JP2005214575A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2005214575A
JP2005214575A JP2004025120A JP2004025120A JP2005214575A JP 2005214575 A JP2005214575 A JP 2005214575A JP 2004025120 A JP2004025120 A JP 2004025120A JP 2004025120 A JP2004025120 A JP 2004025120A JP 2005214575 A JP2005214575 A JP 2005214575A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
refrigeration cycle
pressure
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004025120A
Other languages
Japanese (ja)
Inventor
Kunimori Sekigami
邦衛 関上
Masahisa Otake
雅久 大竹
Koji Sato
晃司 佐藤
Hiroshi Mukoyama
洋 向山
Ichiro Kamimura
一朗 上村
Chiaki Shikichi
千明 式地
Minoru Sugimoto
実 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Air Conditioners Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004025120A priority Critical patent/JP2005214575A/en
Publication of JP2005214575A publication Critical patent/JP2005214575A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator provided with a two stage compression refrigerating cycle device capable of improving durability of an opening and closing valve provided in a defrosting circuit by reducing pressure acting on the opening and closing valve and reducing cost. <P>SOLUTION: This refrigerator is provided with the two stage compression refrigerating cycle device constituted by connecting a compressor, a high pressure gas cooler for cooling high pressure side gas refrigerant, a restriction device, and an evaporator for evaporating low pressure liquid refrigerant sequentially. The two stage compression refrigerating cycle device has the defrosting circuit connected between an intermediate pressure gas part in refrigerating cycle and an evaporator inlet side through the opening and closing valve. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、冷凍装置に関し、特に、2段圧縮冷凍サイクル装置を備えた冷凍装置における蒸発器のデフロストに関する。   The present invention relates to a refrigeration apparatus, and more particularly to an evaporator defrost in a refrigeration apparatus including a two-stage compression refrigeration cycle apparatus.

近年、オゾン層破壊の問題及び給湯装置における給湯の高温化ニーズへの対応のために、二酸化炭素などの超臨界冷凍サイクルで冷凍運転される自然冷媒が注目を浴びている。また、このような超臨界サイクル冷凍運転を行う冷凍装置では高低圧力差が大きくなることから2段圧縮冷凍サイクル装置が用いられるようになってきている。   In recent years, natural refrigerants that are refrigerated in a supercritical refrigeration cycle, such as carbon dioxide, have attracted attention in order to meet the problem of ozone depletion and the need for high temperature hot water supply in hot water supply devices. Further, in a refrigeration apparatus that performs such a supercritical cycle refrigeration operation, a two-stage compression refrigeration cycle apparatus has come to be used because the pressure difference between high and low becomes large.

ところで、従来、2段圧縮冷凍サイクル装置における蒸発器のデフロスト回路は、例えば特許文献1のように、2段圧縮機の吐出側を開閉弁を介して蒸発器の入口側に接続するホットガスデフロスト流路を設けている。このようなホットガスデフロスト流路を、2段圧縮機の高低圧力差が大きくなるような冷凍サイクル装置に適用すると、ホットガスデフロスト流路に設置しなければならない開閉弁のシール部材の破損、弁箱の強度等の耐久性が問題となる。また、このような耐久性を解決しようとすると、コストが著しく上昇するという問題が発生する。
特開平11−294906号公報
By the way, the conventional defrost circuit of the evaporator in the two-stage compression refrigeration cycle apparatus is a hot gas defrost circuit in which the discharge side of the two-stage compressor is connected to the inlet side of the evaporator via an on-off valve as disclosed in Patent Document 1, for example. A flow path is provided. When such a hot gas defrost flow path is applied to a refrigeration cycle apparatus in which the high-low pressure difference of the two-stage compressor is increased, the sealing member of the on-off valve that must be installed in the hot gas defrost flow path, the valve Durability such as the strength of the box is a problem. Further, when such durability is to be solved, there arises a problem that the cost is remarkably increased.
JP 11-294906 A

本発明は、このような従来技術の課題を解決するためになされたものであって、デフロスト回路に設ける開閉弁に作用する圧力を低くすることにより、開閉弁の耐久性の向上、コストの低減を図った2段圧縮冷凍サイクル装置を備えた冷凍装置を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and by reducing the pressure acting on the on-off valve provided in the defrost circuit, the durability of the on-off valve is improved and the cost is reduced. An object of the present invention is to provide a refrigeration apparatus provided with a two-stage compression refrigeration cycle apparatus.

本発明に係る第1の解決手段に係る冷凍装置は、圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、絞り装置、低圧液冷媒を蒸発させる蒸発器を順次接続してなる2段圧縮冷凍サイクル装置を備え、さらに、この2段圧縮冷凍サイクル装置は、冷凍サイクル内の中間圧力ガス部と蒸発器入口側との間に開閉弁を介して接続するデフロスト回路を設けてなることを特徴とする。   A refrigerating apparatus according to a first solution means according to the present invention is a two-stage compression comprising a compressor, a high-pressure gas cooler that cools a high-pressure side gas refrigerant, a throttling device, and an evaporator that evaporates low-pressure liquid refrigerant. A refrigeration cycle apparatus is provided, and the two-stage compression refrigeration cycle apparatus further includes a defrost circuit connected via an on-off valve between an intermediate pressure gas section in the refrigeration cycle and an evaporator inlet side. And

また、本発明に係る第2の解決手段に係る冷凍装置は、低段側圧縮機部と高段側圧縮機部とを有し、低段側圧縮機部の吐出ガスが密閉ケーシング内に吐出されるとともに、密閉ケーシング内の冷媒が高段側圧縮機部に吸入されるように構成された2段圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間圧レシーバ、第2絞り装置、蒸発器、気液分離器を順次直列に接続するとともに、超臨界冷凍サイクルで運転されるように構成された2段圧縮冷凍サイクル装置を備え、さらに、この冷凍サイクル装置は、中間圧レシーバ内の中間圧のガス冷媒を2段圧縮機のケーシング内にバイパスする中間圧冷媒バイパス回路と、低段側圧縮機部の吐出側と蒸発器の入口側とを開閉弁を開始して接続するデフロスト回路とを備えてなることを特徴とする。   Further, the refrigeration apparatus according to the second solving means of the present invention has a low-stage compressor section and a high-stage compressor section, and discharge gas from the low-stage compressor section is discharged into the sealed casing. And a two-stage compressor configured such that the refrigerant in the hermetic casing is sucked into the high-stage compressor section, a high-pressure gas cooler that cools the high-pressure gas refrigerant, the first expansion device, and the refrigeration cycle A two-stage compression refrigeration cycle apparatus configured to sequentially connect an intermediate pressure receiver, a second expansion device, an evaporator, and a gas-liquid separator in order to adjust the refrigerant amount of the refrigerant and to be operated in a supercritical refrigeration cycle The refrigeration cycle apparatus further includes an intermediate pressure refrigerant bypass circuit for bypassing the intermediate pressure gas refrigerant in the intermediate pressure receiver into the casing of the two-stage compressor, the discharge side of the low-stage compressor section, and the evaporator Start the open / close valve Characterized by comprising a defrost circuit.

また、本発明に係る第3の解決手段に係る冷凍装置は、圧縮工程の中間部にガスインジェクションポートを有する圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間圧レシーバ、第2絞り装置、蒸発器、気液分離器を順次直列に接続するとともに、超臨界冷凍サイクルで運転されるように構成された2段圧縮冷凍サイクル装置を備え、さらに、この2段圧縮冷凍サイクル装置は、中間圧レシーバのガス部とガスインジェクションポートとを接続する中間圧冷媒バイパス回路と、中間圧レシーバのガス部と蒸発器の入口側とを開閉弁を介して接続するデフロスト回路を備えてなることを特徴とする。   Further, the refrigeration apparatus according to the third solution means of the present invention includes a compressor having a gas injection port in an intermediate part of the compression process, a high-pressure gas cooler for cooling the high-pressure side gas refrigerant, a first expansion device, and a refrigeration cycle. A two-stage compression refrigeration cycle apparatus configured to sequentially connect an intermediate pressure receiver, a second expansion device, an evaporator, and a gas-liquid separator in series to adjust the amount of refrigerant in the system and to be operated in a supercritical refrigeration cycle In addition, this two-stage compression refrigeration cycle apparatus opens and closes an intermediate pressure refrigerant bypass circuit that connects a gas portion of the intermediate pressure receiver and a gas injection port, and a gas portion of the intermediate pressure receiver and an inlet side of the evaporator A defrost circuit connected through a valve is provided.

上記の各解決手段において、冷凍サイクル装置の構成機器である中間圧レシーバは、運転条件の変化による余剰冷媒を貯留し得る容積を有することが好ましい。   In each of the above solutions, it is preferable that the intermediate pressure receiver, which is a component device of the refrigeration cycle apparatus, has a volume capable of storing surplus refrigerant due to a change in operating conditions.

また、前記冷凍サイクル装置は、二酸化炭素が冷媒として充填されているものとしてもよい。   The refrigeration cycle apparatus may be filled with carbon dioxide as a refrigerant.

また、前記冷凍サイクル装置は、冷凍サイクル装置は、高圧ガス冷却器により水を加熱するように構成されたものとしてもよい。   The refrigeration cycle apparatus may be configured such that the refrigeration cycle apparatus is configured to heat water with a high-pressure gas cooler.

本発明に係る第1の課題解決手段に係る冷凍装置は、2段圧縮冷凍サイクル装置における冷凍サイクル内の中間圧力ガス部と蒸発器入口側との間に開閉弁を介して接続するデフロスト回路を設けているので、デフロスト運転時、開閉弁を開くことにより、中間圧の高温のガス冷媒が蒸発器に導かれて短時間でデフロストが行われる。また、デフロスト運転時は、開閉弁の入口に2段圧縮冷凍サイクルにおける吐出ガスが作用せず、中間ガス圧力が作用するので、開閉弁に作用する圧力は従来に比し低くなる。このため、開閉弁の耐圧性能を低くすることが可能となり、信頼性の向上及びコストの軽減を図ることが可能となる。   The refrigeration apparatus according to the first problem solving means according to the present invention includes a defrost circuit connected via an on-off valve between an intermediate pressure gas section in the refrigeration cycle and the evaporator inlet side in the two-stage compression refrigeration cycle apparatus. Therefore, by opening the on-off valve during the defrosting operation, a high-temperature gas refrigerant having an intermediate pressure is guided to the evaporator, and the defrosting is performed in a short time. Further, during the defrost operation, the discharge gas in the two-stage compression refrigeration cycle does not act on the inlet of the on-off valve, and the intermediate gas pressure acts on the inlet, so that the pressure acting on the on-off valve is lower than in the prior art. For this reason, the pressure resistance performance of the on-off valve can be lowered, and the reliability can be improved and the cost can be reduced.

また、本発明に係る第3の課題解決手段に係る冷凍装置は、低段側圧縮機部と高段側圧縮機部とを有し、低段側圧縮機部の吐出ガスが密閉ケーシング内に吐出されるとともに、密閉ケーシング内の冷媒が高段側圧縮機部に吸入されるように構成された2段圧縮機を備え、第1絞り装置と第2絞り装置との間の中間圧レシーバにおいて気液分離された中間圧のガス冷媒を2段圧縮機のケーシング内にバイパスする2段圧縮冷凍サイクルにおいて、低段側圧縮機部の吐出側と蒸発器の入口側とを開閉弁を介して接続するデフロスト回路とを設けているので、デフロスト運転時、開閉弁を開くことにより、圧縮機内で中間圧に圧縮された高温ガス冷媒が蒸発器に導かれて短時間でデフロストが行われる。また、デフロスト運転時は、開閉弁の入口には2段圧縮冷凍サイクルにおける吐出ガスが作用せず、低段側圧縮機部から吐出された中間ガス圧力が作用する。したがって、開閉弁に作用する圧力は従来に比し低くなり、開閉弁の耐圧性能を低くすることが可能となり、信頼性の向上及びコストの軽減を図ることができる。   Moreover, the refrigeration apparatus according to the third problem solving means of the present invention has a low-stage compressor section and a high-stage compressor section, and the discharge gas of the low-stage compressor section is contained in the sealed casing. In the intermediate pressure receiver between the first throttle device and the second throttle device, including a two-stage compressor configured to be discharged and the refrigerant in the hermetic casing to be sucked into the high-stage compressor section In a two-stage compression refrigeration cycle in which gas-liquid separated intermediate-pressure gas refrigerant is bypassed into the casing of the two-stage compressor, the discharge side of the low-stage compressor section and the inlet side of the evaporator are connected via an on-off valve. Since the defrost circuit to be connected is provided, the open / close valve is opened during the defrost operation, so that the high-temperature gas refrigerant compressed to the intermediate pressure in the compressor is guided to the evaporator and the defrost is performed in a short time. Further, during the defrost operation, the discharge gas in the two-stage compression refrigeration cycle does not act on the inlet of the on-off valve, and the intermediate gas pressure discharged from the low-stage compressor section acts. Therefore, the pressure acting on the on-off valve is lower than that in the prior art, and the pressure resistance performance of the on-off valve can be lowered, thereby improving the reliability and reducing the cost.

また、本発明に係る第3の課題解決手段に係る冷凍装置は、圧縮工程の中間部にガスインジェクションポートを有する圧縮機を備え、第1絞り装置と第2絞り装置との間の中間圧レシーバで気液分離された中間圧のガス冷媒を圧縮機のガスインジェクションポートにバイパスする2段圧縮冷凍サイクルにおいて、中間圧レシーバのガス部と蒸発器の入口側とを開閉弁を介して接続するデフロスト回路を備えているので、デフロスト運転時、開閉弁を開くことにより、中間圧レシーバから中間圧の高温のガス冷媒が蒸発器に導かれて短時間でデフロストが行われる。また、デフロスト運転時は、開閉弁の入口には2段圧縮冷凍サイクルにおける吐出ガスが作用せず、第1絞り装置で減圧された中間ガス圧力が作用する。したがって、開閉弁に作用する圧力は従来に比し低くなり、開閉弁の耐圧性能を低くすることが可能となり、信頼性の向上及びコストの軽減を図ることができる。   The refrigeration apparatus according to the third problem solving means of the present invention includes a compressor having a gas injection port in an intermediate part of the compression step, and an intermediate pressure receiver between the first expansion device and the second expansion device. In a two-stage compression refrigeration cycle that bypasses the gas-liquid separated intermediate-pressure gas refrigerant to the gas injection port of the compressor, the defroster connects the gas part of the intermediate-pressure receiver and the inlet side of the evaporator via an on-off valve Since the circuit is provided, the defrosting is performed in a short time by opening the on-off valve during the defrosting operation so that the high-temperature gas refrigerant at the intermediate pressure is led from the intermediate pressure receiver to the evaporator. Further, during the defrost operation, the discharge gas in the two-stage compression refrigeration cycle does not act on the inlet of the on-off valve, and the intermediate gas pressure reduced by the first expansion device acts. Therefore, the pressure acting on the on-off valve is lower than that in the prior art, and the pressure resistance performance of the on-off valve can be lowered, thereby improving the reliability and reducing the cost.

また、上記冷凍サイクル装置の構成機器である中間圧レシーバは、運転条件の変化による余剰冷媒を貯留し得る容積を有するようにすれば、低圧が低くなるデフロスト運転時に中間圧レシーバに十分な液冷媒が貯留されているので、所定中間圧力のガス冷媒を蒸発器の入口側に安定的に供給することができ、効率よくデフロスト運転を行うことができる。   In addition, if the intermediate pressure receiver, which is a component device of the refrigeration cycle apparatus, has a volume capable of storing surplus refrigerant due to changes in operating conditions, sufficient liquid refrigerant for the intermediate pressure receiver during defrost operation where the low pressure is low Therefore, the gas refrigerant having a predetermined intermediate pressure can be stably supplied to the inlet side of the evaporator, and the defrosting operation can be performed efficiently.

また、上記冷凍サイクル装置に、冷媒として二酸化炭素を充填している場合は、高圧ガス冷却器で高温高圧のガス冷媒を熱源として高温の温水、給湯水などを供給可能としながら、デフロスト回路に設ける開閉弁の耐久性、信頼性を向上させることができる。   When the refrigeration cycle apparatus is filled with carbon dioxide as a refrigerant, it is provided in the defrost circuit while being able to supply high-temperature hot water or hot water using a high-pressure gas cooler as a heat source with a high-pressure gas cooler. The durability and reliability of the on-off valve can be improved.

以下、各実施例について図面に基づき説明する。   Hereinafter, each embodiment will be described with reference to the drawings.

図1〜図3に基づき本発明の実施例1を説明する。
図1は実施例1に係る冷凍装置の冷媒回路図である。図2は同冷凍装置における超臨界冷凍サイクルのモリエル線図である。図3は同冷凍装置の蒸発器及び気液分離器周りの構成図である。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a refrigerant circuit diagram of the refrigeration apparatus according to the first embodiment. FIG. 2 is a Mollier diagram of a supercritical refrigeration cycle in the refrigeration apparatus. FIG. 3 is a configuration diagram around the evaporator and the gas-liquid separator of the refrigeration apparatus.

図1に示すように、実施例1に係る冷凍サイクル装置は、圧縮機1、高温の高圧側ガス冷媒を冷却するとともに室内空気、暖房用温水、給湯水などの被加熱流体を加熱する高圧ガス冷却器2、第1絞り装置3、冷凍サイクル内の冷媒量を調節する中間圧レシーバ4、第2絞り装置5、外気から熱を汲み上げる蒸発器6、気液分離器7を順次直列に接続して冷凍サイクル装置を形成している。また、この冷凍サイクル装置は、冷媒回路内に二酸化炭素が冷媒として充填され、2段圧縮の超臨界冷凍サイクルで運転される装置として構成されている。   As shown in FIG. 1, the refrigeration cycle apparatus according to Embodiment 1 is a high-pressure gas that cools a compressor 1, a high-temperature high-pressure gas refrigerant, and heats a heated fluid such as room air, warm water for heating, and hot water. The cooler 2, the first throttle device 3, the intermediate pressure receiver 4 that adjusts the amount of refrigerant in the refrigeration cycle, the second throttle device 5, the evaporator 6 that pumps heat from the outside air, and the gas-liquid separator 7 are sequentially connected in series. Thus, a refrigeration cycle apparatus is formed. In addition, this refrigeration cycle apparatus is configured as an apparatus that is operated in a two-stage compression supercritical refrigeration cycle in which a refrigerant circuit is filled with carbon dioxide as a refrigerant.

圧縮機1は、密閉ケーシング11内に低段側圧縮機部12、高段側圧縮機部13、電動機などを収納し、密閉ケーシング11内に低段側圧縮機部12の吐出ガスを吐出し、高段側圧縮機部13にこの中間圧ガス冷媒を吸入させるように形成した所謂内部中間圧ドーム型2段圧縮機である。また、この2段圧縮機1はインバータにより回転数可変に形成されている。   The compressor 1 houses a low-stage compressor section 12, a high-stage compressor section 13, an electric motor and the like in a hermetic casing 11, and discharges a discharge gas from the low-stage compressor section 12 into the hermetic casing 11. The so-called internal intermediate pressure dome type two-stage compressor is formed so that the intermediate-pressure gas refrigerant is sucked into the high-stage compressor section 13. The two-stage compressor 1 is formed by an inverter so that the rotational speed can be varied.

高圧ガス冷却器2は、高段側圧縮機部13から吐出された吐出ガスを冷却する熱交換器である。なお、この冷凍サイクル装置は超臨界冷凍サイクル装置を形成しているので、この高圧ガス冷却器2では冷媒は凝縮されない。また、高圧ガス冷却器2は、温水暖房装置の場合暖房用温水を加熱し、温風暖房装置の場合室内空気を加熱し、給湯装置の場合給湯水を加熱するように構成される。   The high-pressure gas cooler 2 is a heat exchanger that cools the discharge gas discharged from the high-stage compressor unit 13. Since the refrigeration cycle apparatus forms a supercritical refrigeration cycle apparatus, the high-pressure gas cooler 2 does not condense the refrigerant. The high-pressure gas cooler 2 is configured to heat warm water for heating in the case of a hot water heater, to heat indoor air in the case of a hot air heater, and to heat hot water in the case of a hot water heater.

第1絞り装置3及び第2絞り装置5としてはそれぞれ電動膨張弁が用いられている。
中間圧レシーバ4は、冷凍サイクル装置内の冷媒量を調節するものであって、第1絞り装置3及び第2絞り装置5の開度制御により圧力が臨界点以下となるように制御される。これにより中間圧レシーバ4内に超臨界冷凍サイクルの余剰冷媒が液冷媒として貯留される。
As the first expansion device 3 and the second expansion device 5, electric expansion valves are used, respectively.
The intermediate pressure receiver 4 adjusts the amount of refrigerant in the refrigeration cycle apparatus, and is controlled so that the pressure becomes a critical point or less by opening control of the first expansion device 3 and the second expansion device 5. As a result, surplus refrigerant of the supercritical refrigeration cycle is stored as liquid refrigerant in the intermediate pressure receiver 4.

蒸発器6は、外気を熱源として熱交換する熱交換器であって、低圧液冷媒が蒸発することにより外気から熱を汲み上げて冷媒自身が蒸発する。また、この蒸発器6は、蒸発器6中間の冷媒温度を検出する冷媒温度センサー61と、蒸発器6出口の冷媒温度を検出する冷媒温度センサー62とを有している。なお、この両冷媒温度センサー61、62が検出する冷媒温度の温度差により、蒸発器6出口における冷媒の過熱度が検出される。また、前記第1絞り装置3及び第2絞り装置5の少なくとも一方は、蒸発器6出口の冷媒が過熱状態となるように開度制御される。
また、この蒸発器6は、冷媒が上部から下方に向かって流れるように、熱交換パイプ65が上方から下方に向かって蛇行するように形成されている(図3参照)。なお、図1及び図3において、符号63は冷媒入口であり、符号64は冷媒出口である。
The evaporator 6 is a heat exchanger that exchanges heat using outside air as a heat source, and the refrigerant itself evaporates by drawing up heat from the outside air as the low-pressure liquid refrigerant evaporates. Further, the evaporator 6 includes a refrigerant temperature sensor 61 that detects the refrigerant temperature in the middle of the evaporator 6 and a refrigerant temperature sensor 62 that detects the refrigerant temperature at the outlet of the evaporator 6. In addition, the superheat degree of the refrigerant | coolant in the evaporator 6 exit is detected by the temperature difference of the refrigerant | coolant temperature which both these refrigerant | coolant temperature sensors 61 and 62 detect. The opening degree of at least one of the first expansion device 3 and the second expansion device 5 is controlled so that the refrigerant at the outlet of the evaporator 6 is overheated.
Further, the evaporator 6 is formed such that the heat exchange pipe 65 meanders from the upper side to the lower side so that the refrigerant flows from the upper side to the lower side (see FIG. 3). 1 and 3, reference numeral 63 denotes a refrigerant inlet, and reference numeral 64 denotes a refrigerant outlet.

また、上記超臨界冷凍サイクルには、中間圧レシーバ4のガス部41と圧縮機1の密閉ケーシング11内とを接続する中間圧冷媒バイパス回路8が設けられている。これにより、中間圧レシーバ4内の中間圧のガス冷媒が、圧縮工程の中間圧力部である、圧縮機1の密閉ケーシング11内にバイパスされる。なお、この中間圧冷媒バイパス回路8には流量調整用のキャピラリーチューブ81と圧縮機1から中間圧レシーバ4への冷媒流れを阻止する逆止弁82とが設けられている。
また、この超臨界冷凍サイクルには、圧縮機1の密閉ケーシング11内と蒸発器入口側とを開閉弁91を介し接続するデフロスト回路9が設けられている。この開閉弁91は通常運転中は閉塞され、デフロスト運転時に開放される。
Further, the supercritical refrigeration cycle is provided with an intermediate pressure refrigerant bypass circuit 8 that connects the gas portion 41 of the intermediate pressure receiver 4 and the inside of the closed casing 11 of the compressor 1. Thereby, the intermediate-pressure gas refrigerant in the intermediate-pressure receiver 4 is bypassed into the hermetic casing 11 of the compressor 1 which is an intermediate-pressure part in the compression process. The intermediate pressure refrigerant bypass circuit 8 is provided with a capillary tube 81 for adjusting the flow rate and a check valve 82 for blocking the refrigerant flow from the compressor 1 to the intermediate pressure receiver 4.
In addition, the supercritical refrigeration cycle is provided with a defrost circuit 9 that connects the inside of the sealed casing 11 of the compressor 1 and the evaporator inlet side via an on-off valve 91. The on-off valve 91 is closed during normal operation and opened during defrost operation.

気液分離器7は、円筒状などの適宜形状の密閉容器であって、この容器の下部に冷媒入口71を備え、上部に冷媒出口72を備えている。また、この気液分離器7は、図3に示すように、蒸発器6の冷媒出口64に対し冷媒入口71が所定ヘッド差H1高くなる位置に設けられている。また、気液分離器7の冷媒入口71と蒸発器6の冷媒出口64とをつなぐ配管73、すなわち、気液分離器7から蒸発器6への液冷媒の戻り配管73の断面積を、大径の配管を使用するなどして、圧縮機吸入配管14の断面積より大きく構成している。   The gas-liquid separator 7 is an airtight container having an appropriate shape such as a cylindrical shape, and includes a refrigerant inlet 71 at a lower part of the container and a refrigerant outlet 72 at an upper part. Further, as shown in FIG. 3, the gas-liquid separator 7 is provided at a position where the refrigerant inlet 71 is higher than the refrigerant outlet 64 of the evaporator 6 by a predetermined head difference H1. Further, the pipe 73 connecting the refrigerant inlet 71 of the gas-liquid separator 7 and the refrigerant outlet 64 of the evaporator 6, that is, the cross-sectional area of the liquid refrigerant return pipe 73 from the gas-liquid separator 7 to the evaporator 6 is large. It is configured to be larger than the cross-sectional area of the compressor suction pipe 14 by using a pipe having a diameter.

以上のように構成された超臨界冷凍サイクルの通常運転時の作動について、図2のモリエル線図に基づいて説明する。このモリエル線図上の各点を表示する符合は、図1の冷媒回路に付された回路上の各符号の位置における冷媒の状態を示すように対応して示している。なお、以下の説明において、モリエル線図の各点を表示する符合を併記する。   The operation in the normal operation of the supercritical refrigeration cycle configured as described above will be described based on the Mollier diagram of FIG. The symbols for indicating each point on the Mollier diagram are shown corresponding to the state of the refrigerant at the position of each symbol on the circuit attached to the refrigerant circuit of FIG. In the following description, symbols for displaying each point on the Mollier diagram are also shown.

2段圧縮機1の低段側圧縮機部12では、気液分離器7出口側の低圧ガス冷媒a1が吸入されて圧縮される。低段側圧縮機部12で圧縮された中間圧ガス冷媒b1が密閉ケーシング11内に吐出される。この密閉ケーシング11内では、中間圧レシーバ4において気液分離された中間圧ガス冷媒g1と低段側圧縮機部12の吐出ガスb1とが混合されてガス冷媒c1となる。高段側圧縮機部13は、この混合冷媒c1を吸入して高圧冷媒d1となって2段圧縮機1から吐出される。   In the low-stage compressor section 12 of the two-stage compressor 1, the low-pressure gas refrigerant a1 on the outlet side of the gas-liquid separator 7 is sucked and compressed. The intermediate-pressure gas refrigerant b <b> 1 compressed by the low-stage compressor unit 12 is discharged into the sealed casing 11. In the hermetic casing 11, the intermediate pressure gas refrigerant g1 that has been gas-liquid separated in the intermediate pressure receiver 4 and the discharge gas b1 of the low-stage compressor section 12 are mixed to form a gas refrigerant c1. The high-stage compressor section 13 sucks the mixed refrigerant c1 and becomes a high-pressure refrigerant d1 and is discharged from the two-stage compressor 1.

2段圧縮機1から吐出された高圧冷媒d1は高圧ガス冷却器2で室内空気、暖房用温水、給湯水などの被加熱流体を加熱することにより冷却される。冷却された高圧ガス冷媒e1は、第1絞り装置3により膨張され臨界点以下の圧力の気液混合冷媒f1となって中間圧レシーバ4に流入する。この気液混合冷媒f1は中間圧レシーバ4内で気液分離される。中間圧レシーバ4内で気液分離された中間圧ガス冷媒g1は前述のように中間圧冷媒バイパス回路8を通って2段圧縮機1の密閉ケーシング11内に流れ込む。   The high-pressure refrigerant d1 discharged from the two-stage compressor 1 is cooled by heating a heated fluid such as room air, hot water for heating, hot water supply water, etc. in the high-pressure gas cooler 2. The cooled high-pressure gas refrigerant e1 is expanded by the first expansion device 3 and becomes a gas-liquid mixed refrigerant f1 having a pressure equal to or lower than the critical point and flows into the intermediate pressure receiver 4. This gas-liquid mixed refrigerant f1 is gas-liquid separated in the intermediate pressure receiver 4. The intermediate-pressure gas refrigerant g1 that has been gas-liquid separated in the intermediate-pressure receiver 4 flows into the sealed casing 11 of the two-stage compressor 1 through the intermediate-pressure refrigerant bypass circuit 8 as described above.

一方、中間圧レシーバ4で気液分離された液冷媒h1は、第2絞り装置5で減圧され、低圧の気液混合冷媒i1となって、蒸発器6に流入する。蒸発器6に流入した低圧の気液混合冷媒i1は、外気と熱交換して(外気から熱を汲み上げて)蒸発し、低圧ガス冷媒j1となって気液分離器7に流入する。また、気液分離器7を流出した低圧ガス冷媒j1、すなわち、低圧ガス冷媒a1は前述のように低段側圧縮機部12に吸入される。   On the other hand, the liquid refrigerant h <b> 1 separated by the intermediate pressure receiver 4 is decompressed by the second expansion device 5, becomes a low-pressure gas-liquid mixed refrigerant i <b> 1, and flows into the evaporator 6. The low-pressure gas-liquid mixed refrigerant i1 that has flowed into the evaporator 6 exchanges heat with the outside air (pumps heat from the outside air), evaporates, and flows into the gas-liquid separator 7 as the low-pressure gas refrigerant j1. Further, the low-pressure gas refrigerant j1 that has flowed out of the gas-liquid separator 7, that is, the low-pressure gas refrigerant a1, is sucked into the low-stage compressor section 12 as described above.

このような超臨界冷凍サイクルにおいて、第1絞り装置3及び第2絞り装置5の少なくとも一方は、蒸発器6の出口冷媒が過熱状態となるように制御される。また、このとき冷媒の過熱度は、蒸発器6の中間部に設けられた冷媒温度センサー61の検出する冷媒温度と蒸発器6の出口側に設けられた冷媒温度センサー62が検出する冷媒温度との差温が一定となるように制御することにより、蒸発器6出口側の冷媒が一定の過熱度を有するように制御される。   In such a supercritical refrigeration cycle, at least one of the first throttling device 3 and the second throttling device 5 is controlled such that the outlet refrigerant of the evaporator 6 is overheated. At this time, the degree of superheat of the refrigerant is determined by the refrigerant temperature detected by the refrigerant temperature sensor 61 provided in the intermediate portion of the evaporator 6 and the refrigerant temperature detected by the refrigerant temperature sensor 62 provided on the outlet side of the evaporator 6. Is controlled so that the refrigerant on the outlet side of the evaporator 6 has a constant degree of superheat.

また、上記冷凍サイクル装置において、冬季長時間運転を停止していたときは、外気に触れる蒸発器6や気液分離器7において冷媒が凝縮液化する。しかしながら、気液分離器7で凝縮液化した冷媒は、気液分離器7の冷媒入口71が蒸発器6の冷媒出口64に対し所定高さH1だけ高く形成されていることにより、蒸発器6に戻される。また、気液分離器7内から蒸発器6に戻った液冷媒や蒸発器6で液化した液冷媒は蒸発器6内に貯留される。したがって、この状態で起動した場合、蒸発器6から液冷媒が流出するが、この液冷媒は気液分離器7で気液分離されるので、圧縮機1には液冷媒が戻ることがない。   Further, in the refrigeration cycle apparatus, when the operation is stopped for a long time in winter, the refrigerant is condensed and liquefied in the evaporator 6 and the gas-liquid separator 7 that come into contact with the outside air. However, the refrigerant condensed and liquefied by the gas-liquid separator 7 is formed in the evaporator 6 because the refrigerant inlet 71 of the gas-liquid separator 7 is formed higher than the refrigerant outlet 64 of the evaporator 6 by a predetermined height H1. Returned. The liquid refrigerant returned from the gas-liquid separator 7 to the evaporator 6 and the liquid refrigerant liquefied by the evaporator 6 are stored in the evaporator 6. Therefore, when activated in this state, liquid refrigerant flows out of the evaporator 6, but this liquid refrigerant is separated into gas and liquid by the gas-liquid separator 7, so that the liquid refrigerant does not return to the compressor 1.

実施例1に係る冷却装置は、以上のように構成されているので、通常運転時に次のような効果を奏する。
(1) 実施例1に係る冷凍装置は、冷凍サイクル装置内の冷媒量を調節する中間圧レシーバ4が中間圧状態となる第1絞り装置3と第2絞り装置5との間に設けられているので、低圧側回路に液冷媒を貯留させることなく冷凍サイクル装置内の冷媒量の調節を行うことができる。したがって、通常運転時においては、蒸発器6出口を湿り状態とする必要がない、また、長期間の停止により冷媒が寝込んでいるような場合における起動時や、デフロスト運転直後の通常運転への切換時のような過渡期を除いて、蒸発器6から液冷媒が流出する運転を防止することが可能になる。また、中間圧力下、中間圧レシーバ4で余剰冷媒を貯留するため、冷媒を貯留する中間圧レシーバ4の容積を小容量化することができる。
Since the cooling device according to the first embodiment is configured as described above, the following effects can be obtained during normal operation.
(1) In the refrigeration apparatus according to the first embodiment, the intermediate pressure receiver 4 that adjusts the amount of refrigerant in the refrigeration cycle apparatus is provided between the first expansion device 3 and the second expansion device 5 that are in an intermediate pressure state. Therefore, the amount of refrigerant in the refrigeration cycle apparatus can be adjusted without storing liquid refrigerant in the low-pressure side circuit. Therefore, during normal operation, the outlet of the evaporator 6 does not need to be in a wet state, and is switched to normal operation immediately after start-up or immediately after defrost operation when the refrigerant is stagnant due to a long-term stoppage. Except for a transition period such as time, it is possible to prevent the liquid refrigerant from flowing out of the evaporator 6. Further, since the excess refrigerant is stored in the intermediate pressure receiver 4 under the intermediate pressure, the volume of the intermediate pressure receiver 4 that stores the refrigerant can be reduced.

(2) また、実施例1においては、蒸発器6出口の冷媒が過熱状態となるように第1絞り装置3及び第2絞り装置5の少なくとも一方を制御することにより、中間圧レシーバ4に余剰冷媒を貯留させながら圧縮機1への液戻りを防止した冷媒制御を行うことができる。   (2) Moreover, in Example 1, the intermediate pressure receiver 4 is surplus by controlling at least one of the first expansion device 3 and the second expansion device 5 so that the refrigerant at the outlet of the evaporator 6 is overheated. Refrigerant control that prevents liquid return to the compressor 1 can be performed while storing the refrigerant.

(3) また、蒸発器6中間の冷媒温度を検出する冷媒温度センサー61と蒸発器出口の冷媒温度を検出する冷媒温度センサー62とを有し、両冷媒温度センサー61、62により検出される温度差に基づき蒸発器6出口の過熱度を検出するようにしているので、通常運転時の蒸発器6出口における冷媒の過熱度を確実に検知することができる。   (3) The refrigerant temperature sensor 61 that detects the refrigerant temperature in the middle of the evaporator 6 and the refrigerant temperature sensor 62 that detects the refrigerant temperature at the evaporator outlet, and the temperatures detected by the refrigerant temperature sensors 61 and 62. Since the superheat degree at the outlet of the evaporator 6 is detected based on the difference, the superheat degree of the refrigerant at the outlet of the evaporator 6 during normal operation can be reliably detected.

(4) また、中間圧レシーバ4内の中間圧のガス冷媒を圧縮機1の密閉ケーシング11内にバイパスする中間圧冷媒バイパス回路8を設けているので、バイパスされる中間圧ガス冷媒が圧縮機内の圧力を上げる。この結果、圧縮仕事量が軽減され、システムの成績係数が向上する。   (4) Since the intermediate-pressure refrigerant bypass circuit 8 for bypassing the intermediate-pressure gas refrigerant in the intermediate-pressure receiver 4 into the sealed casing 11 of the compressor 1 is provided, the bypassed intermediate-pressure gas refrigerant is contained in the compressor. Increase the pressure. As a result, the compression work is reduced and the coefficient of performance of the system is improved.

(5) この場合において、圧縮機1は、2段圧縮機に構成され、低段側圧縮機部12の吐出ガスを密閉ケーシング11内に吐出する所謂内部中間圧ドーム型圧縮機であるので、中間圧冷媒バイパス回路8を容易に形成することができる。   (5) In this case, the compressor 1 is a so-called internal intermediate pressure dome type compressor that is configured as a two-stage compressor and discharges the discharge gas of the low-stage compressor section 12 into the hermetic casing 11. The intermediate pressure refrigerant bypass circuit 8 can be easily formed.

(6) また、実施例1に係る冷凍装置では、気液分離器7が蒸発器6の出口側に設けられており、特に、気液分離器7で分離された液冷媒が蒸発器6に戻るように形成されているので、前述の運転開始時などの過渡期においても圧縮機1へ液戻りすることがない。   (6) In the refrigeration apparatus according to the first embodiment, the gas-liquid separator 7 is provided on the outlet side of the evaporator 6, and in particular, the liquid refrigerant separated by the gas-liquid separator 7 is supplied to the evaporator 6. Since it is formed so as to return, the liquid does not return to the compressor 1 even in a transition period such as the start of operation described above.

(7) また、気液分離器7の冷媒入口71が蒸発器6の冷媒出口64に比し高い位置となるように、気液分離器7が設けられているので、運転中及び運転停止中において、気液分離器7にガス冷媒とともに流入した液冷媒又は気液分離器7で液化した液冷媒は気液分離され重力により蒸発器6に戻される。したがって、気液分離器7から蒸発器6へ冷媒を戻すための動力が不要となり、その構成が簡略化される。また、運転停止時に何も運転することなく気液分離器7の液冷媒が必ず蒸発器6に戻されているので、起動時等の過渡期における圧縮機1への液戻りを確実に防止することができる。また、気液分離器7に液冷媒がない状態から再起動されるため、吐出温度の上昇が早く、立ち上がり時間が短縮される。   (7) Further, since the gas-liquid separator 7 is provided so that the refrigerant inlet 71 of the gas-liquid separator 7 is higher than the refrigerant outlet 64 of the evaporator 6, the gas-liquid separator 7 is in operation and is not operating. The liquid refrigerant flowing into the gas-liquid separator 7 together with the gas refrigerant or the liquid refrigerant liquefied by the gas-liquid separator 7 is separated into gas and liquid and returned to the evaporator 6 by gravity. Therefore, power for returning the refrigerant from the gas-liquid separator 7 to the evaporator 6 becomes unnecessary, and the configuration is simplified. Further, since the liquid refrigerant in the gas-liquid separator 7 is always returned to the evaporator 6 without performing any operation when the operation is stopped, the liquid return to the compressor 1 in the transition period such as the start-up is surely prevented. be able to. Further, since the gas-liquid separator 7 is restarted from the state where there is no liquid refrigerant, the discharge temperature rises quickly and the rise time is shortened.

(8) また、蒸発器6の冷媒出口64と気液分離器7の冷媒入口71とをつなぐ配管73、すなわち、気液分離器7から蒸発器6への液冷媒の戻り配管73の断面積を、圧縮機吸入配管14の断面積より大きく構成しているので、戻り配管73を気液分離器7の一部として考えることができ、それだけ気液分離器7の容積を小さくすることができる。   (8) The cross-sectional area of the pipe 73 connecting the refrigerant outlet 64 of the evaporator 6 and the refrigerant inlet 71 of the gas-liquid separator 7, that is, the return pipe 73 of the liquid refrigerant from the gas-liquid separator 7 to the evaporator 6. Is larger than the cross-sectional area of the compressor suction pipe 14, the return pipe 73 can be considered as a part of the gas-liquid separator 7, and the volume of the gas-liquid separator 7 can be reduced accordingly. .

(9) また、中間圧レシーバ4の容積を、運転条件の変化による冷凍サイクル装置内の余剰冷媒を貯留し得る大きさとしているので、常に最適の冷媒量の状態で冷凍サイクル装置を運転することができ、運転成績係数を向上させることができる。   (9) Moreover, since the volume of the intermediate pressure receiver 4 is set to a size capable of storing surplus refrigerant in the refrigeration cycle apparatus due to a change in operating conditions, the refrigeration cycle apparatus is always operated in an optimal refrigerant amount state. The driving performance coefficient can be improved.

(10) また、上記冷凍サイクル装置に充填する冷媒を二酸化炭素としているので、可燃性、毒性のない安全な冷媒を使用しながら高圧側のガス冷媒温度が高くなる超臨界冷凍サイクルでの運転を行うことができる。   (10) In addition, since the refrigerant charged in the refrigeration cycle apparatus is carbon dioxide, operation in a supercritical refrigeration cycle in which the gas refrigerant temperature on the high pressure side increases while using a flammable and non-toxic safe refrigerant. It can be carried out.

(11) また、高圧ガス冷却器2により暖房用温水、給湯水などの水を加熱する装置として構成した場合は、高温の暖房用温水や高温の給湯水を供給することができる。   (11) Moreover, when it comprises as an apparatus which heats water, such as heating hot water and hot water supply water, by the high pressure gas cooler 2, high temperature hot water for heating and high temperature hot water supply water can be supplied.

次に、上記2段圧縮冷凍サイクル装置におけるデフロスト運転について説明する。
上記2段圧縮冷凍サイクル装置において、外気低温状態で通常の運転が継続されると蒸発器6がフロストを始める。また、フロストが始まることにより蒸発器6の熱交換効率が低下し、低圧圧力及び高圧圧力が次第に低下する。この結果、中間圧レシーバ4内に貯留される液冷媒量が増加し、フロストが所定量になったときにデフロストが行われる。
Next, the defrost operation in the two-stage compression refrigeration cycle apparatus will be described.
In the above-described two-stage compression refrigeration cycle apparatus, the evaporator 6 starts frosting when normal operation is continued at a low temperature of the outside air. Moreover, when the frost starts, the heat exchange efficiency of the evaporator 6 is lowered, and the low pressure and the high pressure are gradually lowered. As a result, the amount of liquid refrigerant stored in the intermediate pressure receiver 4 increases, and defrosting is performed when the frost reaches a predetermined amount.

デフロスト運転は、デフロスト回路9の開閉弁91を開いて、低段側圧縮機部12の吐出ガス冷媒をデフロスト回路9の開閉弁91を介し蒸発器6の入口側にバイパスし、中間圧力のガス冷媒の有する潜熱により蒸発器6を加熱するように行われる。   In the defrosting operation, the on-off valve 91 of the defrost circuit 9 is opened, the discharged gas refrigerant of the low-stage compressor section 12 is bypassed to the inlet side of the evaporator 6 through the on-off valve 91 of the defrost circuit 9, and the intermediate pressure gas The evaporator 6 is heated by the latent heat of the refrigerant.

このとき、高段側圧縮機部13から吐出された一部の冷媒は、高圧ガス冷却器2、第1絞り装置3、中間圧レシーバ4のガス部41、キャピラリーチューブ81、逆止弁82、中間圧冷媒バイパス回路8を介してデフロスト回路9に流れ込むが、第1絞り装置3の開度を調節することにより、中間圧冷媒バイパス回路8を介してデフロスト回路9への冷媒流量が調節される。また、デフロスト運転時、第2絞り装置5の開度を調節することにより、中間圧レシーバ4内の液冷媒が蒸発器6側への流れことが防止される。
したがって、デフロスト運転を行うと、蒸発器6内には中間圧の高温冷媒が供給され、蒸発器6で温度が下がり低圧となる。またデフロスト運転時において、低段側圧縮機部12からデフロスト回路に吐出される吐出量が減少し、低段側圧縮機部12からの吐出圧力が低下すると圧力差で中間圧レシーバ4内の液冷媒が放出される。これにより、中間圧冷媒バイパス回路8からデフロスト回路9への冷媒流量が増加され、蒸発器6への中間圧力のガス冷媒の冷媒流量が安定化される。また、このようにデフロスト運転が行われることにより、開閉弁91には、2段圧縮冷凍サイクルの吐出ガス冷媒が流入せず、中間圧力のガス冷媒が作用することになり、開閉弁91の耐圧性能を低くすることが可能となる。
At this time, a part of the refrigerant discharged from the high-stage compressor section 13 includes the high-pressure gas cooler 2, the first throttling device 3, the gas section 41 of the intermediate pressure receiver 4, the capillary tube 81, the check valve 82, The refrigerant flows into the defrost circuit 9 through the intermediate pressure refrigerant bypass circuit 8, but the refrigerant flow rate to the defrost circuit 9 is adjusted through the intermediate pressure refrigerant bypass circuit 8 by adjusting the opening of the first expansion device 3. . Further, by adjusting the opening degree of the second expansion device 5 during the defrost operation, the liquid refrigerant in the intermediate pressure receiver 4 is prevented from flowing to the evaporator 6 side.
Therefore, when the defrosting operation is performed, a high-temperature refrigerant having an intermediate pressure is supplied into the evaporator 6, and the temperature is lowered by the evaporator 6 to a low pressure. Further, during the defrosting operation, when the discharge amount discharged from the low stage compressor unit 12 to the defrost circuit decreases and the discharge pressure from the low stage compressor unit 12 decreases, the liquid in the intermediate pressure receiver 4 is caused by the pressure difference. The refrigerant is released. As a result, the refrigerant flow rate from the intermediate pressure refrigerant bypass circuit 8 to the defrost circuit 9 is increased, and the refrigerant flow rate of the intermediate-pressure gas refrigerant to the evaporator 6 is stabilized. Further, by performing the defrosting operation in this way, the gas refrigerant at the intermediate pressure acts on the on-off valve 91 without flowing in the discharge gas refrigerant of the two-stage compression refrigeration cycle. The performance can be lowered.

また、上記冷凍サイクル装置において、蒸発器6をデフロスト運転した後に通常の運転に戻るときは蒸発器6から一部液冷媒が流出するが、気液分離器7により気液分離されるので、圧縮機1に液冷媒の戻る心配がない。   In the refrigeration cycle apparatus, when the evaporator 6 returns to normal operation after the defrost operation, a part of the liquid refrigerant flows out from the evaporator 6, but the gas-liquid separator 7 separates the gas and liquid. There is no worry of the liquid refrigerant returning to the machine 1.

次に実施例2について、図4及び図5に基づき説明する。なお、図4は実施例2に係る冷凍装置の冷媒回路図である。図5は同冷凍サイクル装置による超臨界冷凍サイクルのモリエル線図である。
実施例2は、実施例1において、圧縮機1をガスインジェクションポートを備えた圧縮機300とし、さらに、蒸発器6と気液分離器7との間に高圧ガス冷媒と低圧冷媒とを熱交換する熱交換器303を設けたものである。
Next, Example 2 will be described with reference to FIGS. FIG. 4 is a refrigerant circuit diagram of the refrigeration apparatus according to the second embodiment. FIG. 5 is a Mollier diagram of a supercritical refrigeration cycle by the refrigeration cycle apparatus.
The second embodiment is the same as the first embodiment except that the compressor 1 is a compressor 300 having a gas injection port, and the high pressure gas refrigerant and the low pressure refrigerant are heat-exchanged between the evaporator 6 and the gas-liquid separator 7. The heat exchanger 303 is provided.

圧縮機300は、圧縮工程の中間圧力部にガスインジェクションポート302を有する圧縮機であり、密閉ケーシング301内には高圧ガス冷媒が導入されている。また、中間圧冷媒バイパス回路8が中間圧レシーバ4のガス部41とガスインジェクションポート302との間に設けられている。なお、圧縮機300のガスインジェクションポート302からは中間圧力のガス冷媒が中間圧冷媒バイパス回路8へ流出することがないように構成されている。したがって、この中間圧冷媒バイパス回路8には、実施例1のように逆止弁82が設けられていなくて、冷媒流量調節用のキャピラリーチューブ81のみが設けられている。また、熱交換器303は、蒸発器6出口の低圧冷媒と高圧ガス冷却器2出口側の高圧ガス冷媒とを熱交換させるように構成されている。
なお、その他の構成は、実施例1と同一である。
The compressor 300 is a compressor having a gas injection port 302 at an intermediate pressure portion in the compression process, and a high-pressure gas refrigerant is introduced into the sealed casing 301. An intermediate pressure refrigerant bypass circuit 8 is provided between the gas portion 41 of the intermediate pressure receiver 4 and the gas injection port 302. The intermediate pressure gas refrigerant is prevented from flowing out from the gas injection port 302 of the compressor 300 to the intermediate pressure refrigerant bypass circuit 8. Therefore, the intermediate pressure refrigerant bypass circuit 8 is not provided with the check valve 82 as in the first embodiment, and is provided with only the capillary tube 81 for adjusting the refrigerant flow rate. The heat exchanger 303 is configured to exchange heat between the low-pressure refrigerant at the outlet of the evaporator 6 and the high-pressure gas refrigerant at the outlet side of the high-pressure gas cooler 2.
Other configurations are the same as those of the first embodiment.

次に、上記のように構成される実施例2について、図5のモリエル線図に基づいて説明する。このモリエル線図上の各点を表示する符合は、図4の冷媒回路に付された回路上の位置における冷媒の状態を示すように対応して示されている。   Next, Example 2 configured as described above will be described based on the Mollier diagram of FIG. The symbols for indicating each point on the Mollier diagram are shown correspondingly to indicate the state of the refrigerant at a position on the circuit attached to the refrigerant circuit of FIG.

まず、通常運転時における冷凍サイクルについて説明する。なお、この説明にはモリエル線図の各点を表示する符合を併記する。
圧縮機300では、気液分離器7出口側の低圧ガス冷媒a2が吸入されて圧縮される。一方中間圧レシーバ4において気液分離された中間圧ガス冷媒h2が圧縮機300のガスインジェクションポート302から圧縮機300内の圧縮工程途中に導入される。したがって、圧縮機300で中間圧まで圧縮されたガス冷媒b2はガスインジェクションポート302から導入される中間圧ガス冷媒h2と混合して混合冷媒c2となる。さらに、この混合冷媒c2は圧縮されて、密閉ケーシング301内に吐出される。この密閉ケーシング301内から高圧ガス冷媒d2となって冷媒回路内に吐出される。
First, the refrigeration cycle during normal operation will be described. In this description, symbols for displaying each point on the Mollier diagram are also shown.
In the compressor 300, the low-pressure gas refrigerant a2 on the outlet side of the gas-liquid separator 7 is sucked and compressed. On the other hand, the intermediate-pressure gas refrigerant h <b> 2 that has been gas-liquid separated in the intermediate-pressure receiver 4 is introduced from the gas injection port 302 of the compressor 300 during the compression process in the compressor 300. Therefore, the gas refrigerant b2 compressed to the intermediate pressure by the compressor 300 is mixed with the intermediate pressure gas refrigerant h2 introduced from the gas injection port 302 to become the mixed refrigerant c2. Further, the mixed refrigerant c <b> 2 is compressed and discharged into the sealed casing 301. The high-pressure gas refrigerant d2 is discharged from the sealed casing 301 into the refrigerant circuit.

圧縮機300から吐出された高圧ガス冷媒d2は、高圧ガス冷却器2で室内空気、暖房用温水、給湯水などの被加熱流体を加熱することにより冷却される。高圧ガス冷却器2で冷却された高圧ガス冷媒e2は熱交換器303でさらに冷却される。高圧ガス冷却器2で冷却された高圧ガス冷媒f2は、第1絞り装置3により膨張され臨界点以下の圧力の気液混合冷媒g2となって中間圧レシーバ4に流入する。この気液混合冷媒g2は中間圧レシーバ4内で気液分離される。中間圧レシーバ4内で気液分離された中間圧ガス冷媒h2は前述のように中間圧冷媒バイパス回路8を通って圧縮機300の密閉ケーシング301内に流れ込む。   The high-pressure gas refrigerant d2 discharged from the compressor 300 is cooled by heating a heated fluid such as room air, heating hot water, hot water supply water, or the like in the high-pressure gas cooler 2. The high-pressure gas refrigerant e2 cooled by the high-pressure gas cooler 2 is further cooled by the heat exchanger 303. The high-pressure gas refrigerant f2 cooled by the high-pressure gas cooler 2 is expanded by the first throttling device 3 and flows into the intermediate pressure receiver 4 as a gas-liquid mixed refrigerant g2 having a pressure below the critical point. This gas-liquid mixed refrigerant g2 is gas-liquid separated in the intermediate pressure receiver 4. The intermediate-pressure gas refrigerant h2 that has been gas-liquid separated in the intermediate-pressure receiver 4 flows into the sealed casing 301 of the compressor 300 through the intermediate-pressure refrigerant bypass circuit 8 as described above.

一方、中間圧レシーバ4で気液分離された液冷媒i2は、第2絞り装置5で減圧され、低圧の気液混合冷媒j2となって蒸発器6に流入する。蒸発器6に流入した低圧の気液混合冷媒j2は、外気と熱交換して外気から熱を汲み上げて蒸発し、湿り低圧冷媒k2となって熱交換器303に流入する。熱交換器303に流入した湿り低圧冷媒k2は、高圧ガス冷媒e2と熱交換して加熱され、過熱された低圧ガス冷媒l2となって気液分離器7に流入する。また、気液分離器7に流入した低圧ガス冷媒l2、すなわち、低圧ガス冷媒a2は、気液分離器7を流出して圧縮機300に吸入される。   On the other hand, the liquid refrigerant i2 that has been gas-liquid separated by the intermediate pressure receiver 4 is depressurized by the second expansion device 5 and flows into the evaporator 6 as a low-pressure gas-liquid mixed refrigerant j2. The low-pressure gas-liquid mixed refrigerant j2 that has flowed into the evaporator 6 exchanges heat with the outside air, pumps heat from the outside air, evaporates, and flows into the heat exchanger 303 as a wet low-pressure refrigerant k2. The wet low-pressure refrigerant k2 that has flowed into the heat exchanger 303 is heated by exchanging heat with the high-pressure gas refrigerant e2, and becomes superheated low-pressure gas refrigerant l2 and flows into the gas-liquid separator 7. Further, the low-pressure gas refrigerant 12 that has flowed into the gas-liquid separator 7, that is, the low-pressure gas refrigerant a 2, flows out of the gas-liquid separator 7 and is sucked into the compressor 300.

このような超臨界冷凍サイクルにおいて、第1絞り装置3及び第2絞り装置5の少なくとも一方は、実施例1の場合と同様に、蒸発器6の出口冷媒が過熱状態となるように制御される。また、このとき冷媒の過熱度は、蒸発器6中間部の冷媒温度センサー61の検出する冷媒温度と蒸発器6出口側の冷媒温度センサー62が検出する冷媒温度との差温が一定となるように制御することにより、蒸発器6出口側の冷媒が一定の過熱度を有するように制御される。   In such a supercritical refrigeration cycle, at least one of the first throttling device 3 and the second throttling device 5 is controlled so that the outlet refrigerant of the evaporator 6 is overheated, as in the case of the first embodiment. . At this time, the degree of superheat of the refrigerant is such that the temperature difference between the refrigerant temperature detected by the refrigerant temperature sensor 61 in the middle of the evaporator 6 and the refrigerant temperature detected by the refrigerant temperature sensor 62 on the outlet side of the evaporator 6 is constant. Thus, the refrigerant on the outlet side of the evaporator 6 is controlled to have a certain degree of superheat.

また、上記冷凍サイクル装置において、冬季長時間運転を停止していた後に通常の運転を行うときは、蒸発器6から液冷媒が流出するが、実施例1の場合と同様に気液分離器7により気液分離されるので、圧縮機1に液冷媒の戻る心配がない。   In the refrigeration cycle apparatus, when normal operation is performed after the winter long-time operation is stopped, liquid refrigerant flows out from the evaporator 6, but the gas-liquid separator 7 is the same as in the first embodiment. Therefore, there is no fear that the liquid refrigerant returns to the compressor 1.

実施例2に係る冷却装置は以上のように構成されているので、通常運転時において実施例1の場合と同様に、前述の(1)〜(4)、及び(6)〜(11)の効果を奏することができる。   Since the cooling device according to the second embodiment is configured as described above, during the normal operation, as in the case of the first embodiment, the above-described (1) to (4) and (6) to (11). There is an effect.

また、実施例2の場合は、蒸発器6と気液分離器7との間に高圧冷媒と低圧冷媒とを熱交換する熱交換器303を備えるので、蒸発器6の出口冷媒の温度が上昇し、圧縮機300への液戻りをより一層確実に防止することができる。   In the case of the second embodiment, since the heat exchanger 303 for exchanging heat between the high-pressure refrigerant and the low-pressure refrigerant is provided between the evaporator 6 and the gas-liquid separator 7, the temperature of the outlet refrigerant of the evaporator 6 increases. In addition, liquid return to the compressor 300 can be prevented more reliably.

次に、上記2段圧縮冷凍サイクル装置における蒸発器6のデフロスト運転について説明する。
上記2段圧縮冷凍サイクル装置において、外気低温状態で通常の運転が継続されると蒸発器6がフロストを始める。また、フロストが始まることにより蒸発器6の熱交換効率が低下し、低圧圧力及び高圧圧力が次第に低下する。この結果、中間圧レシーバ4内に貯留される液冷媒量が増加し、フロストが所定量になったときにデフロストが行われる。
Next, the defrosting operation of the evaporator 6 in the two-stage compression refrigeration cycle apparatus will be described.
In the above-described two-stage compression refrigeration cycle apparatus, the evaporator 6 starts frosting when normal operation is continued at a low temperature of the outside air. Moreover, when the frost starts, the heat exchange efficiency of the evaporator 6 is lowered, and the low pressure and the high pressure are gradually lowered. As a result, the amount of liquid refrigerant stored in the intermediate pressure receiver 4 increases, and defrosting is performed when the frost reaches a predetermined amount.

デフロスト運転は、デフロスト回路9の開閉弁91を開き、第1絞り装置3を開き第2絞り装置5を閉じることにより、圧縮機300から吐出された高圧ガス冷媒が高圧ガス冷却器2、第1絞り装置3、中間圧レシーバ4のガス部41、キャピラリーチューブ81、中間圧冷媒バイパス回路8及びデフロスト回路9を介し、中間圧力のガス冷媒となって蒸発器6入口側にバイパスされる。これにより中間圧力のガス冷媒の潜熱による蒸発器6のデフロストが行われる。   In the defrosting operation, the on-off valve 91 of the defrost circuit 9 is opened, the first throttling device 3 is opened, and the second throttling device 5 is closed, whereby the high-pressure gas refrigerant discharged from the compressor 300 is changed to the high-pressure gas cooler 2, Through the expansion device 3, the gas part 41 of the intermediate pressure receiver 4, the capillary tube 81, the intermediate pressure refrigerant bypass circuit 8, and the defrost circuit 9, the refrigerant becomes an intermediate pressure gas refrigerant and is bypassed to the evaporator 6 inlet side. Thereby, the defrost of the evaporator 6 by the latent heat of the gas refrigerant of intermediate pressure is performed.

また、このようにデフロスト運転が行われることにより、開閉弁91には、2段圧縮冷凍サイクルの吐出ガス冷媒が流入せず、中間圧力のガス冷媒が作用することになり、開閉弁91の耐圧性能を低くすることが可能となる。   Further, by performing the defrosting operation in this way, the gas refrigerant at the intermediate pressure acts on the on-off valve 91 without flowing in the discharge gas refrigerant of the two-stage compression refrigeration cycle. The performance can be lowered.

また、上記冷凍サイクル装置において、蒸発器6をデフロスト運転した後に通常の運転に戻るときは蒸発器6から液冷媒が流出するが、気液分離器7により気液分離されるので、圧縮機1に液冷媒の戻る心配がない。さらに、蒸発器6と気液分離器7との間に高圧冷媒と低圧冷媒とを熱交換する熱交換器303を備えるので、蒸発器6の出口冷媒の温度が上昇し、圧縮機300への液戻りをより一層確実に防止することができる。   In the refrigeration cycle apparatus, when the evaporator 6 is defrosted and returned to normal operation, liquid refrigerant flows out of the evaporator 6 but is separated into gas and liquid by the gas-liquid separator 7. There is no worry about the return of the liquid refrigerant. Furthermore, since the heat exchanger 303 for exchanging heat between the high-pressure refrigerant and the low-pressure refrigerant is provided between the evaporator 6 and the gas-liquid separator 7, the temperature of the outlet refrigerant of the evaporator 6 increases, Liquid return can be prevented more reliably.

以上詳述した冷凍装置は、広く一般の冷凍装置に利用できるが、特に、外気を熱源とするヒートポンプ式家庭用エアコン、業務用エアコン(パッケージエアコン)、外気熱源のヒートポンプ式温水装置、外気熱源のヒートポンプ式給湯装置などに利用されるものである。   The refrigeration apparatus detailed above can be widely used for general refrigeration apparatuses. In particular, heat pump home air conditioners that use outside air as a heat source, commercial air conditioners (packaged air conditioners), heat pump hot water devices that use outside air sources, and outdoor air heat sources. It is used for a heat pump hot water supply device.

本発明の実施例1に係る冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating device concerning Example 1 of the present invention. 同冷凍装置における超臨界冷凍サイクルのモリエル線図である。It is a Mollier diagram of the supercritical refrigeration cycle in the same refrigeration apparatus. 同冷凍装置の蒸発器及び気液分離器周りの構成図である。It is a block diagram around the evaporator and gas-liquid separator of the freezing apparatus. 本発明の実施例2に係る冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the freezing apparatus which concerns on Example 2 of this invention. 同冷凍装置における超臨界冷凍サイクルのモリエル線図である。It is a Mollier diagram of the supercritical refrigeration cycle in the same refrigeration apparatus.

符号の説明Explanation of symbols

1 圧縮機
2 高圧ガス冷却器
3 第1絞り装置
4 中間圧レシーバ
5 第2絞り装置
6 蒸発器
7 気液分離器
8 中間圧冷媒バイパス回路
9 デフロスト回路
11 密閉ケーシング
12 低段側圧縮機部
13 高段側圧縮機部
41 ガス部
91 開閉弁
300 圧縮機
302 ガスインジェクションポート
303 熱交換器
DESCRIPTION OF SYMBOLS 1 Compressor 2 High pressure gas cooler 3 1st expansion device 4 Intermediate pressure receiver 5 2nd expansion device 6 Evaporator 7 Gas-liquid separator 8 Intermediate pressure refrigerant bypass circuit 9 Defrost circuit 11 Sealed casing 12 Low stage compressor section 13 Higher stage compressor section 41 Gas section 91 On-off valve 300 Compressor 302 Gas injection port 303 Heat exchanger

Claims (6)

2段圧縮型の圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、絞り装置、低圧液冷媒を蒸発させる蒸発器を順次接続してなる2段圧縮冷凍サイクル装置を備え、さらに、この2段圧縮冷凍サイクル装置は、冷凍サイクル内の中間圧力部と蒸発器入口側との間に開閉弁を介して接続するデフロスト回路を設けてなることを特徴とする冷凍装置。   A two-stage compression type compressor, a high-pressure gas cooler that cools the high-pressure side gas refrigerant, a throttling device, and a two-stage compression refrigeration cycle apparatus that is connected in sequence to an evaporator that evaporates the low-pressure liquid refrigerant. The stage compression refrigeration cycle apparatus is provided with a defrost circuit that is connected via an on-off valve between an intermediate pressure portion in the refrigeration cycle and an evaporator inlet side. 低段側圧縮機部と高段側圧縮機部とを有し、低段側圧縮機部の吐出ガスが密閉ケーシング内に吐出されるとともに、密閉ケーシング内の冷媒が高段側圧縮機部に吸入されるように構成された2段圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間圧レシーバ、第2絞り装置、蒸発器、気液分離器を順次直列に接続するとともに、超臨界冷凍サイクルで運転されるように構成された2段圧縮冷凍サイクル装置を備え、さらに、この冷凍サイクル装置は、中間圧レシーバ内の中間圧のガス冷媒を2段圧縮機のケーシング内にバイパスする中間圧冷媒バイパス回路と、低段側圧縮機部の吐出側と蒸発器の入口側とを開閉弁を開始して接続するデフロスト回路とを備えてなることを特徴とする冷凍装置。   It has a low-stage compressor section and a high-stage compressor section, and the discharge gas from the low-stage compressor section is discharged into the sealed casing, and the refrigerant in the sealed casing is transferred to the high-stage compressor section. Two-stage compressor configured to be sucked in, high-pressure gas cooler that cools the high-pressure side gas refrigerant, first throttle device, intermediate pressure receiver that adjusts the amount of refrigerant in the refrigeration cycle, second throttle device, and evaporator The gas-liquid separator is sequentially connected in series, and is provided with a two-stage compression refrigeration cycle apparatus configured to be operated in a supercritical refrigeration cycle. The refrigeration cycle apparatus further includes an intermediate pressure in an intermediate pressure receiver. An intermediate pressure refrigerant bypass circuit for bypassing the gas refrigerant in the casing of the two-stage compressor, and a defrost circuit for connecting the discharge side of the low-stage compressor section and the inlet side of the evaporator by opening an on-off valve It is characterized by comprising Freezing equipment. 圧縮工程の中間部にガスインジェクションポートを有する圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間圧レシーバ、第2絞り装置、蒸発器、気液分離器を順次直列に接続するとともに、超臨界冷凍サイクルで運転されるように構成された2段圧縮冷凍サイクル装置を備え、さらに、この2段圧縮冷凍サイクル装置は、中間圧レシーバのガス部とガスインジェクションポートとを接続する中間圧冷媒バイパス回路と、中間圧レシーバのガス部と蒸発器の入口側とを開閉弁を介して接続するデフロスト回路を備えてなることを特徴とする冷凍装置。   Compressor having a gas injection port in the middle of the compression process, high-pressure gas cooler that cools the high-pressure side gas refrigerant, first throttle device, intermediate-pressure receiver that adjusts the amount of refrigerant in the refrigeration cycle, second throttle device, evaporation And a gas-liquid separator are sequentially connected in series, and a two-stage compression refrigeration cycle apparatus configured to be operated in a supercritical refrigeration cycle is provided. The two-stage compression refrigeration cycle apparatus further includes an intermediate pressure receiver. An intermediate pressure refrigerant bypass circuit that connects the gas section and the gas injection port, and a defrost circuit that connects the gas section of the intermediate pressure receiver and the inlet side of the evaporator via an on-off valve Refrigeration equipment. 冷凍サイクル装置の構成機器である中間圧レシーバは、運転条件の変化による余剰冷媒を貯留し得る容積を有することを特徴とする請求項2又は3記載の冷凍装置。   The refrigeration apparatus according to claim 2 or 3, wherein the intermediate pressure receiver, which is a component device of the refrigeration cycle apparatus, has a volume capable of storing surplus refrigerant due to a change in operating conditions. 冷凍サイクル装置は、二酸化炭素が冷媒として充填されていることを特徴とする請求項1〜4の何れか1項に記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 4, wherein the refrigeration cycle apparatus is filled with carbon dioxide as a refrigerant. 冷凍サイクル装置は、高圧ガス冷却器により水を加熱するように構成されていることを特徴とする請求項5記載の冷凍装置。   6. The refrigeration apparatus according to claim 5, wherein the refrigeration cycle apparatus is configured to heat water by a high-pressure gas cooler.
JP2004025120A 2004-02-02 2004-02-02 Refrigerator Pending JP2005214575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025120A JP2005214575A (en) 2004-02-02 2004-02-02 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025120A JP2005214575A (en) 2004-02-02 2004-02-02 Refrigerator

Publications (1)

Publication Number Publication Date
JP2005214575A true JP2005214575A (en) 2005-08-11

Family

ID=34907588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025120A Pending JP2005214575A (en) 2004-02-02 2004-02-02 Refrigerator

Country Status (1)

Country Link
JP (1) JP2005214575A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164288A (en) * 2008-03-28 2008-07-17 Sanyo Electric Co Ltd Refrigerating device
EP1977175A1 (en) * 2006-01-27 2008-10-08 Carrier Corporation Refrigerant system unloading by-pass into evaporator inlet
WO2009004779A1 (en) * 2007-06-29 2009-01-08 Daikin Industries, Ltd. Refrigeration system
JP2009030954A (en) * 2007-06-29 2009-02-12 Daikin Ind Ltd Refrigeration system
JP2009186033A (en) * 2008-02-01 2009-08-20 Daikin Ind Ltd Two-stage compression type refrigerating device
JP2009186121A (en) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp Heat pump water heater outdoor unit and heat pump water heater
WO2013146415A1 (en) * 2012-03-27 2013-10-03 シャープ株式会社 Heat pump-type heating device
JP2014224644A (en) * 2013-05-16 2014-12-04 シャープ株式会社 Heat pump device
CN105004087A (en) * 2014-04-16 2015-10-28 法雷奥热***公司 Coolant circuit
CN108709333A (en) * 2018-07-20 2018-10-26 天津商业大学 The operation method and system of refrigeration system completely cooling among second throttle
CN108759138A (en) * 2018-07-20 2018-11-06 天津商业大学 The operation method and system of not exclusively cooling refrigeration system among second throttle
CN111174455A (en) * 2020-02-09 2020-05-19 中科碳冷(无锡)高科技有限公司 Transcritical carbon dioxide two-stage compression refrigeration and defrosting system and using method thereof
CN115046324A (en) * 2022-01-24 2022-09-13 河南牧业经济学院 Refrigerating system and circulating defrosting method of evaporator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1977175A1 (en) * 2006-01-27 2008-10-08 Carrier Corporation Refrigerant system unloading by-pass into evaporator inlet
EP1977175A4 (en) * 2006-01-27 2013-12-25 Carrier Corp Refrigerant system unloading by-pass into evaporator inlet
WO2009004779A1 (en) * 2007-06-29 2009-01-08 Daikin Industries, Ltd. Refrigeration system
JP2009030954A (en) * 2007-06-29 2009-02-12 Daikin Ind Ltd Refrigeration system
JP2009186033A (en) * 2008-02-01 2009-08-20 Daikin Ind Ltd Two-stage compression type refrigerating device
JP2009186121A (en) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp Heat pump water heater outdoor unit and heat pump water heater
JP2008164288A (en) * 2008-03-28 2008-07-17 Sanyo Electric Co Ltd Refrigerating device
WO2013146415A1 (en) * 2012-03-27 2013-10-03 シャープ株式会社 Heat pump-type heating device
JP2014224644A (en) * 2013-05-16 2014-12-04 シャープ株式会社 Heat pump device
CN105004087A (en) * 2014-04-16 2015-10-28 法雷奥热***公司 Coolant circuit
CN108709333A (en) * 2018-07-20 2018-10-26 天津商业大学 The operation method and system of refrigeration system completely cooling among second throttle
CN108759138A (en) * 2018-07-20 2018-11-06 天津商业大学 The operation method and system of not exclusively cooling refrigeration system among second throttle
CN108709333B (en) * 2018-07-20 2023-04-25 天津商业大学 Operation method and system of secondary throttling middle complete cooling refrigerating system
CN108759138B (en) * 2018-07-20 2023-04-28 天津商业大学 Operation method and system of secondary throttling middle incomplete cooling refrigerating system
CN111174455A (en) * 2020-02-09 2020-05-19 中科碳冷(无锡)高科技有限公司 Transcritical carbon dioxide two-stage compression refrigeration and defrosting system and using method thereof
CN111174455B (en) * 2020-02-09 2023-10-03 中科碳冷(无锡)高科技有限公司 Transcritical carbon dioxide double-stage compression refrigeration and defrosting system and application method thereof
CN115046324A (en) * 2022-01-24 2022-09-13 河南牧业经济学院 Refrigerating system and circulating defrosting method of evaporator
CN115046324B (en) * 2022-01-24 2023-08-22 河南牧业经济学院 Refrigeration system and evaporator circulating defrosting method

Similar Documents

Publication Publication Date Title
JP6292480B2 (en) Refrigeration equipment
EP2068096B1 (en) Refrigeration device
JP4396771B2 (en) Refrigeration equipment
JP4363997B2 (en) Refrigeration equipment
JP2007278686A (en) Heat pump water heater
WO2007110908A9 (en) Refrigeration air conditioning device
KR100500617B1 (en) Supercritical refrigerating apparatus
WO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner provided with same
US20190360725A1 (en) Refrigeration apparatus
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP2005214575A (en) Refrigerator
JP2008076017A (en) Refrigerating device
JP2005214444A (en) Refrigerator
JP2007232265A (en) Refrigeration unit
KR100503178B1 (en) Freezing cycle device
JP4720641B2 (en) Refrigeration equipment
JP2006098044A (en) Refrigeration device
JP3714348B2 (en) Refrigeration equipment
JP2005214442A (en) Refrigerator
JP2010002112A (en) Refrigerating device
JP2008096072A (en) Refrigerating cycle device
KR100764707B1 (en) Heat pump air-conditioner, and method for controlling defrosting mode thereof
JP2009293887A (en) Refrigerating device
CN111919073B (en) Refrigerating device
JP2007147228A (en) Refrigerating device