JP2003090631A - Heat pump type water heater - Google Patents

Heat pump type water heater

Info

Publication number
JP2003090631A
JP2003090631A JP2001278523A JP2001278523A JP2003090631A JP 2003090631 A JP2003090631 A JP 2003090631A JP 2001278523 A JP2001278523 A JP 2001278523A JP 2001278523 A JP2001278523 A JP 2001278523A JP 2003090631 A JP2003090631 A JP 2003090631A
Authority
JP
Japan
Prior art keywords
hot water
compressor
outside air
air temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001278523A
Other languages
Japanese (ja)
Other versions
JP4693308B2 (en
Inventor
Sadahiro Takizawa
禎大 滝澤
Kiyoshi Koyama
清 小山
Shigeo Tsukue
重男 机
Satoshi Hoshino
聡 星野
Chiaki Shikichi
千明 式地
Shigeya Ishigaki
茂弥 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001278523A priority Critical patent/JP4693308B2/en
Priority to CNB021416737A priority patent/CN1202397C/en
Priority to KR10-2002-0055193A priority patent/KR100500618B1/en
Publication of JP2003090631A publication Critical patent/JP2003090631A/en
Application granted granted Critical
Publication of JP4693308B2 publication Critical patent/JP4693308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PROBLEM TO BE SOLVED: To raise endurance of a compressor by preventing high/low pressure difference from becoming too large in a low outdoor temperature region in a heat pump type water heater using outdoor air as a heat source. SOLUTION: In a low outdoor temperature region, the opening of a motor- operated expansion valve is controlled so as to lower a high pressure side pressure according to decrease in the outdoor temperature. The rotational speed of the inverter single stage compressor may be controlled so as to keep the compressor capacity constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機吐出ガスに
より給湯水を加熱するヒートポンプ式給湯装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type hot water supply apparatus for heating hot water by compressor discharge gas.

【0002】[0002]

【従来の技術】ヒートポンプ式給湯装置は、圧縮機、圧
縮機の吐出ガスを冷却する高圧側熱交換器、電動膨張弁
などの膨張弁、外気と熱交換する蒸発器等を順次接続し
た冷凍サイクル装置により、蒸発器において外気から熱
を汲み上げ、この汲み上げた熱を高圧側熱交換器におい
て給湯用水に放出して、給湯用水を加熱するようにした
ものである。
2. Description of the Related Art A heat pump type hot water supply system is a refrigeration cycle in which a compressor, a high pressure side heat exchanger for cooling the gas discharged from the compressor, an expansion valve such as an electric expansion valve, and an evaporator for exchanging heat with the outside air are sequentially connected. By the device, heat is pumped from the outside air in the evaporator, and the pumped heat is released to the hot water for hot water supply in the high-pressure side heat exchanger to heat the hot water supply water.

【0003】また、一般的に給湯需要については、外気
温度が低くなるほど高温の給湯が多量に要求され、外気
温度が高くなるほど低温の給湯でもよく需要量も低下す
るという傾向がある。これに対し、従来一般のヒートポ
ンプ式給湯装置は、冷凍サイクルの特性に起因して外気
温度が低くくなれば高圧側熱交換器で得られる給湯用水
の温度が低くなる。また、給湯用水加熱能力も低下する
という特性をもっていた。したがって、給湯需要の特性
とヒートポンプ式給湯装置の能力特性とは互いに相反す
るという問題があった。
[0003] In general, with respect to the demand for hot water, a higher amount of hot water is required as the outside air temperature becomes lower, and a lower amount of hot water is required as the outside air temperature becomes higher. On the other hand, in the conventional general heat pump type hot water supply apparatus, if the outside air temperature becomes low due to the characteristics of the refrigeration cycle, the temperature of the hot water supply water obtained by the high-pressure side heat exchanger becomes low. In addition, it had a characteristic that the heating ability of hot water for hot water supply was lowered. Therefore, there is a problem that the characteristics of the demand for hot water supply and the performance characteristics of the heat pump type hot water supply device conflict with each other.

【0004】そこで、このような問題を解消するため
に、低外気温度領域において十分に高温の温水を得られ
るようにするために、二酸化炭素を冷媒として用いた超
臨界冷凍サイクルを形成し、また、低外気温度領域にお
いて圧縮機能力を大きくし、高外気温度領域において圧
縮機能力を小さくできるようにするために、インバータ
駆動式圧縮機を用い、外気温度の低下に対応してこのイ
ンバータ駆動圧縮機の回転数を増大させて加熱能力を増
大させるとともに、高圧側圧力を上昇させるように電動
膨張弁の開度を小さくしていた。したがって、低外気温
度領域においては外気温度の低下に対応して高圧側圧力
を上昇させるとともに、低圧側圧力を低下させていた。
Therefore, in order to solve such a problem, a supercritical refrigeration cycle using carbon dioxide as a refrigerant is formed in order to obtain hot water of sufficiently high temperature in a low outside air temperature region, and In order to increase the compression function in the low outside air temperature range and decrease the compression function in the high outside temperature range, an inverter drive type compressor is used, and the inverter drive compression is performed in response to the decrease in the outside air temperature. The opening degree of the electric expansion valve is reduced so that the rotation speed of the machine is increased to increase the heating capacity and the high-pressure side pressure is increased. Therefore, in the low outside air temperature region, the high pressure side pressure is increased and the low pressure side pressure is decreased corresponding to the decrease in the outside air temperature.

【0005】[0005]

【発明が解決しようとする課題】このため、低外気温度
領域においては、特に0℃以下の低外気温度領域におい
ては高低圧力差が大きくなり、圧縮機の耐久性を損ねる
という問題が発生していた。具体的には、吐出弁の破
損、ロータリ圧縮機の場合におけるシリンダー内の高圧
室と低圧室とを仕切るベーンバルブの折損などの恐れが
あった。
Therefore, in the low outside air temperature region, particularly in the low outside air temperature region of 0 ° C. or less, the high-low pressure difference becomes large, and the durability of the compressor is impaired. It was Specifically, there is a risk of damage to the discharge valve and breakage of the vane valve that separates the high pressure chamber and the low pressure chamber in the cylinder in the case of a rotary compressor.

【0006】本発明は、このような従来の技術に存在す
る問題点に着目してなされたものである。その目的とす
るところは、低外気温度領域において高低圧力差が大き
くなり過ぎることを防止したヒートポンプ式給湯装置を
提供することにある。
The present invention has been made by paying attention to the problems existing in such conventional techniques. It is an object of the present invention to provide a heat pump type hot water supply device which prevents the high and low pressure difference from becoming too large in a low outside air temperature region.

【0007】[0007]

【課題を解決するための手段】上記のような目的を達成
するために、第1の発明は、インバータ駆動式単段圧縮
機、このインバータ駆動式単段圧縮機からの吐出ガスを
給湯用水で冷却する高圧側熱交換器、電動膨張弁、外気
と熱交換する蒸発器を順次接続した冷凍サイクル装置
と、前記高圧側熱交換器で加熱した給湯用水を貯留可能
とした貯湯タンクと、低外気温度領域において、外気温
度の低下に対応して高圧側圧力を低下させるように前記
電動膨張弁の開度を制御する制御装置とを備えたもので
ある。
In order to achieve the above-mentioned object, the first invention is an inverter-driven single-stage compressor, and the discharge gas from this inverter-driven single-stage compressor is supplied with hot water. A refrigeration cycle device in which a high-pressure side heat exchanger for cooling, an electric expansion valve, and an evaporator for exchanging heat with the outside air are sequentially connected, a hot water storage tank capable of storing hot water for heating the high-pressure side heat exchanger, and a low outside air And a controller for controlling the opening degree of the electric expansion valve so as to reduce the pressure on the high pressure side in response to the decrease in the outside air temperature in the temperature range.

