JP2000208167A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000208167A
JP2000208167A JP11010882A JP1088299A JP2000208167A JP 2000208167 A JP2000208167 A JP 2000208167A JP 11010882 A JP11010882 A JP 11010882A JP 1088299 A JP1088299 A JP 1088299A JP 2000208167 A JP2000208167 A JP 2000208167A
Authority
JP
Japan
Prior art keywords
battery
active material
lithium
electrode active
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11010882A
Other languages
Japanese (ja)
Other versions
JP3575308B2 (en
Inventor
Jo Sasaki
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP01088299A priority Critical patent/JP3575308B2/en
Publication of JP2000208167A publication Critical patent/JP2000208167A/en
Application granted granted Critical
Publication of JP3575308B2 publication Critical patent/JP3575308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high capacity and high safety. SOLUTION: This secondary battery having a positive electrode active material of a lithium-containing complex oxide, a negative electrode active material for storing and releasing lithium ions, and a nonaqueous electrolyte is used at not more than a prescribed voltage that is less than a nominal voltage. A lithium amount corresponding to a charge capacity D of an expression A- B<=D<=C-A is precharged in the negative electrode active material, wherein A denotes a discharge capacity of the battery when the battery is charged to the nominal voltage, B denotes a discharge capacity of the battery when the battery is charged to the prescribed voltage less than the nominal voltage, and C denotes a maximum reversible discharge amount of the negative electrode active material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高容量で、高い安
全性、信頼性を有する非水電解質二次電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having high capacity, high safety and reliability.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、電子機器の
駆動用電源やメモリ保持電源、例えば、携帯電話、コー
ドレス機器の電源、メモリーバックアップ用電源等の各
種の日常用途に需要が拡大している。また、電気自動車
等の比較的大きな電力が必要な用途の電力貯蔵用や人工
衛星用のバッテリー等の安全性、信頼性を特に必要とす
る大型の電源用としての特性の向上に関する研究開発が
盛んになされている。
2. Description of the Related Art Demand for lithium ion secondary batteries is expanding for various daily uses such as a power supply for driving electronic equipment and a power supply for holding a memory, for example, a power supply for mobile phones, cordless equipment, and a power supply for memory backup. . In addition, research and development on improving the characteristics of large power sources that require particularly high safety and reliability, such as power storage for applications that require relatively large power such as electric vehicles and batteries for artificial satellites, etc., have been actively conducted. Has been made.

【0003】リチウムイオン二次電池は、可燃性の有機
溶媒を電解液に用いているために、温度の異常上昇、過
放電、過充電、短絡等による発火、発煙の危険性があ
り、安全性の向上のために種々の手段が工夫されてきた
が、大型の電源用としてはより高度の安全性、信頼性の
確保が求められる。
[0003] Since a lithium ion secondary battery uses a flammable organic solvent as an electrolyte, there is a risk of abnormal temperature rise, over-discharge, over-charge, ignition or smoke due to short-circuit, etc. Various means have been devised to improve the quality, but higher security and reliability are required for large power supplies.

【0004】[0004]

【発明が解決しようとする課題】リチウムイオン二次電
池の高容量化を図る方法の一つに、正極活物質の充電深
度を最大限深く設定する方法がある。この場合、通常
は、LiCoO2 等の正極活物質が相転移を起こしてサ
イクル寿命特性が劣化する寸前まで充電されている。し
かし、この手法の問題点は、充電深度が深いために、満
充電時の正極活物質の熱安定性が低下し、電池内部の短
絡時等に電池が発熱・発火を起こす危険性が比較的高い
ことである。
One of the methods for increasing the capacity of a lithium ion secondary battery is to set the charge depth of the positive electrode active material as deeply as possible. In this case, usually, the positive electrode active material such as LiCoO 2 is charged up to the stage just before the cycle life characteristic is deteriorated due to the phase transition. However, the problem with this method is that since the charge depth is deep, the thermal stability of the positive electrode active material at the time of full charge decreases, and there is a relative danger that the battery will generate heat or fire when a short circuit occurs inside the battery. It is expensive.

【0005】リチウムイオン二次電池の安全性は、正極
活物質の充電深度に大きく関与しており、充電深度が深
いほど電池内部の短絡時や圧壊時の発煙・発火の危険性
は増す。これに関し、本発明者らは、LiCoO2
は、充電深度が130mAh/gを超えた辺りから、熱
的に不安定になることを見出した。
[0005] The safety of a lithium ion secondary battery greatly depends on the charge depth of the positive electrode active material. As the charge depth becomes deeper, the danger of smoking or ignition at the time of short-circuiting or crushing inside the battery increases. In this regard, the present inventors have found that LiCoO 2 becomes thermally unstable when the charge depth exceeds about 130 mAh / g.

【0006】しかし、LiCoO2 の場合、正極活物質
の充電深度を130mAh/g以下に設定するだけで
は、電池の安全性は向上するが、同時に容量の大幅な減
少につながってしまうため、実性能を満足する容量を有
する電池を開発するためには、高容量化技術との組み合
わせが必須となる。
However, in the case of LiCoO 2 , if the charging depth of the positive electrode active material is simply set to 130 mAh / g or less, the safety of the battery is improved, but at the same time, the capacity is significantly reduced. In order to develop a battery having a capacity satisfying the above, a combination with a technology for increasing the capacity is essential.

【0007】[0007]

【課題を解決するための手段】本発明は、リチウム含有
複合酸化物である正極活物質とリチウムイオンを吸蔵・
放出する負極活物質と、非水電解質とを備えてなる二次
電池において、公称電圧より下げた所定の電圧以下で用
いるようになされており、かつ、公称電圧まで充電した
際の電池の放電容量をAとし、公称電圧より下げた所定
の電圧まで充電した際の電池の放電容量をBとし、ま
た、負極活物質の最大可逆放電量をCとしたとき、下記
の式のDに相当する充電容量分のリチウム量をプリチャ
ージした負極活物質を用いることを特徴とする高容量
で、安全性に優れた非水電解質二次電池である。 式 A−B≦D≦C−A
SUMMARY OF THE INVENTION The present invention relates to a positive electrode active material, which is a lithium-containing composite oxide, and a device for storing lithium ions.
In a secondary battery including a negative electrode active material to be released and a non-aqueous electrolyte, the secondary battery is used at a predetermined voltage lower than a nominal voltage, and discharge capacity of the battery when charged to the nominal voltage Is A, the discharge capacity of the battery when charged to a predetermined voltage lower than the nominal voltage is B, and the maximum reversible discharge amount of the negative electrode active material is C, the charge corresponding to D in the following equation: A non-aqueous electrolyte secondary battery having a high capacity and excellent safety, characterized by using a negative electrode active material precharged with a lithium amount corresponding to a capacity. Formula AB ≦ D ≦ CA

【0008】さらに、本発明は、リチウム含有複合酸化
物がコバルト酸リチウムであり、正極利用率が130m
Ah/g以下となる電圧以下で用いるようになされてお
り、かつ、正極利用率が140mAh/g〜150mA
h/gとなる電圧まで充電した際の電池の放電容量をA
とし、正極利用率が130mAh/g以下となる電圧ま
で充電した際の電池の放電容量をBとし、また、負極活
物質の最大可逆放電量をCとしたとき、下記の式のDに
相当する充電容量分のリチウム量をプリチャージした負
極活物質を用いることを特徴とする非水電解質二次電池
である。 式 A−B≦D≦C−A
Further, according to the present invention, the lithium-containing composite oxide is lithium cobalt oxide, and the utilization rate of the positive electrode is 130 m
Ah / g or less, and the positive electrode utilization rate is 140 mAh / g to 150 mA.
The discharge capacity of the battery when charged to a voltage of h / g
When the discharge capacity of the battery when charged to a voltage at which the positive electrode utilization rate is 130 mAh / g or less is B, and the maximum reversible discharge amount of the negative electrode active material is C, this corresponds to D in the following equation. A non-aqueous electrolyte secondary battery using a negative electrode active material precharged with a lithium amount corresponding to a charge capacity. Formula AB ≦ D ≦ CA

【0009】本発明は、公称電圧より下げた所定の電圧
以下で用いるようになされており、これにより電池の安
全性を高めたものであり、さらに、このような状態で用
いても、従来に比べて放電容量の低下を起こすことなく
構成されたものである。
The present invention is intended to be used at a predetermined voltage lower than the nominal voltage, thereby improving the safety of the battery. In comparison, the discharge capacity is not reduced.

【0010】負極活物質にプリチャージするリチウム量
Dの値を、公称電圧まで充電した際の電池の放電容量
A、公称電圧より下げた所定の電圧まで充電した際の電
池の放電容量Bとの差A−Bと同等以上とするのは、放
電容量の低下を補うために必要な条件であり、また、負
極活物質にプリチャージするリチウム量Dの値を、負極
の最大可逆放電量Cとして、公称電圧まで充電した際の
電池の放電容量Aとの差C−Aと同等以下とするのは、
リチウムを過度に補足すると充放電によりリチウムの樹
枝状電析を生じる問題があり、これを防止するために必
要な条件である。
The value of the amount of lithium D to be precharged to the negative electrode active material is defined as the discharge capacity A of the battery when charged to a nominal voltage and the discharge capacity B of the battery when charged to a predetermined voltage lower than the nominal voltage. The difference AB is equal to or more than the condition required to compensate for the decrease in the discharge capacity, and the value of the lithium amount D to be precharged to the negative electrode active material is defined as the maximum reversible discharge amount C of the negative electrode. , The difference between the discharge capacity A of the battery when charged to the nominal voltage and the difference CA is equal to or less than
If lithium is excessively supplemented, there is a problem that lithium dendritic deposition occurs due to charge and discharge, which is a necessary condition to prevent this.

【0011】リチウムイオン二次電池の公称電圧は、サ
イクル寿命特性が劣化する直前の電圧として決められる
電圧であって、例えば、リチウム含有複合酸化物がコバ
ルト酸リチウムである場合には、正極利用率が140m
Ah/g〜150mAh/gとなる電圧(これは通常
4.1〜4.2Vに相当)であり、これにより放電容量
Aが決まる。そして、できるだけ容量を大きくするため
には、できるだけ大きな電圧を基準にするのが好まし
い。公称電圧より下げた所定の電圧は、低ければそれだ
け安全性が向上することになるが、例えばリチウム含有
酸化物がコバルト酸リチウムである場合には、正極利用
率が130mAh/g以下となる電圧(これは通常4.
05V以下の電圧に相当)が好ましく、容量をできるだ
け大きくするために、より好ましくは130mAh/g
となる電圧(これは通常4.05Vの電圧に相当)とす
るのが良い。
The nominal voltage of a lithium ion secondary battery is a voltage determined as a voltage immediately before the cycle life characteristic deteriorates. For example, when the lithium-containing composite oxide is lithium cobalt oxide, the positive electrode utilization factor Is 140m
The voltage is Ah / g to 150 mAh / g (this usually corresponds to 4.1 to 4.2 V), and this determines the discharge capacity A. In order to increase the capacity as much as possible, it is preferable to use as large a voltage as possible. The lower the predetermined voltage lower than the nominal voltage, the higher the safety is. However, for example, when the lithium-containing oxide is lithium cobalt oxide, the voltage at which the positive electrode utilization rate is 130 mAh / g or less ( This is usually 4.
05V or less), and more preferably 130 mAh / g to maximize the capacity.
(This usually corresponds to a voltage of 4.05 V).

【0012】負極活物質の最大可逆放電量Cは、材料に
より異なるが、金属リチウムの悪影響を与える析出を生
じない範囲で可逆的に充放電を行える量として定まる。
The maximum reversible discharge amount C of the negative electrode active material depends on the material, but is determined as an amount capable of reversibly charging / discharging within a range that does not cause precipitation that adversely affects the lithium metal.

【0013】正極活物質の充電深度は、正極材料の種類
に応じて、それを用いた非水電解質二次電池の安全性を
考慮して適宜定める。例えば、LiCO2 の場合、釘刺
し試験結果によれば、140mAh/g(約4.1V充
電)では発煙を起こすが、130mAh/g(約4.0
5V充電)では発煙を起こさないように、それぞれの正
極材料によって安全性を確保するための所定の充電深度
レベルがあり、本発明の非水電解質二次電池は、正極材
料の種類に応じて、充電深度を安全性確保のための所定
の充電深度レベルとしたものである。
The depth of charge of the positive electrode active material is appropriately determined according to the type of the positive electrode material in consideration of the safety of the nonaqueous electrolyte secondary battery using the same. For example, in the case of LiCO 2 , according to the nail penetration test result, smoke is generated at 140 mAh / g (about 4.1 V charge), but 130 mAh / g (about 4.0 V).
(5 V charge), there is a predetermined charging depth level for ensuring safety by each positive electrode material so as not to cause smoke. The non-aqueous electrolyte secondary battery of the present invention has the following characteristics depending on the type of the positive electrode material. The charging depth is a predetermined charging depth level for ensuring safety.

【0014】[0014]

【発明の実施の形態】本発明では、正、負の電極板をシ
ート状にし、これらの電極をセパレータを介してロール
状に巻回した渦巻状構造を採用することができる。この
ようなシート状極板を製造する方法としては、ペースト
状の電極合剤をリバースロール式、ドクターブレード方
式等により銅、アルミニウム等の金属箔等の集電体シー
ト上に塗工する。電極合剤を塗布したシート状極板は、
熱風乾燥や真空乾燥した後ロールプレス機により均一に
加圧圧縮し、電極多孔度を約25〜50%の範囲に均一
に調整する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a spiral structure in which positive and negative electrode plates are formed into a sheet and these electrodes are wound in a roll via a separator can be employed. As a method for producing such a sheet-like electrode plate, a paste-like electrode mixture is applied on a current collector sheet such as a metal foil such as copper or aluminum by a reverse roll method, a doctor blade method, or the like. The sheet-shaped electrode plate coated with the electrode mixture
After hot-air drying or vacuum drying, it is uniformly pressed and compressed by a roll press machine to uniformly adjust the electrode porosity to a range of about 25 to 50%.

【0015】加圧圧縮の際の圧力は、通常は、200〜
1000kg/cm2 が好ましい。これらの方法で製造
したシート状極板は、円筒形、長円筒形、角型等の電池
1個分の長さに裁断し、正極シート、セパレータ、負極
シートを順次積層した極板群を芯材を中心にしてロール
状に巻回して電池の容器に収納して使用する。
The pressure at the time of pressurization and compression is usually 200 to
1000 kg / cm 2 is preferred. The sheet-shaped electrode plate manufactured by these methods is cut into a length of one battery such as a cylinder, a long cylinder, a square, and the like, and a positive electrode sheet, a separator, and a negative electrode sheet are laminated in this order. The material is wound around a roll and stored in a battery container for use.

【0016】非水電解質電池のリチウムイオンを吸蔵・
放出する負極活物質としては、通常、炭素材料(例え
ば、黒鉛,石油コークス,クレゾール樹脂焼成炭素,フ
ラン樹脂焼成炭素,ポリアクリロニトリル繊維焼成炭
素,気相成長炭素,メソフェーズピッチ焼成炭素等)、
LiFe2 2 、LiWO2 等のLi含有複合酸化物、
Li7 MnN4 、Li3 FeN2 、Li3 AlN2 等の
Li含有複合窒化物、AlSb、Mg2 Ge、Mg2
n等の金属間化合物カルコゲン材料、Lix SiO
y (0≦x,0<y<2)で示されるケイ素の低級酸化
物やケイ酸塩等の種々の材料を使用でき、本発明におい
ては、その種類は、特に限定されない。
Occludes lithium ions in non-aqueous electrolyte batteries
As the anode active material to be released, a carbon material (eg,
For example, graphite, petroleum coke, cresol resin calcined carbon,
Run resin fired carbon, polyacrylonitrile fiber fired carbon
Element, vapor grown carbon, mesophase pitch calcined carbon, etc.),
LiFeTwoOTwo, LiWOTwoLi-containing composite oxides such as
Li7MnNFour, LiThreeFeNTwo, LiThreeAlNTwoEtc.
Li-containing composite nitride, AlSb, MgTwoGe, MgTwoS
n and other intermetallic compound chalcogen materials, LixSiO
yLower oxidation of silicon represented by (0 ≦ x, 0 <y <2)
Various materials such as materials and silicates can be used.
Thus, the type is not particularly limited.

【0017】リチウム含有複合酸化物である正極活物質
の種類は、特に限定されず、例えば、LiCoO2 、L
iNiO2 、LiMnO2 、LiMn2 4 、LiCr
3 8 、LiTi2 O4、LiFeO2 等各種の材料を
使用できる。正極活物質は、例えば、導電助剤のカーボ
ン粉末と結着剤のポリフッ化ビニリデンとを混合して溶
剤のN−メチルピロリドンに溶解してペースト状にして
正極集電体に塗布する。
A positive electrode active material which is a lithium-containing composite oxide
Is not particularly limited. For example, LiCoOTwo, L
iNiOTwo, LiMnOTwo, LiMnTwoOFour, LiCr
ThreeO 8, LiTiTwoO4, LiFeOTwoAnd various materials
Can be used. The positive electrode active material is, for example, a carbohydrate conductive agent.
Powder and polyvinylidene fluoride as a binder
Dissolve in N-methylpyrrolidone to make a paste
Apply to positive electrode current collector.

【0018】電解質としては、例えばプロピレンカーボ
ネート、エチレンカーボネート、ジメチルカーボネー
ト、ジエチルカーボネート、γーブチロラクトン、1,
2−ジメトキシエタン、テトラヒドロキシフラン等の非
プロトン有機溶媒の少なくとも1種以上と、これらの溶
媒に溶ける種々のリチウム塩、例えば、LiClO4
LiBF6 、LiPF6 、LiCF3 SO3 、LiCF
3 CO2 、LiAsF6等を使用できる。好ましい非水
電解液の具体例としては、例えば、1MのLiPF6
エチレンカーボネート+ジメチルカ−ボネート+ジエチ
ルカーボネート(2:2:1)を用いる。
Examples of the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone,
At least one or more aprotic organic solvents such as 2-dimethoxyethane and tetrahydroxyfuran and various lithium salts soluble in these solvents, for example, LiClO 4 ,
LiBF 6 , LiPF 6 , LiCF 3 SO 3 , LiCF
3 CO 2 , LiAsF 6 or the like can be used. Specific examples of preferable non-aqueous electrolyte include, for example, 1M LiPF 6 /
Ethylene carbonate + dimethyl carbonate + diethyl carbonate (2: 2: 1) is used.

【0019】セパレータとしては、厚み10〜50μm
の微多孔性フイルム(材質:ポリエチレン、ポリプロピ
レン)、リチウムイオン導電性固体電解質シート等のシ
ート状のものの他に、正極または負極シートの表面に直
接形成してなる絶縁層があげられる。絶縁層の厚みは、
1〜50μmが好ましく、材質は、リチウムイオン導電
性樹脂、リチウムイオン伝導性無機材料(セラミック
ス、ガラス)等が使用できる。
The separator has a thickness of 10 to 50 μm.
In addition to the above-mentioned microporous films (materials: polyethylene and polypropylene), lithium ion conductive solid electrolyte sheets, and other sheet-like materials, an insulating layer directly formed on the surface of a positive electrode or negative electrode sheet can be used. The thickness of the insulating layer is
The thickness is preferably 1 to 50 μm, and as the material, a lithium ion conductive resin, a lithium ion conductive inorganic material (ceramics, glass) or the like can be used.

【0020】負極へのLiのプリチャージ方法自体は、
予備吸蔵や予備挿入と称される公知の方法を使用でき
る。例えば、黒鉛材料からなる負極とリチウム金属電極
とをリチウム金属塩を含む非水電解液中に浸漬し、両極
を外部短絡して黒鉛材料に上記式のDに相当する容量分
のLiを吸蔵させる。
The method of precharging Li to the negative electrode itself is as follows.
A known method called pre-storing or pre-inserting can be used. For example, a negative electrode made of a graphite material and a lithium metal electrode are immersed in a non-aqueous electrolyte containing a lithium metal salt, and both electrodes are externally short-circuited to cause the graphite material to occlude Li by an amount corresponding to D in the above formula. .

【0021】また、例えば、厚み30μm程度のリチウ
ム金属、Li−Al、Li−Sn等のLi合金、Li合
金の混合物、Li合金の酸化物からなる箔や微粉末を負
極表面に貼り付けたり、塗布分散させてもよい。また、
これらのリチウムをエージングして負極に拡散処理して
もよい。この場合、式A−B≦D≦C−Aを満たすリチ
ウム量とリチウム箔の厚み、微粉末の量は、1cc=2
060mAhに相当、1mg=3.86mAhに相当す
る関係を基準として定めればよい。
Further, for example, a foil or fine powder of lithium metal having a thickness of about 30 μm, a Li alloy such as Li—Al, Li—Sn, a mixture of Li alloys, and an oxide of a Li alloy is attached to the surface of the negative electrode, It may be applied and dispersed. Also,
The lithium may be aged and diffused to the negative electrode. In this case, the amount of lithium, the thickness of the lithium foil, and the amount of fine powder satisfying the formula AB ≦ D ≦ CA are 1 cc = 2.
The relationship may be determined based on the relationship corresponding to 060 mAh and 1 mg = 3.86 mAh.

【0022】[0022]

【実施例】実施例1 正極活物質として平均粒径10μmのLiCoO2 を9
0重量部、導電剤としてアセチレンブラックを5重量部
の割合でそれぞれ混合し、さらに結着剤としてポリフッ
化ビニリデンを5重量部の割合で加え、溶媒としてNメ
チル−2−ピロリドンを添加し、混練して、スラリー状
の正極合剤塗布液を作製した。次いで、この正極合剤塗
布液を厚さ20μmのアルミニウム箔の表裏両面に、同
じ塗布重量(単位面積当たり)となるよう、片面ずつ塗
布した。
EXAMPLES Example 1 9 LiCoO 2 having an average particle size of 10 μm was used as a positive electrode active material.
0 parts by weight, acetylene black as a conductive agent was mixed at a ratio of 5 parts by weight, polyvinylidene fluoride was added at a ratio of 5 parts by weight as a binder, and N-methyl-2-pyrrolidone was added as a solvent and kneaded. Thus, a slurry-like positive electrode mixture coating solution was prepared. Next, this positive electrode mixture coating solution was applied to both sides of an aluminum foil having a thickness of 20 μm so as to have the same application weight (per unit area), one by one.

【0023】負極は、平均粒径20μm、結晶性Lc=
500A程度の人造黒鉛を90重量部、結着剤としてポ
リフッ化ビニリデンを10重量部の割合で加え、溶媒と
してNメチル−2−ピロリドンを添加し、混練して、ス
ラリー状の負極合剤塗布液を厚さ12μmの銅箔の表裏
両面に、同じ塗布重量(単位面積当り)となるよう、片
面ずつ塗布したものを用いた。
The negative electrode has an average particle size of 20 μm and a crystalline Lc =
90 parts by weight of artificial graphite of about 500 A, 10 parts by weight of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone as a solvent, kneading, and a slurry-like negative electrode mixture coating solution Was applied to both sides of a copper foil having a thickness of 12 μm so as to have the same application weight (per unit area).

【0024】これらの正極シートおよび負極シートを熱
風乾燥し、ロールプレスにより圧縮加工した。多孔度
は、正負極ともに30%であった。このときの電極合剤
密度は、負極1.5g/cm3 、正極3.2g/cm3
となった。次いで、正、負極シートを厚み25μmのポ
リエチレン製微多孔膜セパレータを介して、正、負極シ
ートとも表面を外側に、裏面を内側になるようにしてロ
ール状に巻回し、長円筒形とした。
These positive and negative electrode sheets were dried with hot air and compressed by a roll press. The porosity was 30% for both the positive and negative electrodes. Electrode mixture density at this time, negative 1.5 g / cm 3, a positive electrode 3.2 g / cm 3
It became. Next, the positive and negative electrode sheets were wound in a roll shape through a 25-μm-thick polyethylene microporous membrane separator so that both the positive and negative electrode sheets had their front surfaces facing out and their back surfaces facing inward to form a long cylindrical shape.

【0025】この巻き終わったエレメントを電池ケース
外で、容積比で4:6のエチレンカーボネートとメチル
エチルカーボネート(EC+DMC)の混合溶液に六フ
ッ化リン酸リチウム(LiPF6 )を1モル/リットル
溶解した電解液中に浸し、負極と金属リチウムを短絡し
て下記の表1に示す条件でプリチャージを行った。
The wound element was dissolved outside the battery case in a mixed solution of ethylene carbonate and methyl ethyl carbonate (EC + DMC) in a volume ratio of 4: 6 by dissolving lithium hexafluorophosphate (LiPF 6 ) at 1 mol / liter. The negative electrode and metallic lithium were short-circuited and precharged under the conditions shown in Table 1 below.

【0026】[0026]

【表1】 R1は、プリチャージなしの比較例である。充電方法
は、定電流充電とし、カットオフ電圧は、間欠充電の電
池番号1は、0.65Vとし、それ以外は0.0Vとし
た。Dの値に相当する充電電気量は計算値である。電池
番号2、3、4は、充電電流を変えて対比したものであ
る。
[Table 1] R1 is a comparative example without precharge. The charging method was constant-current charging, and the cutoff voltage was 0.65 V for battery number 1 for intermittent charging, and 0.0 V for the rest. The amount of charged electricity corresponding to the value of D is a calculated value. Battery numbers 2, 3, and 4 are obtained by changing the charging current.

【0027】本実施例の電池の場合、公称電圧(4.1
V)まで充電した際の放電容量Aは、678mAhであ
り、正極活物質の充電深度を所定レベル以下(4.05
V)とした際の放電容量Bは、627mAhであり、ま
た、負極活物質の最大可逆放電量Cは、795mAhで
あり、下記の式のDに相当する量のリチウムは、電池番
号1で70mAh、電池番号2で65mAh、電池番号
3で65mAh、電池番号4で65mAhであり、式A
−B≦D≦C−Aを満たしている。
In the case of the battery of this embodiment, the nominal voltage (4.1
V), the discharge capacity A is 678 mAh, and the charge depth of the positive electrode active material is set to a predetermined level or less (4.05).
V), the discharge capacity B is 627 mAh, the maximum reversible discharge amount C of the negative electrode active material is 795 mAh, and the amount of lithium corresponding to D in the following formula is 70 mAh in the battery number 1. The battery number 2 is 65 mAh, the battery number 3 is 65 mAh, and the battery number 4 is 65 mAh.
−B ≦ D ≦ CA is satisfied.

【0028】次に電池番号1の電池とR1の電池につい
て、上記充電放電条件の内の充電電圧を4.1Vから
4.05Vに変更して、これらを比較した。この結果、
R1の放電容量627mAhに対し、電池番号1では6
77mAhとなった。また、電池番号1の電池について
釘刺し試験を行った結果、4.1V充電のものでは発煙
を生じたが、4.05V充電のものでは発煙を生じなか
った。
Next, the charging voltage of the battery No. 1 and the battery R1 was changed from 4.1 V to 4.05 V under the above charging and discharging conditions, and these were compared. As a result,
In contrast to the discharge capacity of R1 of 627 mAh,
77 mAh. Further, as a result of a nail penetration test performed on the battery of battery number 1, smoke was generated when the battery was charged at 4.1 V, but was not generated when the battery was charged at 4.05 V.

【0029】プリチャージした電池番号1〜4のエレメ
ントを厚み1.2mmのアルミニウム製容器に収容し、
電解液としては、容積比で4:6のエチレンカーボネー
トとメチルエチルカーボネート(EC+MEC)の混合
溶媒に六フッ化リン酸リチウム(LiPF6 )を1モル
/リットル溶解したものを用い、容量100Ahの電池
(厚み50mm,幅130mm,高さ210mm)を作
製した。
The precharged elements of battery numbers 1 to 4 are accommodated in a 1.2 mm thick aluminum container,
As the electrolytic solution, a solution of lithium hexafluorophosphate (LiPF 6 ) dissolved in a mixed solvent of ethylene carbonate and methyl ethyl carbonate (EC + MEC) at a volume ratio of 4: 6 at 1 mol / liter and a capacity of 100 Ah was used. (Thickness: 50 mm, width: 130 mm, height: 210 mm).

【0030】この電池について、充電条件:100mA
(0.17CmA)、4.1VCC(定電流充電)、2
5℃とし、放電条件:600mA(1CmA)、終止電
圧2.75V、25℃として充放電した結果を図1に示
す。図1の記号は、下記のとおり、それぞれ表1の電池
番号に対応する。○=R1、△=No.1、□=No.
2、▽=No.3、×=No.4。図1に示されるとお
り、プリチャージにより放電容量の増大が得られること
が明らかである。
For this battery, the charging condition was 100 mA.
(0.17 CmA), 4.1 VCC (constant current charging), 2
FIG. 1 shows the results of charging and discharging at 5 ° C., discharge conditions: 600 mA (1 CmA), a final voltage of 2.75 V, and 25 ° C. The symbols in FIG. 1 correspond to the battery numbers in Table 1, respectively, as described below. == R1, △ = No. 1, □ = No.
2, ▽ = No. 3, × = No. 4. As shown in FIG. 1, it is clear that the precharge can increase the discharge capacity.

【0031】実施例2 実施例1の負極活物質の人造黒鉛に代えて平均粒径4μ
mのアモルファスSiOy を20重量部と平均粒径4μ
mの人造黒鉛80重量部とを混合し、これによって得ら
れる混合物に金属リチウム箔を張り付けた以外は、実施
例1と同様に電池を作製した。電池番号1、2は、金属
リチウムを貼り付けていない比較例であり、電池番号3
は、混合電極に、厚さ30μmの金属リチウム箔小片
0.026gをロールプレスにより貼り付けて電極とし
た実施例である。
Example 2 An average particle size of 4 μm was used in place of artificial graphite as the negative electrode active material of Example 1.
20 parts by weight of amorphous SiO y having an average particle size of 4 μm.
m of artificial graphite of 80 parts by weight, and a lithium battery was adhered to the resulting mixture to produce a battery in the same manner as in Example 1. Battery Nos. 1 and 2 are comparative examples in which metallic lithium was not attached, and battery No. 3
Is an example in which 0.026 g of a small 30 μm-thick lithium metal foil was attached to a mixed electrode by a roll press to form an electrode.

【0032】この電池を用いて、充電条件:CCCV、
300mA(1CA)、4.1V、定電流定電圧充電、
25℃の条件で充電した電池の初期充放電量は、下記の
とおりであった。
Using this battery, charging conditions: CCCV,
300 mA (1 CA), 4.1 V, constant current, constant voltage charging,
The initial charge / discharge amount of the battery charged at 25 ° C. was as follows.

【0033】 電池番号1:充電量304mAh、放電量293mAh 電池番号2:充電量307mAh、放電量293mAh 電池番号3:充電量438mAh、放電量429mAh 次に、電池番号3の電池を4.05Vまで充電した以外
は上記と同様に充電した。この結果、その容量は、上記
条件で充電した電池番号1、2のいずれの電池よりも大
きかった。また、電池番号3の電池について釘刺し試験
を行った結果、4.1V充電のものでは発煙を生じた
が、4.05V充電のものでは発煙を生じなかった。
Battery No. 1: Charge amount 304 mAh, Discharge amount 293 mAh Battery No. 2: Charge amount 307 mAh, Discharge amount 293 mAh Battery No. 3: Charge amount 438 mAh, Discharge amount 429 mAh Next, battery No. 3 is charged to 4.05 V. The battery was charged in the same manner as described above except that the charging was performed. As a result, the capacity was larger than any of the batteries Nos. 1 and 2 charged under the above conditions. Further, as a result of a nail penetration test performed on the battery of battery number 3, smoke was generated when the battery was charged at 4.1 V, but was not generated when the battery was charged at 4.05 V.

【0034】実施例2の場合、公称電圧(4.1)まで
充電した際の放電容量Aは、300mAhであり、正極
活物質の充電深度を所定レベル以下(4.05V)とし
た際の放電容量Bは、262mAhであり、また、負極
活物質の最大可逆放電量Cは、410mAhであり、下
記の式のDに相当する量のリチウムは、100mAhで
あり、式A−B≦D≦C−Aを満たしている。
In the case of Example 2, the discharge capacity A when charged to the nominal voltage (4.1) is 300 mAh, and the discharge when the charge depth of the positive electrode active material is set to a predetermined level or less (4.05 V). The capacity B is 262 mAh, the maximum reversible discharge amount C of the negative electrode active material is 410 mAh, the amount of lithium corresponding to D in the following formula is 100 mAh, and the formula AB ≦ D ≦ C -A is satisfied.

【0035】[0035]

【発明の効果】本発明により、高容量でかつ安全性の高
い非水電解質二次電池を提供することができた。
According to the present invention, a non-aqueous electrolyte secondary battery having high capacity and high safety can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のプリチャージ条件と放電容量の関係
を示すグラフ。
FIG. 1 is a graph showing the relationship between precharge conditions and discharge capacity in Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合酸化物である正極活物
質とリチウムイオンを吸蔵・放出する負極活物質と、非
水電解質とを備えてなる二次電池において、公称電圧よ
り下げた所定の電圧以下で用いるようになされており、
かつ、公称電圧まで充電した際の電池の放電容量をAと
し、公称電圧より下げた所定の電圧まで充電した際の電
池の放電容量をBとし、また、負極活物質の最大可逆放
電量をCとしたとき、下記の式のDに相当する充電容量
分のリチウム量をプリチャージした負極活物質を用いる
ことを特徴とする高容量で、安全性に優れた非水電解質
二次電池。 式 A−B≦D≦C−A
1. A secondary battery comprising a positive electrode active material that is a lithium-containing composite oxide, a negative electrode active material that occludes and releases lithium ions, and a non-aqueous electrolyte, has a predetermined voltage lower than a nominal voltage. It is made to be used in
Further, the discharge capacity of the battery when charged to the nominal voltage is A, the discharge capacity of the battery when charged to a predetermined voltage lower than the nominal voltage is B, and the maximum reversible discharge amount of the negative electrode active material is C. A non-aqueous electrolyte secondary battery with high capacity and excellent safety, characterized by using a negative electrode active material precharged with a lithium amount corresponding to a charge capacity corresponding to D in the following formula. Formula AB ≦ D ≦ CA
【請求項2】 リチウム含有複合酸化物がコバルト酸リ
チウムであり、正極利用率が130mAh/g以下とな
る電圧以下で用いるようになされており、かつ、正極利
用率が140mAh/g〜150mAh/gとなる電圧
まで充電した際の電池の放電容量をAとし、正極利用率
が130mAh/g以下となる電圧まで充電した際の電
池の放電容量をBとし、また、負極活物質の最大可逆放
電量をCとしたとき、下記の式のDに相当する充電容量
分のリチウム量をプリチャージした負極活物質を用いる
ことを特徴とする請求項1記載の非水電解質二次電池。 式 A−B≦D≦C−A
2. The lithium-containing composite oxide is lithium cobalt oxide, which is used at a voltage of not more than 130 mAh / g and has a positive electrode utilization of 140 mAh / g to 150 mAh / g. A, the discharge capacity of the battery when charged to a voltage at which the positive electrode utilization rate is 130 mAh / g or less, and B, the maximum reversible discharge amount of the negative electrode active material. 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein a negative electrode active material is used in which the amount of lithium corresponding to the charge capacity corresponding to D in the following formula is precharged. Formula AB ≦ D ≦ CA
JP01088299A 1999-01-19 1999-01-19 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3575308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01088299A JP3575308B2 (en) 1999-01-19 1999-01-19 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01088299A JP3575308B2 (en) 1999-01-19 1999-01-19 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000208167A true JP2000208167A (en) 2000-07-28
JP3575308B2 JP3575308B2 (en) 2004-10-13

Family

ID=11762701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01088299A Expired - Fee Related JP3575308B2 (en) 1999-01-19 1999-01-19 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3575308B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115326A (en) * 2001-10-03 2003-04-18 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003346904A (en) * 2002-05-29 2003-12-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004227931A (en) * 2003-01-23 2004-08-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte rechargeable battery
JP2017069002A (en) * 2015-09-29 2017-04-06 株式会社Gsユアサ Power storage device
KR20200135576A (en) * 2011-10-05 2020-12-02 원드 매터리얼 인코포레이티드 Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components, and devices related thereto

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115326A (en) * 2001-10-03 2003-04-18 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003346904A (en) * 2002-05-29 2003-12-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004227931A (en) * 2003-01-23 2004-08-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte rechargeable battery
KR20200135576A (en) * 2011-10-05 2020-12-02 원드 매터리얼 인코포레이티드 Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components, and devices related thereto
KR102323287B1 (en) * 2011-10-05 2021-11-05 원드 매터리얼 인코포레이티드 Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components, and devices related thereto
JP2017069002A (en) * 2015-09-29 2017-04-06 株式会社Gsユアサ Power storage device

Also Published As

Publication number Publication date
JP3575308B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
US8697288B2 (en) High energy lithium ion secondary batteries
US7682746B2 (en) Negative electrode for non-aqueous secondary battery
JP5279018B2 (en) Lithium ion secondary battery and manufacturing method thereof
US20070190408A1 (en) Separator and method of manufacturing non-aqueous electrolyte secondary battery using the same
JPWO2002054524A1 (en) Non-aqueous electrolyte secondary battery
JP2012009458A (en) Lithium secondary battery
JP5412843B2 (en) battery
JP2014017199A (en) Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same
JP3525553B2 (en) Non-aqueous polymer battery
JP2013131427A (en) Laminated battery
JP4715848B2 (en) battery
JP2002083630A (en) LACTONE DERIVATIVE, gamma-BUTYROLACTONE DERIVATIVE, NONAQUEOUS ELECTROLYTE AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2004200003A (en) Nonaqueous electrolyte secondary battery
JP2000173666A (en) Nonaqueous electrolyte secondary battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP3575308B2 (en) Non-aqueous electrolyte secondary battery
JP5582573B2 (en) Secondary battery and electrolyte for secondary battery used therefor
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
WO2020080245A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2015037522A1 (en) Nonaqueous secondary battery
US9172089B2 (en) Anode active material, method of preparing the same, anode including the anode active material, and lithium battery including the anode
JP2005243448A (en) Nonaqueous electrolyte secondary battery
JP2004227931A (en) Nonaqueous electrolyte rechargeable battery
JP2019160614A (en) Lithium ion secondary battery
JP2001351690A (en) Nonaqueous electrolyte cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees