JP2009041860A - Control method of heat pump hot water supply device - Google Patents

Control method of heat pump hot water supply device Download PDF

Info

Publication number
JP2009041860A
JP2009041860A JP2007208330A JP2007208330A JP2009041860A JP 2009041860 A JP2009041860 A JP 2009041860A JP 2007208330 A JP2007208330 A JP 2007208330A JP 2007208330 A JP2007208330 A JP 2007208330A JP 2009041860 A JP2009041860 A JP 2009041860A
Authority
JP
Japan
Prior art keywords
temperature
water
compressor
heat exchanger
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007208330A
Other languages
Japanese (ja)
Other versions
JP5113447B2 (en
Inventor
Masahito Hori
将人 堀
Naoki Imato
尚希 今任
Yoshiteru Yamazaki
吉照 山崎
Tomoaki Tanabe
智明 田邉
Takeshi Mochizuki
武 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2007208330A priority Critical patent/JP5113447B2/en
Publication of JP2009041860A publication Critical patent/JP2009041860A/en
Application granted granted Critical
Publication of JP5113447B2 publication Critical patent/JP5113447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of a heat pump hot water supply device capable of regulating the upper limit of a differential pressure between a discharge pressure and a suction pressure of a compressor and improving reliability of the compressor. <P>SOLUTION: The control method of the heat pump hot water supply device regulates a set upper limit temperature of hot water generated by a water heat exchanger 4 when the outside temperature is a predetermined temperature or lower. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はヒートポンプ給湯装置の制御方法に係り、特に水熱交換器で生成される湯の設定上限温度を規制するヒートポンプ給湯装置の制御方法に関する。   The present invention relates to a control method of a heat pump hot water supply apparatus, and more particularly to a control method of a heat pump hot water supply apparatus that regulates a set upper limit temperature of hot water generated by a water heat exchanger.

一般にヒートポンプ給湯装置は出湯を設定温度になるよう制御している。   In general, the heat pump hot water supply apparatus controls the hot water to reach a set temperature.

しかし、従来のヒートポンプ給湯装置は季節により変化する外気温度に関係なく出湯温度が設定温度になるように制御をしていた。   However, the conventional heat pump hot-water supply device has been controlled so that the hot water temperature becomes the set temperature regardless of the outside air temperature that changes according to the season.

このため、低外気温度時には出湯温度が一定であるため、凝縮圧力は変わらず蒸発圧力が低下し、圧縮機吐出と吸込の圧力差が大きくなり、圧縮機に過度な負担がかかっていた。また高外気温度時には、圧縮機の運転周波数を制御するインバータに流れる電流を規制すること、または水熱交換器の凝縮温度が上昇するのを防ぐ高圧保護により運転停止と運転復帰を繰り返すことで、圧縮機が短断続運転となり圧縮機の信頼性上好ましくない状態になる問題があった。   For this reason, since the tapping temperature is constant at the low outside air temperature, the condensation pressure does not change, the evaporation pressure decreases, the pressure difference between the compressor discharge and the suction increases, and an excessive burden is placed on the compressor. In addition, by controlling the current that flows to the inverter that controls the operating frequency of the compressor at high outside air temperature, or by repeatedly stopping operation and returning to operation with high pressure protection that prevents the condensation temperature of the water heat exchanger from rising, There was a problem that the compressor became short intermittent operation and became unpreferable in terms of the reliability of the compressor.

また、従来のヒートポンプ給湯装置は除霜時の水凍結防止として水温が低下した場合にはヒートポンプ給湯装置を異常停止させるのみであった。   Further, the conventional heat pump hot water supply apparatus only abnormally stops the heat pump hot water supply apparatus when the water temperature is lowered to prevent water freezing at the time of defrosting.

なお、特許文献1には、外気温度が高いときには、圧縮機の吐出圧力が、予め設定された常用最大吐出圧力を越えないように、また、外気温度が低いときには、圧縮機の吐出温度が、予め設定された常用最大吐出温度を越えないように、減圧装置の開度を制御するヒートポンプ給湯装置の制御方法が提案されている。
特開2000−346447号公報
In Patent Document 1, when the outside air temperature is high, the discharge pressure of the compressor does not exceed the preset maximum normal discharge pressure, and when the outside air temperature is low, the discharge temperature of the compressor is There has been proposed a control method for a heat pump hot-water supply device for controlling the opening degree of the pressure reducing device so as not to exceed a preset normal maximum discharge temperature.
JP 2000-346447 A

本発明は上述した事情を考慮してなされたもので、圧縮機の吐出圧力と吸入圧力の圧力差の上限を規制することができ、圧縮機の信頼性の向上を図ることができるヒートポンプ給湯装置の制御方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and can regulate the upper limit of the pressure difference between the discharge pressure and the suction pressure of the compressor, and can improve the reliability of the compressor. It is an object to provide a control method.

上述した目的を達成するため、本発明に係るヒートポンプ給湯装置の制御方法は、水を加熱して湯を生成する水熱交換器を組み込んだ冷凍サイクルを備えたヒートポンプ給湯装置の制御方法において、外気温度が予め定めた温度以下の場合に、水熱交換器で生成される湯の設定上限温度を規制することを特徴とする。   In order to achieve the above-described object, a control method for a heat pump hot water supply apparatus according to the present invention is a control method for a heat pump hot water supply apparatus including a refrigeration cycle incorporating a water heat exchanger that generates hot water by heating water. When the temperature is equal to or lower than a predetermined temperature, the set upper limit temperature of hot water generated by the water heat exchanger is regulated.

本発明に係るヒートポンプ給湯装置の制御方法によれば、圧縮機の吐出圧力と吸入圧力の圧力差の上限を規制することができ、圧縮機の信頼性の向上を図ることができるヒートポンプ給湯装置の制御方法を提供することができる。   According to the control method of the heat pump hot water supply apparatus according to the present invention, the upper limit of the pressure difference between the discharge pressure and the suction pressure of the compressor can be regulated, and the reliability of the compressor can be improved. A control method can be provided.

本発明の一実施形態に係るヒートポンプ給湯装置の制御方法について図面を参照して説明する。   The control method of the heat pump hot-water supply apparatus which concerns on one Embodiment of this invention is demonstrated with reference to drawings.

図1は本発明の一実施形態に係るヒートポンプ給湯装置の制御方法を実施するヒートポンプ給湯装置の概念図である。   FIG. 1 is a conceptual diagram of a heat pump hot water supply apparatus that implements a control method for a heat pump hot water supply apparatus according to an embodiment of the present invention.

図1に示すように、本実施形態のヒートポンプ給湯装置1は、圧縮機2、四方弁3、水熱交換器4、冷媒流路を開閉する第1の膨張弁5、冷媒を低温低圧に膨張させる第2の膨張弁6、室外熱交換器7を順次配管接続し、さらに、水熱交換器4と並列に逆止弁8と二方弁9からなる除霜用のバイパス回路10を設け、その一端を第1の膨張弁5と第2の膨張弁6間に接続した冷凍サイクルS1を備える。なお、第1の膨張弁5は二方弁でも代用ができる。   As shown in FIG. 1, a heat pump water heater 1 according to this embodiment includes a compressor 2, a four-way valve 3, a water heat exchanger 4, a first expansion valve 5 that opens and closes a refrigerant flow path, and expands the refrigerant to low temperature and low pressure. The second expansion valve 6 and the outdoor heat exchanger 7 to be made are sequentially connected by piping, and further, a defrosting bypass circuit 10 including a check valve 8 and a two-way valve 9 is provided in parallel with the water heat exchanger 4, A refrigeration cycle S1 having one end connected between the first expansion valve 5 and the second expansion valve 6 is provided. The first expansion valve 5 can be replaced with a two-way valve.

また、水熱交換器4は給水ポンプ11、配管ジョイント12、12を介して貯湯タンク13の給水側に配管接続して給湯水回路S2を形成し、貯湯タンク13には給湯配管14と、給水配管15が接続される。   The water heat exchanger 4 is connected to the water supply side of the hot water storage tank 13 via the water supply pump 11 and the pipe joints 12 and 12 to form a hot water supply circuit S2. The hot water storage tank 13 includes a hot water supply pipe 14 and water supply. A pipe 15 is connected.

図1及び図2に示すように、ヒートポンプ式給湯装置1は装置全体を制御する制御装置16を備え、この制御装置16には、必要なインターフェイス(図示せず)を介して、インバータ回路2aを備えたインバータ式の回転数可変の圧縮機2、室外熱交換器用送風機17、四方弁3、給水ポンプ11、圧縮機2の吸込側配管に設けた吸込冷媒温度センサーs、吐出側配管に設けた吐出冷媒温度センサーs、水熱交換器4に設けた水熱交換器温度センサーs、室外熱交換器7の冷媒入口側配管に設けた室外熱交換器温度センサーs、室外熱交換器7の空気吸込側近傍に設けた外気温度センサーs、水熱交換器4の給水側配管に設けた水入口温度センサーs、湯水側配管に設けた水出口温度センサーsが接続される。 As shown in FIG.1 and FIG.2, the heat pump type hot water supply apparatus 1 includes a control device 16 that controls the entire device, and the control device 16 includes an inverter circuit 2a via a necessary interface (not shown). Included inverter-type variable-speed compressor 2, outdoor heat exchanger blower 17, four-way valve 3, water supply pump 11, suction refrigerant temperature sensor s 1 provided in the suction side piping of the compressor 2, and provided in the discharge side piping The discharged refrigerant temperature sensor s 2 , the water heat exchanger temperature sensor s 3 provided in the water heat exchanger 4 , the outdoor heat exchanger temperature sensor s 4 provided in the refrigerant inlet side pipe of the outdoor heat exchanger 7, and the outdoor heat exchange outdoor air temperature sensor s 5 provided on the air suction side near the vessel 7, water inlet temperature sensor s 6 provided on the water supply pipe of the water heat exchanger 4, water outlet temperature sensor s 7 provided on the hot water side piping is connected The

制御装置16はCPU16a、メモリ16bを備え、各温度s〜sからの温度情報あるいは使用者から指示される運転指令情報の内容に基づき、インバータ回路2aを介した圧縮機3、第1の膨張弁5、第2の膨張弁6、室外熱交換器用送風機17、給水ポンプ11の運転、四方弁3の動作などを制御する機能を有する。 The control device 16 includes a CPU 16a and a memory 16b. Based on the temperature information from each of the temperatures s 1 to s 7 or the contents of the operation command information instructed by the user, the compressor 3 via the inverter circuit 2a, the first The expansion valve 5, the second expansion valve 6, the outdoor heat exchanger blower 17, the operation of the feed water pump 11, the operation of the four-way valve 3, etc. are controlled.

次に本実施形態のヒートポンプ給湯装置の制御方法(給湯運転時)について説明する。   Next, the control method (at the time of hot water supply operation) of the heat pump hot water supply apparatus of this embodiment is demonstrated.

図2に示すヒートポンプ給湯装置1の冷凍サイクルS1において、圧縮機2から吐出された高温高圧のガス冷媒は、四方弁3を介して水熱交換器4に流れ、給湯水回路S2へ放熱しながら凝縮され、冷媒から放熱された熱を給湯水回路S2の水に与えて湯生成する。   In the refrigeration cycle S1 of the heat pump water heater 1 shown in FIG. 2, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows to the water heat exchanger 4 through the four-way valve 3 and dissipates heat to the hot water supply circuit S2. The heat condensed and radiated from the refrigerant is supplied to the water in the hot water supply circuit S2 to generate hot water.

水熱交換器4には給水ポンプ11を用いて、一定の流量で給水し、水(湯)出口温度を水出口温度センサーs7で検知し、水出口温度(湯温)が設定温度になるように、制御装置16、インバータ回路2aを介して圧縮機2の回転数を制御する。   The water heat exchanger 4 is supplied with water at a constant flow rate using a water supply pump 11, the water (hot water) outlet temperature is detected by the water outlet temperature sensor s7, and the water outlet temperature (hot water temperature) becomes the set temperature. Further, the rotational speed of the compressor 2 is controlled via the control device 16 and the inverter circuit 2a.

水の流量と水熱交換器4の加熱能力により、水入口温度と水出口温度との温度差を加熱温度上限として決定する。   The temperature difference between the water inlet temperature and the water outlet temperature is determined as the upper limit of the heating temperature based on the flow rate of water and the heating capacity of the water heat exchanger 4.

通常、水入口温度すなわち凝縮温度を一定とした場合、圧縮機2の高圧側の圧力は外気温度によらずほぼ一定となる。出湯温度が一定となるため、低外気温時には、低圧側の圧力が外気に応じて下がり、圧縮機2の吸込側と吐出側の高低圧差(△P)が大となる。この△Pが大となると圧縮機2に掛かる負荷が大となり、圧縮機2の信頼性上よくない状態での運転を継続することになる。   Usually, when the water inlet temperature, that is, the condensation temperature is constant, the pressure on the high pressure side of the compressor 2 is substantially constant regardless of the outside air temperature. Since the temperature of the hot water is constant, the pressure on the low pressure side decreases according to the outside air at a low outside air temperature, and the high / low pressure difference (ΔP) between the suction side and the discharge side of the compressor 2 increases. When this ΔP becomes large, the load applied to the compressor 2 becomes large, and the operation in a state where the compressor 2 is not reliable is continued.

なお、従来は外気温度の使用範囲下限を決めており、その下限以下では運転しないこととしているが、実際には外気温度下限以下で運転した場合には圧縮機2に負荷が大きい状態で運転継続することになる。   In the past, the lower limit of the outside air temperature range was determined, and operation was not performed below the lower limit. However, in actual operation, when the engine was operated below the lower temperature limit, the compressor 2 continued to operate with a heavy load. Will do.

外気温度センサーsにより外気温度を測定し、この外気温度センサーsの温度が予め定めた所定温度以下となった場合、設定温度上限を規制(下げる)ことで低外気温時の△Pを抑制し、圧縮機2にかかる負荷の上限を規制する。 The outside air temperature measured by the outside air temperature sensor s 5, when the temperature of the outside air temperature sensor s 5 becomes a predetermined prescribed temperature or less, the △ P at low outside air temperature by regulating (reducing) the set temperature upper limit The upper limit of the load applied to the compressor 2 is restricted.

図3は外気温度、水入口温度と圧縮機2の使用範囲との相関を示す。   FIG. 3 shows the correlation between the outside air temperature, the water inlet temperature, and the usage range of the compressor 2.

外気温度が7℃の場合、水入口温度が60℃、55℃、50℃いずれの場合とも、圧縮機2は適正使用範囲内にあり、外気温度が−7℃の場合、水入口温度が55℃、50℃の場合は、圧縮機2は適正使用範囲内にあるが、水入口温度が60℃の場合には、圧縮機2は適正使用範囲を外れる。   When the outside air temperature is 7 ° C., the compressor 2 is within the proper use range in any case where the water inlet temperature is 60 ° C., 55 ° C., or 50 ° C. When the outside air temperature is −7 ° C., the water inlet temperature is 55 When the temperature is 50 ° C. or 50 ° C., the compressor 2 is within the proper use range, but when the water inlet temperature is 60 ° C., the compressor 2 is out of the proper use range.

図4に外気温度と設定温度の上限規制値(温度)の一例を示す。   FIG. 4 shows an example of the upper limit regulation value (temperature) of the outside air temperature and the set temperature.

外気温度が−5℃〜25℃の範囲では、水出口温度(湯温)の設定温度の上限値は65℃にし、−5℃〜25℃の範囲外では、水出口温度の設定温度の上限値は58℃にする。   When the outside air temperature is in the range of −5 ° C. to 25 ° C., the upper limit value of the water outlet temperature (hot water temperature) is 65 ° C., and outside the range of −5 ° C. to 25 ° C., the upper limit of the water outlet temperature is set. The value is 58 ° C.

上記のように、外気温度が予め定めた所定温度、例えば−5℃以下となった場合、設定温度上限を60℃から58℃に下げることで、△Pを抑制し、圧縮機2にかかる負荷の上限を規制する。   As described above, when the outside air temperature becomes a predetermined temperature, for example, −5 ° C. or lower, the upper limit of the set temperature is lowered from 60 ° C. to 58 ° C. to suppress ΔP and the load applied to the compressor 2 Regulate the upper limit of.

水入口温度が低下すれば、水出口温度も低下し、圧縮機2の高圧側の圧力も低下するため、水出入口の温度差を規制するのではなく、設定温度上限を決めておけば、△Pを規制することができる。   If the water inlet temperature decreases, the water outlet temperature also decreases, and the pressure on the high pressure side of the compressor 2 also decreases. Therefore, if the temperature difference at the water inlet / outlet is not regulated but the set temperature upper limit is determined, Δ P can be regulated.

これにより低外気温時でも、圧縮機2の高低圧力差(△P)の上限を規制でき、圧縮機2の信頼性が向上する。   Thereby, even at the time of low outside air temperature, the upper limit of the high / low pressure difference (ΔP) of the compressor 2 can be regulated, and the reliability of the compressor 2 is improved.

上記給湯運転中、インバータ2aに流れる電流を規制し、圧縮機2を保護する必要がある。   During the hot water supply operation, it is necessary to regulate the current flowing through the inverter 2a and protect the compressor 2.

従来は高外気温度条件で電流が上限値を超えると、圧縮機2の運転周波数(Hz)の上限が規制され、圧縮機2が最低周波数以下となって圧縮機2が停止していた。圧縮機2が停止した場合、停止時から所定時間経過後に圧縮機2を再度起動させ、再び電流が上限値を超えると圧縮機2が停止し、この運転停止と運転復帰を繰り返していたため、圧縮機2の信頼性上よくない状態であった。   Conventionally, when the current exceeds the upper limit value under high outside air temperature conditions, the upper limit of the operating frequency (Hz) of the compressor 2 is restricted, and the compressor 2 becomes lower than the minimum frequency and the compressor 2 stops. When the compressor 2 is stopped, the compressor 2 is restarted after a predetermined time has elapsed since the stop, and when the current exceeds the upper limit value again, the compressor 2 is stopped. The reliability of the machine 2 was not good.

これに対して、本実施形態では、電流が上限値を超えて圧縮機2の停止が1回または、n回繰り返した場合に圧縮機2の運転を継続できないと判断し、圧縮機2の運転を停止させる。また、圧縮機2の運転停止後の再運転開始条件は、圧縮機2が運転停止した外気温度より低い場合、例えば5K低くとなった場合とする。これにより、圧縮機2の頻繁な運転停止を防止する。   In contrast, in the present embodiment, it is determined that the operation of the compressor 2 cannot be continued when the current exceeds the upper limit value and the compressor 2 is stopped once or n times. Stop. In addition, the re-operation start condition after the operation stop of the compressor 2 is lower than the outside air temperature at which the compressor 2 is stopped, for example, 5K lower. Thereby, frequent stoppage of the compressor 2 is prevented.

圧縮機2の停止回数であるn回は圧縮機の運転復帰後ある一定の期間運転が継続すればカウントをクリアするものとする。本制御によりインバータ2aの電流保護による圧縮機2の頻繁な運転オンオフが防止でき、冷凍サイクルの信頼性が向上する。   The count of n times that the compressor 2 is stopped is cleared if the operation continues for a certain period after the operation of the compressor is resumed. By this control, frequent operation on / off of the compressor 2 due to the current protection of the inverter 2a can be prevented, and the reliability of the refrigeration cycle is improved.

なお、具体的な制御内容を以下に記載する。
判定条件:(外気温度≧β(例えば、43℃)+電流保護による圧縮機2の停止)≧1回またはn回
n回のカウントクリア条件は一定時間(例えば10分)圧縮機2の運転継続
判定時の動作:圧縮機2の運転停止
圧縮機2の運転停止解除条件:外気温度≦判定条件時の外気温度−α(例えば5K)
Specific control contents are described below.
Judgment condition: (outside temperature ≧ β (for example, 43 ° C.) + Stop of compressor 2 due to current protection) ≧ 1 or n times The count clear condition of n times is a constant time (for example, 10 minutes), and the compressor 2 continues to operate. Operation at the time of determination: Operation stop of the compressor 2 Operation stop release condition of the compressor 2: Outside air temperature ≦ Outside air temperature at the determination condition−α (for example, 5K)

また、上記給湯運転中、水熱交換器4への水の流量が極端に小さい場合には、凝縮温度が上昇し高圧保護による圧縮機2のオン/オフの繰り返しが発生する。このような状態を防止するため、高圧上昇時の高圧保護による圧縮機の停止をm回繰り返した場合には、圧縮機2の運転継続できないと判断し圧縮機2の運転を停止させる。圧縮機2の停止回数であるm回は圧縮機2の運転復帰後ある一定の時間運転が継続すればカウントをクリアする。   Further, during the hot water supply operation, when the flow rate of water to the water heat exchanger 4 is extremely small, the condensation temperature rises and the compressor 2 is repeatedly turned on / off due to high pressure protection. In order to prevent such a state, when the compressor is stopped m times by high pressure protection when the pressure is increased, it is determined that the operation of the compressor 2 cannot be continued and the operation of the compressor 2 is stopped. The count m, which is the number of stops of the compressor 2, is cleared if the operation continues for a certain time after the operation of the compressor 2 is restored.

このような制御を行うことにより、凝縮温度上昇による高圧保護による頻繁な圧縮機2の運転オンオフを防止することができ、冷凍サイクルの信頼性が向上する。特に、流量減等の異常時に高圧保護による短断続運転を防止することができる。   By performing such control, it is possible to prevent frequent on / off operation of the compressor 2 due to high pressure protection due to an increase in the condensation temperature, and the reliability of the refrigeration cycle is improved. In particular, it is possible to prevent short intermittent operation due to high-pressure protection when there is an abnormality such as a decrease in flow rate.

なお、具体的な制御内容を以下に記載する。
判定条件:凝縮温度上昇による高圧保護による圧縮機2の停止回数≧m(例えば40回)
m回のカウントクリア条件は一定時間(例えば10分)圧縮機2の運転継続
判定時の動作:圧縮機2の運転停止
Specific control contents are described below.
Judgment condition: number of stops of compressor 2 due to high pressure protection due to increase in condensation temperature ≧ m (for example, 40 times)
The count clear condition of m times is a fixed time (for example, 10 minutes).

また、外気温度が予め定めた所定温度、例えば25℃以上となった場合、設定温度上限例えば60℃から下げて58℃に決めておけば、インバータ2aの電流保護、凝縮温度上昇による高圧保護による圧縮機2の停止を防止できる。特に、圧縮機2の短断続運転を回避し、圧縮機2の信頼性が向上する。   Further, when the outside air temperature becomes a predetermined temperature, for example, 25 ° C. or more, if the set temperature upper limit is lowered from 60 ° C., for example, to 58 ° C., the current protection of the inverter 2a and the high pressure protection by increasing the condensation temperature are achieved. The stop of the compressor 2 can be prevented. In particular, short intermittent operation of the compressor 2 is avoided, and the reliability of the compressor 2 is improved.

また、本実施形態のヒートポンプ給湯装置の制御方法(除霜運転時)について説明する。   Moreover, the control method (at the time of a defrost operation) of the heat pump hot-water supply apparatus of this embodiment is demonstrated.

本ヒートポンプ給湯装置(冷凍サイクル)の除霜時の制御で、通常の除霜は、圧縮機2から吐出した冷媒が着霜した室外熱交換器7を除霜し、第1の膨張弁5、第2の膨張弁6を通り水熱交換器4に流入する。水熱交換器4で湯から熱をもらい、再度四方弁3を通り圧縮機2に戻ることで除霜を行う。   In the defrosting control of the heat pump water heater (refrigeration cycle), the normal defrosting defrosts the outdoor heat exchanger 7 to which the refrigerant discharged from the compressor 2 has frosted, and the first expansion valve 5, The water flows into the water heat exchanger 4 through the second expansion valve 6. Defrosting is performed by receiving heat from the hot water in the water heat exchanger 4 and returning to the compressor 2 through the four-way valve 3 again.

しかし、水熱交換器4に流入する湯の温度が低下した場合、水熱交換器4が凍結するおそれがあるため、従来は水入口温度TWiまたは、水出口温度TWoの温度がある一定の温度以下となった場合には、除霜を停止させ異常表示をさせていた。この場合、凍結防止ができるが、冷凍サイクルは除霜が完了せず、着霜した状態で異常停止することになる。   However, when the temperature of the hot water flowing into the water heat exchanger 4 is lowered, the water heat exchanger 4 may be frozen. Conventionally, the water inlet temperature TWi or the water outlet temperature TWo is a constant temperature. When it became below, defrosting was stopped and the abnormality was displayed. In this case, although freezing can be prevented, the refrigeration cycle does not complete defrosting, but abnormally stops in a frosted state.

これに対して本実施形態のヒートポンプ給湯装置の除霜運転時の制御方法は、水入口温度TWi、水出口温度TWo、水熱交換器温度Tcが低下し、水熱交換器4が凍結するおそれがある場合例えば「TWi≧γ(例えば2℃)、TWo≧γ(例えば2℃)、Tc≧ε(例えば−10℃)をp秒(例えば25秒)継続する状態」、バイパス回路10を開き、第1の膨張弁5を閉とすることで、除霜時の冷媒を水熱交換器4に流入させず、バイパスをさせ凍結を防止する。この場合は湯を使用しない除霜となる。   On the other hand, the control method at the time of defrosting operation of the heat pump hot-water supply apparatus of this embodiment WHEREIN: The water inlet temperature TWi, the water outlet temperature TWo, the water heat exchanger temperature Tc falls, and the water heat exchanger 4 may freeze. For example, “TWi ≧ γ (for example, 2 ° C.), TWo ≧ γ (for example, 2 ° C.), Tc ≧ ε (for example, −10 ° C.) continues for p seconds (for example, 25 seconds)”, and the bypass circuit 10 is opened. By closing the first expansion valve 5, the refrigerant at the time of defrosting is not allowed to flow into the water heat exchanger 4 and is bypassed to prevent freezing. In this case, defrosting is performed without using hot water.

第1膨張弁5を閉じず、冷媒をバイパス回路10に水熱交換器4と並列に流すことでも水熱交換器4に流入する冷媒量を低減でき、水熱交換器4の凍結を防止できる。   Even if the first expansion valve 5 is not closed and the refrigerant flows through the bypass circuit 10 in parallel with the water heat exchanger 4, the amount of refrigerant flowing into the water heat exchanger 4 can be reduced, and the water heat exchanger 4 can be prevented from freezing. .

具体的な制御方法を以下に記載する。
凍結判定条件:TWi<2℃またはTWo<2℃を25秒継続あるいは、Tc<−10℃を25秒継続
凍結判定時の動作:図5に示すように、第1の膨張弁5を閉じ、二方弁9を開放して、水4を完全バイパスさせる。
A specific control method is described below.
Freezing judgment condition: TWi <2 ° C. or TWo <2 ° C. is continued for 25 seconds, or Tc <−10 ° C. is continued for 25 seconds. Operation during freezing judgment: As shown in FIG. 5, the first expansion valve 5 is closed, The two-way valve 9 is opened and the water 4 is completely bypassed.

または、図6に示すように、二方弁9を開放して、水熱交換器4とバイパス回路10を並行に流す。除霜終了までバイパス状態を継続させる。   Or as shown in FIG. 6, the two-way valve 9 is open | released and the water heat exchanger 4 and the bypass circuit 10 are flowed in parallel. The bypass state is continued until the defrosting is completed.

除霜運転時に水温が低下(水入口温度、水出口温度がある一定時間所定の温度以下となったら)または、水熱交換器温度が低下(ある一定時間所定の温度以下となったら)水熱交換器が凍結するおそれがあると判断しバイパス回路10を開放とすることで、水熱交換器4に冷媒を流さないか、水熱交換器4とバイパス回路10に並列に冷媒を流し、水熱交換器4への冷媒量を低減することで水熱交換器4の凍結を防止することができる。   Water temperature decreases during defrosting operation (when water inlet temperature and water outlet temperature are below a certain temperature for a certain period of time) or water heat exchanger temperature decreases (when a certain temperature is below a certain temperature for a certain period of time) By determining that the exchanger may freeze and opening the bypass circuit 10, the refrigerant is not allowed to flow through the water heat exchanger 4, or the refrigerant is allowed to flow through the water heat exchanger 4 and the bypass circuit 10 in parallel. By reducing the amount of refrigerant to the heat exchanger 4, freezing of the water heat exchanger 4 can be prevented.

本実施形態のヒートポンプ給湯装置の制御方法によれば、圧縮機2の吐出圧力と吸入圧力の圧力差の上限を規制することができ、圧縮機2の信頼性の向上を図ることができるヒートポンプ給湯装置の制御方法が実現する。   According to the control method of the heat pump hot water supply apparatus of this embodiment, the upper limit of the pressure difference between the discharge pressure and the suction pressure of the compressor 2 can be regulated, and the reliability of the compressor 2 can be improved. A device control method is realized.

本発明の一実施形態のヒートポンプ給湯装置の制御方法を実施するヒートポンプ給湯装置の概念図。The conceptual diagram of the heat pump hot-water supply apparatus which implements the control method of the heat pump hot-water supply apparatus of one Embodiment of this invention. 本発明の一実施形態のヒートポンプ給湯装置の制御方法を実施するヒートポンプ給湯装置の制御回路図。The control circuit diagram of the heat pump hot-water supply apparatus which implements the control method of the heat pump hot-water supply apparatus of one Embodiment of this invention. 本発明の一実施形態のヒートポンプ給湯装置の制御方法における図3は外気温度、水入口温度と圧縮機の使用範囲との相関を示す図。FIG. 3 in the control method of the heat pump hot water supply apparatus of one embodiment of the present invention is a diagram showing the correlation between the outside air temperature, the water inlet temperature, and the compressor use range. 本発明の一実施形態のヒートポンプ給湯装置の制御方法における外気温度と設定温度の上限規制値の相関を示す図。The figure which shows the correlation of the upper limit regulation value of outside temperature and preset temperature in the control method of the heat pump hot-water supply apparatus of one Embodiment of this invention. 本発明の一実施形態のヒートポンプ給湯装置の制御方法における水熱交器凍結判定時の冷凍サイクル図(バイパス除霜)。The refrigeration cycle figure at the time of the hydrothermal exchanger freezing determination in the control method of the heat pump hot-water supply apparatus of one Embodiment of this invention (bypass defrost). 本発明の一実施形態のヒートポンプ給湯装置の制御方法における水熱交器凍結判定時の冷凍サイクル図(並行除霜)。The refrigerating cycle figure at the time of the hydrothermal exchanger freezing determination in the control method of the heat pump hot-water supply apparatus of one Embodiment of this invention (parallel defrost).

符号の説明Explanation of symbols

1…ヒートポンプ給湯装置、2…圧縮機、2a…インバータ回路、3…四方弁、4…水熱交換器、5…第1の膨張弁、6…第2の膨張弁、7…室外熱交換器、8…逆止弁、9…二方弁、10…バイパス回路、11…給水ポンプ、12…配管ジョイント、13…貯湯タンク、14…給湯配管、15…給水配管、16…制御装置、16a…CPU、16b…メモリ、17…室外熱交換器用送風機、S1…冷凍サイクル、S2…給湯水回路、s…吸込冷媒温度センサー、s…吐出冷媒温度センサー、s…水熱交センサー、s…室外熱交温度センサー、s…外気温度センサー、s…水入口温度センサー、s…水出口温度センサー。 DESCRIPTION OF SYMBOLS 1 ... Heat pump hot-water supply apparatus, 2 ... Compressor, 2a ... Inverter circuit, 3 ... Four-way valve, 4 ... Water heat exchanger, 5 ... 1st expansion valve, 6 ... 2nd expansion valve, 7 ... Outdoor heat exchanger , 8 ... Check valve, 9 ... Two-way valve, 10 ... Bypass circuit, 11 ... Water supply pump, 12 ... Pipe joint, 13 ... Hot water storage tank, 14 ... Hot water supply pipe, 15 ... Water supply pipe, 16 ... Control device, 16a ... CPU, 16b ... memory, 17 ... outdoor heat exchanger fan, S1 ... refrigeration cycle, S2 ... hot water circuit, s 1 ... suction refrigerant temperature sensor, s 2 ... discharged refrigerant temperature sensor, it s 3 ... water heat exchange sensor, s 4 ... outdoor heat exchange temperature sensor, s 5 ... outside temperature sensor, s 6 ... water inlet temperature sensor, s 7 ... water outlet temperature sensor.

Claims (5)

水を加熱して湯を生成する水熱交換器を組み込んだ冷凍サイクルを備えるヒートポンプ給湯装置の制御方法において、外気温度が予め定めた温度以下の場合に、水熱交換器で生成される湯の設定上限温度を規制することを特徴とするヒートポンプ給湯装置の制御方法。 In a control method of a heat pump hot water supply apparatus including a refrigeration cycle that incorporates a water heat exchanger that heats water to generate hot water, when the outside air temperature is equal to or lower than a predetermined temperature, the hot water generated by the water heat exchanger A control method for a heat pump hot-water supply apparatus, characterized by regulating a set upper limit temperature. 前記冷凍サイクルに組み込んだ圧縮機の運転周波数を制御するインバータに流れる電流を規制することにより、前記圧縮機の運転周波数が所定値よりも低くなる条件が所定回数発生した場合に、前記圧縮機の運転を停止させ、この運転停止後の運転再起動は、運転停止時の外気温度より低い場合に行うことを特徴とする請求項1に記載のヒートポンプ給湯装置の制御方法。 By regulating the current flowing through the inverter that controls the operating frequency of the compressor incorporated in the refrigeration cycle, when the condition that the operating frequency of the compressor is lower than a predetermined value occurs a predetermined number of times, The method of controlling a heat pump water heater according to claim 1, wherein the operation is stopped and the operation restart after the operation is stopped is performed when the temperature is lower than the outside air temperature at the time of the operation stop. 前記水熱交換器の凝縮温度が上昇するのを防ぐために、前記圧縮機の運転周波数が所定値よりも低くなる条件が所定回数回発生した場合に、前記圧縮機の運転を停止させることを特徴とするヒートポンプ給湯装置の制御方法。 In order to prevent an increase in the condensation temperature of the water heat exchanger, the operation of the compressor is stopped when a condition that the operation frequency of the compressor is lower than a predetermined value occurs a predetermined number of times. The control method of the heat pump water heater. 外気温度が予め定めた温度以上の場合に、水熱交換器で生成される湯の設定上限温度を規制することを特徴とする請求項3に記載のヒートポンプ給湯装置の制御方法。 The method for controlling a heat pump hot water supply apparatus according to claim 3, wherein when the outside air temperature is equal to or higher than a predetermined temperature, a set upper limit temperature of hot water generated by the water heat exchanger is regulated. 前記冷凍サイクルの除霜運転時、前記水熱交換器の水入口温度および水出口温度が一定時間所定温度以下になるか、あるいは前記水熱交換器の温度が一定時間所定温度以下になった場合に、前記水熱交換器が凍結すると判断し、前記水熱交換器に流れる冷媒の一部または全部をバイパス回路に流して、前記水熱交換器に流れる冷媒を制御することを特徴とする請求項1に記載のヒートポンプ給湯装置の制御方法。 During the defrosting operation of the refrigeration cycle, when the water inlet temperature and the water outlet temperature of the water heat exchanger are below a predetermined temperature for a certain time, or the temperature of the water heat exchanger is below a predetermined temperature for a certain time In addition, it is determined that the water heat exchanger is frozen, and a part or all of the refrigerant flowing through the water heat exchanger is caused to flow through a bypass circuit to control the refrigerant flowing through the water heat exchanger. Item 2. A method for controlling a heat pump water heater according to Item 1.
JP2007208330A 2007-08-09 2007-08-09 Control method for heat pump water heater Active JP5113447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007208330A JP5113447B2 (en) 2007-08-09 2007-08-09 Control method for heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007208330A JP5113447B2 (en) 2007-08-09 2007-08-09 Control method for heat pump water heater

Publications (2)

Publication Number Publication Date
JP2009041860A true JP2009041860A (en) 2009-02-26
JP5113447B2 JP5113447B2 (en) 2013-01-09

Family

ID=40442779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007208330A Active JP5113447B2 (en) 2007-08-09 2007-08-09 Control method for heat pump water heater

Country Status (1)

Country Link
JP (1) JP5113447B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109689A1 (en) * 2009-03-27 2010-09-30 日立アプライアンス株式会社 Heat pump type hot water supply device
JP2010261665A (en) * 2009-05-08 2010-11-18 Mitsubishi Electric Corp Heat pump type water heater
WO2011092802A1 (en) 2010-01-26 2011-08-04 三菱電機株式会社 Heat pump device and refrigerant bypass method
EP2420767A2 (en) 2010-06-24 2012-02-22 Mitsubishi Heavy Industries Heat-pump hot water supply and air conditioning apparatus
WO2012070082A1 (en) 2010-11-24 2012-05-31 三菱電機株式会社 Heat pump hot-water supply device
JP2012180965A (en) * 2011-03-01 2012-09-20 Daikin Industries Ltd Heating apparatus
CN103014880A (en) * 2012-12-20 2013-04-03 天津大学 Novel affinity ligand polypeptide library of immunoglobulin G constructed based on protein A affinity model and application of design method
WO2013088484A1 (en) * 2011-12-16 2013-06-20 三菱電機株式会社 Air conditioning device
JP2013160490A (en) * 2012-02-09 2013-08-19 Hitachi Appliances Inc Heat pump type water heater
JP2013209898A (en) * 2012-03-30 2013-10-10 Daikin Industries Ltd Two-stage compressor
JP2014088965A (en) * 2012-10-29 2014-05-15 Toshiba Carrier Corp Hot water supplying machine
WO2014091548A1 (en) * 2012-12-11 2014-06-19 三菱電機株式会社 Air conditioning hot water supply composite system
WO2014175151A1 (en) * 2013-04-26 2014-10-30 東芝キヤリア株式会社 Hot-water supply device
EP2853838A1 (en) * 2013-09-26 2015-04-01 Panasonic Corporation Hot water generator
CN104792075A (en) * 2015-04-28 2015-07-22 广东美的暖通设备有限公司 Three-tube multi-split air-conditioning system oil return or defrosting control method and system thereof
CN105509316A (en) * 2016-01-11 2016-04-20 佛山市顺德区爱尼电器制造有限公司 Control method and system for heat-pump water heater
JP2016136080A (en) * 2015-01-23 2016-07-28 東芝キヤリア株式会社 Heat pump water heater
CN106471319A (en) * 2014-06-24 2017-03-01 洋马株式会社 Heat-pump-type chiller
EP3205955A1 (en) * 2016-02-12 2017-08-16 Mitsubishi Heavy Industries Thermal Systems, Ltd. Air conditioner
KR20180130471A (en) * 2012-01-13 2018-12-07 린나이가부시기가이샤 Heating device and hot water supplying device
WO2020017030A1 (en) 2018-07-20 2020-01-23 三菱電機株式会社 Control device for air conditioning device, outdoor unit, relay unit, heat source unit, and air conditioning device
WO2020065984A1 (en) 2018-09-28 2020-04-02 三菱電機株式会社 Air conditioner control device, outdoor unit, relay device, heat source device, and air conditioner
WO2020161805A1 (en) 2019-02-05 2020-08-13 三菱電機株式会社 Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner
WO2020213130A1 (en) 2019-04-18 2020-10-22 三菱電機株式会社 Air conditioner control device, outdoor unit, relay device, heat source unit, and air conditioner
CN114992906A (en) * 2021-03-02 2022-09-02 广东美的暖通设备有限公司 Control method of heat pump system, and readable storage medium
CN114992909A (en) * 2021-03-02 2022-09-02 广东美的暖通设备有限公司 Control method of heat pump system and heat pump system
WO2023248923A1 (en) * 2022-06-23 2023-12-28 パナソニックIpマネジメント株式会社 Freezing apparatus

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214741A (en) * 1982-06-07 1983-12-14 Matsushita Electric Ind Co Ltd Heat pump type hot water supplier
JPS63210554A (en) * 1987-02-25 1988-09-01 Daikin Ind Ltd Heat pump type hot water supplier
JPH03117866A (en) * 1989-09-29 1991-05-20 Toshiba Corp Heat pump type refrigerating cycle
JPH04302954A (en) * 1991-03-29 1992-10-26 Fujitsu General Ltd Method of controlling air conditioner
JPH0571826A (en) * 1991-09-12 1993-03-23 Matsushita Electric Ind Co Ltd Heat pump high water feeder
JP2000346447A (en) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd Heat pump hot-water supplier
JP2001082803A (en) * 1999-09-09 2001-03-30 Denso Corp Heat pump type hot water apparatus
JP2001263801A (en) * 2000-03-24 2001-09-26 Daikin Ind Ltd Heat pump water heater
JP2002206805A (en) * 2000-06-05 2002-07-26 Denso Corp Hot water supply apparatus
JP2002228258A (en) * 2001-02-06 2002-08-14 Toshiba Kyaria Kk Heat pump water heater
JP2003090631A (en) * 2001-09-13 2003-03-28 Sanyo Electric Co Ltd Heat pump type water heater
JP2004116891A (en) * 2002-09-26 2004-04-15 Daikin Ind Ltd Heat pump type hot water supply machine
JP2004347148A (en) * 2003-05-20 2004-12-09 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2005061736A (en) * 2003-08-18 2005-03-10 Matsushita Electric Ind Co Ltd Control method of air conditioner
JP2005241167A (en) * 2004-02-27 2005-09-08 Sanyo Electric Co Ltd Heat pump type hot water supplying/heating system
JP2006112781A (en) * 2005-11-14 2006-04-27 Daikin Ind Ltd Heat pump type water heater
JP2006125822A (en) * 2004-09-28 2006-05-18 Denso Corp Heat pump type water heater
JP2006132888A (en) * 2004-11-09 2006-05-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply apparatus
JP2007010207A (en) * 2005-06-29 2007-01-18 Daikin Ind Ltd Water heater
JP2007198699A (en) * 2006-01-30 2007-08-09 Mitsubishi Electric Corp Heat pump water heater
JP2007271214A (en) * 2006-03-31 2007-10-18 Daikin Ind Ltd Refrigerating device

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214741A (en) * 1982-06-07 1983-12-14 Matsushita Electric Ind Co Ltd Heat pump type hot water supplier
JPS63210554A (en) * 1987-02-25 1988-09-01 Daikin Ind Ltd Heat pump type hot water supplier
JPH03117866A (en) * 1989-09-29 1991-05-20 Toshiba Corp Heat pump type refrigerating cycle
JPH04302954A (en) * 1991-03-29 1992-10-26 Fujitsu General Ltd Method of controlling air conditioner
JPH0571826A (en) * 1991-09-12 1993-03-23 Matsushita Electric Ind Co Ltd Heat pump high water feeder
JP2000346447A (en) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd Heat pump hot-water supplier
JP2001082803A (en) * 1999-09-09 2001-03-30 Denso Corp Heat pump type hot water apparatus
JP2001263801A (en) * 2000-03-24 2001-09-26 Daikin Ind Ltd Heat pump water heater
JP2002206805A (en) * 2000-06-05 2002-07-26 Denso Corp Hot water supply apparatus
JP2002228258A (en) * 2001-02-06 2002-08-14 Toshiba Kyaria Kk Heat pump water heater
JP2003090631A (en) * 2001-09-13 2003-03-28 Sanyo Electric Co Ltd Heat pump type water heater
JP2004116891A (en) * 2002-09-26 2004-04-15 Daikin Ind Ltd Heat pump type hot water supply machine
JP2004347148A (en) * 2003-05-20 2004-12-09 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2005061736A (en) * 2003-08-18 2005-03-10 Matsushita Electric Ind Co Ltd Control method of air conditioner
JP2005241167A (en) * 2004-02-27 2005-09-08 Sanyo Electric Co Ltd Heat pump type hot water supplying/heating system
JP2006125822A (en) * 2004-09-28 2006-05-18 Denso Corp Heat pump type water heater
JP2006132888A (en) * 2004-11-09 2006-05-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply apparatus
JP2007010207A (en) * 2005-06-29 2007-01-18 Daikin Ind Ltd Water heater
JP2006112781A (en) * 2005-11-14 2006-04-27 Daikin Ind Ltd Heat pump type water heater
JP2007198699A (en) * 2006-01-30 2007-08-09 Mitsubishi Electric Corp Heat pump water heater
JP2007271214A (en) * 2006-03-31 2007-10-18 Daikin Ind Ltd Refrigerating device

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378504B2 (en) * 2009-03-27 2013-12-25 日立アプライアンス株式会社 Heat pump water heater
WO2010109689A1 (en) * 2009-03-27 2010-09-30 日立アプライアンス株式会社 Heat pump type hot water supply device
JP2010261665A (en) * 2009-05-08 2010-11-18 Mitsubishi Electric Corp Heat pump type water heater
WO2011092802A1 (en) 2010-01-26 2011-08-04 三菱電機株式会社 Heat pump device and refrigerant bypass method
US9709308B2 (en) 2010-01-26 2017-07-18 Mitsubishi Electric Corporation Heat pump device and refrigerant bypass method
EP2420767A2 (en) 2010-06-24 2012-02-22 Mitsubishi Heavy Industries Heat-pump hot water supply and air conditioning apparatus
WO2012070082A1 (en) 2010-11-24 2012-05-31 三菱電機株式会社 Heat pump hot-water supply device
JP2012180965A (en) * 2011-03-01 2012-09-20 Daikin Industries Ltd Heating apparatus
CN103874892B (en) * 2011-12-16 2016-02-03 三菱电机株式会社 Conditioner
CN103874892A (en) * 2011-12-16 2014-06-18 三菱电机株式会社 Air conditioning device
WO2013088484A1 (en) * 2011-12-16 2013-06-20 三菱電機株式会社 Air conditioning device
US9829224B2 (en) 2011-12-16 2017-11-28 Mitsubishi Electric Corporation Air-conditioning apparatus
KR102045945B1 (en) * 2012-01-13 2019-11-18 린나이가부시기가이샤 Heating device and hot water supplying device
KR20180130471A (en) * 2012-01-13 2018-12-07 린나이가부시기가이샤 Heating device and hot water supplying device
JP2013160490A (en) * 2012-02-09 2013-08-19 Hitachi Appliances Inc Heat pump type water heater
JP2013209898A (en) * 2012-03-30 2013-10-10 Daikin Industries Ltd Two-stage compressor
JP2014088965A (en) * 2012-10-29 2014-05-15 Toshiba Carrier Corp Hot water supplying machine
CN104813121A (en) * 2012-12-11 2015-07-29 三菱电机株式会社 Air conditioner hot water supply composite system
US9631826B2 (en) 2012-12-11 2017-04-25 Mistubishi Electric Corporation Combined air-conditioning and hot-water supply system
WO2014091548A1 (en) * 2012-12-11 2014-06-19 三菱電機株式会社 Air conditioning hot water supply composite system
EP2933588A4 (en) * 2012-12-11 2016-08-10 Mitsubishi Electric Corp Air conditioning hot water supply composite system
CN104813121B (en) * 2012-12-11 2016-08-24 三菱电机株式会社 Air-conditioning and water-heating complex system
JP5984965B2 (en) * 2012-12-11 2016-09-06 三菱電機株式会社 Air conditioning and hot water supply complex system
US10001489B2 (en) 2012-12-20 2018-06-19 Tianjin University Method for constructing a novel affinity peptide library for binding immunoglobulin G based on a protein affinity model of protein A
CN103014880A (en) * 2012-12-20 2013-04-03 天津大学 Novel affinity ligand polypeptide library of immunoglobulin G constructed based on protein A affinity model and application of design method
JP5977885B2 (en) * 2013-04-26 2016-08-24 東芝キヤリア株式会社 Water heater
EP2990737A4 (en) * 2013-04-26 2016-12-07 Toshiba Carrier Corp Hot-water supply device
WO2014175151A1 (en) * 2013-04-26 2014-10-30 東芝キヤリア株式会社 Hot-water supply device
EP2853838A1 (en) * 2013-09-26 2015-04-01 Panasonic Corporation Hot water generator
KR101902675B1 (en) * 2014-06-24 2018-09-28 얀마 가부시키가이샤 Heat pump type chiller
EP3163218A4 (en) * 2014-06-24 2017-06-28 Yanmar Co., Ltd. Heat pump type chiller
CN106471319A (en) * 2014-06-24 2017-03-01 洋马株式会社 Heat-pump-type chiller
CN106471319B (en) * 2014-06-24 2019-04-23 洋马株式会社 Heat-pump-type cooling device
JP2016136080A (en) * 2015-01-23 2016-07-28 東芝キヤリア株式会社 Heat pump water heater
CN104792075A (en) * 2015-04-28 2015-07-22 广东美的暖通设备有限公司 Three-tube multi-split air-conditioning system oil return or defrosting control method and system thereof
CN105509316A (en) * 2016-01-11 2016-04-20 佛山市顺德区爱尼电器制造有限公司 Control method and system for heat-pump water heater
EP3205955A1 (en) * 2016-02-12 2017-08-16 Mitsubishi Heavy Industries Thermal Systems, Ltd. Air conditioner
WO2020017030A1 (en) 2018-07-20 2020-01-23 三菱電機株式会社 Control device for air conditioning device, outdoor unit, relay unit, heat source unit, and air conditioning device
US11397035B2 (en) 2018-07-20 2022-07-26 Mitsubishi Electric Corporation Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
WO2020065984A1 (en) 2018-09-28 2020-04-02 三菱電機株式会社 Air conditioner control device, outdoor unit, relay device, heat source device, and air conditioner
US11525599B2 (en) 2018-09-28 2022-12-13 Mitsubishi Electric Corporation Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
WO2020161805A1 (en) 2019-02-05 2020-08-13 三菱電機株式会社 Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner
US11802702B2 (en) 2019-02-05 2023-10-31 Mitsubishi Electric Corporation Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
WO2020213130A1 (en) 2019-04-18 2020-10-22 三菱電機株式会社 Air conditioner control device, outdoor unit, relay device, heat source unit, and air conditioner
US11927356B2 (en) 2019-04-18 2024-03-12 Mitsubishi Electric Corporation Controller of air conditioning apparatus, outdoor unit, branch unit, heat source unit, and air conditioning apparatus
CN114992906A (en) * 2021-03-02 2022-09-02 广东美的暖通设备有限公司 Control method of heat pump system, and readable storage medium
CN114992909A (en) * 2021-03-02 2022-09-02 广东美的暖通设备有限公司 Control method of heat pump system and heat pump system
CN114992909B (en) * 2021-03-02 2024-05-07 广东美的暖通设备有限公司 Control method of heat pump system and heat pump system
CN114992906B (en) * 2021-03-02 2024-05-07 广东美的暖通设备有限公司 Control method of heat pump system, heat pump system and readable storage medium
WO2023248923A1 (en) * 2022-06-23 2023-12-28 パナソニックIpマネジメント株式会社 Freezing apparatus

Also Published As

Publication number Publication date
JP5113447B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5113447B2 (en) Control method for heat pump water heater
US7883024B2 (en) Heat pump type water heater
JP3932913B2 (en) Heat pump water heater
US9541317B2 (en) Container refrigeration system
JP5095295B2 (en) Water heater
JP2011252702A5 (en)
JP2012057869A (en) Air conditioner
JP4507109B2 (en) Heat pump water heater
JP2013104606A (en) Refrigeration cycle apparatus and hot water producing apparatus
JPWO2014175151A1 (en) Water heater
JP2012077942A (en) Air conditioner
JP4691138B2 (en) Heat pump water heater
JP5515568B2 (en) Heat pump cycle equipment
JP5068599B2 (en) Water heater
JP2012007751A (en) Heat pump cycle device
JP5440466B2 (en) Air conditioner
KR101489581B1 (en) Thermal apparatus
JP5843642B2 (en) Heat pump type liquid heating device
JP5287821B2 (en) Air conditioner
JP5287820B2 (en) Air conditioner
JP5840062B2 (en) Heat pump type liquid heating device and heat pump type water heater
JP6969223B2 (en) Heat pump heat source machine
JP5218510B2 (en) Air conditioner
JP7482764B2 (en) Heat Pump System
JP2014231944A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5113447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250