【0008】このように構成すれば、圧縮機の高低圧力
差が小さくなり、吐出弁やベーンバルブの破損の恐れが
なくなり、圧縮機の耐久性を向上させることができる。
また、圧縮機ハウジングに必要とされる強度を小さくす
ることができ、コスト軽減を図ることもできる。
According to this structure, the pressure difference between the high pressure and the low pressure of the compressor is reduced, the discharge valve and the vane valve are not damaged, and the durability of the compressor can be improved.
Further, the strength required for the compressor housing can be reduced, and the cost can be reduced.

【0009】また、第2の発明は、低段側圧縮機及び高
段側圧縮を有するインバータ駆動式2段圧縮機、このイ
ンバータ駆動式2段圧縮機からの吐出ガスを給湯用水で
冷却する高圧側熱交換器、電動膨張弁、外気と熱交換す
る蒸発器を順次接続した冷凍サイクル装置と、前記高圧
側熱交換器で加熱した給湯用水を貯留可能とした貯湯タ
ンクと、低外気温度領域において、外気温度の低下に対
応して高圧側圧力を低下させるように前記電動膨張弁の
開度を制御する制御装置とを備えたものである。
A second aspect of the invention is an inverter-driven two-stage compressor having a low-stage side compressor and a high-stage side compressor, and a high pressure for cooling the discharge gas from the inverter-driven two-stage compressor with hot water. A refrigeration cycle device in which a side heat exchanger, an electric expansion valve, and an evaporator for exchanging heat with the outside air are sequentially connected, a hot water storage tank capable of storing hot water for hot water heated by the high pressure side heat exchanger, and a low outside air temperature region. A control device for controlling the opening degree of the electric expansion valve so as to reduce the pressure on the high pressure side in response to the decrease in the outside air temperature.

【0010】このように構成すれば、各段圧縮機の高低
圧力差が顕著に小さくなり、吐出弁やベーンバルブの破
損の恐れが確実になくなり、圧縮機の耐久性を向上させ
ることができる。また、圧縮機ハウジングに必要とされ
る強度をより一層小さくすることができ、コスト軽減を
図ることもできる。
According to this structure, the pressure difference between the high and low pressures of the compressors in each stage is significantly reduced, the discharge valve and the vane valve are reliably prevented from being damaged, and the durability of the compressor can be improved. Further, the strength required for the compressor housing can be further reduced, and the cost can be reduced.

【0011】第3の発明は、インバータ駆動式単段圧縮
機、このインバータ駆動式単段圧縮機からの吐出ガスを
給湯用水で冷却する高圧側熱交換器、電動膨張弁、外気
と熱交換する蒸発器を順次接続した冷凍サイクル装置
と、前記高圧側熱交換器で加熱した給湯用水を貯留可能
とした貯湯タンクと、低外気温度領域において、外気温
度の低下に対応して高圧側圧力を低下させるように前記
電動膨張弁の開度を制御するとともに、圧縮機能力をほ
ぼ一定とするように前記インバータ式単段圧縮機の回転
数を制御する制御装置とを備えたものである。
A third invention is an inverter-driven single-stage compressor, a high-pressure side heat exchanger for cooling discharge gas from the inverter-driven single-stage compressor with water for hot water supply, an electric expansion valve, and heat exchange with outside air. A refrigeration cycle device in which evaporators are sequentially connected, a hot water storage tank capable of storing hot water for hot water supply heated by the high-pressure side heat exchanger, and a high-pressure side pressure drop corresponding to a decrease in outside air temperature in a low outside air temperature region. The control device controls the opening degree of the electric expansion valve so as to control the rotational speed of the inverter type single-stage compressor so that the compression function force is substantially constant.

【0012】このように構成すれば、給湯水加熱能力の
低下を抑制しながら前記第1発明と同様に、圧縮機の耐
久性を向上させ、圧縮機ハウジングに必要とされる強度
を小さくすることができ、コスト軽減を図ることができ
る。
According to this structure, the durability of the compressor is improved and the strength required for the compressor housing is reduced in the same manner as in the first aspect of the invention, while suppressing the deterioration of the hot water supply heating ability. Therefore, the cost can be reduced.

【0013】また、第4の発明は、低段側圧縮機及び高
段側圧縮を有するインバータ駆動式2段圧縮機、このイ
ンバータ駆動式2段圧縮機からの吐出ガスを給湯用水で
冷却する高圧側熱交換器、電動膨張弁、外気と熱交換す
る蒸発器を順次接続した冷凍サイクル装置と、前記高圧
側熱交換器で加熱した給湯用水を貯留可能とした貯湯タ
ンクと、低外気温度領域において、外気温度の低下に対
応して高圧側圧力を低下させるように前記電動膨張弁の
開度を制御するとともに、圧縮機能力をほぼ一定とする
ように前記インバータ駆動式2段圧縮機の回転数を制御
する制御装置とを備えたものである。
A fourth aspect of the present invention is an inverter-driven two-stage compressor having a low-stage compressor and a high-stage compressor, and a high pressure for cooling the discharge gas from this inverter-driven two-stage compressor with hot water for hot water supply. A refrigeration cycle device in which a side heat exchanger, an electric expansion valve, and an evaporator for exchanging heat with the outside air are sequentially connected, a hot water storage tank capable of storing hot water for hot water heated by the high pressure side heat exchanger, and a low outside air temperature region. The rotation speed of the inverter-driven two-stage compressor is controlled so that the opening degree of the electric expansion valve is controlled so as to reduce the high-pressure side pressure in response to the decrease in the outside air temperature, and the compression functional force is made substantially constant. And a control device for controlling the.

【0014】このように構成すれば、給湯水加熱能力の
低下を抑制しながら前記第2発明と同様に、圧縮機の耐
久性を向上させ、圧縮機ハウジングに必要とされる強度
を小さくすることができ、コスト軽減を図ることができ
る。
According to this structure, the durability of the compressor is improved and the strength required for the compressor housing is reduced in the same manner as in the second aspect of the invention while suppressing the deterioration of the hot water supply heating ability. Therefore, the cost can be reduced.

【0015】また、第5の発明は、前記第1〜第4の何
れかの発明において、前記低外気温度領域を0℃以下と
したものである。このように構成すると、従来特に高低
圧力差が問題となっていた外気温度領域において有効な
制御を行うことができる。
A fifth aspect of the present invention is any one of the first to fourth aspects of the invention, wherein the low outside air temperature region is 0 ° C. or less. According to this structure, effective control can be performed in the outside air temperature range where the high-low pressure difference has conventionally been a problem.

【0016】また、第6の発明は、前記第2又は第4の
発明において、前記2段圧縮機は、前記低段側圧縮機の
吐出ガスを導入した密閉ケーシング内に、前記低段側圧
縮機、高段側圧縮機及び駆動用電動機を内蔵したもので
ある。このように構成すれば、圧縮機ハウジング内に中
間圧力が作用することになり、圧縮機のシリンダー内外
及び圧縮機ハウジングの内外の圧力差が半減され、各部
に作用する力が小さくなる。したがって、より一層圧縮
機の耐久性が向上し、ハウジングの強度もより一層小さ
なものとすることができる。
In a sixth aspect based on the second or fourth aspect, the two-stage compressor is configured such that the low-stage compression is carried out in a hermetic casing into which a discharge gas of the low-stage compressor is introduced. The machine, the high-stage compressor and the drive motor are built in. According to this structure, the intermediate pressure acts on the inside of the compressor housing, the pressure difference between the inside and outside of the cylinder of the compressor and the inside and outside of the compressor housing is halved, and the force acting on each part is reduced. Therefore, the durability of the compressor can be further improved, and the strength of the housing can be further reduced.

【0017】また、第7の発明は、前記第1〜第6の発
明に関し、前記冷凍サイクル装置は、冷媒として二酸化
炭素を充填して超臨界冷凍サイクルで運転されるように
形成したものである。このように構成すれば、低温外気
温度領域において冷凍サイクルの吐出ガス温度が高くな
っているので、前記のような制御を行っても、使用者が
必要とする程度の高温の給湯水を得ることができる。
Further, a seventh invention relates to the first to sixth inventions, wherein the refrigeration cycle device is formed so as to be operated in a supercritical refrigeration cycle by charging carbon dioxide as a refrigerant. . With this configuration, since the discharge gas temperature of the refrigeration cycle is high in the low temperature outside air temperature range, even if the above-described control is performed, it is possible to obtain hot water having a temperature as high as the user needs. You can

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照しながら詳細に説明する。図1は本発明の実施
の形態に係る給湯装置の回路図であり、図2は本発明の
実施の形態に係る給湯装置の低外気温度領域における圧
力制御線図であり、図3は本発明の実施の形態に係る給
湯装置の低外気温度領域における電動膨張弁の制御線図
であり、図4は本発明の実施の形態に係る給湯装置の低
外気温度領域における圧縮機回転数の制御線図であり、
図5は本発明の実施の形態に係る給湯装置の低外気温度
領域における圧縮機能力の制御線図である。なお、図1
において、実線矢印は冷媒の流れを示し、破線矢印は温
度の流れを示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram of a water heater according to an embodiment of the present invention, FIG. 2 is a pressure control diagram in a low outside air temperature region of the water heater according to an embodiment of the present invention, and FIG. FIG. 4 is a control diagram of the electric expansion valve in the low outside air temperature range of the water heater according to the embodiment of the present invention, and FIG. 4 is a control line of the compressor speed in the low outside air temperature range of the water heater according to the embodiment of the present invention. Is a figure,
FIG. 5 is a control diagram of the compression functional force in the low outside air temperature region of the water heater according to the embodiment of the present invention. Note that FIG.
In, the solid line arrow shows the flow of the refrigerant, and the broken line arrow shows the flow of the temperature.

【0019】図1に示すように、実施の形態1に係る給
湯装置は、超臨界冷凍サイクル装置1、給湯ユニット2
及び制御装置3とを備えたものである。なお、この実施
の形態においては、制御装置3は超臨界冷凍サイクル装
置1内に設置されている。また、超臨界冷凍サイクル装
置1と給湯ユニット2とは連絡水用配管5、6により接
続されている。
As shown in FIG. 1, the hot water supply apparatus according to the first embodiment includes a supercritical refrigeration cycle apparatus 1 and a hot water supply unit 2.
And a control device 3. In addition, in this embodiment, the control device 3 is installed in the supercritical refrigeration cycle device 1. Further, the supercritical refrigeration cycle apparatus 1 and the hot water supply unit 2 are connected by the connecting water pipes 5 and 6.

【0020】超臨界冷凍サイクル装置1は、2段圧縮機
11、高圧側熱交換器12、電動膨張弁13、蒸発器1
4、アキュムレータ15を順次接続した閉回路(冷媒回
路)を備えている。この閉回路の内部には、超臨界冷凍
サイクルで運転されるような代替冷媒として二酸化炭素
(CO2)が充填されている。冷凍・空調用の代表的な
自然冷媒としては、ハイドロカーボン(HC:プロパン
やイソブタンなど)、アンモニア、空気そしてCO2
が挙げられる。しかしながら、冷媒特性として、ハイド
ロカーボンとアンモニアはエネルギー効率が良いという
反面可燃性や毒性の問題があり、空気は超低温域以外で
エネルギー効率が劣るなどといった問題がある。これに
対し二酸化炭素は、可燃性や毒性がなく安全である。
The supercritical refrigeration cycle apparatus 1 includes a two-stage compressor 11, a high pressure side heat exchanger 12, an electric expansion valve 13, and an evaporator 1.
4. A closed circuit (refrigerant circuit) in which the accumulator 15 is sequentially connected is provided. The inside of this closed circuit is filled with carbon dioxide (CO 2 ) as an alternative refrigerant that operates in a supercritical refrigeration cycle. Typical natural refrigerants for refrigeration and air conditioning include hydrocarbons (HC: propane, isobutane, etc.), ammonia, air and CO 2 . However, as the refrigerant characteristics, hydrocarbon and ammonia have high energy efficiency, but on the other hand, they have problems of flammability and toxicity, and air has a problem that energy efficiency is poor except in the ultralow temperature range. On the other hand, carbon dioxide is safe without combustibility and toxicity.

【0021】2段圧縮機は、超臨界冷凍サイクル装置用
に開発されたもので、密閉ケーシング内に低段側圧縮機
11a、高段側圧縮機11b、これら圧縮機11a及び
11bを駆動する共用の電動機11cを内蔵したもので
あり、低段側圧縮機11aの吐出側と高段側圧縮機11
bの吸入側とを配管11dにより連結している。また、
密閉ケーシング内空間は、中間圧力ガス、つまり低段側
圧縮機の吐出ガスにより満たされている。なお、このよ
うに密閉ケーシング内を中間圧力とした理由は、各圧縮
機の各部に作用する力、及び密閉ケーシングの内外間の
圧力差を適切な範囲内に保持し、大きな力が作用するこ
とを回避したものであり、これにより高信頼性、低振
動、低騒音、高効率な圧縮機とすることができる。ま
た、この2段圧縮機11の電動機はインバータ駆動式と
されており、後述する制御装置3により運転周波数が制
御され、回転数が制御されている。なお、高段側圧縮機
11bの吐出配管には、高段側圧縮機11bから吐出さ
れる吐出ガス温度を検出するための吐出ガス温度検出器
31が設けられている。
The two-stage compressor was developed for a supercritical refrigeration cycle apparatus, and includes a low-stage compressor 11a, a high-stage compressor 11b, and a common drive for driving these compressors 11a and 11b in a closed casing. Of the low-stage side compressor 11a and the discharge side of the high-stage side compressor 11a.
The suction side of b is connected by a pipe 11d. Also,
The space inside the closed casing is filled with the intermediate pressure gas, that is, the discharge gas of the low-stage compressor. In addition, the reason for setting the intermediate pressure in the closed casing in this way is that the force acting on each part of each compressor and the pressure difference between the inside and outside of the closed casing are kept within an appropriate range, and a large force acts. This makes it possible to provide a highly reliable, low vibration, low noise, and highly efficient compressor. Further, the electric motor of the two-stage compressor 11 is of an inverter drive type, and the operating frequency is controlled by the control device 3 described later, and the rotation speed is controlled. A discharge gas temperature detector 31 for detecting the temperature of the discharge gas discharged from the high-stage compressor 11b is provided in the discharge pipe of the high-stage compressor 11b.

【0022】高圧側熱交換器12は、高段側圧縮機11
bから吐出された高圧冷媒を導入する冷媒用熱交換チュ
ーブ12aと、給湯ユニット2内に配置されている貯湯
タンク21から送水される給湯水を導入する水用熱交換
チューブ12bとからなり、両者が熱交換関係に形成さ
れたものである。したがって、高段側圧縮機11bから
吐出された高温高圧の冷媒ガスは貯湯タンク21から送
水される給湯水により冷却され、この給湯水は高温高圧
冷媒が発生する熱により加熱される。
The high-pressure side heat exchanger 12 is the high-stage side compressor 11
a heat exchanger tube 12a for refrigerant for introducing the high-pressure refrigerant discharged from b, and a heat exchanger tube 12b for water for introducing hot water supplied from the hot water storage tank 21 arranged in the hot water supply unit 2, Are formed in a heat exchange relationship. Therefore, the high-temperature high-pressure refrigerant gas discharged from the high-stage compressor 11b is cooled by the hot water supplied from the hot water storage tank 21, and the hot water is heated by the heat generated by the high-temperature high-pressure refrigerant.

【0023】電動膨張弁13は、高圧側熱交換器12で
冷却された高圧ガス冷媒を減圧するもので、パルスモー
タにより駆動される。また、後述する制御装置3により
開度制御されている。
The electric expansion valve 13 decompresses the high pressure gas refrigerant cooled in the high pressure side heat exchanger 12, and is driven by a pulse motor. The opening degree is controlled by the control device 3 described later.

【0024】蒸発器14は、電動膨張弁13により減圧
された低圧の気液混合冷媒を熱源媒体としての外気と熱
交換させ、この冷媒を気化させるものである。なお、こ
の蒸発器14には外気温度を検出するための外気温度検
出器32が付設されている。
The evaporator 14 heat-exchanges the low-pressure gas-liquid mixed refrigerant decompressed by the electric expansion valve 13 with the outside air as a heat source medium to vaporize the refrigerant. An outside air temperature detector 32 for detecting the outside air temperature is attached to the evaporator 14.

【0025】給湯ユニット2は、貯湯タンク21、温水
循環ポンプ22、給湯配管23、給水配管24を備えて
構成されている。そして、貯湯タンク21の上部及び下
部を前記水用熱交換チューブ12bに対し、連絡水用配
管5、6を含む温水循環回路Pにより接続されている。
また、貯湯タンク21では重力の差により上部になるほ
ど温水温度が高くなる。このため、貯湯タンク21下部
の温度の低い水を水用熱交換チューブ12bに送水し、
水用熱交換チューブ12bで加熱された温度の高い水を
貯湯タンク21の上部に導くように、温水循環回路Pが
形成されるとともに、この温水循環回路P中に温水循環
ポンプ22が取り付けられている。なお、貯湯タンク2
1内上部の温水温度、すなわち焚き上げ温度は、貯湯タ
ンク21上部に設けられた焚き上げ温度検出器33によ
り測定されている。
The hot water supply unit 2 comprises a hot water storage tank 21, a hot water circulation pump 22, a hot water supply pipe 23, and a water supply pipe 24. The upper and lower portions of the hot water storage tank 21 are connected to the water heat exchange tube 12b by a hot water circulation circuit P including the connecting water pipes 5 and 6.
Further, in the hot water storage tank 21, the hot water temperature becomes higher as it goes up due to the difference in gravity. Therefore, water having a low temperature in the lower part of the hot water storage tank 21 is sent to the water heat exchange tube 12b,
A hot water circulation circuit P is formed so as to guide the high temperature water heated by the water heat exchange tube 12b to the upper part of the hot water storage tank 21, and the hot water circulation pump 22 is installed in the hot water circulation circuit P. There is. In addition, hot water storage tank 2
The hot water temperature in the upper part of the inside 1, that is, the heating temperature is measured by a heating temperature detector 33 provided in the upper part of the hot water storage tank 21.

【0026】給湯配管23は、温水蛇口、浴槽などに温
水を供給するためのものであり、貯湯タンク21中の高
い温度の温水を供給できるように、貯湯タンク21の上
部に接続されている。なお、この給湯回路には開閉弁2
5が取り付けられている。給水配管24は、貯湯タンク
21内に常時水道水を供給可能とするものであり、逆止
弁26、減圧弁27を介し貯湯タンク21の底部に接続
されている。
The hot water supply pipe 23 is for supplying hot water to a hot water faucet, a bathtub, etc., and is connected to the upper part of the hot water storage tank 21 so that the hot water of high temperature in the hot water storage tank 21 can be supplied. The hot water supply circuit has an on-off valve 2
5 is attached. The water supply pipe 24 is capable of constantly supplying tap water into the hot water storage tank 21, and is connected to the bottom of the hot water storage tank 21 via a check valve 26 and a pressure reducing valve 27.

【0027】制御装置3は、0℃〜−10℃の低外気温
度領域において外気温度の低下に対応して高圧側圧力を
低下させるように電動膨張弁13の開度を制御するとと
もに、圧縮機能力をほぼ一定とするようにインバータ駆
動式2段圧縮機11の回転数を制御するものである。な
お、外気温度−10℃以下では、運転される機会も少な
くなることから運転許容範囲外としている。また、0℃
以上においては、外気温度の上昇に伴い低圧側圧力が上
昇するので、これに伴い高圧側圧力が上昇し過ぎないよ
う外気温度の上昇に伴い電動膨張弁13の開度を大きく
するとともに、2段圧縮機11の回転数を低下させてい
る。
The control device 3 controls the opening degree of the electric expansion valve 13 so as to reduce the high-pressure side pressure in response to the decrease in the outside air temperature in the low outside air temperature range of 0 ° C. to -10 ° C., and the compression function. The number of revolutions of the inverter-driven two-stage compressor 11 is controlled so that the force is kept substantially constant. It should be noted that, when the outside air temperature is -10 ° C or lower, the chances of driving are reduced, so the operating range is outside the allowable range. Also, 0 ℃
In the above, the low-pressure side pressure rises as the outside air temperature rises, so that the opening degree of the electric expansion valve 13 is increased as the outside air temperature rises and the two-stage pressure increases so that the high-pressure side pressure does not rise too much. The rotation speed of the compressor 11 is reduced.

【0028】具体的には、外気温度の低下に対応して高
圧側圧力、低段側吐出圧力に相当する中間圧力及び低圧
側圧力は、図2における破線の如く低下するように制御
される。なお、図2における実線は従来のヒートポンプ
式給湯装置におけるものを示している。なお、従来のも
のでは、図2における実線のように、電動膨張弁13の
開度及び2段圧縮機11の回転数を制御することによ
り、高圧側圧力を外気温度の低下に対応して上昇させる
ように制御していた。
Specifically, the high-pressure side pressure, the intermediate pressure corresponding to the low-stage side discharge pressure, and the low-pressure side pressure are controlled so as to decrease as indicated by the broken line in FIG. 2 as the outside air temperature decreases. The solid line in FIG. 2 indicates that in the conventional heat pump type hot water supply device. It should be noted that, in the conventional case, as shown by the solid line in FIG. 2, by controlling the opening degree of the electric expansion valve 13 and the rotation speed of the two-stage compressor 11, the high-pressure side pressure is increased corresponding to the decrease in the outside air temperature. It was controlled to let me.

【0029】また、このような圧力を得るために、電動
膨張弁13の開度は、図3の破線で示すように、同図の
実線で示された従来のものより緩やかに絞り制御されて
いる。また、インバータ駆動式2段圧縮機11の回転数
は、図4の破線で示すように、同図の実線で示された従
来のものより緩やかに増大するように制御されている。
一般的に、外気温度が低下すると吸入圧力が低下して圧
縮機能力が低下するが、この実施の形態の場合には、図
4の破線で示すように、低圧側圧力の低下による圧縮機
能力の減少分を補填して略一定とするように回転数の増
大が行われる。これに対し、従来のものでは、図5の実
線で示すように外気温度の低下に対応して圧縮機能力を
増大するように制御するものであって、図4の実線の如
く外気温度の低下に対応して本実施の形態の場合よりも
大きく圧縮機の回転数を増加させていた。
Further, in order to obtain such a pressure, the opening degree of the electric expansion valve 13 is controlled so as to be throttled more gently than the conventional one shown by the solid line in FIG. 3, as shown by the broken line in FIG. There is. Further, the rotation speed of the inverter-driven two-stage compressor 11 is controlled so as to gradually increase as shown by the broken line in FIG. 4 as compared with the conventional one shown by the solid line in FIG.
Generally, when the outside air temperature decreases, the suction pressure decreases and the compression functional force decreases, but in the case of this embodiment, as shown by the broken line in FIG. The number of revolutions is increased so as to compensate for the decrease in the above and make it substantially constant. On the other hand, in the conventional one, as shown by the solid line in FIG. 5, the control is performed so as to increase the compression function force in response to the decrease in the outside air temperature, and as shown by the solid line in FIG. In response to this, the rotation speed of the compressor is increased more than in the case of the present embodiment.

【0030】以上の如く制御される結果、高圧側圧力と
中間圧力との差は、従来の場合には図2のΔP1aで示
されるように外気温度が低下するにつれ増大していた
が、本実施の形態の場合には図2のΔP1bで示される
ように外気温度の低下に対して殆ど変化しない。なお、
中間圧力と低圧側圧力との差は、従来の場合のΔP2a
もこの実施の形態の場合のΔP2bとも、外気温度の変
化に対し殆ど変化していない。これは、中間圧力及び低
圧側圧力が従来及びこの実施の形態何れの場合も外気温
度の低下により低下しているためである。
As a result of the control as described above, the difference between the high pressure side pressure and the intermediate pressure was increased as the outside air temperature was lowered in the conventional case, as shown by ΔP1a in FIG. In the case of this form, as shown by ΔP1b in FIG. 2, there is almost no change with respect to the decrease in the outside air temperature. In addition,
The difference between the intermediate pressure and the low pressure is ΔP2a in the conventional case.
Also, ΔP2b in the case of this embodiment hardly changes with respect to the change of the outside air temperature. This is because the intermediate pressure and the low-pressure side pressure are decreased due to the decrease in the outside air temperature in both the conventional and the present embodiments.

【0031】このように、従来では、外気温度の低下に
対し、高圧側圧力と中間圧力との差及び高圧側圧力と低
圧側圧力との差が外気温度の低下に対応して大きくなっ
ていたため、圧縮機の各部に作用する力が大きくなり、
圧縮機の耐久性が低下し、圧縮機の圧縮効率が低下する
原因になっていた。これに対し、本実施の形態によれ
ば、これら圧力差が外気温の低下に対し殆ど変化しない
ので、圧縮機の耐久性が向上し、また、圧縮機の圧縮効
率の低下も回避することができる。
As described above, conventionally, the difference between the high-pressure side pressure and the intermediate pressure and the difference between the high-pressure side pressure and the low-pressure side pressure are large in response to the decrease in the outside air temperature with respect to the decrease in the outside air temperature. , The force acting on each part of the compressor increases,
The durability of the compressor is reduced, which causes the compression efficiency of the compressor to be reduced. On the other hand, according to the present embodiment, since these pressure differences hardly change with the decrease in the outside air temperature, the durability of the compressor is improved, and the decrease in the compression efficiency of the compressor can be avoided. it can.

【0032】また、本発明の思想は、上記のような超臨
界冷凍サイクル装置応用給湯装置に限らず、通常の冷凍
サイクル装置応用給湯装置に適用できることはいうまで
もない。ただし、超臨界冷凍サイクル装置応用給湯装置
では、通常の冷凍サイクル装置応用給湯装置の場合に比
し、高圧側圧力が極めて大きくなり、高圧側圧力と低圧
側圧力との差及び高圧側圧力と中間圧力との差が大きく
なるため、この圧力差に起因する圧縮機耐久性の問題が
発生しやすい。したがって、本発明は従来の通常の冷凍
サイクル装置応用給湯装置に適用した場合よりも、本実
施の形態のような超臨界冷凍サイクル装置応用給湯装置
に適用した場合の方が、より顕著な効果を奏することが
できる。
Needless to say, the idea of the present invention can be applied not only to the hot water supply apparatus to which the supercritical refrigeration cycle apparatus is applied as described above but also to a normal water supply apparatus to which the refrigeration cycle apparatus is applied. However, compared to the case of a normal refrigeration cycle applied water heater, the supercritical refrigeration cycle applied hot water supply apparatus has an extremely large high-pressure side pressure, the difference between the high-pressure side pressure and the low-pressure side pressure, and the high-pressure side pressure and the intermediate pressure. Since the difference from the pressure becomes large, the problem of compressor durability due to this pressure difference easily occurs. Therefore, the present invention has a more remarkable effect when applied to a supercritical refrigeration cycle-applied water heater such as this embodiment than when applied to a conventional normal refrigeration cycle-applied water heater. Can play.

【0033】また、本実施の形態においては、圧縮機は
2段圧縮機とされているが、この圧縮機を単段圧縮機と
した場合にも本発明を適用できることはいうまでもな
い。ただし、単段圧縮機とするよりも2段圧縮機とした
方が各段の高低圧力差が小さくなるため、より一層圧縮
機の耐久性向上及び圧縮効率の向上を図ることができ
る。
Further, in the present embodiment, the compressor is a two-stage compressor, but it goes without saying that the present invention can be applied even when this compressor is a single-stage compressor. However, the two-stage compressor has a smaller difference in pressure between each stage than the single-stage compressor, so that the durability of the compressor and the compression efficiency can be further improved.

【0034】[0034]

【発明の効果】本発明は以上のように構成されているの
で、次のような効果を奏する。本発明の第1及び第3の
発明によれば、圧縮機を単段圧縮機とし、低外気温度領
域において、外気温度の低下に対応して高圧側圧力を低
下させるように電動膨張弁の開度を制御する制御装置を
備えているので、圧縮機の高低圧力差が小さくなり、吐
出弁やベーンバルブの破損の恐れがなくなり、圧縮機の
耐久性を向上させることができる。また、圧縮機ハウジ
ングに必要とされる強度を小さくすることができ、コス
ト軽減を図ることもできる。
Since the present invention is constructed as described above, it has the following effects. According to the first and third aspects of the present invention, the compressor is a single-stage compressor, and in the low outside air temperature region, the electric expansion valve is opened so as to reduce the high-pressure side pressure in response to the decrease in outside air temperature. Since the control device for controlling the degree is provided, the pressure difference between the high pressure and the low pressure of the compressor is reduced, the risk of damage to the discharge valve and the vane valve is eliminated, and the durability of the compressor can be improved. Further, the strength required for the compressor housing can be reduced, and the cost can be reduced.

【0035】また、本発明の第2及び第4の発明によれ
ば、圧縮機を低段側圧縮機及び高段側圧縮を有するイン
バータ駆動式2段圧縮機とし、低外気温度領域におい
て、外気温度の低下に対応して高圧側圧力を低下させる
ように前記電動膨張弁の開度を制御するので、圧縮機と
して単段圧縮機を用いた上記第1及び第3の発明の場合
に比し、各段圧縮機の高低圧力差が顕著に小さくなり、
吐出弁やベーンバルブの破損の恐れが確実になくなり、
圧縮機の耐久性を向上させることができる。また、圧縮
機ハウジングに必要とされる強度をより一層小さくする
ことができ、コスト軽減を図ることもできる。
According to the second and fourth aspects of the present invention, the compressor is an inverter-driven two-stage compressor having a low-stage side compressor and a high-stage side compressor, and the outside air is kept in a low outside air temperature range. Since the opening degree of the electric expansion valve is controlled so as to reduce the pressure on the high-pressure side in response to the decrease in temperature, compared with the case of the first and third inventions using the single-stage compressor as the compressor. , The pressure difference between each stage compressor is significantly reduced,
There is no risk of damage to the discharge valve or vane valve,
The durability of the compressor can be improved. Further, the strength required for the compressor housing can be further reduced, and the cost can be reduced.

【0036】また、本発明の第3及び第4の発明によれ
ば、外気温度の低下に対応して圧縮機能力をほぼ一定と
するように前記インバータ駆動式2段圧縮機の回転数を
制御するものであるので、外気温度の低下の場合に、給
湯水加熱能力の低下を抑制しながら、圧縮機の高低圧力
差の増大を防止し、圧縮機の耐久性を向上させることが
でき、さらに、圧縮機ハウジングに必要とされる強度を
小さくすることができ、惹いては、コスト軽減を図るこ
ともできる。
Further, according to the third and fourth aspects of the present invention, the rotational speed of the inverter driven two-stage compressor is controlled so that the compression functional force becomes substantially constant in response to the decrease in the outside air temperature. Therefore, in the case of a decrease in the outside air temperature, while suppressing a decrease in the hot water supply heating capacity, it is possible to prevent an increase in the pressure difference between the high and low pressures of the compressor and improve the durability of the compressor. The strength required for the compressor housing can be reduced, and the cost can be reduced.

【0037】また、本発明の第5の発明によれば、第1
〜第4のいずれかの発明において、前記低外気温度領域
を0℃以下としたものであるので、従来特に高低圧力差
が問題となっていた外気温度領域において有効な制御を
行うことができる。
According to a fifth aspect of the present invention, the first aspect
In any one of the fourth to fourth aspects of the invention, since the low outside air temperature region is set to 0 ° C. or less, effective control can be performed in the outside air temperature region where a high / low pressure difference has been a problem in the related art.

【0038】また、本発明の第6の発明によれば、前記
第1〜第4のいずれかの発明において、前記2段圧縮機
は、前記低段側圧縮機の吐出ガスを導入した密閉ケーシ
ング内に、前記低段側圧縮機、高段側圧縮機及び駆動用
電動機を内蔵したものであるので、圧縮機ハウジング内
に中間圧力が作用することになり、圧縮機のシリンダー
内外及び圧縮機ハウジングの内外の圧力差が半減され、
各部に作用する力が小さくなる。したがって、より一層
圧縮機の耐久性が向上し、ハウジングの強度もより一層
小さなものとすることができる。
According to a sixth invention of the present invention, in any one of the first to fourth inventions, the two-stage compressor is a hermetic casing into which a discharge gas of the low-stage compressor is introduced. Since the low-stage side compressor, the high-stage side compressor, and the driving motor are built in, an intermediate pressure acts on the inside of the compressor housing, and the inside and outside of the cylinder of the compressor and the compressor housing. The pressure difference between inside and outside is halved,
The force acting on each part is reduced. Therefore, the durability of the compressor can be further improved, and the strength of the housing can be further reduced.

【0039】また、本発明の第7の発明によれば、前記
第1〜第6のいずれかの発明において、前記冷凍サイク
ル装置は、冷媒として二酸化炭素を充填して超臨界冷凍
サイクルで運転されるように形成したものであるので、
低温外気温度領域において前記のような制御を行っても
高温の給湯水を得ることができる。
According to a seventh invention of the present invention, in any one of the first to sixth inventions, the refrigeration cycle apparatus is operated in a supercritical refrigeration cycle by charging carbon dioxide as a refrigerant. Since it was formed like this,
Even if the above control is performed in the low temperature outside air temperature range, high temperature hot water can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る給湯装置の回路図で
ある。
FIG. 1 is a circuit diagram of a hot water supply device according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る給湯装置の低外気温
度領域における圧力制御線図である。
FIG. 2 is a pressure control diagram in the low outside air temperature range of the water heater according to the embodiment of the present invention.

【図3】本発明の実施の形態に係る給湯装置の低外気温
度領域における電動膨張弁の制御線図である。
FIG. 3 is a control diagram of the electric expansion valve in the low outside air temperature region of the hot water supply device according to the embodiment of the present invention.

【図4】本発明の実施の形態に係る給湯装置の低外気温
度領域における圧縮機回転数の制御線図である。
FIG. 4 is a control diagram of a compressor rotation speed in a low outside air temperature region of the hot water supply device according to the embodiment of the present invention.

【図5】本発明の実施の形態に係る給湯装置の低外気温
度領域における圧縮機能力の制御線図である。
FIG. 5 is a control diagram of the compression functional force in the low outside air temperature region of the water heater according to the embodiment of the present invention.

【符号の説明】 1 超臨界冷凍サイクル装置 2 給湯ユニット 3 制御装置 11 (インバータ駆動式)2段圧縮機 11a 低段側圧縮機 11b 高段側圧縮機 11c 電動機 12 高圧側熱交換器 12a 冷媒用熱交換チューブ 12b 水用熱交換チューブ 13 電動膨張弁 14 蒸発器 21 貯湯タンク ΔP1b 高圧側圧力と中間圧力との差 ΔP2b 中間圧力と低圧側圧力との差[Explanation of symbols] 1 Supercritical refrigeration cycle equipment 2 Hot water supply unit 3 control device 11 (Inverter drive type) 2-stage compressor 11a Low-stage compressor 11b High-stage compressor 11c electric motor 12 High-pressure side heat exchanger 12a Heat exchange tube for refrigerant 12b Water heat exchange tube 13 Electric expansion valve 14 Evaporator 21 Hot water storage tank ΔP1b Difference between high pressure and intermediate pressure ΔP2b Difference between intermediate pressure and low pressure

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F04B 49/06 F04B 49/06 341G F24H 1/00 611 F24H 1/00 611Q F25B 1/10 F25B 1/10 D (72)発明者 小山 清 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 机 重男 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 星野 聡 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 式地 千明 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 石垣 茂弥 栃木県足利市大月町1番地 三洋電機空調 株式会社内 Fターム(参考) 3H045 AA09 AA15 AA27 BA19 CA24 DA07 DA16 DA42 EA34 EA43─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F04B 49/06 F04B 49/06 341G F24H 1/00 611 F24H 1/00 611Q F25B 1/10 F25B 1/10 D (72) Inventor Kiyoshi Koyama 1 Otsuki-cho, Ashikaga City, Tochigi Prefecture Sanyo Denki Air Conditioning Co., Ltd. (72) Inventor Shigeo Kazuo Otsuki-cho, Ashikaga City, Tochigi Prefecture Sanyo Electric Air Conditioning Co., Ltd. (72) Inventor Satoshi Hoshino 1 Otsuki-cho, Ashikaga City, Tochigi Prefecture Sanyo Electric Air Conditioning Co., Ltd. (72) Inventor Chiaki Chiaki, 1 Otsuki-cho, Ashikaga City, Tochigi Prefecture Sanyo Electric Air Conditioning Co., Ltd. (72) Inventor Shigumi Ishigaki Ashikaga, Tochigi Prefecture 1 Otsuki-cho, Yokohama-shi Sanyo Electric Air Conditioning Co., Ltd. F term (reference) 3H045 AA09 AA15 AA27 BA19 CA24 DA07 DA16 DA42 EA34 EA43

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 インバータ駆動式単段圧縮機、このイン
バータ駆動式単段圧縮機からの吐出ガスを給湯用水で冷
却する高圧側熱交換器、電動膨張弁、外気と熱交換する
蒸発器を順次接続した冷凍サイクル装置と、前記高圧側
熱交換器で加熱した給湯用水を貯留可能とした貯湯タン
クと、低外気温度領域において、外気温度の低下に対応
して高圧側圧力を低下させるように前記電動膨張弁の開
度を制御する制御装置とを備えたヒートポンプ式給湯装
置。
1. An inverter-driven single-stage compressor, a high-pressure side heat exchanger that cools discharge gas from the inverter-driven single-stage compressor with hot water for hot water supply, an electric expansion valve, and an evaporator that exchanges heat with the outside air. A connected refrigeration cycle device, a hot water storage tank capable of storing hot water for heating hot water heated by the high-pressure side heat exchanger, and a low outside air temperature region, in order to reduce the high pressure side pressure in response to a decrease in the outside air temperature, A heat pump type hot water supply device including a control device for controlling the opening degree of an electric expansion valve.
【請求項2】 低段側圧縮機及び高段側圧縮を有するイ
ンバータ駆動式2段圧縮機、このインバータ駆動式2段
圧縮機からの吐出ガスを給湯用水で冷却する高圧側熱交
換器、電動膨張弁、外気と熱交換する蒸発器を順次接続
した冷凍サイクル装置と、前記高圧側熱交換器で加熱し
た給湯用水を貯留可能とした貯湯タンクと、低外気温度
領域において、外気温度の低下に対応して高圧側圧力を
低下させるように前記電動膨張弁の開度を制御する制御
装置とを備えたヒートポンプ式給湯装置。
2. An inverter-driven two-stage compressor having a low-stage side compressor and a high-stage side compressor, a high-pressure side heat exchanger for cooling the discharge gas from this inverter-driven two-stage compressor with hot water for hot water supply, and an electric motor. A refrigeration cycle device in which an expansion valve and an evaporator for exchanging heat with the outside air are sequentially connected, a hot water storage tank capable of storing hot water for hot water heated by the high-pressure side heat exchanger, and a decrease in the outside air temperature in a low outside air temperature region. A heat pump hot water supply apparatus comprising: a control device that controls the opening degree of the electric expansion valve so as to correspondingly reduce the high-pressure side pressure.
【請求項3】 インバータ駆動式単段圧縮機、このイン
バータ駆動式単段圧縮機からの吐出ガスを給湯用水で冷
却する高圧側熱交換器、電動膨張弁、外気と熱交換する
蒸発器を順次接続した冷凍サイクル装置と、前記高圧側
熱交換器で加熱した給湯用水を貯留可能とした貯湯タン
クと、低外気温度領域において、外気温度の低下に対応
して高圧側圧力を低下させるように前記電動膨張弁の開
度を制御するとともに、圧縮機能力をほぼ一定とするよ
うに前記インバータ式単段圧縮機の回転数を制御する制
御装置とを備えたヒートポンプ式給湯装置。
3. An inverter-driven single-stage compressor, a high-pressure side heat exchanger that cools the discharge gas from this inverter-driven single-stage compressor with hot water for hot water supply, an electric expansion valve, and an evaporator that exchanges heat with the outside air. A connected refrigeration cycle device, a hot water storage tank capable of storing hot water for heating hot water heated by the high-pressure side heat exchanger, and a low outside air temperature region, in order to reduce the high pressure side pressure in response to a decrease in the outside air temperature, A heat pump hot water supply apparatus comprising: a controller for controlling the opening of the electric expansion valve and controlling the rotation speed of the inverter type single stage compressor so that the compression function force is kept substantially constant.
【請求項4】 低段側圧縮機及び高段側圧縮を有するイ
ンバータ駆動式2段圧縮機、このインバータ駆動式2段
圧縮機からの吐出ガスを給湯用水で冷却する高圧側熱交
換器、電動膨張弁、外気と熱交換する蒸発器を順次接続
した冷凍サイクル装置と、前記高圧側熱交換器で加熱し
た給湯用水を貯留可能とした貯湯タンクと、低外気温度
領域において、外気温度の低下に対応して高圧側圧力を
低下させるように前記電動膨張弁の開度を制御するとと
もに、圧縮機能力をほぼ一定とするように前記インバー
タ駆動式2段圧縮機の回転数を制御する制御装置とを備
えたヒートポンプ式給湯装置。
4. An inverter-driven two-stage compressor having a low-stage side compressor and a high-stage side compressor, a high-pressure side heat exchanger for cooling the discharge gas from this inverter-driven two-stage compressor with hot water for hot water supply, and an electric motor. A refrigeration cycle device in which an expansion valve and an evaporator for exchanging heat with the outside air are sequentially connected, a hot water storage tank capable of storing hot water for hot water heated by the high-pressure side heat exchanger, and a decrease in the outside air temperature in a low outside air temperature region. A controller for controlling the opening degree of the electric expansion valve so as to correspondingly reduce the high-pressure side pressure and for controlling the rotation speed of the inverter-driven two-stage compressor so that the compression functional force is substantially constant. Heat pump type hot water supply device.
【請求項5】 前記低外気温度領域は0℃以下である請
求項1〜4のいずれか1項記載のヒートポンプ式給湯装
置。
5. The heat pump type hot water supply apparatus according to claim 1, wherein the low outside air temperature range is 0 ° C. or lower.
【請求項6】 前記2段圧縮機は、前記低段側圧縮機の
吐出ガスを導入した密閉ケーシング内に、前記低段側圧
縮機、高段側圧縮機及び駆動用電動機を内蔵したもので
ある請求項2又は4記載のヒートポンプ式給湯装置。
6. The two-stage compressor has the low-stage side compressor, the high-stage side compressor, and a drive motor built in a hermetically sealed casing into which the discharge gas of the low-stage side compressor is introduced. The heat pump hot water supply apparatus according to claim 2 or 4.
【請求項7】 前記冷凍サイクル装置は、冷媒として二
酸化炭素を充填して超臨界冷凍サイクルで運転されるよ
うに形成した請求項1〜6のいずれか1項記載のヒート
ポンプ式給湯装置。
7. The heat pump type hot water supply apparatus according to claim 1, wherein the refrigeration cycle apparatus is formed so as to be filled with carbon dioxide as a refrigerant so as to be operated in a supercritical refrigeration cycle.
JP2001278523A 2001-09-13 2001-09-13 Heat pump type water heater Expired - Fee Related JP4693308B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001278523A JP4693308B2 (en) 2001-09-13 2001-09-13 Heat pump type water heater
CNB021416737A CN1202397C (en) 2001-09-13 2002-09-10 Heat-pump type hot-water supplying device
KR10-2002-0055193A KR100500618B1 (en) 2001-09-13 2002-09-12 Heat Pump Type Hot Water Supply Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001278523A JP4693308B2 (en) 2001-09-13 2001-09-13 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2003090631A true JP2003090631A (en) 2003-03-28
JP4693308B2 JP4693308B2 (en) 2011-06-01

Family

ID=19102878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001278523A Expired - Fee Related JP4693308B2 (en) 2001-09-13 2001-09-13 Heat pump type water heater

Country Status (3)

Country Link
JP (1) JP4693308B2 (en)
KR (1) KR100500618B1 (en)
CN (1) CN1202397C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271214A (en) * 2006-03-31 2007-10-18 Daikin Ind Ltd Refrigerating device
JP2008256280A (en) * 2007-04-05 2008-10-23 Tokyo Electric Power Co Inc:The Steam generating system
JP2009041860A (en) * 2007-08-09 2009-02-26 Toshiba Carrier Corp Control method of heat pump hot water supply device
US7802441B2 (en) 2004-05-12 2010-09-28 Electro Industries, Inc. Heat pump with accumulator at boost compressor output
US7849700B2 (en) 2004-05-12 2010-12-14 Electro Industries, Inc. Heat pump with forced air heating regulated by withdrawal of heat to a radiant heating system
WO2012056739A1 (en) * 2010-10-29 2012-05-03 三菱電機株式会社 Refrigeration cycle device and refrigeration cycle control method
JP2013160490A (en) * 2012-02-09 2013-08-19 Hitachi Appliances Inc Heat pump type water heater

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018698A1 (en) * 2006-08-10 2008-02-14 Sconet Co., Ltd. Heat pump-type heating apparatus
KR100695974B1 (en) * 2006-08-10 2007-03-16 주식회사 스코넷 Heating equipment of heat pump type
WO2008023889A1 (en) * 2006-08-21 2008-02-28 Sconet Co., Ltd. Heat pump-type heating apparatus of both air cooling and water cooling
KR100695975B1 (en) * 2006-08-21 2007-03-16 주식회사 스코넷 Heat-pump type heating apparatus used as gas and water
KR20120136854A (en) * 2011-06-10 2012-12-20 삼성전자주식회사 Water supply apparatus
CN109028573B (en) * 2018-06-05 2020-09-01 广东芬尼克兹节能设备有限公司 Method and system for controlling working frequency of heat pump water heater compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231132A (en) * 1987-03-18 1988-09-27 Hitachi Ltd Defrosting control of variable capacity type airconditioning machine
JPH10220845A (en) * 1997-02-07 1998-08-21 Matsushita Electric Ind Co Ltd Air conditioner
JP2000120572A (en) * 1998-10-12 2000-04-25 Sanyo Electric Co Ltd Rotary compressor
JP2000346448A (en) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd Heat pump hot-water supplier
JP2000346447A (en) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd Heat pump hot-water supplier
JP2001201177A (en) * 2000-01-19 2001-07-27 Daikin Ind Ltd Heat pump hot water supplier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231132A (en) * 1987-03-18 1988-09-27 Hitachi Ltd Defrosting control of variable capacity type airconditioning machine
JPH10220845A (en) * 1997-02-07 1998-08-21 Matsushita Electric Ind Co Ltd Air conditioner
JP2000120572A (en) * 1998-10-12 2000-04-25 Sanyo Electric Co Ltd Rotary compressor
JP2000346448A (en) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd Heat pump hot-water supplier
JP2000346447A (en) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd Heat pump hot-water supplier
JP2001201177A (en) * 2000-01-19 2001-07-27 Daikin Ind Ltd Heat pump hot water supplier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802441B2 (en) 2004-05-12 2010-09-28 Electro Industries, Inc. Heat pump with accumulator at boost compressor output
US7849700B2 (en) 2004-05-12 2010-12-14 Electro Industries, Inc. Heat pump with forced air heating regulated by withdrawal of heat to a radiant heating system
JP2007271214A (en) * 2006-03-31 2007-10-18 Daikin Ind Ltd Refrigerating device
JP2008256280A (en) * 2007-04-05 2008-10-23 Tokyo Electric Power Co Inc:The Steam generating system
JP2009041860A (en) * 2007-08-09 2009-02-26 Toshiba Carrier Corp Control method of heat pump hot water supply device
WO2012056739A1 (en) * 2010-10-29 2012-05-03 三菱電機株式会社 Refrigeration cycle device and refrigeration cycle control method
JP2012097910A (en) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp Refrigeration cycle device and refrigeration cycle control method
CN103180676A (en) * 2010-10-29 2013-06-26 三菱电机株式会社 Refrigeration cycle device and refrigeration cycle control method
JP2013160490A (en) * 2012-02-09 2013-08-19 Hitachi Appliances Inc Heat pump type water heater

Also Published As

Publication number Publication date
CN1405519A (en) 2003-03-26
KR100500618B1 (en) 2005-07-18
CN1202397C (en) 2005-05-18
JP4693308B2 (en) 2011-06-01
KR20030023531A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
US9395105B2 (en) Refrigeration cycle device
JP5018496B2 (en) Refrigeration equipment
ES2869237T3 (en) Refrigeration cycle apparatus
JP3625816B2 (en) Air conditioner start-up control system and control method thereof
KR100500617B1 (en) Supercritical refrigerating apparatus
JP2003090631A (en) Heat pump type water heater
KR20040086562A (en) Refrigerant cycle apparatus
JP2004212006A (en) Freezing device
KR20070067121A (en) Refrigerating apparatus
JP4737892B2 (en) Heat pump type water heater
KR20130085257A (en) Air conditioner and starting control method of thereof
JP5119341B2 (en) Heat pump type water heater
JP4363997B2 (en) Refrigeration equipment
JP4641683B2 (en) Refrigeration cycle equipment
KR20110074708A (en) Freezing device
JP2005214444A (en) Refrigerator
JP2005214575A (en) Refrigerator
WO2006013970A1 (en) Freezing cycle apparatus
JP2001066000A (en) Heat pump type air conditioner and outdoor unit
JP2003148821A (en) Supercritical refrigerating cycle device and water heater
JP7078724B2 (en) Refrigeration cycle device and its control method
JP2003013860A (en) Two stage compression type compressor and refrigerating device using the same
JP2003185308A (en) Heat pump type hot-water supplying apparatus
JP3548017B2 (en) Cooling system
JP2007147228A (en) Refrigerating device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees