JP2003008040A - Conductive film - Google Patents

Conductive film

Info

Publication number
JP2003008040A
JP2003008040A JP2001195449A JP2001195449A JP2003008040A JP 2003008040 A JP2003008040 A JP 2003008040A JP 2001195449 A JP2001195449 A JP 2001195449A JP 2001195449 A JP2001195449 A JP 2001195449A JP 2003008040 A JP2003008040 A JP 2003008040A
Authority
JP
Japan
Prior art keywords
conductive film
fine particles
film
ionic group
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001195449A
Other languages
Japanese (ja)
Other versions
JP4570818B2 (en
Inventor
Koichi Kawamura
浩一 川村
Yoshinori Takahashi
美紀 高橋
Morio Yagihara
盛夫 八木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001195449A priority Critical patent/JP4570818B2/en
Priority to EP20100173369 priority patent/EP2251874B1/en
Priority to US10/179,210 priority patent/US6811878B2/en
Priority to EP20020013991 priority patent/EP1271561B1/en
Publication of JP2003008040A publication Critical patent/JP2003008040A/en
Application granted granted Critical
Publication of JP4570818B2 publication Critical patent/JP4570818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a conductive film having excellent conductivity and durability and to further provide a transparent conductive film suitably used for an image display element, a solar battery or the like. SOLUTION: The conductive film is formed by introducing an ionic group to at least one side surface of a base, and electrostatically bonding conductive fine particles having a charge capable of being bonded to the ionic group such as, for example, metal fine particles of Au, Ag or the like, semiconductor fine particles or the like. Here, the base in which the ionic group is introduced is preferred to contain a surface graft polymer in which the group is introduced to its surface by a graft polymerization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は導電膜、詳細には、
表示素子や太陽電池などに有用な、電気伝導性と耐久性
に優れる導電膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a conductive film having excellent electrical conductivity and durability, which is useful for display devices, solar cells, and the like.

【0002】[0002]

【従来の技術】近年、液晶ディスプレイ(LCD)、プ
ラズマディスプレイ(PDP)、さらにエレクトロルミ
ネッセンス(EL)素子などに代表される画像表示体
(ディスプレイ)が、テレビ、コンピューターや近年普
及してきた各種モバイル装置など、様々な分野で広く用
いられるようになってきており、目覚ましい発展を遂げ
ている。また、地球環境に配慮した脱化石エネルギーの
一環として、太陽電池の高機能化による普及への要求が
高まっている。このような表示素子、太陽電池には透明
導電膜が使用されている。透明導電膜は高い電気伝導性
と可視光領域での高い透過率、具体的には波長380〜
780nmの範囲において80%以上の透過率を達成し
うるものが好ましい。
2. Description of the Related Art In recent years, image display bodies (displays) represented by liquid crystal displays (LCDs), plasma displays (PDPs), and electroluminescence (EL) elements have been widely used in televisions, computers, and various mobile devices that have become popular in recent years. It has been widely used in various fields, and has made remarkable progress. In addition, as part of the defossil energy that considers the global environment, there is an increasing demand for the popularization of solar cells by increasing their functionality. A transparent conductive film is used for such display elements and solar cells. The transparent conductive film has a high electric conductivity and a high transmittance in the visible light region, specifically, a wavelength of 380 to 380.
Those capable of achieving a transmittance of 80% or more in the range of 780 nm are preferable.

【0003】当初、導電膜はAu、Ag、Cu、Alな
どの金属を厚さ3〜15nm程度の薄膜に製膜して用い
ていたが、金属薄膜は吸収が大きく、さらに膜強度にも
問題があった。近年、透明導電膜としてガラス基板上
に、錫をドーパントとして含む酸化インジウム(In2
3)を製膜してなる所謂ITO膜と称する低抵抗膜が
液晶等の表示素子用電極として広く用いらるようになっ
てきた。しかしながら、ITOの場合、出発原料が希少
金属であるインジウムであるため高価であることから、
基板の低コスト化には限界がある。このため、酸化亜鉛
(ZnO)膜を主成分とする透明導電膜がコスト及び安
定供給の観点から徐々に普及してきている。このZnO
膜はAl等の不純物を添加することによりITOに匹敵
する低抵抗膜が得られる。このようなZnO系透明導電
膜は、スパッタリング法およびCVD法により製造され
るのが一般的である。スパッタリング法は、製造装置が
高価であるため製造コストが高くなる、大面積の膜は形
成しにくいなどの問題がある。また、CVD法は、装置
が安価であり、連続生産可能なため製造コストが低いも
のの、平滑な表面の膜を形成すると抵抗値が上がり、導
電性が低くなるというになるという欠点がある。スパッ
タリング法やCVD法などのいずれの方法をとるにして
も、金属薄膜は膜強度が不充分で耐磨耗性が低いという
問題があった。膜強度向上の観点から金属などの導電性
微粒子をバインダーを用いて基材上に固定化する方法も
提案されているが、バインダー自体は導電性を有さず、
微粒子の固定状態によっては、導電性が低下する可能性
もあり、十分な膜強度と導電性とを両立する導電膜が望
まれていた。
Initially, the conductive film was formed by forming a metal such as Au, Ag, Cu, Al into a thin film having a thickness of about 3 to 15 nm, but the metal thin film absorbs a large amount and has a problem in film strength. was there. In recent years, indium oxide containing tin as a dopant (In 2
A low resistance film called a so-called ITO film formed by forming O 3 ) has been widely used as an electrode for a display element such as a liquid crystal. However, in the case of ITO, since the starting material is indium, which is a rare metal, it is expensive,
There is a limit to the cost reduction of the substrate. Therefore, a transparent conductive film containing a zinc oxide (ZnO) film as a main component is gradually spreading from the viewpoint of cost and stable supply. This ZnO
A low resistance film comparable to ITO can be obtained by adding impurities such as Al. Such a ZnO-based transparent conductive film is generally manufactured by a sputtering method and a CVD method. The sputtering method has problems that the manufacturing cost is high because the manufacturing apparatus is expensive and it is difficult to form a large-area film. Further, the CVD method is low in manufacturing cost because the apparatus is inexpensive and continuous production is possible, but when a film having a smooth surface is formed, the resistance value is increased and the conductivity is lowered. Regardless of which method such as the sputtering method or the CVD method is used, there is a problem that the metal thin film has insufficient film strength and low abrasion resistance. From the viewpoint of improving the film strength, a method of fixing conductive fine particles such as metal on a substrate using a binder is also proposed, but the binder itself does not have conductivity,
Depending on the fixed state of the fine particles, the conductivity may be lowered, and a conductive film having both sufficient film strength and conductivity has been desired.

【0004】[0004]

【発明が解決しようとする課題】上記のような先行技術
の欠点を考慮した本発明の目的は、導電性と耐久性に優
れた導電膜を提供することにある。本発明のさらなる目
的は、上記特性を有し、且つ、画像表示素子や太陽電池
などに好適に用いられる透明導電膜を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention in consideration of the above-mentioned drawbacks of the prior art is to provide a conductive film having excellent conductivity and durability. A further object of the present invention is to provide a transparent conductive film having the above-mentioned characteristics and being suitable for use in image display devices, solar cells, and the like.

【0005】[0005]

【課題を解決するための手段】本発明者らは、グラフト
ポリマーを表面に有する基材のグラフトポリマーの強い
イオン吸着性に着眼し研究を進めた結果、グラフトポリ
マー表面が荷電を有する微粒子に対して強い吸着性を有
し、高密度で導電性粒子を配列、充填しうることを見出
し、これを利用することで優れた導電性と耐久性とを有
する導電膜が得られることを見出し本発明を完成した。
即ち、本発明の導電膜は、基材の少なくとも片方の表面
に、イオン性基を導入し、該イオン性基と結合しうる荷
電を有する導電性微粒子を静電的に結合させてなること
を特徴とする。ここで、導電性微粒子を吸着させるため
の、イオン性基を表面に導入した透明基材が、その表面
にイオン性基をグラフト重合により導入した表面グラフ
ト重合体を備えることが好ましい態様である。
Means for Solving the Problems The inventors of the present invention have conducted research with a focus on the strong ion-adsorbing property of a graft polymer of a substrate having a graft polymer on the surface, and as a result, have found that the surface of the graft polymer is less than that of charged fine particles. The present invention finds that conductive particles can be arranged and filled in a high density and has strong adsorptivity, and that by using this, a conductive film having excellent conductivity and durability can be obtained. Was completed.
That is, the conductive film of the present invention is obtained by introducing an ionic group on at least one surface of a base material and electrostatically binding electrically conductive fine particles having a charge capable of binding to the ionic group. Characterize. Here, it is a preferred embodiment that the transparent substrate having an ionic group introduced on the surface thereof for adsorbing the conductive fine particles is provided with a surface graft polymer having an ionic group introduced by graft polymerization on the surface thereof.

【0006】本発明の作用は明確ではないが、本発明に
おいては基板上にイオン性基が導入され、その表面上に
該イオン性基とは反対の荷電を有する導電性微粒子が高
密度で均一に充填された層を形成し、結果として、バイ
ンダーを用いることなく導電性微粒子が密に充填された
表面層が形成され、薄層であっても優れた導電性を発現
する。また、表面にあるイオン性基とそれとは反対の荷
電を有する導電性微粒子との間が静電的な引力により強
固に吸着しているため、耐摩耗性が増大し、高い耐久性
が発現したものと推定される。本発明においては、基材
として透明なものを選択し、吸着させる導電性微粒子の
粒径を選択することで、容易に透明な導電性膜を形成し
うるという利点をも有する。
Although the function of the present invention is not clear, in the present invention, an ionic group is introduced onto the substrate, and conductive fine particles having a charge opposite to the ionic group are densely and uniformly formed on the surface of the substrate. To form a surface layer in which conductive fine particles are densely packed without using a binder, and even a thin layer exhibits excellent conductivity. Further, since the ionic groups on the surface and the conductive fine particles having a charge opposite thereto are strongly adsorbed by electrostatic attraction, wear resistance is increased and high durability is exhibited. It is estimated that The present invention also has an advantage that a transparent conductive film can be easily formed by selecting a transparent base material and selecting the particle size of the conductive fine particles to be adsorbed.

【0007】このような構造の微粒子を有する表面層の
存在は、透過型電子顕微鏡、或いは、AFM(原子間力
顕微鏡)を用いて表面を観察し、表面の緻密な凹凸形状
が形成されていることによりその構造を確認することが
できる。
The existence of the surface layer having the fine particles having such a structure is observed by using a transmission electron microscope or an AFM (atomic force microscope), and a dense uneven shape of the surface is formed. Therefore, the structure can be confirmed.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の導電膜は、基材の少なくとも片面がイオン性を
有する表面であり、そのようなイオン性基を有する表面
は、一般的に表面グラフト法により作成されたものであ
ることが好ましい。また、透明導電膜を得ようとする場
合には、この基材として透明基材を用いることが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
In the conductive film of the present invention, at least one surface of the substrate is an ionic surface, and such a surface having an ionic group is generally preferably prepared by a surface graft method. Moreover, when obtaining a transparent conductive film, it is preferable to use a transparent substrate as this substrate.

【0009】表面グラフト法により作成された表面と
は、基材を構成する高分子表面上に光、電子線、熱など
の従来公知の方法にてイオン性モノマーをグラフトし、
該グラフトされたイオン性モノマーが表面のイオン性基
を形成した状態を指す。また、イオン性基を形成するイ
オン性モノマーとしては、アンモニウム、ホスホニウム
などの正の荷電を有するモノマー、もしくは、スルホン
酸基、カルボキシル基、リン酸基、ホスホン酸基などの
負の荷電を有するか負の荷電に解離しうる酸性基を有す
るモノマー等が挙げられる。
The surface prepared by the surface grafting method means that an ionic monomer is grafted onto a polymer surface constituting a base material by a conventionally known method such as light, electron beam and heat.
The state in which the grafted ionic monomer forms an ionic group on the surface. Further, as the ionic monomer forming the ionic group, is it a monomer having a positive charge such as ammonium or phosphonium, or a negative charge such as a sulfonic acid group, a carboxyl group, a phosphoric acid group or a phosphonic acid group? Examples thereof include monomers having an acidic group capable of dissociating into a negative charge.

【0010】フィルム基材上にグラフトポリマーからな
る、イオン性基を有する表面を作成する方法としては、
公知の方法を適用すればよく、具体的には、例えば、日
本ゴム協会誌,第65巻,604,1992年,杉井新治著,
「マクロモノマーによる表面改質と接着」の記載を参考
にすることができる。その他、以下に述べる表面グラフ
ト重合法と呼ばれる方法を適用することもできる。表面
グラフト重合法とは高分子化合物鎖上に活性種を与え、
これによって開始する別の単量体を重合し、グラフト
(接ぎ木)重合体を合成する方法で、特に活性種を与え
る高分子化合物が固体表面を形成する時には表面グラフ
ト重合と呼ばれる。
As a method for preparing a surface having an ionic group, which is composed of a graft polymer on a film substrate,
A known method may be applied. Specifically, for example, Journal of Japan Rubber Association, Volume 65, 604, 1992, Shinji Sugii,
The description of “Surface modification and adhesion by macromonomer” can be referred to. In addition, a method called a surface graft polymerization method described below can also be applied. The surface graft polymerization method gives active species on the polymer chain,
This is a method of synthesizing a graft (graft) polymer by polymerizing another monomer initiated thereby, and is called surface graft polymerization, particularly when a polymer compound giving an active species forms a solid surface.

【0011】本発明を実現するための表面グラフト重合
法としては、文献記載の公知の方法をいずれも使用する
ことができる。たとえば、新高分子実験学10、高分子
学会編、1994年、共立出版(株)発行、P135に
は表面グラフト重合法として光グラフト重合法、プラズ
マ照射グラフト重合法が記載されている。また、吸着技
術便覧、NTS(株)、竹内監修、1999.2発行、
p203,p695には、γ線、電子線などの放射線照
射グラフト重合法が記載されている。光グラフト重合法
の具体的方法としては特開昭63−92658号公報、
特開平10−296895号公報および特開平11−1
19413号公報に記載の方法を使用することができ
る。表面グラフトポリマーを有する表面を作成するため
の手段としてはこれらの他、高分子化合物鎖の末端にト
リアルコキシシリル基、イソシアネート基、アミノ基、
水酸基、カルボキシル基などの反応性官能基を付与し、
これと基材表面官能基とのカップリング反応により形成
することもできる。
As the surface graft polymerization method for realizing the present invention, any known method described in the literature can be used. For example, New Polymer Experiments 10, edited by Japan Society of Polymer Science, 1994, published by Kyoritsu Shuppan Co., Ltd., P135 describes a photo-graft polymerization method and a plasma irradiation graft polymerization method as a surface graft polymerization method. Also, Adsorption Technology Handbook, NTS Corporation, supervised by Takeuchi, published in 1999.2.
In p203 and p695, a radiation irradiation graft polymerization method using γ rays, electron beams, etc. is described. Specific examples of the photograft polymerization method include JP-A-63-92658,
JP-A-10-296895 and JP-A-11-1
The method described in Japanese Patent No. 19413 can be used. Other than these as means for creating a surface having a surface graft polymer, a trialkoxysilyl group, an isocyanate group, an amino group at the terminal of the polymer compound chain,
Add reactive functional groups such as hydroxyl and carboxyl groups,
It can also be formed by a coupling reaction between this and a functional group on the surface of the substrate.

【0012】プラズマ照射グラフト重合法、放射線照射
グラフト重合法においては上記記載の文献、およびY.Ik
ada et al, Macromolecules vol. 19, page 1804(198
6)などの記載の方法にて作成することができる。具体的
にはPETなどの高分子表面をプラズマ、もしくは電子
線にて処理し、表面にラジカルを発生させ、その後、そ
の活性表面とイオン性官能基を有するモノマーとを反応
させることによりグラフトポリマー表面層、即ち、イオ
ン性基を有する表面層を得ることができる。光グラフト
重合は上記記載の文献のほかに特開昭53−17407
号公報(関西ペイント)や、特開2000−21231
3号公報(大日本インキ)記載のように、フィルム基材
の表面に光重合性組成物を塗布し、その後イオン性ラジ
カル重合化合物とを接触させ光を照射することによって
も作成することができる。
In the plasma irradiation graft polymerization method and the radiation irradiation graft polymerization method, the above-mentioned references and Y. Ik
ada et al, Macromolecules vol. 19, page 1804 (198
It can be created by the method described in 6). Specifically, the surface of a polymer such as PET is treated with plasma or an electron beam to generate radicals on the surface, and then the active surface is reacted with a monomer having an ionic functional group to obtain a graft polymer surface. It is possible to obtain a layer, i.e. a surface layer having ionic groups. In addition to the above-mentioned documents, the photo-graft polymerization is disclosed in JP-A-53-17407.
Publication (Kansai Paint) and Japanese Patent Laid-Open No. 2000-21231.
As described in Japanese Patent No. 3 (Dainippon Ink), it can also be prepared by applying a photopolymerizable composition on the surface of a film base material, then contacting it with an ionic radical polymerization compound and irradiating with light. .

【0013】本発明において好適に用い得るイオン性基
を形成し得るイオン性モノマーとは、前記したように、
アンモニウム,ホスホニウムなどの正の荷電を有するモ
ノマーもしくはスルホン酸基、カルボキシル基、リン酸
基、ホスホン酸基などの負の荷電を有するか負の荷電に
解離しうる酸性基を有するモノマーが挙げられる。本発
明においてとくに有用なイオン性モノマーの具体例とし
ては、次のモノマーを挙げることができる。例えば、
(メタ)アクリル酸もしくはそのアルカリ金属塩および
アミン塩、イタコン酸もしくはそのアルカリ金属塩およ
びアミン酸塩、アリルアミンもしくはそのハロゲン化水
素酸塩、3−ビニルプロピオン酸もしくはそのアルカリ
金属塩およびアミン塩、ビニルスルホン酸もしくはその
アルカリ金属塩およびアミン塩、ビニルスチレンスルホ
ン酸もしくはそのアルカリ金属塩およびアミン塩、2−
スルホエチレン(メタ)アクリレート、3−スルホプロ
ピレン(メタ)アクリレートもしくはそのアルカリ金属
塩およびアミン塩、2−アクリルアミド−2−メチルプ
ロパンスルホン酸もしくはそのアルカリ金属塩およびア
ミン塩、アシッドホスホオキシポリオキシエチレングリ
コールモノ(メタ)アクリレート、アリルアミンもしく
はそのハロゲン化水素酸塩等の、カルボキシル基、スル
ホン酸基、リン酸、アミノ基もしくはそれらの塩、2−
トリメチルアミノエチル(メタ)アクリレートもしくは
そのハロゲン化水素酸塩等の、カルボキシル基、スルホ
ン酸基、リン酸、アミノ基もしくはそれらの塩、などを
使用することができる。
The ionic monomer capable of forming an ionic group that can be preferably used in the present invention is, as described above,
Examples thereof include a monomer having a positive charge such as ammonium and phosphonium, or a monomer having a negative charge such as a sulfonic acid group, a carboxyl group, a phosphoric acid group and a phosphonic acid group or an acid group capable of dissociating into a negative charge. Specific examples of the ionic monomer that is particularly useful in the present invention include the following monomers. For example,
(Meth) acrylic acid or its alkali metal salt and amine salt, itaconic acid or its alkali metal salt and amine salt, allylamine or its hydrohalide salt, 3-vinylpropionic acid or its alkali metal salt and amine salt, vinyl Sulfonic acid or its alkali metal salt and amine salt, vinylstyrene sulfonic acid or its alkali metal salt and amine salt, 2-
Sulfoethylene (meth) acrylate, 3-sulfopropylene (meth) acrylate or its alkali metal salt and amine salt, 2-acrylamido-2-methylpropanesulfonic acid or its alkali metal salt and amine salt, acid phosphooxypolyoxyethylene glycol Carboxyl group, sulfonic acid group, phosphoric acid, amino group or salts thereof such as mono (meth) acrylate, allylamine or hydrohalide thereof, 2-
Carboxyl group, sulfonic acid group, phosphoric acid, amino group or salts thereof such as trimethylaminoethyl (meth) acrylate or its hydrohalide can be used.

【0014】ここで得られた導電膜を使用する場合、画
像表示素子、太陽電池に用いられる透明導電膜を得るた
めには、表面平滑性の透明基材を用いることが好ましい
が、導電性をより向上させるためには、表面積を増加さ
せてより多くのイオン性基の導入を図る目的で、基材表
面を予め粗面化することも可能である。基材を粗面化す
る方法としては基材の材質に適合する公知の方法を選択
することができる。具体的には、例えば、基材が樹脂フ
ィルムの場合には、グロー放電処理、スパッタリング、
サンドブラスト研磨法、バフ研磨法、粒子付着法、粒子
塗布法等が挙げられる。また、基材がアルミニウム板の
ような金属板の場合には、機械的に粗面化する方法、電
気化学的に表面を溶解粗面化する方法および化学的に表
面を選択溶解させる方法などが適用でき、機械的方法と
しては、ボール研磨法、ブラシ研磨法、ブラスト研磨
法、バフ研磨法などの公知の方法を用いることができ
る。また、電気化学的な粗面化法としては塩酸または硝
酸電解液中で交流または直流により行う方法がある。ま
た、両者を組み合わせた方法も利用することができる。
When the conductive film obtained here is used, in order to obtain a transparent conductive film used for an image display device or a solar cell, it is preferable to use a transparent base material having a smooth surface. In order to further improve the surface area, it is possible to roughen the surface of the base material in advance in order to increase the surface area and introduce more ionic groups. As a method for roughening the surface of the base material, a known method suitable for the material of the base material can be selected. Specifically, for example, when the substrate is a resin film, glow discharge treatment, sputtering,
The sandblast polishing method, the buff polishing method, the particle adhesion method, the particle coating method and the like can be mentioned. In addition, when the base material is a metal plate such as an aluminum plate, a method of mechanically roughening the surface, a method of electrochemically melting and roughening the surface, and a method of selectively selectively melting the surface are available. A known method such as a ball polishing method, a brush polishing method, a blast polishing method, or a buff polishing method can be used as the mechanical method. As an electrochemical graining method, there is a method of performing alternating current or direct current in a hydrochloric acid or nitric acid electrolytic solution. Further, a method combining both can also be used.

【0015】次に、前記イオン性基とイオン的に結合し
うる荷電を有する導電性微粒子について説明する。本発
明に用い得る微粒子としては、導電性を有するものであ
れば特に制限はなく、公知の導電性材料からなる微粒子
を任意に選択して用いることができる。例えば、Au、
Ag、Pt、Cu、Rh、Pd、Al、Crなどの金属
微粒子、In23、SnO2、ZnO、Cdo、Ti
2、CdIn24、Cd2SnO2、Zn2SnO4、I
23−ZnOなどの酸化物半導体微粒子、及びこれら
に適合する不純物をドーパントさせた材料を用いた微粒
子、MgInO、CaGaOなどのスピネル形化合物微
粒子、TiN、ZrN、HfNなどの導電性窒化物微粒
子、LaBなどの導電性ホウ化物微粒子、また、有機材
料としては導電性高分子微粒子などが好適なものとして
挙げられる。導電性微粒子の粒径は0.1nmから10
00nmの範囲であることが好ましく、1nmから10
0nmの範囲であることがさらに好ましい。粒径が0.
1nmよりも小さくなると、微粒子同士の表面が連続的
に接触してもたらされる導電性が低下する傾向がある。
また、1000nmよりも大きくなると、グラフト界面
とイオン的に結合する接触面積が小さくなるためグラフ
ト表面と粒子との密着が低下し、膜強度が劣化する傾向
がある。また、特に透明導電膜を得ようとする場合に
は、光透過性を確保する観点から、好ましくは0.2〜
100nm、さらに好ましくは1〜10nmの範囲のも
のを用いる。本発明においては、グラフト界面とイオン
的に結合する粒子は規則正しくほぼ単層状態に配置され
る。
Next, the conductive fine particles having a charge capable of ionically binding to the ionic group will be described. The fine particles that can be used in the present invention are not particularly limited as long as they have conductivity, and fine particles made of known conductive materials can be arbitrarily selected and used. For example, Au,
Fine metal particles such as Ag, Pt, Cu, Rh, Pd, Al and Cr, In 2 O 3 , SnO 2 , ZnO, Cdo, Ti
O 2 , CdIn 2 O 4 , Cd 2 SnO 2 , Zn 2 SnO 4 , I
Oxide semiconductor fine particles such as n 2 O 3 —ZnO, fine particles using a material doped with impurities compatible with these, spinel type compound fine particles such as MgInO and CaGaO, and conductive nitrides such as TiN, ZrN, and HfN Suitable examples include fine particles, conductive boride fine particles such as LaB, and conductive polymer fine particles as the organic material. The particle size of the conductive fine particles is from 0.1 nm to 10
The range of 00 nm is preferable, and 1 nm to 10 nm is preferable.
More preferably, it is in the range of 0 nm. Particle size is 0.
If it is smaller than 1 nm, the conductivity caused by continuous contact between the surfaces of the fine particles tends to be lowered.
On the other hand, when it is larger than 1000 nm, the contact area for ionically binding to the graft interface becomes small, so that the adhesion between the graft surface and the particles decreases, and the film strength tends to deteriorate. In particular, when a transparent conductive film is to be obtained, from the viewpoint of ensuring light transmittance, it is preferably 0.2 to
The thickness is 100 nm, more preferably 1 to 10 nm. In the present invention, the particles that are ionically bound to the graft interface are regularly arranged in a substantially monolayer state.

【0016】表面に高密度で正荷電を有する微粒子は、
例えば、米澤徹らの方法、すなわち、T.Yonezawa, Chem
istry Letters., 1999 page1061, T.Yonezawa, Langumu
ir 2000, vol16, 5218および米澤徹, Polymer prepri
nts, Japan vol.49. 2911 (2000)に記載された方法にて
作成することができる。米澤らは金属−硫黄結合を利用
し、金属粒子表面を正荷電を有する官能基で高密度に化
学修飾できることを示している。
The fine particles having a high density and positive charge on the surface are
For example, the method of Toru Yonezawa et al., T. Yonezawa, Chem
istry Letters., 1999 page1061, T. Yonezawa, Langumu
ir 2000, vol16, 5218 and Toru Yonezawa, Polymer prepri
It can be created by the method described in nts, Japan vol.49. 2911 (2000). Yonezawa et al. Have shown that the metal-sulfur bond can be used to chemically modify the surface of metal particles at high density with a functional group having a positive charge.

【0017】これらの微粒子は、基材表面のイオン性基
に吸着し得る最大量結合されることが耐久性の点で好ま
しい。また、導電性確保の観点からは、分散液の分散濃
度は、10〜20重量%程度が好ましい。
From the viewpoint of durability, it is preferable that these fine particles are bonded in the maximum amount capable of being adsorbed to the ionic groups on the surface of the base material. From the viewpoint of ensuring conductivity, the dispersion concentration of the dispersion liquid is preferably about 10 to 20% by weight.

【0018】表面にイオン性基を有する基材において、
該イオン性基に前記導電性微粒子を結合させる方法とし
ては、表面上に荷電を有する微粒子の分散液を表面グラ
フトポリマー、即ち、イオン性基を有する基材表面上に
塗布する方法、及び、表面上に荷電を有する微粒子の分
散液中にイオン性基を表面に有するフィルム基材を浸漬
する方法などが挙げられる。塗布、浸漬のいずれの場合
にも、過剰量の導電性微粒子を供給し、イオン性基との
間に十分なイオン結合による導入がなされるために、分
散液と表面にイオン性基を有する基材との接触時間は、
10秒から180分程度であることが好ましく、1分か
ら100分程度であることがさらに好ましい。
In a substrate having an ionic group on the surface,
As a method for binding the conductive fine particles to the ionic group, a method of applying a dispersion liquid of fine particles having a charge on the surface onto a surface graft polymer, that is, a substrate surface having an ionic group, and a surface Examples include a method of immersing a film base material having an ionic group on the surface in a dispersion liquid of charged fine particles. In both cases of coating and dipping, an excessive amount of conductive fine particles is supplied, and the introduction by a sufficient ionic bond with the ionic group is carried out. The contact time with the material is
It is preferably about 10 seconds to 180 minutes, more preferably about 1 minute to 100 minutes.

【0019】(基材)本発明において導電膜を形成する
のに使用される基材としては、寸度的に安定な板状物で
あり、必要な可撓性、強度、耐久性等を満たせばいずれ
のものも使用できるが、光透過性を必要とする透明基材
を選択する場合には、例えば、ガラス、プラスチックフ
ィルム(例えば、二酢酸セルロース、三酢酸セルロー
ス、プロピオン酸セルロース、酪酸セルロース、酢酸酪
酸セルロース、硝酸セルロース、ポリエチレンテレフタ
レート、ポリエチレン、ポリスチレン、ポリプロピレ
ン、ポリカーボネート、ポリビニルアセタール等)等が
挙げられる。また、透明性を必要としない導電膜の基材
としては、上記のものに加えて、紙、プラスチックがラ
ミネートされた紙、金属板(例えば、アルミニウム、亜
鉛、銅等)、上記の如き金属がラミネート若しくは蒸着
された紙若しくはプラスチックフィルム等を挙げること
ができる。これらのなかでも、高分子樹脂からなる表面
を有する基材が好ましく、具体的には、樹脂フィルム、
表面に樹脂が被覆されているガラスなどの透明無機基
材、表面層が樹脂層からなる複合材のいずれも好適であ
る。表面に樹脂が被覆されている基材としては、表面に
樹脂フィルムが貼着された積層板、プライマー処理され
た基材、ハードコート処理された基材などが代表例とし
て挙げられる。表面層が樹脂層からなる複合材として
は、裏面に接着剤層が設けられた樹脂シール材、ガラス
と樹脂との積層体である合わせガラスなどが代表例とし
て挙げられる。
(Substrate) The substrate used for forming the conductive film in the present invention is a dimensionally stable plate-like material, and must have required flexibility, strength, durability and the like. Although any of these can be used, when selecting a transparent substrate that requires light transmission, for example, glass, plastic film (for example, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, Cellulose acetate butyrate, cellulose nitrate, polyethylene terephthalate, polyethylene, polystyrene, polypropylene, polycarbonate, polyvinyl acetal, etc.) and the like. Further, as the base material of the conductive film which does not require transparency, in addition to the above, paper, paper laminated with plastic, metal plate (for example, aluminum, zinc, copper, etc.), metal such as the above Examples thereof include laminated or vapor-deposited paper or plastic film. Among these, a substrate having a surface made of a polymer resin is preferable, and specifically, a resin film,
Both a transparent inorganic substrate such as glass whose surface is coated with a resin and a composite material in which the surface layer is a resin layer are suitable. Representative examples of the base material whose surface is coated with a resin include a laminate having a resin film adhered to the surface, a base material subjected to a primer treatment, and a base material subjected to a hard coat treatment. Typical examples of the composite material having a surface layer made of a resin layer include a resin sealing material having an adhesive layer provided on the back surface, a laminated glass which is a laminated body of glass and a resin, and the like.

【0020】本発明の導電膜は、基板上に導入されたイ
オン性基に導電性微粒子が静電気的に高密度で均一に吸
着した層が形成されており、バインダーを用いることな
く、しかも、イオン性基に微粒子が単層状態で吸着した
表面層が形成されているため、該表面は導電性微粒子の
素材に由来する優れた導電性を有する薄膜が形成され
る。さらに、この導電膜は薄層で光透過性に優れること
から、基材として透明基材を用いることで容易に透明導
電膜を得ることができ、透過型の画像表示素子や太陽電
池にも好適に使用できる。この導電膜は、任意の基材表
面に比較的簡易な処理で形成することが可能であり、さ
らには、優れた導電性を有する表面層の耐久性が良好で
あるため、先に述べたような多用な目的に好適に使用し
うるという利点を有する。
In the conductive film of the present invention, a layer in which conductive fine particles are electrostatically densely and uniformly adsorbed on an ionic group introduced onto a substrate is formed, and a ionic group is used without using a binder. Since the surface layer in which the fine particles are adsorbed in a single-layer state is formed on the functional group, a thin film having excellent conductivity derived from the material of the conductive fine particles is formed on the surface. Furthermore, since this conductive film is a thin layer and has excellent light transmittance, it is possible to easily obtain a transparent conductive film by using a transparent base material as a base material, and it is also suitable for a transmission type image display element and a solar cell. Can be used for Since this conductive film can be formed on the surface of any base material by a relatively simple treatment, and further, the durability of the surface layer having excellent conductivity is good, as described above. It has an advantage that it can be suitably used for various versatile purposes.

【0021】[0021]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明はこれに制限されるものではない。 (実施例1、2) 〔イオン性基を表面に有する基材の作成〕膜厚188μ
の2軸延伸ポリエチレンテレフタレートフィルム(A4
100、東洋紡(株)社製)を用い、グロー処理として
平版マグネトロンスパッタリング装置(芝浦エレテック
製CFS−10−EP70)を使用し、下記の条件で酸
素グロー処理を行った。 (酸素グロー処理条件) 初期真空 :1.2×10-3Pa 酸素圧力 :0.9Pa RFグロー:1.5KW,処理時間 :60sec
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Examples 1 and 2) [Preparation of substrate having ionic group on surface] Film thickness 188 μ
Biaxially stretched polyethylene terephthalate film (A4
100, manufactured by Toyobo Co., Ltd., and a lithographic magnetron sputtering apparatus (CFS-10-EP70 manufactured by Shibaura Eletech Co., Ltd.) was used for glow treatment, and oxygen glow treatment was performed under the following conditions. (Oxygen glow treatment conditions) Initial vacuum: 1.2 × 10 −3 Pa Oxygen pressure: 0.9 Pa RF glow: 1.5 KW, treatment time: 60 sec

【0022】(イオン性基の導入)次に、グロー処理し
たフィルムを窒素バブルしたスチレンスルホン酸ナトリ
ウム水溶液(10Wt%)に70℃にて7時間浸漬し
た。浸浸した膜を水にて8時間洗浄することによりスチ
レンスルホン酸ナトリウムが表面にグラフトポリマー化
された基材Aを得た。また同様に、スチレンスルホン酸
ナトリウムをアクリル酸に変えた以外は上記と同じ方法
にてアクリル酸がグラフトされた表面グラフトフィルム
である基材Bを得た。
(Introduction of Ionic Group) Next, the glow-treated film was immersed in a nitrogen-bubbled sodium styrenesulfonate aqueous solution (10 Wt%) at 70 ° C. for 7 hours. The infiltrated membrane was washed with water for 8 hours to obtain a substrate A in which sodium styrenesulfonate was graft-polymerized on the surface. Similarly, a substrate B which is a surface-grafted film grafted with acrylic acid was obtained in the same manner as above except that sodium styrenesulfonate was changed to acrylic acid.

【0023】〔該イオン性基とイオン結合しうる金属酸
化物微粒子〕本実施例においては、金属酸化物微粒子と
して、以下のようにして得られた正電荷を有するAg粒
子を使用した。過塩素酸銀のエタノール溶液(5mM)
50mlにビス(1,1−トリメチルアンモニウムデカ
ノイルアミノエチル)ジスルフィド3gを加え、激しく
攪拌しながら水素化ホウ素ナトリウム溶液(0.4M)
30mlをゆっくり滴下してイオンを還元し、4級アン
モニウムで被覆された銀粒子の分散液を得た。この銀粒
子のサイズを電子顕微鏡で測定したところ、平均粒径は
5nmであった。 〔基材への荷電粒子の塗布〕前記のように得られた正電
荷Ag分散液中に、表面グラフトポリマーを有する基材
A及び基材Bを浸漬し、その後、流水で表面を十分洗浄
して余分な微粒子分散液を除去し導電膜A及び導電膜B
を得た。
[Metal Oxide Fine Particles Capable of Ionic Bonding to the Ionic Group] In this example, Ag particles having a positive charge obtained as described below were used as the metal oxide fine particles. Ethanol solution of silver perchlorate (5 mM)
To 50 ml, 3 g of bis (1,1-trimethylammonium decanoylaminoethyl) disulfide was added, and sodium borohydride solution (0.4 M) was added with vigorous stirring.
30 ml was slowly dropped to reduce ions to obtain a dispersion liquid of silver particles coated with quaternary ammonium. When the size of the silver particles was measured by an electron microscope, the average particle size was 5 nm. [Application of Charged Particles to Base Material] The base material A and the base material B having the surface graft polymer are immersed in the positively charged Ag dispersion liquid obtained as described above, and then the surface is thoroughly washed with running water. Conductive film A and conductive film B by removing excess fine particle dispersion
Got

【0024】導電膜A及び、導電膜Bの表面を透過型電
子顕微鏡(JEOL JEM−200CX)にて10万
倍で観察したところ、いずれの表面においても、吸着し
たAg微粒子に起因する緻密な凹凸形状が形成されてい
ることが確認された。
The surfaces of the conductive film A and the conductive film B were observed with a transmission electron microscope (JEOL JEM-200CX) at a magnification of 100,000. As a result, on both surfaces, fine irregularities caused by the adsorbed Ag fine particles were observed. It was confirmed that the shape was formed.

【0025】〔導電膜の性能評価〕 (導電性)導電性、及び、導電膜におけるバラツキをシ
ート抵抗を測定することで評価した。まず、表面抵抗値
を、三菱化学(株)製、LORESTA−FPを用いて
四探針法により測定し、形状補正した。次に、この表面
抵抗値を導電膜面内の任意の5ヵ所で同様の条件で測定
し、平均値とのバラツキを検討した。平均値とのバラツ
キが±3%以内であるものを面内バラツキ許容(○)、
バラツキが±3%を超えるものを面内バラツキ不可
(×)として評価した。さらに、導電膜A及び導電膜B
と同様の条件で5つの試料(導電膜A−1〜導電膜A−
5及び導電膜B−1〜導電膜B−5)を作成し、各試料
の表面抵抗値を前記と同様の条件で測定し、平均値との
バラツキを検討した。平均値とのバラツキが±3%以内
であるものを再現性許容(○)、バラツキが±3%を超
えるものを再現性不可(×)として評価した。
[Evaluation of Performance of Conductive Film] (Conductivity) Conductivity and variations in the conductive film were evaluated by measuring sheet resistance. First, the surface resistance value was measured by the four-point probe method using LORESTA-FP manufactured by Mitsubishi Chemical Corporation, and the shape was corrected. Next, the surface resistance value was measured under the same conditions at arbitrary 5 points on the surface of the conductive film, and the variation with the average value was examined. Allowing in-plane variation (○) if the variation with the average value is within ± 3%,
Those with a variation exceeding ± 3% were evaluated as in-plane variation not possible (x). Further, the conductive film A and the conductive film B
5 samples (conductive film A-1 to conductive film A-
5 and conductive films B-1 to B-5) were prepared, the surface resistance value of each sample was measured under the same conditions as above, and the variation with the average value was examined. Reproducibility was evaluated as acceptable (∘) when the deviation from the average value was within ± 3%, and non-reproducible (x) when the deviation exceeded ± 3%.

【0026】導電膜Aの表面抵抗値は350Ω/□であ
り、面内バラツキ、再現性共に許容であった。また、導
電膜Bの表面抵抗値は300Ω/□であり、面内バラツ
キ、再現性共に許容と判定された。このことから、いず
れの導電膜も、導電膜としての機能に優れ、導電膜の均
一性、及び作成における安定性(再現性)ともに問題の
無いことがわかった。
The surface resistance value of the conductive film A was 350 Ω / □, and both in-plane variation and reproducibility were acceptable. The surface resistance value of the conductive film B was 300Ω / □, and both in-plane variation and reproducibility were judged to be acceptable. From this, it was found that any of the conductive films was excellent in function as a conductive film, and there was no problem in uniformity of the conductive film and stability (reproducibility) in preparation.

【0027】(光透過率)空気をリファレンスとして、
波長550nmにおける光透過率を自記分光光度計UV
2400−PC(島津製作所製)を用いて測定したとこ
ろ、導電膜Aの光透過率は80%以上であり、導電膜B
の光透過率は90%以上であり、いずれの導電膜も可視
光の透過性に優れ、透明導電膜として用い得ることがわ
かった。
(Light transmittance) Using air as a reference,
The light transmittance at a wavelength of 550 nm is recorded by a spectrophotometer UV.
When measured using 2400-PC (manufactured by Shimadzu Corporation), the light transmittance of the conductive film A is 80% or more, and the conductive film B is
It was found that each of the conductive films had excellent visible light transmittance and could be used as a transparent conductive film.

【0028】〔耐磨耗性の評価〕得られた導電膜A、B
を水で湿らせた布(BEMCOT、旭化成工業社製)を
用いて手で往復30回こすった。こすった後に、前記と
同様にして透過型電子顕微鏡(JEOL JEM−20
0CX)にて、その表面を10万倍で観察したところ、
いずれの表面においても、こすり処理を行なう前と同様
の微粒子に起因する緻密な凹凸形状が観察され、表面の
緻密な凹凸形状がこすりにより損なわれなかったことが
確認された。
[Evaluation of Abrasion Resistance] Obtained conductive films A and B
Was rubbed by hand 30 times with a cloth (BEMCOT, manufactured by Asahi Kasei Kogyo Co., Ltd.) moistened with water. After rubbing, the transmission electron microscope (JEOL JEM-20
0CX), the surface was observed 100,000 times,
On each of the surfaces, the same fine unevenness due to the fine particles as before the rubbing treatment was observed, and it was confirmed that the fine unevenness on the surface was not damaged by the rubbing.

【0029】実施例の評価結果より、本発明の導電膜
は、均一で優れた導電性を有し、表面に形成された導電
性表面層の耐久性が良好であることが確認され、本発明
は実用に適する有用なものであることがわかった。
From the evaluation results of the examples, it was confirmed that the conductive film of the present invention had uniform and excellent conductivity, and the durability of the conductive surface layer formed on the surface was good. Has been found to be useful and practical.

【0030】[0030]

【発明の効果】本発明の導電膜は導電性と耐久性に優れ
ており、さらに、透明基材を用いることで得られる本発
明の透明導電膜は画像表示素子や太陽電池などに好適に
用いることができる。
The conductive film of the present invention is excellent in conductivity and durability, and the transparent conductive film of the present invention obtained by using a transparent substrate is suitable for use in image display devices, solar cells and the like. be able to.

フロントページの続き (72)発明者 八木原 盛夫 静岡県榛原郡吉田町川尻4000番地 富士写 真フイルム株式会社内 Fターム(参考) 2H092 HA03 HA04 NA01 NA11 PA01 4K044 AA06 AA12 AA16 AB02 BA02 BA06 BA08 BA10 BA12 BA18 BA21 BB03 BB15 BC14 CA21 CA22 CA53 5C040 GC18 GC19 JA01 JA08 JA11 KA04 KA13 KB02 KB17 5F051 FA02 FA07 FA10 GA03 GA05 GA06 Continued front page    (72) Inventor Morio Yagihara             Fuji-Sha, 4000 Kawajiri, Yoshida-cho, Haibara-gun, Shizuoka Prefecture             Shin Film Co., Ltd. F-term (reference) 2H092 HA03 HA04 NA01 NA11 PA01                 4K044 AA06 AA12 AA16 AB02 BA02                       BA06 BA08 BA10 BA12 BA18                       BA21 BB03 BB15 BC14 CA21                       CA22 CA53                 5C040 GC18 GC19 JA01 JA08 JA11                       KA04 KA13 KB02 KB17                 5F051 FA02 FA07 FA10 GA03 GA05                       GA06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基材の少なくとも片方の表面に、イオン
性基を導入し、該イオン性基と結合しうる荷電を有する
導電性微粒子を静電的に結合させてなる導電膜。
1. A conductive film obtained by introducing an ionic group into at least one surface of a base material and electrostatically binding electrically conductive fine particles having a charge capable of binding to the ionic group.
【請求項2】 イオン性基を表面に導入した基材が、そ
の表面にイオン性基をグラフト重合により導入した表面
グラフト重合体を備えることを特徴とする請求項1に記
載の導電膜。
2. The conductive film according to claim 1, wherein the substrate having an ionic group introduced on its surface comprises a surface graft polymer having an ionic group introduced on its surface by graft polymerization.
JP2001195449A 2001-06-27 2001-06-27 Manufacturing method of conductive film Expired - Fee Related JP4570818B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001195449A JP4570818B2 (en) 2001-06-27 2001-06-27 Manufacturing method of conductive film
EP20100173369 EP2251874B1 (en) 2001-06-27 2002-06-26 Conductive film
US10/179,210 US6811878B2 (en) 2001-06-27 2002-06-26 Conductive film
EP20020013991 EP1271561B1 (en) 2001-06-27 2002-06-26 Conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001195449A JP4570818B2 (en) 2001-06-27 2001-06-27 Manufacturing method of conductive film

Publications (2)

Publication Number Publication Date
JP2003008040A true JP2003008040A (en) 2003-01-10
JP4570818B2 JP4570818B2 (en) 2010-10-27

Family

ID=19033418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001195449A Expired - Fee Related JP4570818B2 (en) 2001-06-27 2001-06-27 Manufacturing method of conductive film

Country Status (1)

Country Link
JP (1) JP4570818B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235794A (en) * 2004-02-17 2005-09-02 Kyoto Univ Photoelectric element using graft thin film and solar cell
JP2006078599A (en) * 2004-09-07 2006-03-23 Fuji Photo Film Co Ltd Matrix array substrate, liquid crystal display apparatus, data electrode plate for plasma display panel (pdp), and pdp
JP2014510811A (en) * 2011-03-14 2014-05-01 サウスウォール ヨーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング How to modify the surface of a substrate using ion bombardment
KR20150133899A (en) * 2014-05-20 2015-12-01 연세대학교 산학협력단 Self-rechargeable hybrid battery and electronic device comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010015865, Shaoyu Wu, E. T. et.al., "Adhesion and Adhesion Reliability Enhancementof Evaporated Copper on Surface ModifiedPoly(tetrafluor", IEEE TRANSACTIONS ON ADVANCED PACKAGING, 20000831, VOL. 23, NO. 3,, p538−p545, US, IEEE *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235794A (en) * 2004-02-17 2005-09-02 Kyoto Univ Photoelectric element using graft thin film and solar cell
JP2006078599A (en) * 2004-09-07 2006-03-23 Fuji Photo Film Co Ltd Matrix array substrate, liquid crystal display apparatus, data electrode plate for plasma display panel (pdp), and pdp
JP4583848B2 (en) * 2004-09-07 2010-11-17 富士フイルム株式会社 Manufacturing method of matrix array substrate, matrix array substrate, liquid crystal display device, manufacturing method of data electrode for PDP, data electrode for PDP, and PDP
JP2014510811A (en) * 2011-03-14 2014-05-01 サウスウォール ヨーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング How to modify the surface of a substrate using ion bombardment
KR20150133899A (en) * 2014-05-20 2015-12-01 연세대학교 산학협력단 Self-rechargeable hybrid battery and electronic device comprising the same
KR101632785B1 (en) * 2014-05-20 2016-06-23 연세대학교 산학협력단 Self-rechargeable hybrid battery and electronic device comprising the same
US10020118B2 (en) 2014-05-20 2018-07-10 University-Industry Foundation, Yonsei University Self-rechargeable hybrid battery and electronic device comprising the same

Also Published As

Publication number Publication date
JP4570818B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
US6811878B2 (en) Conductive film
KR100619547B1 (en) Transparent conductive film, transparent conductive sheet and touchpanel
EP1581031B1 (en) Methods of forming a pattern and a conductive pattern
US20050019502A1 (en) Thin-layer metal film
CN1257995C (en) Method of depositing IO ITO thin film on polymer substrate
JP5374998B2 (en) Method for producing transparent conductive film
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
JP4570818B2 (en) Manufacturing method of conductive film
JP4068993B2 (en) Transparent conductive laminated film
US7354625B2 (en) Gas barrier film
JPH1012059A (en) Manufacture of transparent conductive film and thin film solar battery using the same
Koh et al. Altering a polymer surface chemical structure by an ion-assisted reaction
JP2003068146A (en) Transparent conductive film
JP4068901B2 (en) Surface functional material
JP2003131008A (en) Conductive film
KR100845490B1 (en) Process for production of surface-functional members and process for production of conductive membranes
JP4205967B2 (en) Method for producing gas barrier film
JP2004193008A (en) Formation method of transparent conductive thin film, transparent conductive thin film, transparent conductive film, and touch panel
JP2006056968A (en) Method for producing conductive film
JP7418506B1 (en) transparent conductive film
CN210193739U (en) Anion membrane and anion glass
JP2003040952A (en) Functional hydrophilic member
JP2003345038A (en) Conductive pattern
JP3980006B2 (en) Method for producing gas barrier film
CN116208118A (en) Flexible surface acoustic wave device and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4570818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees