JPH0754093A - Molybdenum material and production thereof - Google Patents

Molybdenum material and production thereof

Info

Publication number
JPH0754093A
JPH0754093A JP27323593A JP27323593A JPH0754093A JP H0754093 A JPH0754093 A JP H0754093A JP 27323593 A JP27323593 A JP 27323593A JP 27323593 A JP27323593 A JP 27323593A JP H0754093 A JPH0754093 A JP H0754093A
Authority
JP
Japan
Prior art keywords
molybdenum
powder
lanthanum
rolling
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27323593A
Other languages
Japanese (ja)
Inventor
Katsutsugu Takebe
克嗣 武部
Tomohiro Takita
朋広 瀧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP27323593A priority Critical patent/JPH0754093A/en
Publication of JPH0754093A publication Critical patent/JPH0754093A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a molybdenum material having high tensile strength and such characteristics as to enable bending and folding at room temp. CONSTITUTION:Lanthanum is added to molybdenum dioxide powder by 0.05-1.0wt.% in the form of a lanthanum nitrate soln., the powder is dried and reduced in a flow of gaseous hydrogen and the resultant Mo powder is sintered under pressing by powder metallurgical processing to obtain a sintered under pressing by powder metallurgical processing into a plate or a wire rod through the required processes and recrystallization heat treatment is carried out. The plate is bent in a direction parallel or perpendicular to the rolling direction, the wire rod is bent or folded and molybdenum parts are produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,高温用構造材,特にヒ
ータ,リフレクター等の高温炉材および焼成用敷板等に
用いられる高温強度に優れた積層構造の結晶組織を有す
るモリブデン材とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature structural material, in particular, a high-temperature furnace material such as a heater and a reflector, and a molybdenum material having a crystal structure of a laminated structure excellent in high-temperature strength, which is used for a baking sheet, and the production thereof. Regarding the method.

【0002】[0002]

【従来の技術】一般に,焼成用敷板や炉の反射板など高
温下で使用されるモリブデン材として,使用中の変形防
止のため,ドープドモリブデンが純モリブデン(Mo)
に代わり使用されている。このドープドモリブデンの代
表的なものとして,チタン(Ti),ジルコニウム(Z
r),及び炭素(C)を含むTZMが知られている。
2. Description of the Related Art Generally, as a molybdenum material used at a high temperature such as a baking sheet or a reflector of a furnace, doped molybdenum is pure molybdenum (Mo) to prevent deformation during use.
Is used instead of. Typical of this doped molybdenum are titanium (Ti), zirconium (Z
r) and TZM containing carbon (C) are known.

【0003】しかし,このTZMは再結晶温度が130
0℃前後と低く,再結晶後は等軸結晶粒組織となるため
高温強度の向上は望めず,純モリブデンに代わる材料と
して使用できる温度範囲は限られており,再結晶温度以
下の狭い使用分野に限定される。ところで,十分な高温
強度を有する高融点金属の使用温度範囲を著しく高める
ため,タングステン(W),モリブデン等の高融点金属
基に特定の元素を添加し,圧延,鍛造等の機械的変形加
工を施し,再結晶熱処理によって積層組織にした材料が
知られている。
However, this TZM has a recrystallization temperature of 130.
It is as low as around 0 ℃, and it cannot be expected to improve the high temperature strength because it has an equiaxed grain structure after recrystallization, and the temperature range that can be used as a substitute material for pure molybdenum is limited. Limited to By the way, in order to remarkably increase the operating temperature range of refractory metal having sufficient high temperature strength, mechanical deformation processing such as rolling and forging is performed by adding a specific element to refractory metal base such as tungsten (W) and molybdenum. A material is known that has been subjected to heat treatment for recrystallization and has a laminated structure.

【0004】この種のモリブデン基の材料としては,M
o原料粉末にドープ剤として,アルミニウム(Al),
ケイ素(Si),カリウム(K)の元素のうちの一種又
は二種以上の添加が必須で加工率で85%以上の機械的
加工を施し,再結晶熱処理を施して積層組織にした材料
が提案されている(特公昭61−27459号,特開昭
59−150071号,米国特許第4514234号参
照)。
As this kind of molybdenum-based material, M
o Aluminum (Al), as a doping agent in the raw material powder,
It is essential to add one or more of the elements of silicon (Si) and potassium (K), and a material that has been mechanically processed at a processing rate of 85% or more and subjected to recrystallization heat treatment to form a laminated structure is proposed. (See Japanese Patent Publication No. 61-27459, Japanese Patent Laid-Open No. 59-150071, and US Pat. No. 4,514,234).

【0005】この材料はタングステンノンサグワイヤー
の技術と同様の考えで,積層組織形成にはKのガス体痕
(ドープ孔)の配列体が大きく寄与する。それ故,この
材料には,Al,Siの添加だけでは効果が無く,K元
素の添加が必須である。しかし,K元素の添加は焼結体
の密度を高めにくく,結果としてその後の機械的変形加
工時の割れ多発の原因となり,歩留まり,工数の点で工
業的には不利である。
This material is based on the same idea as in the technique of tungsten non-sag wire, and an array of K gas traces (doping holes) greatly contributes to the formation of the laminated structure. Therefore, addition of Al and Si is not effective for this material, and addition of K element is essential. However, the addition of the element K is difficult to increase the density of the sintered body, resulting in frequent occurrence of cracks during mechanical deformation processing, which is industrially disadvantageous in terms of yield and man-hours.

【0006】又,上記従来技術は,K元素のドープ孔を
モリブデン加工体内に細かく配列させて,再結晶時の粒
成長方向をコントロールすることによって,積層組織を
形成させているため,ドープ孔の大きさ,配列長さ,孔
間隔等が焼結体の特性に大きく影響する。この場合,焼
結体のドープ孔の大きさをコントロールすることは難し
く,更に加工によって小さなドープ孔の配列体にするに
は,高い加工率が必要であり,加工途中での加熱時に分
散したドープ孔が移動して再び大きな孔になるなど,製
造上の品質再現および特性にバラツキが生じやすい。
又,この材料は二次加工性が悪く,圧延方向に平行な方
向の曲げ加工を行うと,曲げ部に割れが発生するため箱
型の加工が困難である。
Further, in the above-mentioned prior art, since the K element doped holes are finely arranged in the molybdenum worked body to control the grain growth direction at the time of recrystallization, a laminated structure is formed. The size, array length, and hole spacing greatly affect the characteristics of the sintered body. In this case, it is difficult to control the size of the dope holes in the sintered body, and a high processing rate is necessary to form an array of small dope holes by processing, and the dope dispersed during heating during processing is required. As the holes move and become large again, variations in quality reproduction and characteristics during manufacturing are likely to occur.
In addition, this material has poor secondary workability, and when bending in a direction parallel to the rolling direction, cracks occur in the bent portion, making it difficult to form a box shape.

【0007】一方,添加元素としてKを使用せずに,再
結晶熱処理後積層組織を有するMo材料も知られている
(特公表平1−502680号,即ち米国特許第4,9
50,327号の参照)。
On the other hand, a Mo material having a laminated structure after recrystallization heat treatment without using K as an additive element is also known (Japanese Patent Publication No. 1-502680, namely US Pat.
50,327).

【0008】上記公報には積層組織構造を有した耐クリ
ープ合金で,粒径が≦1.5μmで融点が1500℃以
上の化合物及び/又は混合物相を0.005〜10重量
%含み,焼結体に85%以上の変形度を付与後,最後に
再結晶焼き入れ処理に付すことによって,耐クリープ特
性を一層改良しうることが開示されている。
The above-mentioned publication discloses a creep-resistant alloy having a laminated structure, containing 0.005 to 10% by weight of a compound and / or mixture phase having a grain size of ≦ 1.5 μm and a melting point of 1500 ° C. or more, and sintering. It is disclosed that the creep resistance can be further improved by subjecting the body to a degree of deformation of 85% or more and finally subjecting it to a recrystallization quenching treatment.

【0009】[0009]

【発明が解決しようとする課題】しかし,一般にドープ
元素を添加した分散型合金は,加工方向に平行な方向の
曲げ加工に対して加工性が悪く,割れがはいりやすいこ
とが知られている。そして,前述したいずれの従来技術
においても,積層組織の形状と各種の特性との関係につ
いて,定性的な考察に止まり,定量的に考察するには,
至っていない。
However, it is generally known that dispersion type alloys to which a doping element is added have poor workability in bending in a direction parallel to the working direction and are susceptible to cracking. Then, in any of the above-mentioned conventional techniques, the relation between the shape of the laminated structure and various characteristics can be considered only quantitatively by qualitative consideration.
I haven't arrived.

【0010】又,前述の従来技術において,積層組織形
成にはドープ元素の粒径を1.5μm以下と細粒化する
こと及び均一分散させることの必要性が論じられてお
り,原料粉末にドープ元素は,粉末状態での添加を行っ
ている。しかし,互いに異なる粉末と粉末を配合するに
は,相互の粒径の違いや密度の差が大きい場合,均一混
合や添加元素の均一分散は難しい。
Further, in the above-mentioned prior art, it has been argued that it is necessary to make the grain size of the doping element finer to 1.5 μm or less and to uniformly disperse it in the formation of the laminated structure. The elements are added in powder form. However, when different powders are mixed with each other, it is difficult to uniformly mix and evenly disperse the additive elements when the difference in particle size and the difference in density are large.

【0011】そこで,本発明の技術的課題は,モリブデ
ン材において高温での耐垂下性,引張強さが大きく,且
つ,室温での曲げ加工や折り返し加工を可能ならしめる
特性を持つ材料を提供するとともに,その特性を引き出
すべく積層組織を形成する粒のアスペクト比やドープ元
素の配列長さをもつ材料とその特性を引き出すための加
工方法を提供することにある。
[0011] Therefore, the technical problem of the present invention is to provide a material which has a large drooping resistance and a high tensile strength at a high temperature in a molybdenum material, and has a characteristic that enables bending and folding at room temperature. At the same time, it is to provide a material having an aspect ratio of grains that form a laminated structure and an arrangement length of a doping element in order to bring out its properties, and a processing method for drawing out the properties.

【0012】[0012]

【課題を解決するための手段】一般に,積層組織が耐垂
下性(耐クリープ特性)を向上させることはよく知られ
ている。この積層組織を形成するために,各種元素のド
ープが試みられている。本発明では,モリブデン原料粉
末の原料であるモリブデン酸化物に硝酸ランタン溶液状
でランタンを添加している。
[Means for Solving the Problems] Generally, it is well known that a laminated structure improves droop resistance (creep resistance). In order to form this laminated structure, doping of various elements has been attempted. In the present invention, lanthanum is added in the form of a lanthanum nitrate solution to molybdenum oxide, which is a raw material of the molybdenum raw material powder.

【0013】本発明によれば,ランタン(La)元素に
換算して0.05〜1.0重量%のLa成分を含み,圧
延方向に平行な断面が細長い結晶粒から構成された積層
組織を有するモリブデン合金において,前記第1の断面
の結晶粒は,少なくとも20のアスペクト比を有するこ
とを特徴とするモリブデン材が得られる。
According to the present invention, a laminated structure containing 0.05 to 1.0% by weight of La component in terms of lanthanum (La) element and having a slender crystal grain in a cross section parallel to the rolling direction is provided. In the molybdenum alloy having, the molybdenum material is obtained, wherein the crystal grains of the first cross section have an aspect ratio of at least 20.

【0014】ここで,本発明において,前記モリブデン
材は,1500℃以上での高温での引張強さが純モリブ
デンの少なくとも2倍であり,且つ変形量が純モリブデ
ンの多くとも1/2である。また,前記La成分は少な
くとも25μmの平均整列長さを有する。このLa成分
は,La元素又はLa酸化物であることが好ましい。
In the present invention, the molybdenum material has a tensile strength at a temperature of 1500 ° C. or higher of at least twice that of pure molybdenum and a deformation amount of at most ½ of that of pure molybdenum. . Also, the La component has an average alignment length of at least 25 μm. The La component is preferably La element or La oxide.

【0015】本発明によれば,前記モリブデン材からな
る板材部品であって,圧延加工方向に平行な曲げ加工及
び圧延加工方向に垂直な方向に曲げ加工の内の少なくと
も一種の曲げ加工を施されていることを特徴とするモリ
ブデン板状部品が得られる。
According to the present invention, the plate member made of the molybdenum material is subjected to at least one of bending work parallel to the rolling direction and bending work perpendicular to the rolling direction. A molybdenum plate-shaped component is obtained.

【0016】本発明によれば,前記モリブデン材からな
る線棒状部品であって,曲げ加工及び折り返し加工のう
ちの少なくとも一方の加工が施されていることを特徴と
するモリブデン線棒状部品が得られる。
According to the present invention, there is obtained a wire rod-shaped component made of the molybdenum material, which is characterized in that at least one of bending and folding is applied. .

【0017】本発明によれば,二酸化モリブデン粉末に
0.05〜1.0重量%のLa元素を硝酸ランタン溶液
として,添加し,乾燥後,水素気流中で還元してモリブ
デン粉末を得ることを特徴とするモリブデン原料粉末の
製造方法が得られる。
According to the present invention, 0.05 to 1.0% by weight of La element as a lanthanum nitrate solution is added to molybdenum dioxide powder, dried and then reduced in a hydrogen stream to obtain molybdenum powder. A method for producing a characteristic molybdenum raw material powder is obtained.

【0018】即ち,本発明では,モリブデン原料粉末の
原料である二酸化モリブデンに硝酸ランタン溶液状でL
a元素を添加し,乾燥後水素気流中で還元してできたモ
リブデン粉末を,公知の粉末冶金法でプレス,焼結し,
0.05〜1.0重量%のLa元素をLa元素及び/又
はLa酸化物の形で含む焼結体を得ている。
That is, according to the present invention, molybdenum dioxide, which is the raw material of the molybdenum raw material powder, is added as L solution in the form of lanthanum nitrate solution.
The molybdenum powder obtained by adding the element a, drying and reducing in a hydrogen stream is pressed and sintered by a known powder metallurgy method,
A sintered body containing 0.05 to 1.0% by weight of La element in the form of La element and / or La oxide is obtained.

【0019】ここで,本発明において,原料粉末に硝酸
ランタン溶液を用いて湿式添加したのは,La元素又は
La酸化物を細かく均一に,製造品であるモリブデン内
に分散させるためである。また,本発明において,La
元素含有量を0.05〜1.0重量%と限定したのは,
0.05重量%より少ない場合,高加工率を付与しても
アスペクト比が大きくならず,1.0重量%を超えると
プレス体が経時的に割れを発生しやすく,又,プレス後
速やかに焼結に付した焼結体でも圧延加工時に板厚に平
行な二層割れや,圧延方向側面に板厚に垂直な割れが発
生しやすくなり,歩留まりの低下をきたすため工業的で
は無く,又,1.0重量%を超えても特性の向上は見ら
れないからである。
Here, in the present invention, the reason why the lanthanum nitrate solution is used for the wet addition to the raw material powder is to disperse the La element or the La oxide finely and uniformly in molybdenum which is a manufactured product. Further, in the present invention, La
The reason for limiting the element content to 0.05 to 1.0% by weight is that
If it is less than 0.05% by weight, the aspect ratio does not increase even if a high working rate is given, and if it exceeds 1.0% by weight, the pressed body is apt to crack with time, and immediately after the pressing. Even with a sintered body that has been sintered, double-layer cracks parallel to the plate thickness during the rolling process and cracks perpendicular to the plate thickness on the side surface in the rolling direction are likely to occur, reducing the yield, which is not industrial, and , Even if it exceeds 1.0% by weight, no improvement in properties is observed.

【0020】本発明によれば,前記モリブデン原料粉末
の製造方法によって製造されたモリブデン粉末を,粉末
冶金法でプレス焼結し,得られた焼結体に少なくとも9
5%の総板厚減少率で,鍛造加工及び圧延加工,或いは
圧延加工のみの一方向加工を施し,再結晶熱処理を施す
ことを特徴とするモリブデン板材の製造方法が得られ
る。
According to the present invention, the molybdenum powder produced by the method for producing the molybdenum raw material powder is press-sintered by the powder metallurgy method, and at least 9
A method for manufacturing a molybdenum sheet material is obtained, which is characterized by performing forging and rolling, or unidirectional processing only by rolling with a total sheet thickness reduction rate of 5%, and performing recrystallization heat treatment.

【0021】本発明によれば,前記モリブデン原料粉末
の製造方法によって製造されたモリブデン粉末を,粉末
冶金法でプレス焼結し,得られた焼結体に少なくとも8
5%の断面減少率で,孔圧延加工,転打加工,及び線引
き加工の内の少なくとも一種の一方向加工を施し,再結
晶熱処理を施すことを特徴とするモリブデン線棒材の製
造方法が得られる。
According to the present invention, the molybdenum powder produced by the method for producing the molybdenum raw material powder is press-sintered by the powder metallurgy method, and at least 8 is obtained in the obtained sintered body.
A method for producing a molybdenum wire rod characterized by performing recrystallization heat treatment with at least one kind of hole rolling, rolling, and drawing at a cross-section reduction rate of 5% is obtained. To be

【0022】ここで,本発明においては,上記方法によ
って得られた焼結体に,板材の場合は95%以上の総板
厚減少率で一方向圧延加工を付与し,又,線棒材の場合
は85%以上の総断面減少率で一方向加工を付与する。
この一方向加工と所定の加工率も添加量及び添加方法同
様,ランタンの整列長さや積層形成粒の形状,ひいては
高温での優れた特性や加工性を引き出す。
Here, in the present invention, the sintered body obtained by the above method is subjected to unidirectional rolling at a reduction rate of the total sheet thickness of 95% or more in the case of a plate material, and also in the case of a wire rod material. In this case, unidirectional processing is applied at a total area reduction rate of 85% or more.
The unidirectional processing and the predetermined processing rate as well as the addition amount and the addition method bring out the aligned length of the lanthanum, the shape of the laminated particles, and the excellent characteristics and workability at high temperature.

【0023】また,本発明において,原料粉末に硝酸ラ
ンタン溶液でLaをドープするのは,前述したように,
ドープ元素を細かく均一に添加するためであり,粉末−
粉末配合では比重の差や粒径の差等から,均一分散や微
粒分散は容易ではない。このように溶液添加したもの
は,焼結体の時点でドープ元素が細粒且つ均一分散して
おり,更に上記加工率および一方向加工を付与すること
によって,ドープ元素が加工方向に整配列し,その平均
配列長さを25μm以上にでき,再結晶熱処理時に板厚
および線棒径方向への粒成長を抑え,アスペクト比が2
0以上の粒で形成された積層組織が得られる。又,アス
ペクト比が20以上になると高温での引張強さが上昇す
るとともに,高温での垂下量(クリープ量)も急激に減
少し,板の場合,上記加工率以上の加工率を付与するこ
とによって,圧延方向に垂直な断面のアスペクト比も急
激に大きく20以上になる。そのため,本発明では,通
常は殆ど割れが発生して不可能な,圧延方向に平行な曲
げ加工も可能ならしめた。又,本発明の方法によって,
線棒材も純Moの再結晶材では不可能な折り曲げや折り
返し加工を可能ならしめた。
In the present invention, the doping of La into the raw material powder with the lanthanum nitrate solution is performed as described above.
This is because the doping element is added finely and uniformly.
Due to the difference in specific gravity and the difference in particle size in powder blending, uniform dispersion and fine particle dispersion are not easy. In the case of adding the solution in this way, the dope elements are fine-grained and uniformly dispersed at the time of the sintered body, and by further applying the above-mentioned processing rate and unidirectional processing, the dope elements are aligned in the processing direction. , Its average array length can be 25 μm or more, and suppresses grain growth in the plate thickness and wire rod radial direction during recrystallization heat treatment, and has an aspect ratio of 2
A laminated structure formed of 0 or more grains is obtained. When the aspect ratio is 20 or more, the tensile strength at high temperature rises, and the drooping amount (creep amount) at high temperature also sharply decreases. As a result, the aspect ratio of the cross section perpendicular to the rolling direction sharply increases to 20 or more. Therefore, in the present invention, it is possible to perform a bending process parallel to the rolling direction, which is usually impossible due to the occurrence of cracks. Also, according to the method of the present invention,
The wire rod material can be bent and folded back, which is not possible with a pure Mo recrystallized material.

【0024】[0024]

【実施例】以下,本発明の実施例について図面を参照し
て説明する。 (実施例1)平均粒径4.1μmのMo粉末に平均粒径
0.6μmのLaをLa元素に換算して0〜2.
0重量%添加し,擂潰機にて充分混合した粉末,及びM
oO粉末に,Mo元素当たり0〜2.0重量%のLa
元素に相当するLa成分をLa(NO)溶液として添
加し,乾燥後水素気流中で還元処理を施し,平均粒径
4.2μmの粉末を得た。これらの粉末を,1500k
gf/cmの圧力でプレス後,水素気流中1800℃
で焼結し焼結体を形成した。尚,図1(a)はこの焼結
体の金属組織を示す電子顕微鏡写真である。図1(b)
は比較のために,従来のようにLa成分を粉末で添加し
た実施例1と同様の原料粉末から実施例1と同様な方法
で製造した焼結体の金属組織を示す電子顕微鏡写真であ
る。図1(a)に示すように,本発明による酸化物への
溶液ドープの場合,焼結体中のLaの分布,及び径は結
晶粒が細かく均一に分散しているが,図1(b)に示す
粉末−粉末配合した比較例の場合は粒径(30μm以
上)が大きく且つ偏りがみられる。
Embodiments of the present invention will be described below with reference to the drawings. (Example 1) the average particle size La 2 O 3 having an average particle diameter of 0.6μm to Mo powder 4.1μm in terms of La element 0-2.
Powder added with 0% by weight and thoroughly mixed with a crusher, and M
0 to 2.0% by weight of La per Mo element in oO 2 powder
A La component corresponding to the element was added as a La (NO) 3 solution, dried and then subjected to a reduction treatment in a hydrogen stream to obtain a powder having an average particle size of 4.2 μm. These powders are 1500k
After pressing at a pressure of gf / cm 2 , in a hydrogen stream at 1800 ° C
And sintered to form a sintered body. 1 (a) is an electron micrograph showing the metal structure of this sintered body. Figure 1 (b)
For comparison, is an electron micrograph showing a metal structure of a sintered body manufactured by the same method as in Example 1 from the same raw material powder as in Example 1 in which the La component was added in powder as in the conventional case. As shown in FIG. 1 (a), in the case of solution doping of an oxide according to the present invention, the distribution and diameter of La in the sintered body are such that crystal grains are finely and uniformly dispersed, but FIG. In the case of the powder-powder blended comparative example shown in (1), the particle size (30 μm or more) is large and uneven.

【0025】これら実施例1及び比較例に係る焼結体を
用い,90%以上の板厚減少率での一方向圧延加工を施
したもの,および焼結体に67%の一方向圧延加工を施
した後90°方向を変えて再度一方向圧延を施し,90
%以上の総板厚減少率を付与した板(クロス圧延板)を
作製した。これらの板に1800℃で60分間の再結晶
熱処理を加え,積層組織を形成する断面の粒のLaの平
均整列長さ,アスペクト比を測定した。ここで,平均整
列長さは,積層組織の形状を決定する因子で,図2に示
すように,断面1における直線上に並んだLa,La酸
化物の列2a,2b…の長さを示している。即ち,L
a,La酸化物の両端を結んだ線分は,一直線上にあ
り,その直線をなす粒子列の互いに隣り合う粒子の間隔
が10μm未満であるものを一配列の長さとして,0.
1mm×0.1mmの正方形の範囲内に存在する全ての
列の平均長さを平均整列長さとして求めた。例えば,図
2においては,列2a,2bは同一列であるが,列2
b,2cは別の列である。
Using the sintered bodies according to Example 1 and Comparative Example, one-way rolling with a plate thickness reduction rate of 90% or more, and one-way rolling with 67% were performed on the sintered bodies. After the rolling, the direction is changed by 90 ° and unidirectional rolling is performed again.
A plate (cross-rolled plate) having a total plate thickness reduction rate of not less than% was produced. Recrystallization heat treatment was applied to these plates at 1800 ° C. for 60 minutes, and the average La alignment length and aspect ratio of the grains of the cross section forming the laminated structure were measured. Here, the average alignment length is a factor that determines the shape of the laminated structure, and as shown in FIG. 2, it indicates the length of the La, La oxide rows 2a, 2b, ... ing. That is, L
The line segment connecting both ends of the a and La oxides is on a straight line, and the one having a distance between adjacent particles of the straight line particle sequence of less than 10 μm as the length of one array is 0.
The average length of all the rows existing within the range of 1 mm × 0.1 mm square was determined as the average aligned length. For example, in FIG. 2, columns 2a and 2b are the same column, but column 2
b and 2c are separate columns.

【0026】また,アスペクト比は,材料の耐高温変形
特性を決定づける因子で,積層組織を形成する結晶粒の
幅Wに対する長さLの比である。図3にアスペクト比の
測定方法を示した。図3で示すように,積層組織の試料
断面11のほぼ中央に板厚方向に直線10を引き,その
線上にある結晶粒すべての幅Wと長さLとの比の値W/
Lを求め,その値の平均値Σ(W/L)/n(但しnは
測定結晶粒数)をアスペクト比とした。
The aspect ratio is a factor that determines the high temperature deformation resistance of the material, and is the ratio of the length L to the width W of the crystal grains forming the laminated structure. FIG. 3 shows a method of measuring the aspect ratio. As shown in FIG. 3, a straight line 10 is drawn in the plate thickness direction at approximately the center of the sample cross section 11 of the laminated structure, and the value W / the ratio of the width W to the length L of all the crystal grains on the line W /
L was determined, and the average value Σ (W / L) / n (where n is the number of measured crystal grains) was taken as the aspect ratio.

【0027】また,高温での引張強さや耐変形性,及び
室温付近での曲げ加工性等は,材料の適用可否を決定づ
ける。
Further, the tensile strength at high temperature, the deformation resistance, the bending workability at around room temperature, etc. determine the applicability of the material.

【0028】これら,整列長さ,アスペクト比,及び室
温付近での曲げ加工性等の測定結果を下記表1に示し
た。表1において,○印は図4(a)で示すように,曲
げ部に割れ発生がなく,△印は図4(b)で示すように
曲げ部両端に割れが発生し,×印は図4(c)で示すよ
うに,曲げ部全面に割れ発生が生じたことを示してい
る。
Table 1 below shows the measurement results of the alignment length, aspect ratio, bending workability at around room temperature, and the like. In Table 1, the circles show no cracks at the bends as shown in FIG. 4 (a), the triangles show cracks at both ends of the bends as shown in FIG. 4 (b), and the crosses show the figure. As shown in FIG. 4 (c), it indicates that cracking occurred on the entire bent portion.

【0029】[0029]

【表1】 上記表1で示すように,クロス圧延では圧延方向を変え
ると割れが発生しやすくなるとともに,一方向圧延の板
に比べて平均整列長さは短く,且つアスペクト比は小さ
いことが判明した。 (実施例2)実施例1で作製した板,及び純Mo及び前
記比較例に係る合金から試験片を切り出し下記表2の
(a)及び(b)で示す条件で,1800℃での引張試
験,及び耐変形試験を行った。その結果を図5に示す。
図5で示すように本発明の実施例2によるアスペクト比
20以上の積層組織を有するモリブデン材は,アスペク
ト比20未満のもの,純Mo,及びTZMに比べて大き
な引張強さを示すとともに変形量は極端に小さかった。
[Table 1] As shown in Table 1 above, it was found that when the rolling direction is changed in the cross rolling, cracks are more likely to occur, the average alignment length is shorter and the aspect ratio is smaller than that of the unidirectionally rolled plate. (Example 2) A tensile test at 1800 ° C was performed under the conditions shown in (a) and (b) of Table 2 below by cutting a test piece from the plate prepared in Example 1, pure Mo and the alloy according to the comparative example. , And a deformation resistance test were performed. The result is shown in FIG.
As shown in FIG. 5, the molybdenum material having a laminated structure with an aspect ratio of 20 or more according to Example 2 of the present invention has a greater tensile strength than that of an aspect ratio of less than 20, pure Mo, and TZM, and a deformation amount. Was extremely small.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】以上説明したように,本発明によれば,
モリブデン材において,耐垂下性,引張強さが大きく,
且つ,室温での曲げ加工や折り返し加工を可能ならしめ
る特性を持つ材料を提供するとともに,その特性を引き
出すべく積層組織を形成する粒のアスペクト比やドープ
元素の配列の長さを調整するための加工方法を提供する
ことができる。
As described above, according to the present invention,
Molybdenum material has high droop resistance and tensile strength,
In addition, to provide materials with properties that enable bending and folding at room temperature, and to adjust the aspect ratio of the grains that form the laminated structure and the length of the array of the doping elements to bring out those properties. A processing method can be provided.

【0032】したがって,本発明によれば,整列長さを
大きくすることにより,積層組織の形状を調整したり,
アスペクト比を大きくすることで,材料の耐高温変形特
性を高めることができるモリブデン材とその製造方法と
を提供することができる。
Therefore, according to the present invention, the shape of the laminated structure can be adjusted by increasing the alignment length,
By increasing the aspect ratio, it is possible to provide a molybdenum material that can enhance the high temperature deformation resistance of the material and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の実施例1に係るMo焼結体中の
ランタンの分散状況を説明するためのMo焼結体の金属
組織を示す電子顕微鏡写真である。 (b)は比較のために粉末でドープしたランタンの分散
状況を説明するためのMo焼結体の金属組織を示す電子
顕微鏡写真である。
FIG. 1 (a) is an electron micrograph showing the metal structure of a Mo sintered body for explaining the dispersion state of lanthanum in the Mo sintered body according to Example 1 of the present invention. (B) is an electron micrograph showing the metal structure of the Mo sintered body for explaining the dispersion state of the powder-doped lanthanum for comparison.

【図2】平均整列長さの説明図である。FIG. 2 is an explanatory diagram of an average alignment length.

【図3】アスペクト比の測定方法を概略的に示す図であ
る。
FIG. 3 is a diagram schematically showing a method of measuring an aspect ratio.

【図4】(a),(b),及び(c)は焼結体の試験片
の曲げ試験後の状態を示す図である。
4 (a), (b), and (c) are diagrams showing a state of a test piece of a sintered body after a bending test.

【図5】(a)1800℃におけるアスペクト比と引張
強さとの関係を示す図である。 (b)1800℃におけるアスペクト比と垂下量との関
係を示す図である。
FIG. 5 (a) is a diagram showing a relationship between an aspect ratio and tensile strength at 1800 ° C. (B) It is a figure which shows the relationship between the aspect ratio and the amount of droop at 1800 degreeC.

【符号の説明】[Explanation of symbols]

2a,2b… 列 10 直線 11 断面 2a, 2b ... Row 10 Straight line 11 Cross section

【手続補正書】[Procedure amendment]

【提出日】平成5年11月22日[Submission date] November 22, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】また,アスペクト比は,材料の耐高温変形
特性を決定づける因子で,積層組織を形成する結晶粒の
幅Wに対する長さLの比である。図3にアスペクト比の
測定方法を示した。図3で示すように,積層組織の試料
断面11のほぼ中央に板厚方向に直線10を引き,その
線上にある結晶粒すべての長さLと幅Wとの比の値L/
Wを求め,その値の平均値Σ(L/W)/n(但しnは
測定結晶粒数)をアスペクト比とした。
The aspect ratio is a factor that determines the high temperature deformation resistance of the material, and is the ratio of the length L to the width W of the crystal grains forming the laminated structure. FIG. 3 shows a method of measuring the aspect ratio. As shown in FIG. 3, a straight line 10 is drawn in the plate thickness direction at approximately the center of the sample cross section 11 of the laminated structure, and the value L / L of the ratio of the length L to the width W of all the crystal grains on the line is
W was determined, and the average value Σ (L / W) / n (where n is the number of crystal grains measured) was used as the aspect ratio.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ランタン元素に換算して0.05〜1.
0重量%のランタン成分を含み,圧延方向に平行な断面
が細長い結晶粒から構成された積層組織を有するモリブ
デン合金において,前記結晶粒は,少なくとも20のア
スペクト比を有することを特徴とするモリブデン材。
1. A lanthanum element of 0.05 to 1.
A molybdenum alloy having 0% by weight of a lanthanum component and having a layered structure in which a cross section parallel to the rolling direction is composed of elongated crystal grains, wherein the crystal grains have an aspect ratio of at least 20. .
【請求項2】 請求項1記載のモリブデン材において,
1500℃以上の高温での引張強さが純モリブデンの少
なくとも2倍であり,且つ変形量が純モリブデンの多く
とも1/2であることを特徴とするモリブデン材。
2. The molybdenum material according to claim 1, wherein
A molybdenum material having a tensile strength at a temperature of 1500 ° C. or higher that is at least twice that of pure molybdenum and a deformation amount that is at most ½ of that of pure molybdenum.
【請求項3】 請求項2記載のモリブデン材において,
前記ランタン成分は少なくとも25μmの平均整列長さ
を有することを特徴とするモリブデン材。
3. The molybdenum material according to claim 2,
The molybdenum material, wherein the lanthanum component has an average alignment length of at least 25 μm.
【請求項4】 請求項3記載のモリブデン材において,
前記ランタン成分は,Laであることを特徴とするモリ
ブデン材。
4. The molybdenum material according to claim 3,
The molybdenum material, wherein the lanthanum component is La.
【請求項5】 請求項3記載のモリブデン材において,
前記ランタン成分は,ランタン酸化物であることを特徴
とするモリブデン材。
5. The molybdenum material according to claim 3,
The molybdenum material, wherein the lanthanum component is lanthanum oxide.
【請求項6】 請求項1乃至5の内のいずれか記載のモ
リブデン材からなる板材部品であって,圧延加工方向に
平行な曲げ加工及び圧延加工方向に垂直な方向の曲げ加
工の内の少なくとも一種の曲げ加工を施されていること
を特徴とするモリブデン板状部品。
6. A plate member made of the molybdenum material according to any one of claims 1 to 5, which is at least one of a bending process parallel to the rolling direction and a bending process perpendicular to the rolling direction. A molybdenum plate-shaped component characterized by being subjected to a kind of bending process.
【請求項7】 請求項1乃至5の内のいずれか記載のモ
リブデン材からなる線棒状部品であって,曲げ加工及び
折り返し加工のうちの少なくとも一方の加工が施されて
いることを特徴とするモリブデン線棒状部品。
7. A wire rod component made of the molybdenum material according to claim 1, wherein at least one of bending and folding is performed. Molybdenum wire rod-shaped parts.
【請求項8】 二酸化モリブデン粉末に,モリブデン元
素の重量に対して0.05〜1.0重量%のランタン元
素を硝酸ランタン溶液として,添加し,乾燥後,水素気
流中で還元して,モリブデン粉末を得ることを特徴とす
るモリブデン原料粉末の製造方法。
8. A molybdenum dioxide powder is added with 0.05 to 1.0% by weight of lanthanum element as a lanthanum nitrate solution based on the weight of molybdenum element, dried and then reduced in a hydrogen stream to obtain molybdenum. A method for producing a molybdenum raw material powder, which comprises obtaining a powder.
【請求項9】 請求項8記載のモリブデン原料粉末の製
造方法によって製造されたモリブデン粉末を,粉末冶金
法でプレス焼結し,得られた焼結体に少なくとも95%
の総板厚減少率で,鍛造加工及び圧延加工,或いは圧延
加工のみの一方向圧延を施し,再結晶熱処理を施すこと
を特徴とするモリブデン板材の製造方法。
9. The molybdenum powder produced by the method for producing a molybdenum raw material powder according to claim 8, is press-sintered by a powder metallurgy method, and at least 95% is obtained in the obtained sintered body.
A method for producing a molybdenum sheet material, which comprises performing forging and rolling, or unidirectional rolling only by rolling at a total sheet thickness reduction rate, and then performing recrystallization heat treatment.
【請求項10】 請求項8記載のモリブデン原料粉末の
製造方法によって製造されたモリブデン粉末を,粉末冶
金法でプレス焼結し,得られた焼結体に少なくとも85
%の断面減少率で,孔圧延加工,転打加工,及び線引き
加工の内の少なくとも一種の一方向加工を施し,再結晶
熱処理を施すことを特徴とするモリブデン線棒材の製造
方法。
10. A molybdenum powder produced by the method for producing a molybdenum raw material powder according to claim 8, press-sintered by a powder metallurgy method, and at least 85
A method for producing a molybdenum wire rod, which comprises subjecting at least one type of unidirectional processing of hole rolling, rolling, and drawing with a cross-sectional reduction rate of%, and performing recrystallization heat treatment.
JP27323593A 1993-08-10 1993-08-10 Molybdenum material and production thereof Pending JPH0754093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27323593A JPH0754093A (en) 1993-08-10 1993-08-10 Molybdenum material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27323593A JPH0754093A (en) 1993-08-10 1993-08-10 Molybdenum material and production thereof

Publications (1)

Publication Number Publication Date
JPH0754093A true JPH0754093A (en) 1995-02-28

Family

ID=17525008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27323593A Pending JPH0754093A (en) 1993-08-10 1993-08-10 Molybdenum material and production thereof

Country Status (1)

Country Link
JP (1) JPH0754093A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350709A (en) * 2004-06-09 2005-12-22 Allied Material Corp Seamless pipe made of molybdenum, and manufacturing method therefor
CN102294490A (en) * 2011-08-03 2011-12-28 成都虹波实业股份有限公司 Crude molybdenum powder preparing method
WO2012132489A1 (en) * 2011-03-25 2012-10-04 株式会社アライドマテリアル Molybdenum material
CN103706802A (en) * 2013-12-18 2014-04-09 金堆城钼业股份有限公司 Method for preparing lanthanum-doped alloy molybdenum powder
JP2019513667A (en) * 2016-03-25 2019-05-30 プランゼー エスエー Glass melting member
CN116875838A (en) * 2023-09-08 2023-10-13 西安格美金属材料有限公司 Preparation method of potassium-doped molybdenum alloy plate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350709A (en) * 2004-06-09 2005-12-22 Allied Material Corp Seamless pipe made of molybdenum, and manufacturing method therefor
WO2012132489A1 (en) * 2011-03-25 2012-10-04 株式会社アライドマテリアル Molybdenum material
US20140014235A1 (en) * 2011-03-25 2014-01-16 A.L.M.T. Corp. Molybdenum material
CN102294490A (en) * 2011-08-03 2011-12-28 成都虹波实业股份有限公司 Crude molybdenum powder preparing method
CN102294490B (en) * 2011-08-03 2016-06-29 成都虹波实业股份有限公司 A kind of method producing thick molybdenum powder
CN103706802A (en) * 2013-12-18 2014-04-09 金堆城钼业股份有限公司 Method for preparing lanthanum-doped alloy molybdenum powder
JP2019513667A (en) * 2016-03-25 2019-05-30 プランゼー エスエー Glass melting member
US11072553B2 (en) 2016-03-25 2021-07-27 Plansee Se Glass-melting component
CN116875838A (en) * 2023-09-08 2023-10-13 西安格美金属材料有限公司 Preparation method of potassium-doped molybdenum alloy plate
CN116875838B (en) * 2023-09-08 2023-11-21 西安格美金属材料有限公司 Preparation method of potassium-doped molybdenum alloy plate

Similar Documents

Publication Publication Date Title
DE1935329C3 (en) Process for the production of workpieces from dispersion-reinforced metals or alloys
EP1925683B1 (en) Cobalt-base alloy with high heat resistance and high strength and process for producing the same
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
RU2245760C2 (en) Method for making articles of metallic alloy subjected to cold working (variants)
JP4659278B2 (en) Tungsten sintered body and manufacturing method thereof, tungsten plate material and manufacturing method thereof
EP0119438B1 (en) Molybdenum board and process of manufacturing the same
EP4257715A1 (en) Formed part with high-temperature persistence and low anisotropy, forming method and forming powder
CN109554578B (en) Negative expansion memory alloy and preparation method thereof
JPH0754093A (en) Molybdenum material and production thereof
JPH02301545A (en) Production of high temperature creep resist- ing semifinished product or molded parts made of high melting temperature metal
JP3521290B2 (en) Molybdenum thick bar and method for producing the same
JP4108943B2 (en) Molybdenum sintered body, molybdenum plate material, and manufacturing method thereof
JP3063340B2 (en) Production method of fine tungsten carbide powder
JPH0617557B2 (en) Method for manufacturing molybdenum jig for high temperature heat treatment
JP2002226935A (en) Thorium-tungsten alloy, thorium-tungsten wire, method for manufacturing the same, thorium-tungsten wire coil, and cathode structure for electron tube
EP1546422B1 (en) Method of forming sag-resistant molybdenum-lanthana alloys
JPH11152534A (en) Tungsten sheet and its production
US3285736A (en) Powder metallurgical alloy
WO2022215551A1 (en) Tungsten material
JPS6048577B2 (en) Manufacturing method of reinforced Pt
JPH0617556B2 (en) Method for manufacturing molybdenum material
JP2932653B2 (en) Skid rail for heating furnace and method of manufacturing the same
JP2002363617A (en) Molybdenum sheet and its manufacturing method
JPH07242491A (en) Dispersion strengthening molybdenum single crystal and production thereof
JPH01205054A (en) Molybdenum material and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011003