JP2002363617A - Molybdenum sheet and its manufacturing method - Google Patents

Molybdenum sheet and its manufacturing method

Info

Publication number
JP2002363617A
JP2002363617A JP2001177958A JP2001177958A JP2002363617A JP 2002363617 A JP2002363617 A JP 2002363617A JP 2001177958 A JP2001177958 A JP 2001177958A JP 2001177958 A JP2001177958 A JP 2001177958A JP 2002363617 A JP2002363617 A JP 2002363617A
Authority
JP
Japan
Prior art keywords
powder
molybdenum
crystal grains
temperature
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001177958A
Other languages
Japanese (ja)
Inventor
Takanori Sumikura
孝典 角倉
Tomohiro Takita
朋広 瀧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2001177958A priority Critical patent/JP2002363617A/en
Publication of JP2002363617A publication Critical patent/JP2002363617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a molybdenum sheet in which high-temperature drooping resistance at the evaluation of high-temperature characteristics can be maintained at a value equal to that of the conventional one and also cracks occurring at bending and folding at room temperature can be removed. SOLUTION: The molybdenum sheet contains lanthanum oxide having excellent high temperature characteristics, and also the bending and folding of the molybdenum sheet can be facilitated by controlling the structure of the surface of the sheet after recrystallization. This sheet can be manufactured by: preparing powder obtained by adding La component in the form of a lanthanum nitrate solution to Mo and applying reduction treatment in a hydrogen air flow; preparing another powder obtained by dry-blending Mo powder with the above powder; bringing the resultant two kinds of powder 1 and 2 which are identical in composition and different in powder preparation into contact with each other as in the figure; pressing the above; and sintering the resultant green compact to form the structure of the surface of the resultant sintered compact into microcrystalline grains of 1 to 200 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,高温構造材料およ
び部品材料、とくに発熱体および反射板などの高温炉用
材料、セラミックスおよびMIM(金属射出成形)製品
などの焼成用敷板などに用いられる高温特性に優れた長
大結晶粒組織を有するモリブデン材料の製造方法に関す
る。
The present invention relates to a high-temperature structural material and a component material, particularly a high-temperature furnace material such as a heating element and a reflection plate, a high-temperature furnace plate used for firing of ceramics and MIM (metal injection molding) products and the like. The present invention relates to a method for producing a molybdenum material having a long crystal grain structure having excellent characteristics.

【0002】[0002]

【従来の技術】耐熱金属である純Moは、高温構造材料
や部品材料に用いられているが、約1000℃以上で使
用すると再結晶し等軸粒組織となり高温で変形しやすく
なり、室温では耐衝撃性が著しく低下するという性質を
備えている。
2. Description of the Related Art Pure Mo, which is a heat-resistant metal, is used for high-temperature structural materials and component materials. However, when it is used at about 1000 ° C. or higher, it recrystallizes and becomes an equiaxed grain structure, and easily deforms at high temperatures. It has the property that the impact resistance is significantly reduced.

【0003】したがって、高温炉用反射板や焼成用敷板
などに用いるには、高温で変形しにくい(高耐クリープ
特性)ことが必要とされている。そのためには、モリブ
デン材料は、再結晶温度を使用温度以上に高めるか、再
結晶しても変形しにくい組織とする必要がある。
[0003] Therefore, in order to be used as a reflector for a high-temperature furnace or a sintering plate for firing, it is required to be hardly deformed at high temperatures (high creep resistance). For this purpose, the molybdenum material needs to have a recrystallization temperature higher than the use temperature or a structure that is hardly deformed even when recrystallized.

【0004】前者の再結晶温度を高める方法として、高
再結晶温度のTZM合金(チタン、ジルコニウム、炭素
を含むMo合金)があるが、再結晶温度が1400℃程
度で低く、再結晶後は等軸粒組織を形成するため、再結
晶温度以上では純Moと同様、変形しやすくなる。
As the former method of raising the recrystallization temperature, there is a TZM alloy (Mo alloy containing titanium, zirconium and carbon) having a high recrystallization temperature, but the recrystallization temperature is as low as about 1400 ° C. Since an axial grain structure is formed, the material is easily deformed at a temperature higher than the recrystallization temperature as in pure Mo.

【0005】一方、後者の再結晶しても変形しにくい材
料にする方法として、Al,Si,Kの組み合わせやL
などの希土類酸化物を添加したMo焼結体に高
加工率の塑性加工を施し、再結晶後の組織を加工方向に
伸長した長大結晶粒の積層組織とすることで、高温特性
の改善がなされている。
On the other hand, as a method for making the material less likely to be deformed even by recrystallization, a combination of Al, Si, and K or L
High-temperature properties are obtained by subjecting a Mo sintered body to which a rare-earth oxide such as a 2 O 3 is added to plastic working at a high working rate and making the structure after recrystallization into a laminated structure of large crystal grains elongated in the working direction. Improvements have been made.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、長大結
晶粒の積層組織からなる板材を室温にて曲げ加工や折り
返し加工する際、組織が長大で異方性が大きいため曲げ
る方向によって割れが発生することがある。
However, when a sheet material having a laminated structure of long crystal grains is bent or turned at room temperature, cracks are generated depending on the bending direction because the structure is long and highly anisotropic. There is.

【0007】従って、安価で高品質な製品を供給するた
めには、室温における曲げ加工や折り返し加工時に発生
する割れを無くす必要がある。
[0007] Therefore, in order to supply inexpensive and high-quality products, it is necessary to eliminate cracks generated during bending or folding at room temperature.

【0008】特公昭61−27459号公報、特開昭5
9−150073号公報、および米国特許第45142
34号明細書には、MoにAl,Si,Kの元素のうち
の一種又は二種類以上を0.005〜0.15重量%含
み、加工率85%以上の減面加工を施し、再結晶熱処理
を施して長大結晶粒の積層組織にした材料が提案されて
いる。このような長大結晶粒の積層組織を得るために
は、Kのドープ孔の配列状態(大きさ、配列長さ、孔間
隔など)が大きく影響することが知られている。
Japanese Patent Publication No. 61-27459, Japanese Patent Application Laid-Open No. Sho 5
No. 9-150073 and US Pat. No. 4,542,142.
No. 34 describes that Mo contains one or more of the elements Al, Si and K in an amount of 0.005 to 0.15% by weight, is subjected to a surface reduction processing at a processing rate of 85% or more, and is recrystallized. A material which has been subjected to heat treatment to form a laminated structure of long crystal grains has been proposed. It is known that the arrangement state (size, arrangement length, hole interval, etc.) of K-doped holes has a great effect in obtaining such a laminated structure of long crystal grains.

【0009】しかし、Kの添加は焼結体の密度を高めに
くく、鍛造や圧延といった塑性加工時の亀裂多発の原因
となり、歩留まりや工数の点で工業的には不利となる欠
点を有した。
However, the addition of K makes it difficult to increase the density of the sintered body, causes cracks during plastic working such as forging and rolling, and has a disadvantage that it is industrially disadvantageous in terms of yield and man-hours.

【0010】さらに、Kのドープ孔は熱間での塑性加工
途中の加熱によって移動しやすく、そのためドープ孔の
配列状態を制御しにくく目的の組織が得られにくい。た
とえ目的の組織が得られても、組織のばらつきが非常に
大きく、高品質な製品を維持しながら製造していくこと
は非常に困難である。
Further, the K-doped holes are easily moved by heating during hot plastic working, so that it is difficult to control the arrangement state of the dope holes and it is difficult to obtain a target structure. Even if a desired structure is obtained, the structure varies greatly, and it is extremely difficult to manufacture while maintaining a high-quality product.

【0011】そこで、本発明の技術的課題は、高温耐垂
下性といった高温特性については、従来と同程度を維持
し、且つ室温での曲げ加工や折り返し加工時に発生する
割れを無くしたモリブデン板材を提供することにある。
Therefore, a technical problem of the present invention is to provide a molybdenum plate material which maintains high-temperature characteristics such as high-temperature drooping resistance at the same level as conventional ones, and has no cracks generated at the time of bending or folding at room temperature. To provide.

【0012】[0012]

【課題を解決するための手段】本発明によれば、再結晶
後の板材表面の組織を制御することによって、曲げ加工
および折り返し加工を容易に行うことができ、且つ高温
特性に優れたランタン酸化物を含んだモリブデン板材が
得られる。
According to the present invention, by controlling the texture of the surface of a sheet material after recrystallization, bending and folding can be easily performed, and lanthanum oxide excellent in high-temperature characteristics can be obtained. The molybdenum plate containing the material is obtained.

【0013】また、本発明によれば、前記モリブデン板
材において、モリブデン中に含まれるランタン酸化物量
は0.1〜1重量%以下であることを特徴とするモリブ
デン板材が得られる。
According to the present invention, there is provided a molybdenum plate material, wherein the amount of lanthanum oxide contained in molybdenum is 0.1 to 1% by weight or less.

【0014】また、本発明によれば、前記モリブデン板
材において、再結晶させた板材表面の結晶粒のアスペク
ト比が5以下であることを特徴とするモリブデン板材が
得られる。ここで、本発明において用いられるアスペク
ト比は、結晶粒径の縦横比であり、0にはならない。
According to the present invention, there is provided a molybdenum plate, wherein the aspect ratio of crystal grains on the surface of the recrystallized plate is 5 or less. Here, the aspect ratio used in the present invention is the aspect ratio of the crystal grain size, and does not become zero.

【0015】また、本発明によれば、焼結体の表面の組
織を内部より微細結晶粒にすることによって、曲げ加工
および折り返し加工を容易に行うことができ、且つ高温
特性に優れたランタン酸化物を含んだモリブデン板材の
製造方法が得られる。
Further, according to the present invention, by making the structure of the surface of the sintered body finer than that of the inside, the bending process and the folding process can be easily performed, and the lanthanum oxide excellent in high-temperature characteristics can be obtained. Thus, a method for producing a molybdenum plate material containing a material is obtained.

【0016】また、本発明によれば、前記モリブデン板
材の製造方法において、前記製造過程において、Moに
La成分を硝酸ランタン溶液として添加し、水素気流中
にて還元処理を施した粉末およびその粉末にMo粉末を
乾式混合することによって得られる組成は同じであるが
粉末調製の異なる2種類の粉末を接粉させることによっ
て焼結体表面を結晶粒径1〜200μm以下の微細結晶
粒にすることを特徴とするモリブデン板材の製造方法が
得られる。
Further, according to the present invention, in the method for producing a molybdenum plate material, in the production process, a powder obtained by adding a La component to Mo as a lanthanum nitrate solution and performing a reduction treatment in a hydrogen stream and the powder. The surface of the sintered body is made into fine crystal grains having a crystal grain size of 1 to 200 μm or less by contacting two kinds of powders having the same composition obtained by dry-mixing Mo powder with different powder preparations. Thus, a method for producing a molybdenum plate material characterized by the following is obtained.

【0017】[0017]

【発明の実施の形態】まず、本発明について更に具体的
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the present invention will be described more specifically.

【0018】本発明は高温耐垂下性といった高温特性に
ついては、従来と同程度を維持し、且つ室温での曲げ加
工や折り返し加工時に発生する割れを無くした材料を提
供するものである。
The present invention is to provide a material which maintains high-temperature characteristics such as high-temperature drooping resistance at the same level as conventional ones, and eliminates cracks generated during bending or folding at room temperature.

【0019】モリブデン板材において、曲げ加工や折り
返し加工時に亀裂が発生するのは、再結晶後の組織が長
大で異方性が大きいため曲げる方向によって割れが発生
することがあるためである。
The reason why cracks are generated in a molybdenum plate material during bending or folding is that the recrystallized structure is long and highly anisotropic, so that cracks may be generated depending on the bending direction.

【0020】したがって、再結晶させた板材の表面を加
工し易い組織に制御することによって加工性が向上でき
る。
Therefore, the workability can be improved by controlling the surface of the recrystallized sheet material to an easily workable structure.

【0021】従来においては、MoO粉末にMo元素
あたり0.1〜1重量%未満のLa元素に相当するLa
成分を硝酸ランタン溶液として添加し、乾燥後、水素気
流中にて還元処理を施した粉末のみを使用していた。
Conventionally, MoO 2 powder has a La content corresponding to 0.1 to less than 1% by weight of La element per Mo element.
The components were added as a lanthanum nitrate solution, and after drying, only a powder subjected to a reduction treatment in a stream of hydrogen was used.

【0022】しかし、本発明では、従来技術により作製
したLa成分を含有するMo粉末と純Mo粉末の両者を
乾式混合した粉末を使用して焼結体表面を微細結晶粒
(例えば、30μm)とした。その結果、この焼結体か
ら作製した板材の再結晶組織を、板材表面が加工方向に
僅かに伸長した(ほぼ等軸結晶粒)組織、内部が非常に
長大な組織にすることができた。但し、僅かに伸長した
結晶粒では従来技術品に比べ高温耐垂下性を損ねること
が懸念される。そこで板材の厚みに対して表面組織の占
める割合を制御すれば、加工性だけでなく、高温耐垂下
性にも優れたMo材が得られることを見出した。
However, in the present invention, the surface of the sintered body is formed with fine crystal grains (for example, 30 μm) by using a powder obtained by dry-mixing both a Mo powder containing a La component and a pure Mo powder produced according to the prior art. did. As a result, the recrystallized structure of the plate material produced from this sintered body could be changed to a structure in which the surface of the plate material was slightly elongated in the processing direction (substantially equiaxed crystal grains) and a very long internal structure. However, it is feared that the slightly elongated crystal grains impair the high-temperature droop resistance as compared with the prior art product. Therefore, it has been found that by controlling the ratio of the surface structure to the thickness of the sheet material, a Mo material excellent in not only workability but also high-temperature droop resistance can be obtained.

【0023】本発明では、再結晶した板材の表面組織を
僅かに伸長した結晶粒組織にすることにより、従来技術
品に比べ異方性を少なくすることによって、曲げ加工や
折り返し加工時の割れをなくした材料である。且つ、そ
の組織の領域を制御することによって、従来技術品と同
程度の高温耐垂下性といった高温特性を維持することが
できる。
In the present invention, the surface structure of the recrystallized sheet material is made to have a slightly elongated crystal grain structure, so that the anisotropy is reduced as compared with the prior art product. It is a lost material. In addition, by controlling the region of the structure, high-temperature characteristics such as high-temperature droop resistance comparable to that of the prior art product can be maintained.

【0024】このように、本発明においては、板材表面
が加工しやすい結晶粒組織になっているため、曲げ加工
時の割れが無くなり、複雑な形状ヘの加工も可能であ
り、応用範囲が広がる。
As described above, in the present invention, since the surface of the plate material has a crystal grain structure that is easy to process, cracking during bending is eliminated, processing into a complicated shape is possible, and the range of application is expanded. .

【0025】次に本発明の製造の具体例について説明す
る。
Next, a specific example of the production of the present invention will be described.

【0026】(例1)曲げ加工性粉末調製法の異なる下
記の2種類の粉末を準備した。
(Example 1) The following two types of powders having different bending processability powder preparation methods were prepared.

【0027】図1に示すように、第1の材料として、従
来技術どおり、MoO粉末に、Mo元素あたり1重量
%のLa元素に相当するLa成分をLa(NO
溶液として添加し、乾燥後、水素気流中にて還元処理を
施した粉末を用意した。
As shown in FIG. 1, as the first material, the prior art as expected, the MoO 2 powder, La 2 (NO 3) a La component corresponding to 1 wt% of La element per Mo element 3
A powder which was added as a solution, dried and reduced in a hydrogen stream was prepared.

【0028】第2の粉末として、従来技術を用いてMo
元素あたり2重量%のLa元素に相当するLa成分を分
散させたMo粉末を作製し、その粉末と純Mo粉末を
1:1の割合で乾式混合し、La成分を1重量%に調製
した粉末を用意した。
As the second powder, Mo was prepared by using a conventional technique.
Mo powder in which a La component corresponding to 2% by weight of La element per element is dispersed, and the powder and pure Mo powder are dry-mixed at a ratio of 1: 1 to prepare a La component to 1% by weight. Was prepared.

【0029】上記の粉末を用いてプレス体を作製する
際、幅60mm,長さ110mmの金型を用い、第1の
粉末を第2の粉末でサンドイッチするように粉末を充填
し、機械プレスによりプレス体を作製した。これらのプ
レス体を1800℃にて10時間水素雰囲気中で焼結し
た。
When a pressed body is manufactured using the above-mentioned powder, a powder having a width of 60 mm and a length of 110 mm is used to fill the powder so that the first powder is sandwiched by the second powder. A pressed body was produced. These pressed bodies were sintered at 1800 ° C. for 10 hours in a hydrogen atmosphere.

【0030】本発明品の焼結体の第2の粉末で構成され
た部分の組織を確認したところ、結晶粒径30μm程度
の微細結晶粒であった。
When the structure of the portion composed of the second powder of the sintered body of the present invention was confirmed, it was found to be fine crystal grains having a crystal grain size of about 30 μm.

【0031】ここで、第2の粉末で構成された焼結体部
の結晶粒径は1〜200μm以下に制御した。ここで結
晶粒径の上限を200μmとしたのは、これを越えると
再結晶後に加工性の良い板材が得られないためであり、
下限を1μmとしたのは、これ以下の制御が難しいため
である。これらの焼結体を熱間・冷間圧延を施し、板厚
1.0mmの板材にした。
Here, the crystal grain size of the sintered body composed of the second powder was controlled to 1 to 200 μm or less. Here, the upper limit of the crystal grain size is set to 200 μm because if it exceeds this, a plate material having good workability after recrystallization cannot be obtained.
The lower limit is set to 1 μm because it is difficult to perform control below this limit. These sintered bodies were subjected to hot and cold rolling to obtain a sheet material having a sheet thickness of 1.0 mm.

【0032】比較材として、従来技術によって作製した
板材(第1の粉末のみを使用)を用いた。
As a comparative material, a plate material (only the first powder was used) produced by a conventional technique was used.

【0033】これらの板材の再結晶組織は、従来技術に
よって作製した板材については、全体が長大結晶粒の積
層組織になっているのに対し、本発明による板材は、表
面が僅かに伸長した結晶粒組織、内部が長大結晶粒の積
層組織であった。この時、結晶粒のアスペクト比(結晶
粒の長径と短径の比は、この値が大きいほど長大結晶粒
である。)は板材表面で3〜5、内部で20であった。
The recrystallized structure of these plate materials is such that the plate material manufactured by the conventional technique has a laminated structure of long crystal grains as a whole, whereas the plate material according to the present invention has a crystal structure having a slightly elongated surface. The grain structure and the inside were a laminated structure of long crystal grains. At this time, the aspect ratio of the crystal grains (the ratio of the major axis to the minor axis of the crystal grains, the larger the value, the longer the crystal grains) is 3 to 5 on the surface of the plate material and 20 inside.

【0034】高温特性の評価として高温耐垂下性を調べ
た。再結晶板の試験片中央に荷重をかけ、1800℃で
10時間(h)水素気流中で保持した後の変形量を測定
したところ、本発明品は表面組織の領域を片面150μ
m以下に制御すれば従来材と同様の特性が得られること
が判明した。
As an evaluation of high-temperature characteristics, high-temperature droop resistance was examined. When a load was applied to the center of the test piece of the recrystallized plate and the amount of deformation after holding in a hydrogen stream at 1800 ° C. for 10 hours (h) was measured, the product of the present invention showed a surface texture region of 150 μm on one side.
It has been found that the same characteristics as those of the conventional material can be obtained by controlling to less than m.

【0035】また、曲げ加工性の評価には、再結晶処理
した板材を使用し、本発明品は粉末充填段階にて第2の
粉末量を調整し、再結晶後の微細結晶粒組織が片面5
0、100,150μmになるものを準備した。
For evaluation of bending workability, a recrystallized plate was used. In the present invention, the amount of the second powder was adjusted at the powder filling stage. 5
Thicknesses of 0, 100 and 150 μm were prepared.

【0036】曲げ試験の試験片は、幅20mm,長さ1
00mmとし、試験片の長さが圧延方向に対して垂直方
向(TD)および平行方向(RD)になるように各板材
につき2種類準備した。これらの試験片を支点間距離8
0mmで支持し、室温90度曲げ試験を行い、割れの発
生有無を確認した。結果を表1に示す。
The test piece for the bending test has a width of 20 mm and a length of 1.
Two types were prepared for each plate so that the length of the test piece was 00 mm and the length of the test piece was perpendicular (TD) and parallel (RD) to the rolling direction. The distance between the fulcrums was 8
It was supported at 0 mm and subjected to a 90 ° bending test at room temperature to confirm the occurrence of cracks. Table 1 shows the results.

【0037】[0037]

【表1】 [Table 1]

【0038】従来技術による板材は、圧延方向が試験片
の長さに対して垂直のものは割れが確認されたのに対
し、本発明による板材は微細結晶粒領域を片面100μ
m及び150μmに制御したものについては、割れの発
生は確認されなかった。本発明品において、割れの発生
が確認された微細結晶粒領域を片側50μmに制御した
板材に対し、その組織を確認したところ、板材表面にお
いて微細結晶粒である部分と長大結晶粒である部分と組
織にバラツキがあった。この板材の組織は、プレス体を
作製する粉末充填段階での作業性が難しかった為に起こ
ったと考えられ、その長大結晶粒部が割れの起点となっ
たと考えられる。よって作業性を考慮すると、再結晶時
の微細結晶粒領域を100〜150μmに制御すれば、
高温特性、且つ曲げ加工性に優れた材料が得られること
を見出した。
In the sheet material according to the prior art, the one in which the rolling direction was perpendicular to the length of the test piece was found to have cracks, whereas the sheet material according to the present invention had a fine grain region of 100 μm per side.
No crack generation was confirmed for those controlled to m and 150 μm. In the product of the present invention, when the microstructure of the plate material in which the generation of cracks was confirmed was controlled to 50 μm on one side was confirmed, the structure was confirmed to be a portion having fine crystal grains and a portion having long crystal grains on the surface of the plate material. There was variation in the organization. It is considered that this structure of the plate material occurred due to difficulty in workability at the powder filling stage for producing a pressed body, and it is considered that the long crystal grain portion became a starting point of cracking. Therefore, considering workability, if the fine crystal grain region during recrystallization is controlled to 100 to 150 μm,
It has been found that a material having excellent high-temperature properties and excellent bending workability can be obtained.

【0039】[0039]

【発明の効果】以上説明したように、本発明のモリブデ
ン板材を利用すれば、板材表面が加工しやすい異方性を
少なくした結晶粒組織になっているため、曲げ加工時の
割れが無くなり、複雑な形状への加工も可能である。従
って、応用範囲が広がる。
As described above, when the molybdenum plate material of the present invention is used, the plate material surface has a crystal grain structure with reduced anisotropy that is easy to process, so that cracks during bending are eliminated. Processing into complex shapes is also possible. Therefore, the range of application is expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による粉末充填方法を示す
断面図である。
FIG. 1 is a cross-sectional view illustrating a powder filling method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 第1の粉末 2 第2の粉末 10 プレス装置の要部 11,12 金型 DESCRIPTION OF SYMBOLS 1 1st powder 2 2nd powder 10 Main part of a press apparatus 11, 12 Die

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K017 AA06 BA04 BB18 DA09 EH04 EH18 EJ01 EK04 FB06 4K018 AA22 AB01 AC03 BA09 BC09 BD10 CA11 HA08 KA70  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K017 AA06 BA04 BB18 DA09 EH04 EH18 EJ01 EK04 FB06 4K018 AA22 AB01 AC03 BA09 BC09 BD10 CA11 HA08 KA70

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 再結晶後の板材表面の組織を制御するこ
とによって、曲げ加工および折り返し加工を容易に行う
ことができ、且つ高温特性に優れたランタン酸化物を含
んだモリブデン板材。
1. A molybdenum sheet material containing lanthanum oxide, which can be easily bent and folded by controlling the texture of the sheet material surface after recrystallization, and which is excellent in high-temperature characteristics.
【請求項2】 請求項1に記載されたモリブデン板材に
おいて、モリブデン中に含まれるランタン酸化物量は
0.1〜1重量%以下であることを特徴とするモリブデ
ン板材。
2. The molybdenum plate according to claim 1, wherein the amount of lanthanum oxide contained in the molybdenum is 0.1 to 1% by weight or less.
【請求項3】 請求項1に記載されたモリブデン板材に
おいて、再結晶させた板材表面の結晶粒のアスペクト比
が5以下であることを特徴とするモリブデン板材。
3. The molybdenum plate according to claim 1, wherein the aspect ratio of crystal grains on the surface of the recrystallized plate is 5 or less.
【請求項4】 焼結体の表面の組織を内部より微細結晶
粒にすることによって、曲げ加工および折り返し加工を
容易に行うことができ、且つ高温特性に優れたランタン
酸化物を含んだモリブデン板材の製造方法。
4. A molybdenum plate material containing a lanthanum oxide excellent in high-temperature characteristics, in which the structure of the surface of the sintered body is made finer crystal grains than the inside, whereby bending and folding can be easily performed. Manufacturing method.
【請求項5】 請求項4に記載されたモリブデン板材の
製造方法において、前記製造過程において、MoにLa
成分を硝酸ランタン溶液として添加し、水素気流中にて
還元処理を施した粉末およびその粉末にMo粉末を乾式
混合することによって得られる組成は同じであるが粉末
調製の異なる2種類の粉末を接粉させることによって焼
結体表面を結晶粒径1〜200μm以下の微細結晶粒に
することを特徴とするモリブデン板材の製造方法。
5. The method of manufacturing a molybdenum plate according to claim 4, wherein Mo is added to La in the manufacturing process.
The components obtained by adding the components as a lanthanum nitrate solution and subjecting the powder to a reduction treatment in a hydrogen stream and the dry mixing of the Mo powder with the powder have the same composition, but two types of powders having different powder preparations are mixed. A method for producing a molybdenum plate material, wherein the surface of a sintered body is made into fine crystal grains having a crystal grain size of 1 to 200 μm or less by powdering.
JP2001177958A 2001-06-13 2001-06-13 Molybdenum sheet and its manufacturing method Pending JP2002363617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001177958A JP2002363617A (en) 2001-06-13 2001-06-13 Molybdenum sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001177958A JP2002363617A (en) 2001-06-13 2001-06-13 Molybdenum sheet and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007249319A Division JP2008045217A (en) 2007-09-26 2007-09-26 Recrystallized molybdenum rolled sheet material and its production method

Publications (1)

Publication Number Publication Date
JP2002363617A true JP2002363617A (en) 2002-12-18

Family

ID=19018728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177958A Pending JP2002363617A (en) 2001-06-13 2001-06-13 Molybdenum sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002363617A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350709A (en) * 2004-06-09 2005-12-22 Allied Material Corp Seamless pipe made of molybdenum, and manufacturing method therefor
US7332228B2 (en) * 2003-02-25 2008-02-19 A.L.M.T. Corporation Coated refractory metal plate having oxide surface layer, and setter which uses the same and which is used in sintering
JP2008045217A (en) * 2007-09-26 2008-02-28 Allied Material Corp Recrystallized molybdenum rolled sheet material and its production method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278767A (en) * 1994-04-12 1995-10-24 Tokyo Tungsten Co Ltd Large-diameter molybdenum rod and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278767A (en) * 1994-04-12 1995-10-24 Tokyo Tungsten Co Ltd Large-diameter molybdenum rod and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332228B2 (en) * 2003-02-25 2008-02-19 A.L.M.T. Corporation Coated refractory metal plate having oxide surface layer, and setter which uses the same and which is used in sintering
JP2005350709A (en) * 2004-06-09 2005-12-22 Allied Material Corp Seamless pipe made of molybdenum, and manufacturing method therefor
JP2008045217A (en) * 2007-09-26 2008-02-28 Allied Material Corp Recrystallized molybdenum rolled sheet material and its production method

Similar Documents

Publication Publication Date Title
US5768679A (en) Article made of a Ti-Al intermetallic compound
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
JP2002363617A (en) Molybdenum sheet and its manufacturing method
US6187706B1 (en) Silicon nitride sintered body and method of producing the same
JPS6291480A (en) Ceramic formation
JP4108943B2 (en) Molybdenum sintered body, molybdenum plate material, and manufacturing method thereof
CN114180980B (en) Self-toughening 99 alumina ceramic substrate and preparation method thereof
JP2008045217A (en) Recrystallized molybdenum rolled sheet material and its production method
JP2569418B2 (en) Manufacturing method of superplastic aluminum nitride particle reinforced aluminum alloy composite material by hot extrusion and hot rolling and its processing method
JP6222620B2 (en) Electrical resistance material and manufacturing method thereof
JP4558572B2 (en) High heat resistant molybdenum alloy and manufacturing method thereof
JPH0754093A (en) Molybdenum material and production thereof
JP2994637B2 (en) Silicon nitride sintered body with controlled microstructure of inner and outer layers and method for producing the same
JPH1179845A (en) Production of silicon carbide having high toughness
JPS5918165A (en) Manufacture of silicon nitride sintered body
JPH04224601A (en) Manufacture of titanium-based composite material
JP3359443B2 (en) Alumina sintered body and method for producing the same
JP2000129389A (en) Molybdenum sintered compact and its manufacture
JP3837516B2 (en) Zirconia-based superplastic ceramics
JPH1087370A (en) Silicon nitride-base composite ceramics and production thereof
JP3202670B2 (en) Manufacturing method of multilayer ceramics
JPH10139548A (en) Molybdenum disilicide-base composite material and its production
JP3839632B2 (en) Method for producing Ni-Al intermetallic compound
JP3218329B2 (en) Hot working method of mullite based ceramic substrate using kaolin clay
EP1546422A1 (en) Method of forming non-sag molybdenum-lanthana alloys

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071121