an air permeability of 1 to 500 sec / cm 3.
It is preferable that the nonwoven fabric has the following physical properties. Air permeability is low, it is not sufficiently obtained ionic conductivity than 1 sec / cm 3, high mechanical strength is not sufficient than 500 sec / cm 3, since likely to cause short-circuit of the battery is not preferable. Further, the weight ratio of the ion conductive polymer and the polymer fiber or the microporous membrane separator constituting the electrolyte layer is suitably in the range of 91: 9 to 50:50. When the weight ratio of the ion conductive polymer is higher than 91, sufficient mechanical strength cannot be obtained, and when the weight ratio is lower than 50, sufficient ion conductivity cannot be obtained, which is not preferable.

【0020】正極層および/または負極層内部のポリマ
ー電解質マトリックス層、またその間に配するポリマー
電解質層は、液体状態のこれら電解質前駆体をこれらの
電極内、ポリマー繊維または微多孔膜セパレータ内に含
浸させた後、活性光線あるいは熱で架橋させる、あるい
は溶剤を除去することによって作製することができる。
正極層と負極層の間に配する電解質層は単一層構造であ
る必要はなく、この電解質層内で多層構造を持っていて
もよい。また、正極層と電解質層あるいは負極層と電解
質層間の溶媒の拡散防止や、各電解質層界面での密着性
を上げるために、電解質層の表面に処理を施してもよ
い。
The polymer electrolyte matrix layer inside the positive electrode layer and / or the negative electrode layer and the polymer electrolyte layer interposed therebetween impregnate these electrolyte precursors in a liquid state into these electrodes, polymer fibers or microporous membrane separators. After that, it can be produced by crosslinking with actinic rays or heat, or removing the solvent.
The electrolyte layer disposed between the positive electrode layer and the negative electrode layer does not need to have a single-layer structure, and may have a multilayer structure in this electrolyte layer. The surface of the electrolyte layer may be treated to prevent diffusion of the solvent between the positive electrode layer and the electrolyte layer or between the negative electrode layer and the electrolyte layer, and to increase the adhesion at the interface between the electrolyte layers.

【0021】また、架橋に際しては、必要であれば重合
開始剤を用いることも重要である。特に紫外線あるいは
加熱による架橋方法においては、数%以下の重合開始剤
を加えることが好ましい。重合開始剤としては、2,2
−ジメトキシ−2−フェニルアセトフェノン(DMP
A)、ベンゾイルパ−オキシド(BPO)などの市販品
を用いることができる。また、紫外線の波長は250〜
365nmが適当である。
In crosslinking, it is important to use a polymerization initiator if necessary. In particular, in a crosslinking method using ultraviolet light or heating, it is preferable to add a few percent or less of a polymerization initiator. As the polymerization initiator, 2,2
-Dimethoxy-2-phenylacetophenone (DMP
Commercially available products such as A) and benzoyl peroxide (BPO) can be used. Also, the wavelength of the ultraviolet light is 250 to
365 nm is appropriate.

【0022】電解質溶媒中に水分が含まれていると、電
池の充放電時に水分と溶媒との副反応が生じるために電
池自身の効率低下やサイクル寿命の低下を招いたり、ガ
スが発生するなどの問題点が生ずる。このために、電解
質溶媒の水分は極力少なくする必要がある。このため、
場合によっては電解質溶媒を、モレキュラーシーブ、ア
ルカリ金属、アルカリ土類金属、あるいは活性アルミニ
ウムなどを用いて脱水してもよい。水分量は、1000
ppm以下、好ましくは100ppm以下である。
If water is contained in the electrolyte solvent, a side reaction between the water and the solvent occurs at the time of charging and discharging of the battery, so that the efficiency of the battery itself decreases, the cycle life decreases, and gas is generated. Problem arises. For this reason, it is necessary to minimize the water content of the electrolyte solvent. For this reason,
In some cases, the electrolyte solvent may be dehydrated using a molecular sieve, an alkali metal, an alkaline earth metal, activated aluminum, or the like. Water content is 1000
ppm or less, preferably 100 ppm or less.

【0023】この発明のリチウム二次電池の電極を構成
するためには、正極活物質として遷移金属酸化物あるい
はリチウム含有金属酸化物の粉末と、これに導電剤、結
着剤および場合によっては、固体電解質を混合して形成
される。遷移金属酸化物としては酸化バナジウムV
25、酸化クロムCr38などがあげられる。リチウム
含有金属酸化物としては、リチウム酸コバルト(Lix
CoO2:0<x<2)、リチウム酸ニッケル(Lix
iO2:0<x<2)、リチウム酸ニッケルコバルト複
合酸化物(Lix(Ni1-yCoy)O2:0<x<2,0
<y<1)、リチウム酸マンガン(LixMn24:0
<x<2,LixMnO2:0<x<2)、リチウム酸バ
ナジウムLiV25,LiVO2、リチウム酸タングス
テンLiWO3、リチウム酸モリブデンLiMoO3など
が挙げられる。
In order to form the electrode of the lithium secondary battery of the present invention, a powder of a transition metal oxide or a lithium-containing metal oxide as a positive electrode active material, a conductive agent, a binder, and, in some cases, It is formed by mixing a solid electrolyte. Vanadium oxide V is used as the transition metal oxide.
2 O 5 , chromium oxide Cr 3 O 8 and the like. Lithium-containing metal oxides include cobalt lithium oxide (Li x
CoO 2 : 0 <x <2), nickel lithium oxide (Li x N)
iO 2 : 0 <x <2), nickel cobalt lithium oxide composite oxide (Li x (Ni 1 -y Co y ) O 2 : 0 <x <2,0
<Y <1), manganese lithium manganese (Li x Mn 2 O 4 : 0)
<X <2, Li x MnO 2 : 0 <x <2), vanadium lithium silicate LiV 2 O 5 , LiVO 2 , tungsten lithium lithate LiWO 3 , molybdenum lithium lithium LiMoO 3, and the like.

【0024】導電剤にはアセチレンブラック、グラファ
イト粉末などの炭素材料や、金属粉末、導電性セラミッ
クスを用いることができる。結着剤にはポリテトラフル
オロエチレン、ポリフッ化ビニリデンなどのフッ素系ポ
リマー、ポリエチレン、ポリプロピレンなどのポリオレ
フィン系ポリマーなどを用いることができる。これらの
混合比は遷移金属酸化物またはリチウム含有金属酸化物
100重量部に対して、導電剤を1〜50重量部、結着
剤を1〜30重量部とすることができる。導電剤が1重
量部より少ないと電極の抵抗あるいは分極が大きくな
り、電極としての容量が小さくなるために実用的なリチ
ウム二次電池が構成できない。また導電剤が50重量部
より大きいと電極内の遷移金属酸化物またはリチウム含
有金属酸化物の量が減少するために容量が小さくなり好
ましくない。結着剤が1重量部より少ないと、結着能力
がなくなっていまい、電極が構成できなくなる。また結
着剤が30重量部より大きいと、電極の抵抗あるいは分
極が大きくなり、かつ電極内の遷移金属酸化物またはリ
チウム含有金属酸化物の量が減少するために容量が小さ
くなり実用的ではない。
As the conductive agent, a carbon material such as acetylene black or graphite powder, a metal powder, or a conductive ceramic can be used. As the binder, a fluorine-based polymer such as polytetrafluoroethylene or polyvinylidene fluoride, or a polyolefin-based polymer such as polyethylene or polypropylene can be used. These mixing ratios can be 1 to 50 parts by weight of the conductive agent and 1 to 30 parts by weight of the binder with respect to 100 parts by weight of the transition metal oxide or the lithium-containing metal oxide. When the amount of the conductive agent is less than 1 part by weight, the resistance or polarization of the electrode increases, and the capacity as the electrode decreases, so that a practical lithium secondary battery cannot be formed. On the other hand, if the amount of the conductive agent is more than 50 parts by weight, the amount of the transition metal oxide or the lithium-containing metal oxide in the electrode decreases, so that the capacity is undesirably reduced. If the amount of the binder is less than 1 part by weight, the binding ability is lost, and an electrode cannot be formed. On the other hand, if the amount of the binder is more than 30 parts by weight, the resistance or polarization of the electrode increases, and the amount of the transition metal oxide or the lithium-containing metal oxide in the electrode decreases. .

【0025】これらの混合物を集電体に圧着または、N
−メチル−2−ピロリドンなどの溶剤に溶かしスラリー
状にし、これを集電体に塗布し乾燥させた後に、有機電
解質、イオン伝導性高分子の前駆体と開始剤の混合物を
含浸させ、光照射あるいは熱によって固体化することで
正極を構成できる。あるいは、正極材料と導電材と有機
電解液および開始剤を混合し、これらを光照射あるいは
熱によって固体化させてもよい。集電体には金属箔、金
属メッシュ、金属不織布などの導電性体が使用できる。
The mixture is pressed on a current collector or N 2
-Methyl-2-pyrrolidone or the like is dissolved in a solvent to form a slurry, which is applied to a current collector and dried, and then impregnated with a mixture of an organic electrolyte, a precursor of an ion conductive polymer and an initiator, and irradiated with light. Alternatively, the positive electrode can be formed by solidification by heat. Alternatively, a positive electrode material, a conductive material, an organic electrolytic solution, and an initiator may be mixed, and these may be solidified by light irradiation or heat. A conductive material such as a metal foil, a metal mesh, and a metal nonwoven fabric can be used as the current collector.

【0026】また、この発明の非水系二次電池における
負極は、金属リチウム、リチウムアルミニウムなどのリ
チウム合金や、リチウムイオンを挿入・脱離できる物
質、例えばポリアセチレン、ポリチオフェン、ポリパラ
フェニレンなどの導電性高分子、熱分解炭素、触媒の存
在下で気相分解された熱分解炭素、ピッチ、コークス、
タールなどから焼成された炭素、セルロース、フェノー
ル樹脂などの高分子を焼成して得られる炭素、天然黒
鉛、人造黒鉛、膨張黒鉛などの黒鉛材料、リチウムイオ
ンを挿入・脱離反応しうるWO2、MoO2など物質単独
またはこれらの複合体を用いることができる。中でも黒
鉛の粒子の表面に非晶質炭素を付着させた炭素材料が好
ましい。
The negative electrode in the non-aqueous secondary battery of the present invention is made of a lithium alloy such as lithium metal or lithium aluminum, or a conductive material such as polyacetylene, polythiophene, or polyparaphenylene which can insert and release lithium ions. Pyrolyzed carbon, pitch, coke, gas phase decomposed in the presence of polymer, pyrocarbon, catalyst
Carbon fired from tar and the like, carbon obtained by firing a polymer such as cellulose and phenolic resin, graphite materials such as natural graphite, artificial graphite and expanded graphite, WO 2 capable of inserting and removing lithium ions, A single substance such as MoO 2 or a complex thereof can be used. Among them, a carbon material in which amorphous carbon is attached to the surface of graphite particles is preferable.

【0027】これらの混合物を集電体に圧着または、N
−メチル−2−ピロリドンなどの溶剤に溶かしスラリー
状にし、これを集電体に塗布し乾燥させた後に、有機電
解質、イオン伝導性高分子の前駆体と開始剤の混合物を
含浸させ、光照射あるいは熱によって固体化することで
負極を構成できる。あるいは、これらの混合物と有機電
解液およびイオン伝導性高分子の前駆体などを混合し、
これらを光照射あるいは熱によって固体化させてもよ
い。集電体には金属箔、金属メッシュ、金属不織布など
の導電性体が使用できる。
The mixture is pressed on a current collector or N 2
-Methyl-2-pyrrolidone or the like is dissolved in a solvent to form a slurry, which is applied to a current collector and dried, and then impregnated with a mixture of an organic electrolyte, a precursor of an ion conductive polymer and an initiator, and irradiated with light. Alternatively, a negative electrode can be formed by solidification by heat. Alternatively, a mixture of these mixtures with an organic electrolyte solution and a precursor of an ion conductive polymer,
These may be solidified by light irradiation or heat. A conductive material such as a metal foil, a metal mesh, and a metal nonwoven fabric can be used as the current collector.

【0028】この発明における非水系二次電池は、上記
正極層と集電体、および負極層と集電体をそれぞれ外部
電極に接合し、さらにこれらの間に上記の電解質層を介
在させて構成される。この発明の二次電池の形状は、特
に限定されず、円筒型、ボタン型、角形、シート状など
があげられるがこれらに限定されない。また、外装材と
しては金属、Alラミネート樹脂フィルムなどが挙げら
れる。これらの、電池の製造工程は、水分の浸入を防止
するために、アルゴンなどの不活性雰囲気中かまたは乾
燥した空気中で行うことが好ましい。
The non-aqueous secondary battery according to the present invention has a structure in which the positive electrode layer and the current collector, and the negative electrode layer and the current collector are respectively bonded to external electrodes, and the above-described electrolyte layer is interposed therebetween. Is done. The shape of the secondary battery of the present invention is not particularly limited, and examples thereof include a cylindrical shape, a button shape, a square shape, and a sheet shape, but are not limited thereto. In addition, examples of the exterior material include a metal and an Al laminated resin film. These battery manufacturing steps are preferably performed in an inert atmosphere such as argon or in dry air in order to prevent moisture from entering.

【0029】[0029]

【実施例】以下実施例により具体的にこの発明を説明す
るが、この発明はこれによりなんら制限されるものでは
ない。以下のすべての実施例および比較例で使用するイ
オン伝導性高分子の前駆体(ポリマー電解質の前駆体)
には、ポリエチレンオキシドとポリプロピレンオキシド
の共重合体を含有しているジアクリレートモノマーを用
い、前駆体を最大出力波長365nmの紫外線の照射に
より架橋し、重合開始剤としてDMPAを前駆体の0.
1重量%使用した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. Precursor of ion conductive polymer (precursor of polymer electrolyte) used in all the following Examples and Comparative Examples
Is a diacrylate monomer containing a copolymer of polyethylene oxide and polypropylene oxide, and the precursor is cross-linked by irradiation with ultraviolet light having a maximum output wavelength of 365 nm.
1% by weight was used.

【0030】まず図1にこの発明で作製した電池の基本
的な構造を示す。1は電極端子、2は正極層側と負極層
側に含まれるポリマー電解質よりもイオン伝導性が低い
ポリマー電解質層、3は正極材料とポリマー電解質、4
は正極集電体、5は負極集電体、6は負極材料とポリマ
ー電解質、そして7は電池を外気から遮断するためのA
lラミネート樹脂フィルム製外装材である。
FIG. 1 shows a basic structure of a battery manufactured according to the present invention. 1 is an electrode terminal, 2 is a polymer electrolyte layer having a lower ion conductivity than the polymer electrolyte contained in the positive electrode layer side and the negative electrode layer side, 3 is a positive electrode material and a polymer electrolyte,
Is a positive electrode current collector, 5 is a negative electrode current collector, 6 is a negative electrode material and a polymer electrolyte, and 7 is an A for isolating the battery from outside air.
1 This is an exterior material made of a laminated resin film.

【0031】・ポリマー電解質層の作製 以下にポリマー電解質層の作製方法を示す。 ポリマー電解質層1 ポリマー電解質の前駆体であるポリエチレンオキシドと
ポリプロピレンオキシドの共重合体を含有しているジア
クリレートモノマーに、LiPF6を4.5重量%にな
るように溶解したものを面積10cm2の石英ガラス基
板にキャストし、厚さ50μmのスペーサーをかまし、
その上に石英ガラス基板を載せて固定し、38mW/c
2の強度で紫外線を2分間照射した。得られたポリマ
ー電解質層の厚さは50μmであった。
Preparation of Polymer Electrolyte Layer A method for preparing a polymer electrolyte layer will be described below. A diacrylate monomer containing a copolymer of polyethylene oxide and polypropylene oxide is a precursor of the polymer electrolyte layer 1 polymer electrolyte, a solution obtained by dissolving such that the LiPF 6 4.5 wt% of the area 10 cm 2 Cast on a quartz glass substrate, bite a 50μm thick spacer,
A quartz glass substrate is placed and fixed thereon, and 38 mW / c
Ultraviolet light was irradiated for 2 minutes at an intensity of m 2 . The thickness of the obtained polymer electrolyte layer was 50 μm.

【0032】ポリマー電解質層2 まずLiPF6をECとGBLの混合溶媒(EC含有率
35重量%)に13重量%になるように溶解した電解液
を調製し、その電解液と、ポリマー電解質の前駆体であ
るポリエチレンオキシドとポリプロピレンオキシドの共
重合体を含有しているジアクリレートモノマーを重量比
で90:10になるように調製した。その混合溶液を面
積10cm2の石英ガラス基板にキャストし、厚さ50
μmのスペーサーをかまし、その上に石英ガラス基板を
載せて固定し、38mW/cm2の強度で紫外線を2分
間照射した。得られたゲル状のポリマー電解質層の厚さ
は50μmであった。
Polymer Electrolyte Layer 2 First, an electrolyte was prepared by dissolving LiPF 6 in a mixed solvent of EC and GBL (EC content: 35% by weight) so as to have a concentration of 13% by weight. A diacrylate monomer containing a copolymer of polyethylene oxide and polypropylene oxide was prepared so as to have a weight ratio of 90:10. The mixed solution was cast on a quartz glass substrate having an area of 10 cm 2 ,
A spacer having a thickness of μm was bitten, a quartz glass substrate was placed thereon and fixed, and ultraviolet rays were irradiated at an intensity of 38 mW / cm 2 for 2 minutes. The thickness of the obtained gel polymer electrolyte layer was 50 μm.

【0033】ポリマー電解質層3 まずLiPF4をECとPCの混合溶媒(PC含有率3
5重量%)に13重量%になるように溶解した電解液を
調製し、その電解液と、ポリマー電解質の前駆体である
ポリエチレンオキシドとポリプロピレンオキシドの共重
合体を含有しているジアクリレートモノマーを重量比で
90:10になるように調製した。その混合溶液を面積
10cm2の石英ガラス基板にキャストし、厚さ50μ
mのスペーサーをかまし、その上に石英ガラス基板を載
せて固定し、38mW/cm2の強度で紫外線を2分間
照射した。得られたゲル状のポリマー電解質層の厚さは
50μmであった。
Polymer electrolyte layer 3 First, LiPF 4 was mixed with a mixed solvent of EC and PC (PC content 3
(5% by weight) to prepare an electrolytic solution dissolved to 13% by weight, and the electrolytic solution and a diacrylate monomer containing a copolymer of polyethylene oxide and polypropylene oxide, which is a precursor of a polymer electrolyte, are prepared. It was prepared so as to have a weight ratio of 90:10. The mixed solution was cast on a quartz glass substrate having an area of 10 cm 2 and a thickness of 50 μm.
m, and a quartz glass substrate was placed and fixed thereon, and irradiated with ultraviolet rays at an intensity of 38 mW / cm 2 for 2 minutes. The thickness of the obtained gel polymer electrolyte layer was 50 μm.

【0034】ポリマー電解質層4 まずLiPF4をECとPCの混合溶媒(PC含有率3
5重量%)に13重量%になるように溶解した電解液を
調製し、その電解液と、ポリマー電解質の前駆体である
ポリエチレンオキシドとポリプロピレンオキシドの共重
合体を含有しているジアクリレートモノマーを重量比で
95:5になるように調製した。その混合溶液を面積1
0cm2の石英ガラス基板にキャストし、厚さ50μm
のスペーサーをかまし、その上に石英ガラス基板を載せ
て固定し、38mW/cm2の強度で紫外線を2分間照
射した。得られたゲル状のポリマー電解質層の厚さは5
0μmであった。
Polymer Electrolyte Layer 4 First, LiPF 4 was mixed with a mixed solvent of EC and PC (PC content 3
(5% by weight) to prepare an electrolytic solution dissolved to 13% by weight, and the electrolytic solution and a diacrylate monomer containing a copolymer of polyethylene oxide and polypropylene oxide, which is a precursor of the polymer electrolyte, are prepared. It was adjusted to be 95: 5 by weight ratio. The mixed solution has an area of 1
Cast on a quartz glass substrate of 0cm 2 , thickness 50μm
And a quartz glass substrate was placed and fixed thereon, and irradiated with ultraviolet rays at an intensity of 38 mW / cm 2 for 2 minutes. The thickness of the obtained gel polymer electrolyte layer is 5
It was 0 μm.

【0035】ポリマー電解質層5 まずLiPF4をECとPCの混合溶媒(PC含有率3
5重量%)に13重量%になるように溶解した電解液を
調製し、ポリマー電解質の前駆体であるポリエチレンオ
キシドとポリプロピレンオキシドの共重合体を含有して
いるジアクリレートモノマーとポリエチレンオキシドと
ポリプロピレンオキシドの共重合体を含有しているアク
リレートモノマーとを重量比で75:25になるように
調製した。その電解液とポリマー電解質の前駆体の混合
物を重量比で95:5になるように調製した。その混合
液を面積10cm2の石英ガラス基板にキャストし、厚
さ50μmのスペーサーをかまし、その上に石英ガラス
基板を載せて固定し、38mW/cm2の強度で紫外線
を2分間照射した。得られたゲル状のポリマー電解質層
の厚さは50μmであった。
Polymer Electrolyte Layer 5 First, LiPF 4 was mixed with a mixed solvent of EC and PC (PC content: 3).
(5% by weight) to prepare an electrolytic solution dissolved to 13% by weight, and a diacrylate monomer, polyethylene oxide and polypropylene oxide containing a copolymer of polyethylene oxide and polypropylene oxide, which are precursors of the polymer electrolyte. And an acrylate monomer containing the above copolymer was prepared in a weight ratio of 75:25. A mixture of the electrolyte and the precursor of the polymer electrolyte was prepared so as to have a weight ratio of 95: 5. The mixed solution was cast on a quartz glass substrate having an area of 10 cm 2 , a spacer having a thickness of 50 μm was bitten, and the quartz glass substrate was placed and fixed thereon, and irradiated with ultraviolet light at an intensity of 38 mW / cm 2 for 2 minutes. The thickness of the obtained gel polymer electrolyte layer was 50 μm.

【0036】上記5種類の電解質層の20℃におけるイ
オン伝導度を表1に示す。なお、イオン伝導度は次のよ
うにして測定した。インピーダンス測定は電極にLiを
用いて測定した。インピーダンスアナライザーにより、
20℃におけるcole−coleプロットから抵抗値
を計測し、イオン伝導度を求めた。
Table 1 shows the ionic conductivity at 20 ° C. of the above five types of electrolyte layers. The ionic conductivity was measured as follows. The impedance was measured using Li for the electrode. By the impedance analyzer,
The resistance value was measured from the cole-col plot at 20 ° C., and the ionic conductivity was determined.

【0037】[0037]

【表1】 [Table 1]

【0038】以下の実施例、比較例には上記記載の組成
の電解質を用いた。 (実施例1)X線広角回折法による(d002)=0.3
37nm、(Lc)=100nm、(La)=100n
mでBET法による比表面積が10m2/gである人造
黒鉛粉末に、結着材としてポリフッ化ビニリデン(PV
DF)を9重量%混合し、N−メチル−2−ピロリドン
(NMP)を加えて混合溶解して得たペーストを厚さ2
0μmの圧延銅箔にコーティングし、乾燥およびプレス
後、負極を得た。この電極面積は9cm2、厚さ85μ
mであった。
In the following examples and comparative examples, electrolytes having the above-described compositions were used. (Example 1) (d 002 ) = 0.3 by X-ray wide-angle diffraction method
37 nm, (Lc) = 100 nm, (La) = 100 n
m, an artificial graphite powder having a specific surface area of 10 m 2 / g by the BET method, and polyvinylidene fluoride (PV) as a binder.
DF) was mixed at 9% by weight, N-methyl-2-pyrrolidone (NMP) was added, and the mixture was dissolved.
After coating on a 0 μm rolled copper foil, drying and pressing, a negative electrode was obtained. This electrode area is 9cm 2 , thickness 85μ
m.

【0039】平均粒径7μmのLiCoO2粉末に、結
着材としてPVDFを7重量%と、導電材として平均粒
径2μmのアセチレンブラック5重量%とを混合し、N
MPを加えて混合溶解して得たペーストを厚さ20μm
の圧延アルミ箔にコーティングし、乾燥およびプレス
後、正極を得た。この電極面積は9cm2、厚さ80μ
mであった。
To a LiCoO 2 powder having an average particle diameter of 7 μm, 7% by weight of PVDF as a binder and 5% by weight of acetylene black having an average particle diameter of 2 μm as a conductive material were mixed.
The paste obtained by mixing and dissolving MP is 20 μm thick.
, And dried and pressed to obtain a positive electrode. This electrode area is 9cm 2 , thickness 80μ
m.

【0040】ポリマー電解質層はポリマー電解質層1と
同じ組成のものを用い、面積10cm2の石英ガラス基
板に電解質前駆体溶液をキャストし、厚さ20μmのス
ペーサーをかまし、その上に石英ガラス基板を載せて固
定し、38mW/cm2の強度で紫外線を2分間照射し
た。得られたポリマー電解質層の厚さは20μmであっ
た。正極層についてはポリマー電解質層2と同じ組成の
ものを用い、正極を減圧下で5分間放置し、ポリマー電
解質前駆体溶液を注液し、さらに15分間放置した。そ
の後、38mw/cm2の強度で紫外線を2分間照射し
た。得られた正極層はゲル状のポリマー電解質を含み、
その厚さは80μmであった。
A polymer electrolyte layer having the same composition as that of the polymer electrolyte layer 1 was used. An electrolyte precursor solution was cast on a quartz glass substrate having an area of 10 cm 2 , and a spacer having a thickness of 20 μm was bitten. Was placed and fixed, and irradiated with ultraviolet light at an intensity of 38 mW / cm 2 for 2 minutes. The thickness of the obtained polymer electrolyte layer was 20 μm. For the positive electrode layer, the same composition as that of the polymer electrolyte layer 2 was used. The positive electrode was allowed to stand under reduced pressure for 5 minutes, a polymer electrolyte precursor solution was injected, and the mixture was further allowed to stand for 15 minutes. Thereafter, ultraviolet rays were irradiated at an intensity of 38 mw / cm 2 for 2 minutes. The obtained positive electrode layer contains a gel-like polymer electrolyte,
Its thickness was 80 μm.

【0041】負極層についてはポリマー電解質3と同じ
組成のものを用い、負極を減圧下で5分間放置し、ポリ
マー電解質前駆体溶液を注液し、さらに15分間放置し
た。その後、38mw/cm2の強度で紫外線を2分間
照射した。得られた負極層はゲル状のポリマー電解質を
含み、その厚さは85μmであった。このようにして得
られた正極層とポリマー電解質層と負極層とを逐次貼り
合わせ電池を作製した。
The negative electrode layer had the same composition as that of the polymer electrolyte 3. The negative electrode was left under reduced pressure for 5 minutes, a polymer electrolyte precursor solution was injected, and the mixture was further left for 15 minutes. Thereafter, ultraviolet rays were irradiated at an intensity of 38 mw / cm 2 for 2 minutes. The obtained negative electrode layer contained a gel polymer electrolyte and had a thickness of 85 μm. The positive electrode layer, the polymer electrolyte layer, and the negative electrode layer thus obtained were sequentially bonded to each other to produce a battery.

【0042】(比較例1)ポリマー電解質層はポリマー
電解質層4と同じ組成のものを用い、面積10cm2
石英ガラス基板に電解質前駆体溶液をキャストし、厚さ
20μmのスペーサーをかまし、その上に石英ガラス基
板を載せて固定し、38mW/cm2の強度で紫外線を
2分間照射し、ゲル状のポリマー電解質層を作製した。
このポリマー電解質層を用いること以外は、実施例1と
同様に電池を作製した。実施例1と比較例1の電池を各
々100個ずつ組み立て、短絡チェックを行ったとこ
ろ、実施例1の電池は短絡数0個、比較例1の電池は短
絡数5個であった。以上のことから、電解質層のイオン
伝導度が高くても、ポリマー電解質層の機械的強度が十
分でないと組み立て時の短絡が発生することが判明し
た。
(Comparative Example 1) A polymer electrolyte layer having the same composition as the polymer electrolyte layer 4 was used. An electrolyte precursor solution was cast on a quartz glass substrate having an area of 10 cm 2 , and a spacer having a thickness of 20 μm was bitten. A quartz glass substrate was placed and fixed thereon, and irradiated with ultraviolet light at an intensity of 38 mW / cm 2 for 2 minutes to produce a gel polymer electrolyte layer.
A battery was fabricated in the same manner as in Example 1, except that this polymer electrolyte layer was used. When each of the batteries of Example 1 and Comparative Example 1 was assembled and 100 were checked for short circuit, the battery of Example 1 had 0 short circuits and the battery of Comparative Example 1 had 5 short circuits. From the above, it was found that even if the ionic conductivity of the electrolyte layer was high, a short circuit occurred during assembly if the mechanical strength of the polymer electrolyte layer was not sufficient.

【0043】(実施例2)正極層および負極層にポリマ
ー電解質層4と同じ組成のものを用いること以外は、実
施例1と同様に正極層および負極層を作製した。なお、
正極層および負極層は、それぞれゲル状のポリマー電解
質を含む。ポリマー電解質層はポリマー電解質層3と同
じ組成のものを用い、そのポリマー電解質前駆体溶液
を、透気度380sec/cm3、面積10cm2、厚さ
20μmのポリエステル製の不織布に浸漬し、前駆体を
不織布内部まで浸透させるため減圧下で15分間放置し
た。そして38mW/cm2の強度で紫外線を2分間照
射することで、ゲル状のポリマー電解質層を得た。この
時のポリマー電解質とポリマー繊維との重量比は90:
10であった。このようにして得られた正極層とポリマ
ー電解質層と負極層とを逐次貼り合わせ電池を作製し
た。
Example 2 A positive electrode layer and a negative electrode layer were produced in the same manner as in Example 1 except that the same composition as the polymer electrolyte layer 4 was used for the positive electrode layer and the negative electrode layer. In addition,
Each of the positive electrode layer and the negative electrode layer contains a gel polymer electrolyte. The polymer electrolyte layer having the same composition as that of the polymer electrolyte layer 3 was used, and the polymer electrolyte precursor solution was immersed in a polyester nonwoven fabric having an air permeability of 380 sec / cm 3 , an area of 10 cm 2 and a thickness of 20 μm. Was allowed to stand for 15 minutes under reduced pressure in order to penetrate the inside of the nonwoven fabric. Then, ultraviolet rays were irradiated at an intensity of 38 mW / cm 2 for 2 minutes to obtain a gel polymer electrolyte layer. At this time, the weight ratio between the polymer electrolyte and the polymer fiber is 90:
It was 10. The positive electrode layer, the polymer electrolyte layer, and the negative electrode layer thus obtained were sequentially bonded to each other to produce a battery.

【0044】(実施例3)ポリマー電解質層はポリマー
電解質層3と同じ組成のものを用い、面積10cm2
石英ガラス基板に電解質前駆体溶液をキャストし、厚さ
20μmのスペーサーをかまし、その上に石英ガラス基
板を載せて固定し、38mW/cm2の強度で紫外線を
2分間照射し、ゲル状のポリマー電解質層を作製した。
このポリマー電解質層を用いること以外は、実施例2と
同様に電池を作製した。実施例2と3の電池を各々10
0個ずつ組み立て、短絡チェックを行ったところ、実施
例2の電池は短絡数0個、実施例3の電池は短絡数3個
であった。以上のことから、電解質層のイオン伝導度が
高くても、ポリマー電解質層の機械的強度が十分でない
と組み立て時の短絡が発生することが判明した。特に、
ゲル状のポリマー電解質を用いる場合は、ポリマー繊維
あるいは微多孔膜セパレータを電解質層中に加えること
がより好ましいことが判明した。
Example 3 A polymer electrolyte layer having the same composition as that of the polymer electrolyte layer 3 was used. An electrolyte precursor solution was cast on a quartz glass substrate having an area of 10 cm 2 , and a spacer having a thickness of 20 μm was bitten. A quartz glass substrate was placed and fixed thereon, and irradiated with ultraviolet light at an intensity of 38 mW / cm 2 for 2 minutes to produce a gel polymer electrolyte layer.
A battery was fabricated in the same manner as in Example 2, except that this polymer electrolyte layer was used. Each of the batteries of Examples 2 and 3 was
When the batteries of Example 2 were assembled and subjected to a short-circuit check, the number of short-circuits was 0 in the battery of Example 2, and the number of short-circuits was 3 in the battery of Example 3. From the above, it was found that even if the ionic conductivity of the electrolyte layer was high, a short circuit occurred during assembly if the mechanical strength of the polymer electrolyte layer was not sufficient. In particular,
In the case of using a gel polymer electrolyte, it was found that it is more preferable to add a polymer fiber or a microporous membrane separator to the electrolyte layer.

【0045】(実施例4)正極層および負極層にポリマ
ー電解質層4と同じ組成のものを用いること以外は、実
施例1と同様に正極層および負極層を作製した。ポリマ
ー電解質層はポリマー電解質層3と同じ組成のものを用
い、そのポリマー電解質前駆体溶液を、透気度380s
ec/cm3、面積10cm2、厚さ20μmのポリエス
テル製の不織布に浸漬し、前駆体を不織布内部まで浸透
させるため減圧下で15分間放置した。そして38mW
/cm2の強度で紫外線を2分間照射し、ゲル状のポリ
マー電解質層を作製した。この時のポリマー電解質とポ
リマー繊維との重量比は90:10であった。このよう
にして得られた正極層とポリマー電解質層と負極層とを
逐次貼り合わせ電池を作製した。
Example 4 A positive electrode layer and a negative electrode layer were prepared in the same manner as in Example 1, except that the same composition as the polymer electrolyte layer 4 was used for the positive electrode layer and the negative electrode layer. The polymer electrolyte layer having the same composition as that of the polymer electrolyte layer 3 was used.
It was immersed in a polyester non-woven fabric having an ec / cm 3 , an area of 10 cm 2 and a thickness of 20 μm, and was left under reduced pressure for 15 minutes in order to allow the precursor to penetrate into the non-woven fabric. And 38mW
UV light was applied for 2 minutes at an intensity of / cm 2 to produce a gel polymer electrolyte layer. At this time, the weight ratio between the polymer electrolyte and the polymer fiber was 90:10. The positive electrode layer, the polymer electrolyte layer, and the negative electrode layer thus obtained were sequentially bonded to each other to produce a battery.

【0046】(実施例5)ポリマー電解質層に、透気度
500sec/cm3、面積10cm2、厚150μmの
ポリエステル製の不織布を用い、ポリマー電解質とポリ
マー繊維との重量比が95:5であること以外は、実施
例4と同様に電池を作製した。
Example 5 A nonwoven fabric made of polyester having a gas permeability of 500 sec / cm 3 , an area of 10 cm 2 and a thickness of 150 μm was used for the polymer electrolyte layer, and the weight ratio between the polymer electrolyte and the polymer fibers was 95: 5. Except for this, the battery was fabricated in the same manner as in Example 4.

【0047】(実施例6)負極活物質に、X線広角回折
法による(d002)=0.336nm、(Lc)=10
0nm、(La)=97nmでBET法による比表面積
が2m2/g、平均粒径10μmである表面非晶質黒鉛
の粉末を用いること以外は実施例4と同様に電池を作製
した。
Example 6 The negative electrode active material was subjected to X-ray wide angle diffraction (d 002 ) = 0.336 nm and (Lc) = 10.
A battery was produced in the same manner as in Example 4, except that a powder of surface amorphous graphite having a specific surface area of 2 m 2 / g, an average particle diameter of 10 μm according to a BET method at 0 nm, (La) = 97 nm was used.

【0048】(実施例7)正極層および負極層にポリマ
ー電解質層5と同じ組成のものを用いること以外は実施
例6と同様に電池を作製した。
Example 7 A battery was produced in the same manner as in Example 6, except that the same composition as the polymer electrolyte layer 5 was used for the positive electrode layer and the negative electrode layer.

【0049】(実施例8)ポリマー電解質層に、透気度
500sec/cm3、面積10cm2、厚160μmの
ポリエステル製の不織布を用い、ポリマー電解質とポリ
マー繊維との重量比が95:5であること以外は、実施
例8と同様に電池を作製した。実施例4、5、8の電池
を定電流2.3mAで電池電圧4.1Vになるまで充電
し、4.1Vに到達後、定電圧で充電時間12時間充電
した。放電は定電流それぞれ2.3mA、5mA、10
mA、20mAで電池電圧2.75Vになるまで放電し
た。この条件での充放電試験の結果を図2に示す。この
試験の結果、電解質層中のポリマー繊維あるいは微多孔
膜セパレータの厚みが150μmより薄いと、高負荷放
電時の性能が向上し、好ましくは20μm以下であるこ
とが判明した。これらより、高エネルギー密度かつ負荷
特性に優れたリチウム二次電池が得られることがわか
る。
Example 8 A polyester nonwoven fabric having an air permeability of 500 sec / cm 3 , an area of 10 cm 2 and a thickness of 160 μm was used for the polymer electrolyte layer, and the weight ratio between the polymer electrolyte and the polymer fibers was 95: 5. Except for this, the battery was fabricated in the same manner as in Example 8. The batteries of Examples 4, 5, and 8 were charged at a constant current of 2.3 mA until the battery voltage reached 4.1 V, and after reaching 4.1 V, the batteries were charged at a constant voltage for 12 hours. Discharge was constant current of 2.3 mA, 5 mA, 10 mA, respectively.
The battery was discharged at mA and 20 mA until the battery voltage reached 2.75 V. FIG. 2 shows the results of the charge / discharge test under these conditions. As a result of this test, it was found that when the thickness of the polymer fiber or the microporous membrane separator in the electrolyte layer was smaller than 150 μm, the performance at the time of high-load discharge was improved, and preferably 20 μm or less. These results show that a lithium secondary battery having high energy density and excellent load characteristics can be obtained.

【0050】また、実施例4、6、7の電池を各々定電
流2.3mAで電池電圧4.1Vになるまで充電し、
4.1Vに到達後、定電圧で充電時間12時間充電し
た。放電は定電流2.3mAで電池電圧2.75Vにな
るまで放電した。この充放電条件でサイクル特性を評価
した。その結果を図3に示す。この結果より、負極活物
質に表面非晶質黒鉛の粉末を用いた方がポリマー電解質
層との副反応が抑えられるために、サイクル特性が向上
することが判明した。また、正極層、負極層にポリマー
電解質のイオン伝導性高分子の前駆体を混合することに
より、UV照射時の反応率が向上するために、サイクル
特性が向上することがわかる。
The batteries of Examples 4, 6, and 7 were charged at a constant current of 2.3 mA until the battery voltage reached 4.1 V.
After reaching 4.1 V, the battery was charged at a constant voltage for 12 hours. The battery was discharged at a constant current of 2.3 mA until the battery voltage reached 2.75 V. The cycle characteristics were evaluated under these charge and discharge conditions. The result is shown in FIG. From these results, it was found that the use of the surface amorphous graphite powder as the negative electrode active material suppressed side reactions with the polymer electrolyte layer, and thus improved cycle characteristics. In addition, it can be seen that, by mixing the precursor of the ion conductive polymer of the polymer electrolyte into the positive electrode layer and the negative electrode layer, the reaction rate at the time of UV irradiation is improved, so that the cycle characteristics are improved.

【0051】(実施例9)Li−Al合金箔を50μm
厚のNiメッシュ上に圧着プレスし、シート負極を得
た。この電極を31×31mmに切り出し、Ni集電タ
ブを溶接して負極とした。厚みは100μmであった。
二酸化マンガン粉末100重量部、導電剤としてアセチ
レンブラック10重量部、バインダーとしてPVDF7
重量部を乾式混合し、NMP中で撹拌混合し、スラリー
を得た。このスラリーを20μm厚のAl箔にコーティ
ングし、NMPを乾燥除去した後、プレスしてシート状
正極を得た。この電極を30×30mmに切り出し、A
l集電タブを溶接して正極とした。厚みは70μmであ
った。ポリマー電解質層および正極層、さらに電池を実
施例2と同様に作製した。
Example 9 Li-Al alloy foil was 50 μm
It was press-bonded on a thick Ni mesh to obtain a sheet negative electrode. This electrode was cut into 31 × 31 mm, and a Ni current collecting tab was welded to form a negative electrode. The thickness was 100 μm.
100 parts by weight of manganese dioxide powder, 10 parts by weight of acetylene black as a conductive agent, and PVDF7 as a binder
Parts by weight were dry-mixed and stirred and mixed in NMP to obtain a slurry. This slurry was coated on an Al foil having a thickness of 20 μm, NMP was dried and removed, and then pressed to obtain a sheet-shaped positive electrode. This electrode was cut into 30 × 30 mm, and A
The current collecting tab was welded to form a positive electrode. The thickness was 70 μm. A polymer electrolyte layer, a positive electrode layer, and a battery were produced in the same manner as in Example 2.

【0052】(実施例10)ポリマー電解質層にポリマ
ー電解質層3と同じ組成のものを用い、面積10cm2
の石英ガラス基板に電解質前駆体溶液をキャストし、厚
さ20μmのスペーサーをかまし、その上に石英ガラス
基板を載せて固定し、38mW/cm2の強度で紫外線
を2分間照射し、ゲル状のポリマー電解質層を作製し
た。このポリマー電解質層を用いること以外は、実施例
7と同様に電池を作製した。実施例9と10の電池を各
々100個ずつ組み立て、短絡チェックを行ったとこ
ろ、実施例9の方の電池は短絡数0個、実施例10の方
の電池は短絡数4個であった。以上のことから、Li金
属を負極に用いた場合も同様に、ポリマー電解質層の強
度が十分でないと組み立て時の短絡を抑えることができ
ないことが判明した。
[0052] (Example 10) using those same composition as the polymer electrolyte layer 3 on the polymer electrolyte layer, an area 10 cm 2
The electrolyte precursor solution was cast on a quartz glass substrate, and a spacer having a thickness of 20 μm was bitten. The quartz glass substrate was placed on the spacer and fixed, and irradiated with ultraviolet light at an intensity of 38 mW / cm 2 for 2 minutes to form a gel. Was produced. A battery was fabricated in the same manner as in Example 7, except that this polymer electrolyte layer was used. When 100 batteries of Examples 9 and 10 were assembled and a short-circuit check was performed, the battery of Example 9 had 0 short-circuits, and the battery of Example 10 had 4 short-circuits. From the above, it was found that, similarly, even when Li metal was used for the negative electrode, short-circuiting during assembly could not be suppressed unless the strength of the polymer electrolyte layer was sufficient.

【0053】[0053]

【発明の効果】少なくともリチウム含有金属酸化物を活
物質とする正極層と、Li金属、Li合金または炭素材
料を少なくとも活物質とする負極層と、その間にポリマ
ー電解質層が配置されたリチウム二次電池において、前
記ポリマー電解質層を構成するポリマー電解質のイオン
伝導度が、正極層および/または負極層内部に含まれた
それぞれのポリマー電解質マトリックス層を構成するポ
リマー電解質のイオン伝導度よりも低いことにより、組
み立て時の電池の内部短絡を抑えつつ、高負荷放電時に
優れた放電容量を有するリチウム二次電池が提供でき
る。
According to the present invention, a positive electrode layer containing at least a lithium-containing metal oxide as an active material, a negative electrode layer containing at least an Li metal, a Li alloy or a carbon material as an active material, and a lithium secondary layer having a polymer electrolyte layer interposed therebetween. In the battery, the ionic conductivity of the polymer electrolyte constituting the polymer electrolyte layer is lower than the ionic conductivity of the polymer electrolyte constituting each polymer electrolyte matrix layer contained inside the positive electrode layer and / or the negative electrode layer. Further, it is possible to provide a lithium secondary battery having an excellent discharge capacity at the time of high load discharge while suppressing an internal short circuit of the battery at the time of assembly.

【0054】ポリマー電解質層が非水系電解液を保持し
たゲル状のポリマー電解質からなり、かつ前記ポリマー
電解質層にポリマー繊維または微多孔膜セパレータを加
えることにより、組み立て時の電池の内部短絡を抑えつ
つ、安全性および信頼性に優れたリチウム二次電池が提
供できる。ポリマー電解質層の厚さが150μm以下で
あることにより、ポリマー電解質層を構成するポリマー
電解質のイオン伝導度が、正極層および/または負極層
内部に含まれたそれぞれのポリマー電解質マトリックス
層を構成するポリマー電解質のイオン伝導度よりも低い
場合に、さらに高負荷放電性にすぐれ、かつ電極活物質
をより多く電池内に仕込むことが可能となるため、高エ
ネルギー密度を有するリチウム二次電池が提供できる。
負極活物質が炭素材料であり、黒鉛粒子の表面に非晶質
炭素を付着させたものであることにより、ポリマー電解
質との副反応を抑えることが可能となり、サイクル特性
に優れたリチウム二次電池が提供できる。
The polymer electrolyte layer is made of a gel polymer electrolyte holding a non-aqueous electrolyte, and a polymer fiber or a microporous membrane separator is added to the polymer electrolyte layer to prevent internal short circuit of the battery during assembly. Thus, a lithium secondary battery excellent in safety and reliability can be provided. When the thickness of the polymer electrolyte layer is 150 μm or less, the ionic conductivity of the polymer electrolyte constituting the polymer electrolyte layer is reduced by the polymer constituting each polymer electrolyte matrix layer contained inside the positive electrode layer and / or the negative electrode layer. When the ionic conductivity is lower than the ionic conductivity of the electrolyte, it is possible to provide a lithium secondary battery having a high energy density because the battery has more excellent high-load discharge property and more electrode active materials can be charged into the battery.
Since the negative electrode active material is a carbon material and amorphous carbon is attached to the surface of graphite particles, it is possible to suppress side reactions with the polymer electrolyte, and a lithium secondary battery with excellent cycle characteristics Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の電池の基本的な構造な図である。FIG. 1 is a basic structural diagram of a battery of the present invention.

【図2】実施例4、5、8の電池の充放電試験の結果を
示すグラフである。
FIG. 2 is a graph showing the results of a charge / discharge test of the batteries of Examples 4, 5, and 8.

【図3】実施例4、6、7の電池のサイクル特性を示す
グラフである。
FIG. 3 is a graph showing cycle characteristics of the batteries of Examples 4, 6, and 7.

【符号の説明】[Explanation of symbols]

1 電極端子 2 ポリマー電解質層 3 正極材料とポリマー電解質 4 正極集電体 5 負極集電体 6 負極材料とポリマー電解質 7 外装材 Reference Signs List 1 electrode terminal 2 polymer electrolyte layer 3 positive electrode material and polymer electrolyte 4 positive electrode current collector 5 negative electrode current collector 6 negative electrode material and polymer electrolyte 7 exterior material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西島 主明 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 見立 武仁 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 山田 和夫 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 5H021 CC01 CC05 EE02 HH03 5H029 AJ02 AJ03 AK03 AL06 AM03 AM04 AM05 AM07 AM16 BJ04 BJ13 CJ22 DJ04 DJ12 DJ16 EJ12 HJ04 5H050 AA02 AA08 BA17 CA08 CA09 CB07 DA09 EA10 FA17 FA18 HA04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Chiaki Nishijima 22-22 Nagaikecho, Abeno-ku, Osaka City, Osaka Inside Sharp Corporation (72) Inventor Takehito 22-22 Nagaikecho, Abeno-ku, Osaka City, Osaka Within Sharp Corporation (72) Inventor Kazuo Yamada 22-22, Nagaike-cho, Abeno-ku, Osaka-shi, Osaka F-term within Sharp Corporation (reference) 5H021 CC01 CC05 EE02 HH03 5H029 AJ02 AJ03 AK03 AL06 AM03 AM04 AM05 AM07 AM16 BJ04 BJ13 CJ22 DJ04 DJ12 DJ16 EJ12 HJ04 5H050 AA02 AA08 BA17 CA08 CA09 CB07 DA09 EA10 FA17 FA18 HA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくともリチウム含有金属酸化物また
は金属酸化物を活物質とする正極層と、Li金属、Li
合金または炭素材料を少なくとも活物質とする負極層
と、その間にポリマー電解質層が配置されたリチウム二
次電池において、正極層および/または負極層が、ポリ
マー電解質マトリックス層を含み、前記ポリマー電解質
層を構成するポリマー電解質のイオン伝導度が、ポリマ
ー電解質マトリックス層を構成するポリマー電解質のイ
オン伝導度よりも低いことを特徴とするリチウム二次電
池。
1. A positive electrode layer comprising at least a lithium-containing metal oxide or a metal oxide as an active material;
In a lithium secondary battery in which a negative electrode layer containing at least an alloy or a carbon material as an active material and a polymer electrolyte layer disposed therebetween, the positive electrode layer and / or the negative electrode layer include a polymer electrolyte matrix layer, and the polymer electrolyte layer includes A lithium secondary battery, wherein the ionic conductivity of the constituent polymer electrolyte is lower than the ionic conductivity of the polymer electrolyte constituting the polymer electrolyte matrix layer.
【請求項2】 ポリマー電解質層が非水系電解液を保持
したゲル状のポリマー電解質からなり、かつポリマー電
解質層がポリマー繊維または微多孔膜セパレータを含有
していることを特徴とする請求項1に記載のリチウム二
次電池。
2. The method according to claim 1, wherein the polymer electrolyte layer is made of a gel polymer electrolyte holding a non-aqueous electrolyte, and the polymer electrolyte layer contains a polymer fiber or a microporous membrane separator. The lithium secondary battery according to the above.
【請求項3】 ポリマー電解質層の厚さが150μm以
下であることを特徴とする請求項1または2に記載のリ
チウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the thickness of the polymer electrolyte layer is 150 μm or less.
【請求項4】 負極活物質が炭素材料であり、炭素材料
が黒鉛粒子の表面に非晶質炭素を付着させたものである
ことを特徴とする請求項1乃至3に記載のリチウム二次
電池。
4. The lithium secondary battery according to claim 1, wherein the negative electrode active material is a carbon material, and the carbon material is obtained by attaching amorphous carbon to the surface of graphite particles. .
JP2000202541A 2000-07-04 2000-07-04 Lithium secondary battery Expired - Fee Related JP4563555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000202541A JP4563555B2 (en) 2000-07-04 2000-07-04 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000202541A JP4563555B2 (en) 2000-07-04 2000-07-04 Lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010104179A Division JP2010199083A (en) 2010-04-28 2010-04-28 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002025619A true JP2002025619A (en) 2002-01-25
JP4563555B2 JP4563555B2 (en) 2010-10-13

Family

ID=18700054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000202541A Expired - Fee Related JP4563555B2 (en) 2000-07-04 2000-07-04 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4563555B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001878A1 (en) * 2002-06-19 2003-12-31 Sharp Kabushiki Kaisha Lithium polymer secondary battery and process for producing the same
JP2009016340A (en) * 2007-06-06 2009-01-22 Nissan Motor Co Ltd Secondary battery and its manufacturing method
US8450011B2 (en) 2007-06-06 2013-05-28 Nissan Motor Co., Ltd. Secondary battery and method of producing the secondary battery
KR20150059135A (en) * 2012-04-05 2015-05-29 이머리스 그래파이트 앤드 카본 스위춰랜드 리미티드 Surface-modified low surface area graphite, processes for making it, and applications of the same
WO2017138361A1 (en) * 2016-02-09 2017-08-17 日立マクセル株式会社 Nonaqueous electrolyte battery
CN111613771A (en) * 2020-06-29 2020-09-01 蜂巢能源科技有限公司 Battery cathode and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368778A (en) * 1991-06-17 1992-12-21 Sharp Corp Carbon negative electrode for secondary battery
JPH08124597A (en) * 1994-10-26 1996-05-17 Sanyo Electric Co Ltd Solid electrolytic secondary cell
JPH09185962A (en) * 1995-12-28 1997-07-15 Japan Energy Corp Lithium battery
JPH1040914A (en) * 1996-05-23 1998-02-13 Sharp Corp Manufacture of nonaqueous secondary battery and negative pole active substance
JPH10255842A (en) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd Lithium-polymer secondary battery
JPH11297327A (en) * 1998-04-06 1999-10-29 Mitsubishi Chemical Corp Lithium secondary battery
JP2000113872A (en) * 1998-10-08 2000-04-21 Yuasa Corp Nonaqueous electrolyte secondary battery and its manufacture
JP2000149905A (en) * 1998-11-10 2000-05-30 Sony Corp Solid electrolyte battery
JP2000182600A (en) * 1998-12-18 2000-06-30 Yuasa Corp Lithium battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368778A (en) * 1991-06-17 1992-12-21 Sharp Corp Carbon negative electrode for secondary battery
JPH08124597A (en) * 1994-10-26 1996-05-17 Sanyo Electric Co Ltd Solid electrolytic secondary cell
JPH09185962A (en) * 1995-12-28 1997-07-15 Japan Energy Corp Lithium battery
JPH1040914A (en) * 1996-05-23 1998-02-13 Sharp Corp Manufacture of nonaqueous secondary battery and negative pole active substance
JPH10255842A (en) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd Lithium-polymer secondary battery
JPH11297327A (en) * 1998-04-06 1999-10-29 Mitsubishi Chemical Corp Lithium secondary battery
JP2000113872A (en) * 1998-10-08 2000-04-21 Yuasa Corp Nonaqueous electrolyte secondary battery and its manufacture
JP2000149905A (en) * 1998-11-10 2000-05-30 Sony Corp Solid electrolyte battery
JP2000182600A (en) * 1998-12-18 2000-06-30 Yuasa Corp Lithium battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001878A1 (en) * 2002-06-19 2003-12-31 Sharp Kabushiki Kaisha Lithium polymer secondary battery and process for producing the same
JP2009016340A (en) * 2007-06-06 2009-01-22 Nissan Motor Co Ltd Secondary battery and its manufacturing method
US8450011B2 (en) 2007-06-06 2013-05-28 Nissan Motor Co., Ltd. Secondary battery and method of producing the secondary battery
US8852295B2 (en) 2007-06-06 2014-10-07 Nissan Motor Co., Ltd. Secondary battery and method of producing the secondary battery
KR20150059135A (en) * 2012-04-05 2015-05-29 이머리스 그래파이트 앤드 카본 스위춰랜드 리미티드 Surface-modified low surface area graphite, processes for making it, and applications of the same
JP2015517971A (en) * 2012-04-05 2015-06-25 イメリス グラファイト アンド カーボン スイッツァランド リミティド Surface-modified low surface area graphite, its production method and its use
US10305107B2 (en) 2012-04-05 2019-05-28 Imerys Graphite & Carbon Switzerland Ltd. Surface-modified low surface area graphite, processes for making it, and applications of the same
KR102055822B1 (en) * 2012-04-05 2019-12-13 이머리스 그래파이트 앤드 카본 스위춰랜드 리미티드 Surface-modified low surface area graphite, processes for making it, and applications of the same
WO2017138361A1 (en) * 2016-02-09 2017-08-17 日立マクセル株式会社 Nonaqueous electrolyte battery
CN111613771A (en) * 2020-06-29 2020-09-01 蜂巢能源科技有限公司 Battery cathode and preparation method and application thereof
CN111613771B (en) * 2020-06-29 2022-03-22 蜂巢能源科技有限公司 Battery cathode and preparation method and application thereof

Also Published As

Publication number Publication date
JP4563555B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
JP3566891B2 (en) Lithium secondary battery
JP4014816B2 (en) Lithium polymer secondary battery
JP4201308B2 (en) Lithium secondary battery separator and lithium secondary battery using the same
JP3443773B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4945054B2 (en) Lithium polymer secondary battery and manufacturing method thereof
KR100306870B1 (en) Polymer electrolyte and lithium-polymer battery using the same
JP2002110244A (en) Lithium secondary battery
JP2010199083A (en) Lithium secondary battery
JP4563555B2 (en) Lithium secondary battery
JP4979049B2 (en) Non-aqueous secondary battery
JP2003109574A (en) Nonaqueous electrolyte secondary battery
US20040048159A1 (en) Lithium polymer secondary battery
JP2000012097A (en) Nonaqueous electrolyte battery
JP2003178804A (en) Nonaqueous electrolyte secondary battery
JP2002134173A (en) Method for manufacturing nonaqueous secondary battery
JP2000195522A (en) Nonaqueous electrolyte seconday battery
JP2001167794A (en) Nonaqueous electrolyte cell
JP2001345093A (en) Positive electrode for nonaqueous secondary cell, negative electrode for nonaqueous secondary cell and nonaqueous secondary cell
JP5109381B2 (en) Nonaqueous electrolyte secondary battery
JP2001035532A (en) Nonaqueous electrolyte secondary battery
JP2008047402A (en) Nonaqueous electrolyte secondary battery
JP2003157832A (en) Nonaqueous electrolyte secondary battery
JP3503544B2 (en) Electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP2003077546A (en) Nonaqueous electrolyte secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4563555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees