JPH07278767A - Large-diameter molybdenum rod and its production - Google Patents

Large-diameter molybdenum rod and its production

Info

Publication number
JPH07278767A
JPH07278767A JP6097073A JP9707394A JPH07278767A JP H07278767 A JPH07278767 A JP H07278767A JP 6097073 A JP6097073 A JP 6097073A JP 9707394 A JP9707394 A JP 9707394A JP H07278767 A JPH07278767 A JP H07278767A
Authority
JP
Japan
Prior art keywords
molybdenum
diameter
lanthanum
rolling
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6097073A
Other languages
Japanese (ja)
Other versions
JP3521290B2 (en
Inventor
Narimitsu Tanabe
成光 田辺
Katsutsugu Takebe
克嗣 武部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP09707394A priority Critical patent/JP3521290B2/en
Publication of JPH07278767A publication Critical patent/JPH07278767A/en
Application granted granted Critical
Publication of JP3521290B2 publication Critical patent/JP3521290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a large-diameter molybdenum rod having a laminated structure free from defects and having excellent high-temp. strength by incorporating La or its oxide at a specific ratio into this rod and working this rod to a specific diameter by caliber rolling of a specific reduction rate of section. CONSTITUTION:The large-diameter molybdenum rod contg. La or a lanthanum component consisting of its oxide at 0.10 to 1.0wt.% in terms of La is subjected to caliber rolling or caliber rolling and roll striking at a high reduction ratio of a reduction rate of >=75% cross section to obtain a diameter of >=10mm by which the laminated structure is formed without defects and the large-diameter molybdenum rod having excellent sagging resistance is obtd. Further, this large-diameter molybdenum rod is subjected to a recrystallization heat treatment to form the laminated structure composed of the crystal grains slender in the section parallel with the working direction described above and the aspect ratio of the crystal grains is made into at least 5. The impact resistance at room temp. is thus improved. The large-diameter molybdenum rod is obtd. by adding a prescribed ratio of an La(NO3)3 soln. to MoO2 powder and drying the mixture, then subjecting the mixture to hydrogen reduction, then to press sintering to a bar shape by a powder metallurgical method and further to caliber rolling at a surface temp. of <=1050 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,パイプや太棒,特に支
柱,ヒータ,ボルト,ナット,フック等の高温炉用材料
やX線回転陽極用軸材料等に用いられる高温強度に優れ
た積層構造組織を有するモリブデン太棒及びモリブデン
熱処理太棒とそれらの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminate having excellent high-temperature strength, which is used for pipes and thick rods, particularly columns, heaters, bolts, nuts, hooks and the like for high-temperature furnaces and X-ray rotary anode shaft materials. The present invention relates to a molybdenum thick bar having a structural structure, a molybdenum heat-treated thick bar, and a method for producing them.

【0002】[0002]

【従来の技術】一般に高温下で使用されるモリブデン
は,再結晶によって使用中に容易に変形する。この変形
防止のため,板材や細線では純モリブデンに代わって,
再結晶温度が高く高温強度の大きいドープドモリブデン
がよく使用される。このドープドモリブデンの代表的な
ものとして,チタン,ジルコニウム,炭素を含むTZM
合金が知られている。
2. Description of the Related Art Generally, molybdenum used at high temperature is easily deformed during use by recrystallization. In order to prevent this deformation, instead of pure molybdenum in plate materials and fine wires,
Doped molybdenum, which has a high recrystallization temperature and a high high temperature strength, is often used. A typical example of this doped molybdenum is TZM containing titanium, zirconium, and carbon.
Alloys are known.

【0003】ところで,十分な高温強度を有する高融点
金属の使用温度を著しく高めるため,モリブデンに特定
の元素を添加し,圧延,鍛造,線引き等の機械的変形加
工を施し,再結晶熱処理によって積層組織にした材料が
知られている。この種の材料としては,アルミニウムA
l(エル),ケイ素(Si),カリウム(K)の一種又
は二種以上の添加が必須で加工率85%以上の機械加工
を施し,再結晶処理を施して積層組織にした材料が知ら
れている(特公昭61−27459号参照,特開昭59
−150071号公報,米国特許4514234号明細
書参照,以下従来技術1と呼ぶ)。この材料は積層組織
形成にKのガス体痕の配列が大きく寄与するためKの添
加は必須である。
By the way, in order to remarkably raise the use temperature of a refractory metal having sufficient high temperature strength, a specific element is added to molybdenum, mechanical deformation processing such as rolling, forging, and wire drawing is performed, and lamination is performed by recrystallization heat treatment. Tissue materials are known. This kind of material is aluminum A
It is necessary to add one or two or more of l (L), silicon (Si), and potassium (K), and a material having a laminated structure obtained by mechanical processing with a processing rate of 85% or more and recrystallization treatment is known. (See Japanese Examined Patent Publication No. 61-27459, JP-A-59)
-150071, U.S. Pat. No. 4,514,234, hereinafter referred to as Prior Art 1). In this material, the addition of K is essential because the arrangement of K gas traces greatly contributes to the formation of the laminated structure.

【0004】一方,添加元素としてKを使用せずに再結
晶熱処理後積層組織を有する材料の特許も知られている
(プランゼ(Plansee)特許:特許出願公表平1−502
680号公報,米国特許第4950327号明細書対
応,参照,以下従来技術2と呼ぶ)。
On the other hand, a patent of a material having a laminated structure after recrystallization heat treatment without using K as an additional element is also known (Plansee patent: Patent Application Publication No. 1-502).
680 gazette, U.S. Pat. No. 4,950,327, corresponding to, reference, hereinafter referred to as prior art 2).

【0005】[0005]

【発明が解決しようとする課題】しかし,前述のTZM
合金は再結晶温度が1300℃前後に低く,再結晶後は
等軸結晶粒組織となるため高温強度の向上は望めず,純
モリブデンに代わる材料として使用できる温度範囲は知
られており,再結晶温度以下の狭い使用分野に限定され
る。
However, the above-mentioned TZM
The recrystallization temperature of the alloy is low around 1300 ° C, and after recrystallization, the equiaxed grain structure cannot be expected to improve the high temperature strength, and the temperature range that can be used as a material to replace pure molybdenum is known. Limited to a narrow field of use below temperature.

【0006】しかし,従来技術1に示されているように
Kの添加は焼結体の密度を高めにくく,結果としてその
後の機械的変形加工時の割れ多発の原因となる。又,K
のドープ孔をモリブデン加工体内に細かく配列させて,
再結晶時の粒成長方向をコントロールすることによっ
て,積層組織を形成させる機構であるため,ドープ孔の
大きさ,配列長さ,孔間隔等が大きく影響する。したが
って,焼結体のドープ孔の大きさをコントロールするこ
とは難しく,加工によって小さなドープ孔の配列体にす
るには,高い加工率が必要であり,加工によって割れの
発生しやすいこの材料の太棒は十分な加工率が得れず,
又,加工性の点から適用されていない。
However, as shown in the prior art 1, the addition of K is difficult to increase the density of the sintered body, resulting in frequent occurrence of cracks during the subsequent mechanical deformation processing. Also, K
Dope holes are finely arranged in the molybdenum processed body,
Since this is a mechanism for forming a laminated structure by controlling the grain growth direction during recrystallization, the size of the doped holes, the array length, the hole spacing, etc. have a large effect. Therefore, it is difficult to control the size of the dope holes in the sintered body, and it is necessary to have a high processing rate to form an array of small dope holes by working, and this material is susceptible to cracking. The bar does not have a sufficient processing rate,
Also, it is not applied in terms of workability.

【0007】従来技術2も焼結体に85%以上の変形度
の付与が必須であるが,前記材料と異なり,Kを添加し
ないだけ加工性は改善されているものの,径の太い棒に
は適用されていない。これは,太い焼結体を孔圧延加工
するとき,図1の電子顕微鏡写真に示されるように,直
径40mmに達する迄の加工中に棒の中央付近に穴が開
くため,特性を出すための太い焼結体を加工することが
できないからである。つまり,純モリブデンより再結晶
温度が高く,再結晶後に積層組織を形成することによっ
て,高温での強度に優れ,再結晶後の室温衝撃強さの大
きい太棒は無く,直径10mm以上の太い棒の殆どが加
工性の良い純モリブデンもしくはTZMである。
Prior art 2 also requires that a degree of deformation of 85% or more be imparted to the sintered body, but unlike the above materials, workability is improved by not adding K, but for rods having a large diameter, Not applicable This is because when a thick sintered body is hole-rolled, as shown in the electron micrograph of Fig. 1, a hole opens near the center of the bar during the process until it reaches a diameter of 40 mm, so that it is necessary to obtain characteristics. This is because a thick sintered body cannot be processed. In other words, since the recrystallization temperature is higher than that of pure molybdenum and the laminated structure is formed after recrystallization, there is no thick bar with excellent strength at high temperature and high room temperature impact strength after recrystallization, and a thick bar with a diameter of 10 mm or more. Most of them are pure molybdenum or TZM with good workability.

【0008】そこで本発明の技術的課題は,今まで提供
されなかった,高温での耐垂下性や再結晶後の室温での
耐衝撃性が純モリブデンやTZM合金より大きい,穴欠
陥の無いモリブデン太棒を提供することにある。
Therefore, the technical problem of the present invention is that molybdenum having no hole defect, which has not been provided so far, has higher droop resistance at high temperature and impact resistance at room temperature after recrystallization than pure molybdenum or TZM alloy. To provide a thick rod.

【0009】また,本発明の技術的課題は,前記モリブ
デン太棒において,前記したように特性を引き出すべく
積層組織を欠陥無く形成させるためのモリブデン太棒の
製造方法を提供することにある。
A technical object of the present invention is to provide a method for manufacturing a molybdenum thick bar for forming a laminated structure without defects in the molybdenum thick bar so as to bring out the characteristics as described above.

【0010】[0010]

【課題を解決するための手段】積層組織が耐垂下性(耐
クリープ特性)を向上させることはよく知られている。
この積層組織を形成させるために各種元素のドープが試
みられている。本発明はモリブデン酸化物に硝酸ランタ
ン溶液状でランタンを添加し,乾燥後水素気流中で還元
してできたMo粉末を,通常の粉末冶金法でプレス,焼
結し,0.10〜1.0重量%のランタンをランタン及
び/又はランタン酸化物の形で含む焼結体を得る。含有
ランタン量を0.10〜1.0%としたのは,0.10
%以下の場合,高加工率を付与してもアスペクト比が5
未満と小さく高温での引張り強さなどの特性が出ない。
一方,1.0%を超えるとプレス体が吸湿によって経時
的に割れを発生しやすく,又,プレス後速やかに焼結に
付した焼結体でも添加物の影響で,純モリブデンに比べ
て変形しにくいため,孔型圧延時に端部から割れが発生
しやすく,歩留まりの点で工業的では無い。又,1.0
%を超えても特性の向上は見られない。この焼結体にア
スペクト比が5以上になるように総断面減少率で75%
以上,好ましくはアスペクト比が10以上になるように
85%以上の孔型圧延加工を施す。特性はアスペクト比
によってきまり,少なくとも5以上,好ましくは10以
上にしたほうがよい。このとき,焼結体あるいは孔型圧
延加工された加工材の径が40mmになるまでは,孔型
圧延時の材料温度に十分注意を払う必要がある。通常,
モリブデンに孔型圧延加工を施す場合には1100℃〜
1300℃で加熱後7〜8回の孔型圧延を繰り返すが,
太径焼結体の孔型圧延加工の場合は直径40mmになる
までは一回の加熱で材料表面の温度に注意しながら数回
の圧延に止めねばならない。数回圧延を繰り返すと材料
表面の温度は約1050℃となり,更に圧延を継続させ
ると内部と表面近傍の温度差が大きくなるとともに,表
面付近の温度低下に伴い変形抵抗が増し,圧延加工時の
塑性浸透度が変わり,加工方向への引っ張り応力や変形
量(延び)に表面近傍と内部で差が生じ,又,中央付近
は棒長方向に対して垂直に90°角度を変えて交互にか
かる力に追随した変形ができず,結果として中央付近に
加工方向に沿った穴が開く。
It is well known that a laminated structure improves droop resistance (creep resistance).
Doping of various elements has been attempted in order to form this laminated structure. In the present invention, Mo powder obtained by adding lanthanum in the form of lanthanum nitrate solution to molybdenum oxide, drying and reducing in a hydrogen stream is pressed and sintered by an ordinary powder metallurgy method to obtain 0.10 to 1. A sintered body is obtained which contains 0% by weight of lanthanum in the form of lanthanum and / or lanthanum oxide. The amount of lanthanum contained was 0.10 to 1.0% because it was 0.10.
%, The aspect ratio is 5 even if a high processing rate is given.
It is as small as less than 10 and does not show properties such as tensile strength at high temperature.
On the other hand, when the content exceeds 1.0%, the pressed body is apt to crack with time due to moisture absorption, and even the sintered body which is immediately sintered after pressing is deformed as compared with pure molybdenum due to the effect of additives. Since it is difficult to do so, cracks are likely to occur from the edges during die rolling, which is not industrial in terms of yield. Also, 1.0
Even if it exceeds%, no improvement in characteristics is observed. The total cross-section reduction rate of this sintered body is 75% so that the aspect ratio becomes 5 or more.
Above, preferably, 85% or more of the hole rolling is performed so that the aspect ratio becomes 10 or more. The characteristics depend on the aspect ratio, and at least 5 or more, preferably 10 or more is preferable. At this time, it is necessary to pay sufficient attention to the material temperature during the groove rolling until the diameter of the sintered body or the material subjected to the groove rolling reaches 40 mm. Normal,
1100 ° C-when molybdenum is subjected to a hole rolling process
After heating at 1300 ℃, repeat the 7-8 times of die rolling,
In the case of the hole rolling of a large-diameter sintered body, it is necessary to stop the rolling several times until the diameter reaches 40 mm, paying attention to the temperature of the material surface by heating once. When rolling is repeated several times, the temperature of the material surface becomes about 1050 ° C, and if the rolling is continued further, the temperature difference between the inside and the surface increases, and the deformation resistance increases as the temperature near the surface decreases. The plastic permeability changes, and the tensile stress in the working direction and the amount of deformation (elongation) differ between the surface vicinity and the interior, and the center area alternates by changing the 90 ° angle perpendicular to the rod length direction. Deformation that follows the force cannot be performed, and as a result, a hole along the machining direction opens near the center.

【0011】中央に穴開き欠陥を発生させずに高い加工
率を付与し,再結晶後に積層組織を形成する太棒を得る
には,直径40mmまでは表面温度が1050℃以下に
ならない温度範囲で孔型圧延加工を施せば良い。そのた
め,1回の加熱での圧延回数を加熱温度によってコント
ロールする必要がある。下限温度は高い方がよいが,生
産性と品質の兼ね合いで1050℃位が適当である。こ
れによって,従来提供されていなかった,再結晶温度が
高く,高温強度の大きい,且つ,再結晶後の室温強度の
大きいモリデブン棒の提供を可能ならしめた。
In order to obtain a thick bar which gives a high processing rate without generating a hole-punching defect in the center and forms a laminated structure after recrystallization, in the temperature range where the surface temperature does not fall below 1050 ° C. up to a diameter of 40 mm. It suffices to carry out hole rolling. Therefore, it is necessary to control the number of rollings in one heating by the heating temperature. The lower limit temperature is preferably higher, but about 1050 ° C is suitable in terms of both productivity and quality. As a result, it has become possible to provide a moribend bar which has a high recrystallization temperature, a high temperature strength, and a room temperature strength after recrystallization, which have not been provided in the past.

【0012】[0012]

【実施例】以下,本発明の実施例について,図面を参照
して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】酸化モリブデン(MoO2 )粉末にMo当
たり,0%,0.06%(焼結体中の残量は0.05
%),0.15%(0.12%),1.0%(0.86
%),1.5重量%(1.30%)のLa分をLa(N
O)3 溶液で添加し,乾燥後,水素気流中で還元処理を
施した平均粒径4.2μmの粉末を作製した。これらの
粉末を1500kgf/cm2 の圧力でプレス後,水素
気流中1800℃で10時間加熱焼結し,直径45m
m,60mm,80mmの焼結体を得た。これらの焼結
体を1100℃〜1400℃に加熱しながら1回の孔型
圧延で直径を1mmづつ細くしていく加工を施した。こ
こで孔型圧延とは,溝ロールとも呼ばれる加工方法で,
ロール面に断面半円形状の溝をこのロールの周方向に夫
々形成された上下一対のロールを用いた圧延加工方法で
あり,この溝は段階的にその寸法が大きいものから小さ
いものへとロールの長さ方向に約10本並列に形成され
ており,これらの溝に棒材を段階的に挿入して加工が行
われている。このとき,1回の加熱での孔型圧延回数を
変えながら表面温度を測るとともに,圧延後,超音波探
傷機にて欠陥の有無を確認した。その結果を下記表1に
示した。また,得られた棒材のアスペクト比と引張り強
さとの関係を図1に,加工率とアスペクト比との関係を
図2に,また,引張り強さ,加工率,アスペクト比,及
び加工性についてを下記表2に示した。
In molybdenum oxide (MoO 2 ) powder, the content of Mo is 0%, 0.06% (the remaining amount in the sintered body is 0.05%).
%), 0.15% (0.12%), 1.0% (0.86)
%), And 1.5% by weight (1.30%) of La content to La (N
O) 3 solution was added, dried, and then reduced in a hydrogen stream to prepare a powder having an average particle size of 4.2 μm. These powders were pressed at a pressure of 1500 kgf / cm 2 and then heat-sintered in a hydrogen stream at 1800 ° C. for 10 hours to give a diameter of 45 m.
m, 60 mm, and 80 mm sintered bodies were obtained. These sintered bodies were heated to 1100 ° C. to 1400 ° C. and subjected to a process of reducing the diameter by 1 mm by one-time rolling. Here, hole rolling is a processing method called groove roll,
This is a rolling method that uses a pair of upper and lower rolls, each of which has a groove with a semicircular cross-section formed in the roll surface in the circumferential direction, and this groove is rolled stepwise from a large size to a small size. About 10 rods are formed in parallel in the length direction, and the rods are inserted into these grooves step by step for processing. At this time, the surface temperature was measured while changing the number of times of groove rolling in one heating, and the presence or absence of defects was confirmed by an ultrasonic flaw detector after rolling. The results are shown in Table 1 below. The relationship between the aspect ratio and the tensile strength of the obtained bar is shown in Fig. 1, the relationship between the working ratio and the aspect ratio is shown in Fig. 2, and the tensile strength, working ratio, aspect ratio, and workability are shown. Is shown in Table 2 below.

【0014】下記表1から,本発明の実施例に係る棒材
は,穴欠陥等は全く見当たらなかった。
From Table 1 below, no hole defects were found in the rods according to the examples of the present invention.

【0015】また,図1で示すように,アスペクト比が
大きくなると引張り強さは増加するが,積層組織の特性
をいかすためのアスペクト比は5以上,望ましくは10
以上である。さらに,図2で示されるように棒径によっ
ても異なるが(焼結体の径が異なるため)少なくとも5
のアスペクト比を得るには少なくとも75%,さらに好
ましくは安定した特性を得るためには80%以上の加工
率が必要である。
Further, as shown in FIG. 1, the tensile strength increases as the aspect ratio increases, but the aspect ratio for utilizing the characteristics of the laminated structure is 5 or more, preferably 10 or more.
That is all. Further, as shown in FIG. 2, although it depends on the rod diameter (because the diameter of the sintered body is different), at least 5
A processing rate of at least 75% is required to obtain an aspect ratio of, and more preferably 80% or more to obtain stable characteristics.

【0016】又,下記表2でも示されるように,ランタ
ン成分の含有量をLaに換算して,重量比で0.1%未
満では加工率が高くても,又含有量が0.1%以上でも
加工率が75%未満ではアスペクト比は5未満となり,
効果は期待できない。又,含有量が1%を超えるとプレ
ス後数時間で吸湿によるクラックが発生したり,加工性
が悪く加工時に端部から割れが発生しやすく,歩留まり
の低下をきたすので,ランタン成分の含有量は,Laに
換算して重量比で0.1%〜1.0%の範囲が好ましい
ことが判明した。
Further, as shown in Table 2 below, when the content of the lanthanum component is converted to La, if the weight ratio is less than 0.1%, the processing rate is high, but the content is 0.1%. Even if the processing rate is less than 75%, the aspect ratio will be less than 5,
The effect cannot be expected. Also, if the content exceeds 1%, cracks due to moisture absorption will occur within a few hours after pressing, or the workability will be poor and cracks will easily occur from the edges during processing, leading to a decrease in yield. Was found to be preferably in the range of 0.1% to 1.0% by weight in terms of La.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】以上,説明したように,本発明によれ
ば,高温での耐垂下性や再結晶後の室温での耐衝撃性が
純モリブデンやTZM合金より大きい,穴欠陥の無いモ
リブデン太棒を提供することができる。
As described above, according to the present invention, the molybdenum-rich molybdenum having no hole defect, which has greater droop resistance at high temperatures and impact resistance at room temperature after recrystallization than pure molybdenum or TZM alloys. A stick can be provided.

【0020】また,本発明によれば,このようなモリブ
デン太棒の特性を引き出すべく積層組織を欠陥なく形成
させるためのモリブデン太棒の製造方法を提供すること
ができる。
Further, according to the present invention, it is possible to provide a method for manufacturing a molybdenum thick bar for forming a laminated structure without defects so as to bring out the characteristics of the molybdenum thick bar.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るモリブデン太棒のアスペ
クト比と引張り強さとの関係を示す図である。
FIG. 1 is a diagram showing a relationship between an aspect ratio and a tensile strength of a molybdenum thick bar according to an example of the present invention.

【図2】本発明の実施例に係るモリブデン太棒の加工率
とアスペクト比との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a processing rate and an aspect ratio of a molybdenum thick bar according to an example of the present invention.

【図3】従来のモリブデン太棒の断面の金属組織を示す
電子顕微鏡写真である。
FIG. 3 is an electron micrograph showing a metal structure of a cross section of a conventional thick bar of molybdenum.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ランタン元素に換算して0.10〜1.
0重量%のランタン成分をランタン及びランタン酸化物
の少くとも一方の形態で含み,断面減少率で75%以上
の孔型圧延加工,或いは孔型圧延と転打の加工を施すこ
とによって少くとも10mmの直径を有することを特徴
とするモリブデン太棒。
1. 0.10 to 1.
It contains at least 0% by weight of lanthanum component in the form of at least one of lanthanum and lanthanum oxide, and has a cross-section reduction rate of at least 75%, or at least 10 mm by performing groove rolling and rolling. A thick bar of molybdenum having a diameter of.
【請求項2】 請求項1記載の加工処理を施されたモリ
ブデン太棒に再結晶熱処理を施したモリブデン熱処理材
料であって,前記加工方向に平行な断面が細長い結晶粒
から構成された積層組織を呈し,前記結晶粒は少なくと
も5のアスペクト比(幅に対する長さの比)を有するこ
とを特徴とするモリブデン熱処理太棒。
2. A molybdenum heat treatment material obtained by subjecting the thick molybdenum bar processed according to claim 1 to recrystallization heat treatment, wherein the cross-section parallel to the processing direction is composed of elongated crystal grains. And the crystal grains have an aspect ratio (ratio of length to width) of at least 5.
【請求項3】 二酸化モリブデン粉末(MoO2 )に,
モリブデン元素の重量に対して0.10〜1.0重量%
ランタン成分を含むモリブデン粉末となるように硝酸ラ
ンタン溶液として添加し,乾燥後,水素気流中で還元処
理を施して得られた粉末を粉末冶金法で棒状にプレス焼
結し,得られた焼結体を,直径40mmに達するまでは
加工時の材料表面温度を1050℃以上に保ちつつ,総
面積減少率75%以上の孔型圧延加工,或いは孔型圧延
と転打の加工を施すことを特徴とするモリデブン太棒の
製造方法。
3. A molybdenum dioxide powder (MoO 2 ),
0.10 to 1.0% by weight based on the weight of molybdenum element
A molybdenum powder containing a lanthanum component was added as a lanthanum nitrate solution, dried, and then subjected to reduction treatment in a hydrogen stream, and the powder obtained was press-sintered into a rod shape by powder metallurgy. Characteristically, the material surface temperature during processing is kept at 1050 ℃ or higher until the diameter reaches 40 mm, and the total area reduction rate is 75% or more. The method of manufacturing the Moribend Thick Bar.
【請求項4】 請求項3記載の製造方法によって製造さ
れたモリブデン太棒に,再結晶熱処理を施すことを特徴
とするモリデブン熱処理太棒の製造方法。
4. A method for producing a Molideven heat-treated thick bar, which comprises subjecting a molybdenum thick rod manufactured by the method according to claim 3 to a recrystallization heat treatment.
JP09707394A 1994-04-12 1994-04-12 Molybdenum thick bar and method for producing the same Expired - Fee Related JP3521290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09707394A JP3521290B2 (en) 1994-04-12 1994-04-12 Molybdenum thick bar and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09707394A JP3521290B2 (en) 1994-04-12 1994-04-12 Molybdenum thick bar and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07278767A true JPH07278767A (en) 1995-10-24
JP3521290B2 JP3521290B2 (en) 2004-04-19

Family

ID=14182471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09707394A Expired - Fee Related JP3521290B2 (en) 1994-04-12 1994-04-12 Molybdenum thick bar and method for producing the same

Country Status (1)

Country Link
JP (1) JP3521290B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363617A (en) * 2001-06-13 2002-12-18 Allied Material Corp Molybdenum sheet and its manufacturing method
JP2005350709A (en) * 2004-06-09 2005-12-22 Allied Material Corp Seamless pipe made of molybdenum, and manufacturing method therefor
CN103203600A (en) * 2013-04-12 2013-07-17 金堆城钼业股份有限公司 Method for producing molybdenum electrode bar by means of precision forging
CN103203601A (en) * 2013-04-12 2013-07-17 金堆城钼业股份有限公司 Method for producing molybdenum electrode bar by means of die forging
CN103433490A (en) * 2013-08-26 2013-12-11 四川省有色冶金研究院有限公司 Method for preparing molybdenum semi-finished products
WO2017146139A1 (en) * 2016-02-26 2017-08-31 株式会社アライドマテリアル Molybdenum crucible
CN111187958A (en) * 2020-02-19 2020-05-22 西安交通大学 Mo powder/MoO2Method for preparing nano lanthanum-molybdenum oxide alloy by doping with lanthanum molybdate amine powder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363617A (en) * 2001-06-13 2002-12-18 Allied Material Corp Molybdenum sheet and its manufacturing method
JP2005350709A (en) * 2004-06-09 2005-12-22 Allied Material Corp Seamless pipe made of molybdenum, and manufacturing method therefor
CN103203601B (en) * 2013-04-12 2015-07-29 金堆城钼业股份有限公司 Die forging is adopted to prepare the method for molybdenum electrode bar
CN103203601A (en) * 2013-04-12 2013-07-17 金堆城钼业股份有限公司 Method for producing molybdenum electrode bar by means of die forging
CN103203600B (en) * 2013-04-12 2015-07-29 金堆城钼业股份有限公司 Adopt finish forge legal system for the method for molybdenum electrode bar
CN103203600A (en) * 2013-04-12 2013-07-17 金堆城钼业股份有限公司 Method for producing molybdenum electrode bar by means of precision forging
CN103433490A (en) * 2013-08-26 2013-12-11 四川省有色冶金研究院有限公司 Method for preparing molybdenum semi-finished products
WO2017146139A1 (en) * 2016-02-26 2017-08-31 株式会社アライドマテリアル Molybdenum crucible
CN108700378A (en) * 2016-02-26 2018-10-23 联合材料公司 Molybdenum crucible
JPWO2017146139A1 (en) * 2016-02-26 2018-12-20 株式会社アライドマテリアル Molybdenum crucible
CN108700378B (en) * 2016-02-26 2019-11-15 联合材料公司 Molybdenum crucible
US10858759B2 (en) 2016-02-26 2020-12-08 A.L.M.T. Corp. Molybdenum crucible
CN111187958A (en) * 2020-02-19 2020-05-22 西安交通大学 Mo powder/MoO2Method for preparing nano lanthanum-molybdenum oxide alloy by doping with lanthanum molybdate amine powder

Also Published As

Publication number Publication date
JP3521290B2 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
CN106062235B (en) The method for being used to prepare molybdenum or the band containing molybdenum
EP2868759B1 (en) ALPHA + BETA TYPE Ti ALLOY AND PROCESS FOR PRODUCING SAME
RU2245760C2 (en) Method for making articles of metallic alloy subjected to cold working (variants)
US5124121A (en) Titanium base alloy for excellent formability
JP6889418B2 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
CN109154037B (en) Alpha-beta titanium alloys with improved high temperature properties and superplasticity
US3236699A (en) Tungsten-rhenium alloys
US7442225B2 (en) High strength high toughness Mo alloy worked material and method for production thereof
US2666721A (en) Process of producing ductile molybdenum
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
JPH07278767A (en) Large-diameter molybdenum rod and its production
US5051139A (en) Process for the manufacture of semi-finished products or preformed parts made of refractory metals and resistant to thermal creep
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
JPH0692630B2 (en) Method for producing seamless pipe made of pure titanium or titanium alloy
US2921875A (en) Manufacture of molybdenum and alloys thereof
JPH0754093A (en) Molybdenum material and production thereof
EP1491651B1 (en) NITRIDED Mo ALLOY WORKED MATERIAL HAVING HIGH CORROSION RESISTANCE, HIGH STRENGTH AND HIGH TOUGHNESS AND METHOD FOR PRODUCTION THEREOF
KR20060119885A (en) Method for producing metallic flat wires or strips with a cubic texture
Rogachev et al. Structure and Mechanical Properties of Bimetallic “Aluminum Alloy/Copper” Conductors after Swaging
JP4558572B2 (en) High heat resistant molybdenum alloy and manufacturing method thereof
JPH06220566A (en) Molybdenum-base alloy minimal in anisotropy and its production
EP1546422B1 (en) Method of forming sag-resistant molybdenum-lanthana alloys
JPH0696759B2 (en) Method for producing α + β type titanium alloy rolled rod and wire having good structure
JP2023550715A (en) high temperature forming tools

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees