JP2000129389A - Molybdenum sintered compact and its manufacture - Google Patents

Molybdenum sintered compact and its manufacture

Info

Publication number
JP2000129389A
JP2000129389A JP10319854A JP31985498A JP2000129389A JP 2000129389 A JP2000129389 A JP 2000129389A JP 10319854 A JP10319854 A JP 10319854A JP 31985498 A JP31985498 A JP 31985498A JP 2000129389 A JP2000129389 A JP 2000129389A
Authority
JP
Japan
Prior art keywords
sintered body
carbide
molybdenum
molybdenum sintered
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10319854A
Other languages
Japanese (ja)
Inventor
Tomohiro Takita
朋広 瀧田
Tadashi Igarashi
廉 五十嵐
Yoshiharu Doi
義治 土肥
Kiichi Nagara
毅一 長柄
Chitose Hayashi
千歳 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Tokyo Tungsten Co Ltd
Original Assignee
Toyama Prefecture
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture, Tokyo Tungsten Co Ltd filed Critical Toyama Prefecture
Priority to JP10319854A priority Critical patent/JP2000129389A/en
Publication of JP2000129389A publication Critical patent/JP2000129389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for obtaining a molybdenum sintered compact increased in high temperature strength in a state of a sintered compact before plastic working, hardly causing coarsening of crystalline grains even if heated to high temperature, and excellent in low-temperature ductility and an alloy composed of the Mo sintered compact. SOLUTION: This molybdenum sintered compact has 0.2-3.0 mass % of fine particles of transition metal carbide dispersed in Mo and also has <=10 μm crystalline grain size. The molybdenum sintered compact can be manufactured by mixing 0.2-3.0 mass % of transition metal carbide with Mo powder, performing mechanical alloying treatment, and then sintering the resultant powder by an electro-discharge plasma sintering method to densify it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温構造材料、焼
結部品及びブロック製品等の耐熱材料に用いられ、とく
に、高温強度が高く、高温に加熱されても結晶粒が粗大
化しにくく、さらに低温延性に優れたモリブデン焼結体
及びその製造方法に関する。
The present invention is used for heat-resistant materials such as high-temperature structural materials, sintered parts and block products. Particularly, the high-temperature strength is high, and the crystal grains hardly become coarse even when heated at a high temperature. The present invention relates to a molybdenum sintered body having excellent low-temperature ductility and a method for producing the same.

【0002】[0002]

【従来の技術】従来、モリブデン(以下、Moと呼ぶ)
は、融点が高く、塑性加工性も良いため、耐熱材料とし
て使用されている。しかしながら、純Mo加工材は10
00℃程度以上に加熱すると再結晶して脆化し、高温強
度が著しく低下する。さらに、高温では、結晶粒が粗大
化するために脆化する。また、この再結晶材の延性−脆
性遷移温度(以下、DBTTと呼ぶ)は室温近傍にある
ために、この温度以下では著しく脆くなる。これらの脆
化は、Moの結晶粒界が本質的に脆いこと(粒界脆化)
に起因するとされている。この粒界脆化を改善するため
に、結晶粒界が全く存在しない単結晶化が行なわれてい
るが、実用的規模の大きさのものを得ることは工業的に
容易でない。
2. Description of the Related Art Conventionally, molybdenum (hereinafter, referred to as Mo) is used.
Is used as a heat resistant material because of its high melting point and good plastic workability. However, pure Mo material is 10
When heated to about 00 ° C. or more, recrystallization and embrittlement occur, and the high-temperature strength is significantly reduced. Further, at a high temperature, the crystal grains become brittle due to coarsening. Further, the ductile-brittle transition temperature (hereinafter referred to as DBTT) of this recrystallized material is near room temperature, so that it becomes extremely brittle below this temperature. These embrittlements are caused by the fact that Mo crystal grain boundaries are inherently brittle (grain boundary embrittlement).
It is attributed to. In order to improve the grain boundary embrittlement, single crystallization without any crystal grain boundaries has been performed, but it is not industrially easy to obtain a material having a practical size.

【0003】そのほかには、ランタン(La)や珪素
(Si)、カリウム(K)などの酸化物を添加し、長大
結晶粒の積層組織に組織制御することで、結晶粒界の影
響を少なくする方法が行なわれている。ところが、この
組織制御には、熱間鍛造や熱間圧延などによる高加工率
の塑性加工が不可欠である。たとえば、特公昭61−2
7459号公報、特開昭59−150071号公報、及
び米国特許第4514234号明細書には、アルミニウ
ム(Al)、Si、及びKの元素のうちの一種または二
種以上添加したモリブデン材料では、85%以上の加工
率の塑性加工が必要とされることが示されている。
[0003] In addition, oxides such as lanthanum (La), silicon (Si), and potassium (K) are added to control the structure of the laminated structure of long crystal grains, thereby reducing the influence of crystal grain boundaries. The method has been done. However, plastic working with a high working ratio by hot forging or hot rolling is indispensable for this structure control. For example, Tokiko 61-2
No. 7,459, JP-A-59-150071, and U.S. Pat. No. 4,514,234 disclose that a molybdenum material to which one or more of aluminum (Al), Si and K elements are added is 85%. It is shown that plastic working with a working ratio of not less than% is required.

【0004】しかし、上記公報に開示された組織制御法
による製造技術では、板厚の厚いMo焼結体の製造に限
界がある。例えば、圧延加工で厚さ50mmの板材を得
るには、少なくとも330mm以上のモリブデン焼結体
が必要となり、圧延機及び加熱装置などの設備上の問題
あるいは材料の歩留まり及びコストなどの問題などを生
じる。すなわち、高加工率の塑性加工を必要とする組織
制御法では、粒界脆性を改善した板厚の厚い材料は得難
く、焼結部品などの耐熱材料への適用は困難である。
[0004] However, in the manufacturing technique based on the structure control method disclosed in the above publication, there is a limit in manufacturing a thick Mo sintered body. For example, in order to obtain a 50 mm-thick plate by rolling, a molybdenum sintered body of at least 330 mm or more is required, which causes problems such as equipment such as a rolling mill and a heating device or problems such as the yield and cost of materials. . That is, it is difficult to obtain a material having a large thickness with improved grain boundary brittleness by a structure control method that requires plastic working at a high working rate, and it is difficult to apply the material to a heat-resistant material such as a sintered part.

【0005】[0005]

【発明が解決しようとする課題】そこで、高加工率の塑
性加工を必要としないで作製でき、粒界脆化を改善した
Mo材料を開発するためには、塑性加工する前のMo焼
結体そのものの強度および靭性を向上させることが必要
である。というのは、高強度高靭性なMo焼結体が得ら
れれば、焼結体そのものとしても使用できるばかりでな
く、若干の塑性加工するだけでさらに高強度高靭性Mo
材料が得られるからである。
Therefore, in order to develop a Mo material which can be produced without requiring high-rate plastic working and has improved grain boundary embrittlement, a Mo sintered body before plastic working is required. It is necessary to improve its strength and toughness. That is, if a high-strength, high-toughness Mo sintered body can be obtained, it can be used not only as a sintered body itself, but also by a slight plastic working, to obtain a high-strength, high-toughness Mo.
This is because a material is obtained.

【0006】したがって、本発明の一技術的課題は、塑
性加工する前の焼結体において、高温強度が高く、高温
に加熱されても結晶粒が粗大化しにくく、さらに低温延
性に優れたモリブデン焼結体を提供することにある。
Therefore, one technical problem of the present invention is that the sintered body before plastic working has high strength at high temperature, is hard to coarsen crystal grains even when heated at high temperature, and further has excellent molybdenum sintering at low temperature. In providing unity.

【0007】また、本発明のもう一つの技術的課題は、
上記Mo焼結体からなる合金を得るための製造方法を提
供することにある。
Another technical problem of the present invention is that
An object of the present invention is to provide a manufacturing method for obtaining an alloy made of the Mo sintered body.

【0008】[0008]

【課題を解決するための手段】本発明によれば、Mo中
に分散された0.2〜3.0質量%の遷移金属炭化物の
微粒子を有し、大きくとも10μmの結晶粒径を備えて
いることを特徴とするモリブデン焼結体が得られる。
According to the present invention, 0.2 to 3.0 mass% of transition metal carbide fine particles dispersed in Mo is provided, and the fine particles have a crystal grain size of at most 10 μm. Thus, a molybdenum sintered body is obtained.

【0009】また、本発明によれば、前記モリブデン焼
結体において、2000℃で1時間熱処理した後の結晶
粒径が大きくとも30μmであることを特徴とするモリ
ブデン焼結体が得られる。
According to the present invention, there is obtained a molybdenum sintered body characterized in that the molybdenum sintered body has a crystal grain size of at most 30 μm after heat treatment at 2000 ° C. for 1 hour.

【0010】また、本発明によれば、前記いずれかのモ
リブデン焼結体において、1200℃における引張強度
が少なくとも200MPaであることを特徴とするモリ
ブデン焼結体が得られる。
According to the present invention, there is provided a molybdenum sintered body characterized in that any of the above-mentioned molybdenum sintered bodies has a tensile strength at 1200 ° C. of at least 200 MPa.

【0011】また、本発明によれば、前記いずれかのモ
リブデン焼結体において、1800℃で1時間、熱処理
した後の延性−脆性遷移温度が高くとも−50℃である
ことを特徴とするモリブデン焼結体が得られる。
Further, according to the present invention, any of the above molybdenum sintered bodies has a ductile-brittle transition temperature of at most -50 ° C. after heat treatment at 1800 ° C. for 1 hour. A sintered body is obtained.

【0012】また、本発明によれば、前記いずれかのモ
リブデン焼結体において、前記遷移金属炭化物は、炭化
チタン(TiC)、炭化ジルコニウム(ZrC)、炭化
ハフニウム(HfC)、及び炭化タンタル(TaC)を
含む群から選択された少なくとも1種からなることを特
徴とするモリブデン焼結体が得られる。
Further, according to the present invention, in any of the above molybdenum sintered bodies, the transition metal carbide is titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), and tantalum carbide (TaC). ), A molybdenum sintered body characterized by comprising at least one selected from the group comprising

【0013】また、本発明によれば、Mo粉末に0.2
〜3.0質量%の遷移金属炭化物を混合してメカニカル
アロイング処理し、生成した粉末を放電プラズマ焼結法
で焼結して緻密化することを特徴とするモリブデン焼結
体の製造方法が得られる。
Further, according to the present invention, the Mo powder has a content of 0.2%.
A method for producing a molybdenum sintered body characterized in that a transition metal carbide of up to 3.0% by mass is mixed, subjected to mechanical alloying treatment, and the produced powder is sintered by a discharge plasma sintering method to be densified. can get.

【0014】また、本発明によれば、前記モリブデン焼
結体の製造方法において、更に、前記焼結後、1600
〜2000℃の温度範囲内で真空中で熱処理することを
特徴とするモリブデン焼結体の製造方法が得られる。
Further, according to the present invention, in the method for producing a molybdenum sintered body, the method further comprises:
A method for producing a molybdenum sintered body characterized by performing a heat treatment in a vacuum at a temperature in the range of 20002000 ° C. is obtained.

【0015】さらに、本発明によれば、前記いずれかの
モリブデン焼結体の製造方法において、前記遷移金属炭
化物は、炭化チタン(TiC)、炭化ジルコニウム(Z
rC)、炭化ハフニウム(HfC)、及び炭化タンタル
(TaC)を含む群から選択された少なくとも1種から
なることを特徴とするモリブデン焼結体の製造方法が得
られる。
Further, according to the present invention, in any one of the above methods for producing a molybdenum sintered body, the transition metal carbide may be titanium carbide (TiC), zirconium carbide (Z
rC), hafnium carbide (HfC), and a method for producing a molybdenum sintered body characterized by comprising at least one selected from the group including tantalum carbide (TaC).

【0016】ここで、本発明において、Mo中に分散さ
せるTiC、ZrC、HfC、及びTaC等の遷移金属
炭化物を用いたのは、これらの炭化物は融点が高く熱的
に安定で、Moとの整合性が比較的良好なため、炭化物
微粒子をMo中に分散させることで本来脆いMoの結晶
粒界の強度を高めることを本発明者らは、見い出したか
らである。また、これらの炭化物微粒子は、結晶粒の粗
大化を抑制し、粗大化しても結晶粒径は30μmと微細
であることを見い出した。さらに、Moが再結晶する1
000℃以下の温度はもちろんのこと、再結結晶し脆化
する1000℃程度以上の高温においても強度を高め、
低温延性を向上することができることを見い出した。
Here, in the present invention, transition metal carbides such as TiC, ZrC, HfC, and TaC dispersed in Mo are used because these carbides have a high melting point and are thermally stable. The reason for this is that the present inventors have found that the strength of the crystal grain boundaries of Mo, which is originally brittle, is enhanced by dispersing carbide fine particles in Mo, because the coherence is relatively good. In addition, it has been found that these carbide fine particles suppress the coarsening of the crystal grains, and the crystal grain size is as fine as 30 μm even when the fine particles are coarsened. Furthermore, Mo recrystallizes 1
Increases strength not only at temperatures below 000 ° C, but also at temperatures as high as 1000 ° C or more where recrystallization and embrittlement occur,
It has been found that low-temperature ductility can be improved.

【0017】また、本発明において、遷移金属炭化物の
添加量を0.2〜3.0質量%の範囲内と限定したの
は、0.2質量%より少ない場合、Moの結晶粒界の強
化が乏しく、また高温における結晶粒の粗大化を抑制し
にくく、強度及び靭性の向上が図れにくいためである。
In the present invention, the addition amount of the transition metal carbide is limited to the range of 0.2 to 3.0% by mass. This is because it is difficult to suppress the coarsening of the crystal grains at a high temperature, and it is difficult to improve the strength and toughness.

【0018】一方、遷移金属炭化物の添加量が3.0質
量%を越えると、焼結体が緻密化しにくく脆化し、塑性
加工した場合に割れが生じやすくなり、歩留まりが低下
するためである。
On the other hand, if the added amount of the transition metal carbide exceeds 3.0% by mass, the sintered body is difficult to be densified and becomes brittle, so that it is easy to crack when subjected to plastic working, and the yield decreases.

【0019】また、本発明において、メカニカルアロイ
ング処理を施したのは、Mo粉末と遷移金属炭化物粉末
を高エネルギーで混合することでMo及び遷移金属炭化
物を微粒化し、遷移金属炭化物微粒子をMo中に分散さ
せることで、炭化物とMoの結合力をさらに強化させ、
その結果、高温強度及び低温延性の向上が図れることを
見い出したからである。ここで、メカニカルアロイング
処理とは、合金化を目的とする狭義の粉末処理法を意味
するものではなく、粉体を高エネルギーで混合すること
で粉末の微粒化あるいは分散粒子の金属粉末(ここで
は、Mo)への埋め込みを行う広義の粉末処理法を意味
する。
In the present invention, the mechanical alloying treatment is performed by mixing the Mo powder and the transition metal carbide powder with high energy to make Mo and the transition metal carbide fine, and to make the transition metal carbide fine particles in Mo. By further dispersing in, the bonding force between carbide and Mo is further strengthened,
As a result, it has been found that high-temperature strength and low-temperature ductility can be improved. Here, the mechanical alloying treatment does not mean a powder treatment method in a narrow sense for the purpose of alloying, but the powder is mixed with high energy to make the powder finer or dispersed metal powder (here, Means a broadly-defined powder processing method for embedding in Mo).

【0020】そして、メカニカルアロイング処理し微粒
化した粉末は粗大化させることなく焼結する必要があ
る。また、焼結したあとに残留する微小なポアは、材料
の特性を損なう可能性もあるため、本発明では、メカニ
カルアロイング処理し微粒化した粉末の焼結に放電プラ
ズマ焼結法を用いた。放電プラズマ焼結は通常用いられ
れる水素焼結に比べ、焼結温度を低くし、短時間で緻密
化することができることを見い出したからである。放電
プラズマ焼結することで微粒化した粉末を粗大化させる
ことなく焼結することができ、その結果、高温強度及び
低温延性が著しく向上した焼結体が得られる。焼結後
に、さらに1600〜2000℃で真空熱処理を加える
ことで、さらにDBTTも向上した焼結体が得られるこ
とを見い出して、本発明は完成した。
It is necessary to sinter the powder which has been subjected to mechanical alloying and atomized without coarsening. In addition, since fine pores remaining after sintering may impair the properties of the material, in the present invention, a spark plasma sintering method is used for sintering of powder obtained by mechanical alloying and atomization. . This is because it has been found that spark plasma sintering can lower the sintering temperature and achieve densification in a short time, as compared with hydrogen sintering which is generally used. By spark plasma sintering, the finely divided powder can be sintered without coarsening, and as a result, a sintered body having significantly improved high-temperature strength and low-temperature ductility can be obtained. The present invention has been completed by finding that a sintered body with further improved DBTT can be obtained by further performing a vacuum heat treatment at 1600 to 2000 ° C. after sintering.

【0021】なお、上記の説明では、添加した遷移金属
炭化物粉末はMo中でもすべて遷移金属炭化物微粒子と
して分散する場合を例に述べたが、本発明では、分散し
た遷移金属炭化物微粒子は厳密な炭化物である必要はな
い。遷移金属炭化物微粒子が酸素を含んでいてもよく、
たとえ酸素を含んでいても結晶粒の粗大化を抑制し、高
温強度および低温延性の向上が図れることを見い出した
からである。
In the above description, the case where all the added transition metal carbide powder is dispersed as transition metal carbide fine particles even in Mo has been described, but in the present invention, the dispersed transition metal carbide fine particles are strict carbides. No need to be. The transition metal carbide fine particles may contain oxygen,
This is because it has been found that even if oxygen is contained, coarsening of crystal grains is suppressed, and high-temperature strength and low-temperature ductility can be improved.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】(第1の実施の形態)平均粒径4.1μm
のMo粉末に平均粒径1.1μmのTiC粉末を0.1
〜3.2質量%添加し、遊星型ボールミルで30時間メ
カニカルアロイング処理(以下、MAと呼ぶ)した。使
用した容器の内貼及びボールは超硬合金製である。MA
で得られた1質量%TiC−Mo粉末を外径55mm、
内径20mm、高さ40mmのグラファイト製ダイスに
充填し、7〜10Paに排気したのち、1100〜17
00℃の温度、49MPa−300sの条件で放電プラ
ズマ焼結(以下、SPSと呼ぶ)し、焼結温度と密度の
関係を調べ緻密化条件を検討した。ここで、密度は、水
中比重法で測定した。得られた知見をもとにSPSの条
件を1600℃−49MPa−300sとし、各種組成
のTiC−Mo焼結体を作製した。TiC−Mo焼結体
を2000℃で1時間真空加熱し、結晶粒の成長挙動を
調べた。ここで、結晶粒径は面積計量法によって測定し
た。なお、1800℃で10時間の水素焼結で作製した
純Mo焼結体を比較材料とした。
(First Embodiment) Average particle size 4.1 μm
Of TiC powder having an average particle size of 1.1 μm
33.2% by mass and mechanically alloyed (hereinafter referred to as MA) for 30 hours with a planetary ball mill. The inner paste and balls of the used container are made of cemented carbide. MA
1 wt% TiC-Mo powder obtained in the above, an outer diameter of 55 mm,
After filling into a graphite die having an inner diameter of 20 mm and a height of 40 mm and evacuating to 7 to 10 Pa, 1100 to 17 Pa
Spark plasma sintering (hereinafter, referred to as SPS) was performed at a temperature of 00 ° C. and a pressure of 49 MPa-300 s, and the relationship between the sintering temperature and the density was examined to examine the densification conditions. Here, the density was measured by an underwater specific gravity method. Based on the obtained knowledge, SPS conditions were set to 1600 ° C.-49 MPa-300 s, and TiC—Mo sintered bodies having various compositions were produced. The TiC-Mo sintered body was heated in vacuum at 2000 ° C. for 1 hour, and the growth behavior of crystal grains was examined. Here, the crystal grain size was measured by the area measurement method. A pure Mo sintered body produced by hydrogen sintering at 1800 ° C. for 10 hours was used as a comparative material.

【0024】図1は本発明の第1の実施の形態による1
質量%TiC−Mo焼結体の焼結温度と相対密度の関係
を示す図である。同図に比較材として、MAして水素焼
結で作製した1質量%TiC−Mo焼結体の値も示す。
FIG. 1 shows a first embodiment according to the present invention.
It is a figure which shows the relationship between the sintering temperature of mass% TiC-Mo sintered compact, and relative density. The figure also shows the value of a 1 mass% TiC-Mo sintered body produced by MA and hydrogen sintering as a comparative material.

【0025】本発明の第1の実施の形態による材料にお
いて、1600℃以上のSPSで相対密度99%以上の
緻密な材料が得られている。一方、水素焼結で作製した
場合、1800℃でも相対密度98%程度で密度の低い
材料である。SPSによって、水素焼結より200℃以
上も低温で、かつ300秒(s)といった短い時間で緻
密化されていることを示している。
In the material according to the first embodiment of the present invention, a dense material having a relative density of 99% or more can be obtained at an SPS of 1600 ° C. or more. On the other hand, when produced by hydrogen sintering, the material has a relative density of about 98% even at 1800 ° C. and has a low density. The SPS shows that densification is performed at a temperature lower than 200 ° C. by hydrogen sintering and in a short time such as 300 seconds (s).

【0026】図2は本発明の第1の実施の形態による1
質量%TiC−Mo焼結体(焼結温度1600℃)と水
素焼結で作製した純Mo焼結体(焼結温度1800℃)
の光学顕微鏡写真を示す。写真は、いずれも試料断面の
組織であり、たとえば、図2(b)で示した写真におい
て、ほぼ等軸状の粒は結晶粒で、黒い点はポアである。
また、結晶粒の大きさが小さいほど組織が微細で、ボア
が多いほど密度が低いことを示している。
FIG. 2 shows a first embodiment according to the present invention.
Mass% TiC-Mo sintered body (sintering temperature 1600 ° C) and pure Mo sintered body produced by hydrogen sintering (sintering temperature 1800 ° C)
3 shows an optical micrograph of the sample. Each photograph shows the structure of the cross section of the sample. For example, in the photograph shown in FIG. 2B, substantially equiaxed grains are crystal grains, and black points are pores.
The smaller the size of the crystal grains, the finer the structure, and the larger the number of the bores, the lower the density.

【0027】本発明の第1の実施の形態による材料
(a)の場合、結晶粒径が2.4μm程度の微細な等軸
結晶粒組織を呈している。純Mo焼結体(b)の場合は
結晶粒径37.3μm程度の粗大な等軸結晶粒径を呈し
ている。TiCの添加、MA、及びSPSの組合せで、
緻密化した微細結晶粒組織の焼結体が得られることが分
かる。
The material (a) according to the first embodiment of the present invention has a fine equiaxed crystal grain structure with a crystal grain size of about 2.4 μm. The pure Mo sintered body (b) has a coarse equiaxed crystal grain diameter of about 37.3 μm. With the addition of TiC, the combination of MA and SPS,
It can be seen that a dense sintered body having a fine grain structure can be obtained.

【0028】図3は本発明の第1の実施の形態による1
質量%TiC−Mo焼結体及び水素焼結で作製した純M
o焼結体を2000℃で1時間真空加熱した後の金属組
織を示す光学顕微鏡写真である。写真は、いずれも試料
断面の組織である。また、結晶粒の大きさが小さいほど
組織が微細で、結晶粒成長が小さいことを示している。
FIG. 3 shows a first embodiment according to the present invention.
Mass% TiC-Mo sintered body and pure M produced by hydrogen sintering
o It is an optical microscope photograph which shows the metallographic structure after vacuum-heating a sintered compact at 2000 degreeC for 1 hour. Each photograph is the structure of the cross section of the sample. In addition, the smaller the size of the crystal grain, the finer the structure and the smaller the growth of the crystal grain.

【0029】図3に示すように、水素焼結で作製した純
Mo焼結体(b)は2000℃の加熱で結晶粒径は60
μm程度に成長しているが、本発明の第1の実施の形態
による材料(a)の結晶粒径は4.5μm程度に留まっ
ており、結晶粒の成長が著しく抑制されていることを示
している。
As shown in FIG. 3, the pure Mo sintered body (b) produced by hydrogen sintering has a crystal grain size of 60
Although grown to about μm, the crystal grain size of the material (a) according to the first embodiment of the present invention remains at about 4.5 μm, indicating that the growth of crystal grains is significantly suppressed. ing.

【0030】下記表1に本発明の各種組成(試料No.
1〜5)のTiC−Mo焼結体及び2000℃で1時間
真空加熱した後の結晶粒径を示す。同表に水素焼結で作
製した純Mo焼結体の結晶粒径も示す。いずれのTiC
−Mo焼結体においても結晶粒径は10μm程度以下
で、純Mo焼結体に比べて小さい。しかしながら、Ti
C添加量が0.1質量%(試料No.16)では、結晶
粒成長の抑制効果は小さく、2000℃加熱後の結晶粒
径は純Mo焼結体とほとんど変わらない.TiC添加量
が3.2質量%(試料No.17)では、密度が上がら
ずポアが多かった。
Table 1 below shows various compositions of the present invention (sample Nos.
1 shows the TiC—Mo sintered body of 1) and the crystal grain size after vacuum heating at 2000 ° C. for 1 hour. The table also shows the crystal grain size of the pure Mo sintered body produced by hydrogen sintering. Any TiC
The crystal grain size of the −Mo sintered body is about 10 μm or less, which is smaller than that of the pure Mo sintered body. However, Ti
When the amount of C added was 0.1% by mass (Sample No. 16), the effect of suppressing the growth of crystal grains was small, and the crystal grain size after heating at 2000 ° C. was almost the same as that of the pure Mo sintered body. When the amount of TiC added was 3.2% by mass (Sample No. 17), the density was not increased and the number of pores was large.

【0031】(第2の実施の形態)平均粒径4.1μm
のMo粉末に平均粒径2.0μmのZrC粉末を0.8
〜1.6質量%添加し、第1の実施の形態と同様な条件
でMAおよびSPSした。得られたZrC−Mo焼結体
を2000℃で1時間真空加熱し、結晶粒の成長挙動を
調べた。
(Second Embodiment) Average particle size 4.1 μm
Of ZrC powder having an average particle size of 2.0 μm to Mo powder of 0.8
MA and SPS were performed under the same conditions as in the first embodiment. The obtained ZrC-Mo sintered body was heated in vacuum at 2000 ° C. for 1 hour, and the growth behavior of crystal grains was examined.

【0032】下記表1に本発明の第2の実施の形態によ
る各種組成(試料No.6〜7)のZrC−Mo焼結体
及び2000℃で1時間真空加熱した後の結晶粒径を示
す。いずれのZrC−Mo焼結体においても、純Mo焼
結体に比べて結晶粒径は著しく微細で、結晶粒の成長は
小さい。
Table 1 below shows ZrC-Mo sintered bodies of various compositions (samples Nos. 6 to 7) according to the second embodiment of the present invention and the crystal grain sizes after vacuum heating at 2000 ° C. for 1 hour. . In any of the ZrC-Mo sintered bodies, the crystal grain size is extremely fine as compared with the pure Mo sintered body, and the growth of the crystal grains is small.

【0033】(第3の実施の形態)平均粒径4.1μm
のMo粉末に平均粒径1.9μmのHfC粉末を0.8
〜1.6質量%添加し、第1の実施の形態と同様な条件
でMA及びSPSした。得られたHfC−Mo焼結体を
2000℃で1h真空加熱し、結晶粒の成長挙動を調べ
た。
(Third Embodiment) Average particle size 4.1 μm
HfC powder having an average particle size of 1.9 μm was added to Mo powder of 0.8.
及 び 1.6 mass% was added, and MA and SPS were performed under the same conditions as in the first embodiment. The obtained HfC-Mo sintered body was heated in vacuum at 2000 ° C. for 1 hour, and the growth behavior of crystal grains was examined.

【0034】下記表1に本発明の第3の実施の形態によ
る各種組成(試料No.8及び9)のHfC−MoのM
A/SPS材および2000℃で1時間真空加熱した後
の結晶粒径を示す。いずれのHfC−Mo焼結体におい
ても純Mo焼結体に比べて結晶粒径は著しく微細で、結
晶粒の成長は小さい。
Table 1 below shows M of HfC-Mo of various compositions (samples Nos. 8 and 9) according to the third embodiment of the present invention.
The A / SPS material and the crystal grain size after vacuum heating at 2000 ° C. for 1 hour are shown. In any of the HfC-Mo sintered bodies, the crystal grain size is extremely fine as compared with the pure Mo sintered body, and the growth of the crystal grains is small.

【0035】(第4の実施の形態)平均粒径4.1μm
のMo粉末に平均粒径1.1μmのTaC粉末を0.1
〜3.2質量%添加し、第1の実施の形態と同様な条件
でMA及びSPSした。得られたTaC−Mo焼結体を
2000℃で1時間真空加熱し、結晶粒の成長挙動を調
べた。
(Fourth embodiment) Average particle size 4.1 μm
Of TaC powder having an average particle size of 1.1 μm
33.2% by mass was added, and MA and SPS were performed under the same conditions as in the first embodiment. The obtained TaC-Mo sintered body was heated in vacuum at 2000 ° C. for 1 hour, and the growth behavior of crystal grains was examined.

【0036】下記表1に本発明の第4の実施の形態によ
る各種組成(試料No.10〜13)のTaC−Mo焼
結体および2000℃で1時間真空加熱した後の結晶粒
径を示す。いずれのTaC−Mo焼結体においても、結
晶粒径は10μm程度以下で、純Mo焼結体に比べて小
さい。しかしながら、TaC添加量が0.1質量%(試
料No.18)では結晶粒成長の抑制効果は小さく、2
000℃加熱後の結晶粒径は純Mo焼結体とほとんど変
わらない。TaC添加量が3.2質量%(試料No.1
9)では、密度が上がらずボアが多かった。
Table 1 below shows the TaC-Mo sintered bodies having various compositions (sample Nos. 10 to 13) according to the fourth embodiment of the present invention and the crystal grain sizes after vacuum heating at 2000 ° C. for 1 hour. . In any TaC-Mo sintered body, the crystal grain size is about 10 μm or less, which is smaller than that of the pure Mo sintered body. However, when the amount of TaC added was 0.1% by mass (Sample No. 18), the effect of suppressing the growth of crystal grains was small and 2%.
The crystal grain size after heating at 000 ° C. is almost the same as that of the pure Mo sintered body. The amount of TaC added was 3.2% by mass (sample No. 1).
In 9), the density did not increase and there were many bores.

【0037】(第5の実施の形態)平均粒径4.1μm
のMo粉末に平均粒径1.9μmのHfC粉末を0.8
質量%、さらに平均粒径1.1μmのTaC粉末を0.
8質量%添加、および平均粒径1.1μmのTiC粉末
を0.5質量%、さらに平均粒径1.1μmのTaC粉
末を0.8質量%添加し、第1の実施の形態と同様な条
件でMAおよびSPSした。得られたHfC−TaC−
Mo焼結体およびTiC−TaC−Mo焼結体を200
0℃で1時間真空加熱し、結晶粒の成長挙動を調べた。
(Fifth Embodiment) Average particle size 4.1 μm
HfC powder having an average particle size of 1.9 μm was added to Mo powder of 0.8.
% Of TaC powder having an average particle size of 1.1 μm.
8% by mass, 0.5% by mass of TiC powder having an average particle size of 1.1 μm, and 0.8% by mass of TaC powder having an average particle size of 1.1 μm are added. MA and SPS under conditions. The obtained HfC-TaC-
Mo sintered body and TiC-TaC-Mo sintered body
After heating in vacuum at 0 ° C. for 1 hour, the growth behavior of crystal grains was examined.

【0038】下記表1に本発明の第5の実施の形態によ
る0.8質量%HfC−0.8質量%TaC−Mo焼結
体(試料No.14)、0.5質量%TiC−0.8質
量%TaC−Mo焼結体(試料No.15)、および2
000℃で1時間真空加熱した後の結晶粒径を示す。純
Moに比べて結晶粒径が微細で、結晶粒の成長も小さい
ことを示している。
Table 1 below shows 0.8 mass% HfC-0.8 mass% TaC-Mo sintered body (sample No. 14) and 0.5 mass% TiC-0 according to the fifth embodiment of the present invention. 0.8 mass% TaC-Mo sintered body (sample No. 15), and 2
This shows the crystal grain size after vacuum heating at 000 ° C. for 1 hour. This indicates that the crystal grain size is smaller than that of pure Mo and the growth of crystal grains is smaller.

【0039】(第6の実施の形態)第1の実施の形態に
記載した方法によって作製した0.8質量%ZrC−M
o焼結体および1.6質量%TaC−Mo焼結体から平
行部の厚さ1mm、幅4mm、長さ25mmの試験片を
切り出し、900〜1500℃の温度においてクロスヘ
ッド速度1mm/分で引張試験した。得られた荷重−変
位曲線から引張強度(最大強度)を調べた。なお、結晶
粒径26μmの純Mo板を比較材料とした。
(Sixth Embodiment) 0.8 mass% ZrC-M manufactured by the method described in the first embodiment.
o From the sintered body and 1.6 mass% TaC-Mo sintered body, a test piece having a parallel portion of 1 mm in thickness, 4 mm in width, and 25 mm in length was cut out, and at a temperature of 900 to 1500 ° C. and a crosshead speed of 1 mm / min. A tensile test was performed. Tensile strength (maximum strength) was examined from the obtained load-displacement curve. Note that a pure Mo plate having a crystal grain size of 26 μm was used as a comparative material.

【0040】図4は本発明の第6の実施の形態による
0.8質量%ZrC−Mo焼結体および1.6質量%T
aC−Mo焼結体、比較材料の純Mo板の引張強度の温
度依存性を示す図である。0.8質量%ZrC−Mo焼
結体の引張強度は、純Mo板に比ベて、900〜120
0℃では4倍以上、1500℃では1.5倍の高い引張
強度である。1.6質量%TaC−Mo焼結体の場合
は、900〜1200℃では2.8倍、1500℃では
1.8倍の高い引張強度である。MAおよびSPSで炭
化物を微細分散させることで、高温強度が著しく向上し
ていることを示している。
FIG. 4 shows a 0.8 mass% ZrC-Mo sintered body and 1.6 mass% T according to a sixth embodiment of the present invention.
It is a figure which shows the temperature dependence of the tensile strength of a pure Mo board of an aC-Mo sintered compact and a comparative material. The tensile strength of the 0.8 mass% ZrC-Mo sintered body is 900 to 120 as compared with the pure Mo plate.
At 0 ° C., the tensile strength is 4 times or more, and at 1500 ° C., 1.5 times as high. In the case of a 1.6 mass% TaC-Mo sintered body, the tensile strength is 2.8 times at 900 to 1200 ° C and 1.8 times at 1500 ° C. This shows that high-temperature strength is significantly improved by finely dispersing carbides in MA and SPS.

【0041】(第7の実施の形態)第2及び第4の実施
の形態に記載した材料において、厚さ1mm、幅2m
m、長さ25mmの試験片を切り出し、1800℃で1
時間真空加熱したのち、−196〜90℃の温度で負荷
速度1mm/分で静的3点曲げ試験(支持ピン間距離1
6mm)した。得られた荷重−変位曲線から降伏強度お
よび最大強度を求め、延性−脆性遷移温度(DBTT)
を調べた。ここで、図5に示す降伏強度の温度曲線と最
大強度の温度曲線の交点の温度をDBTTとした。な
お、結晶粒径20μmの純Mo板を比較材料とした。
(Seventh Embodiment) In the materials described in the second and fourth embodiments, the thickness is 1 mm and the width is 2 m.
A 25 mm long test piece was cut out at 1800 ° C.
After vacuum heating for a period of time, a static three-point bending test (a distance between support pins of 1) was performed at a temperature of -196 to 90 ° C and a load speed of 1 mm / min.
6 mm). The yield strength and the maximum strength were obtained from the obtained load-displacement curve, and the ductility-brittle transition temperature (DBTT) was obtained.
Was examined. Here, the temperature at the intersection of the temperature curve of the yield strength and the temperature curve of the maximum strength shown in FIG. 5 was defined as DBTT. Note that a pure Mo plate having a crystal grain size of 20 μm was used as a comparative material.

【0042】下記表2に本発明の第7の実施の形態によ
るTiC−Mo焼結体(試料No.1〜3)およびTa
C−Mo焼結体(試料No.10〜13)のDBTTを
示す。また、同表に比較材料の純Mo板のDBTTも示
す。
Table 2 below shows the TiC—Mo sintered compact (sample Nos. 1 to 3) and Ta according to the seventh embodiment of the present invention.
The DBTT of the C-Mo sintered body (Sample Nos. 10 to 13) is shown. The table also shows the DBTT of a pure Mo plate as a comparative material.

【0043】本発明の第7の実施の形態による合金、T
iC−Mo焼結体およびTaC−Mo焼結体、いずれの
材料においても、比較材料の純Mo板に比べてDBTT
が低い。しかしながら、TiC添加量が0.1質量%
(試料No.16)およびTaC添加量が0.1質量%
(試料No.18)の材料のDBTTは純Mo板とほと
んど変わらない。TiC添加量が3.2質量%(試料N
o.17)およびTaC添加量が3.2質量%(試料N
o.19)では、密度が低く脆化した。MAおよびSP
Sで炭化物を微細分散することで、低温延性が著しく向
上していることを示している。
The alloy according to the seventh embodiment of the present invention, T
In both the iC-Mo sintered body and the TaC-Mo sintered body, the DBTT was larger than the pure Mo plate of the comparative material.
Is low. However, the amount of TiC added was 0.1% by mass.
(Sample No. 16) and the amount of TaC added was 0.1% by mass.
The DBTT of the material of (Sample No. 18) is almost the same as the pure Mo plate. When the amount of TiC added is 3.2% by mass (sample N
o. 17) and the amount of TaC added was 3.2% by mass (sample N
o. In 19), the density was low and embrittlement occurred. MA and SP
It shows that the low-temperature ductility is significantly improved by finely dispersing the carbide with S.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
塑性加工する前の焼結体において、高温強度が高く、高
温に加熱されても結晶粒が粗大化しにくく、さらに低温
延性に優れたモリブデン焼結体を提供することができ
る。
As described above, according to the present invention,
It is possible to provide a molybdenum sintered body which has high strength at high temperature in a sintered body before plastic working, hardly causes crystal grains to be coarsened even when heated to a high temperature, and further has excellent low-temperature ductility.

【0047】また、本発明によれば、上記Mo焼結体か
らなる合金を得るための製造方法を提供することができ
る。
Further, according to the present invention, it is possible to provide a manufacturing method for obtaining an alloy comprising the above-mentioned Mo sintered body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態による1質量%Ti
C−Mo焼結体の焼結温度と相対密度との関係を示した
図である。
FIG. 1 shows 1% by mass Ti according to a first embodiment of the present invention.
FIG. 3 is a diagram illustrating a relationship between a sintering temperature and a relative density of a C-Mo sintered body.

【図2】本発明の第1の実施の形態による1質量%Ti
C−Mo焼結体(a)および比較材料の水素焼結で作製
した純Mo焼結体(b)の断面の金属組織を示す光学顕
微鏡写真である。
FIG. 2 shows 1 mass% Ti according to the first embodiment of the present invention.
It is an optical microscope photograph which shows the metal structure of the cross section of the C-Mo sintered compact (a) and the pure Mo sintered compact (b) produced by hydrogen sintering of the comparative material.

【図3】本発明の第1の実施の形態による1質量%Ti
C−Mo焼結体(a)および比較材料の水素焼結で作製
した純W焼結体(b)を2000℃で1時間真空加熱し
た後の断面の金属組織を示す光学顕微鏡写真である。
FIG. 3 shows 1% by mass Ti according to the first embodiment of the present invention.
It is an optical microscope photograph which shows the metal structure of the cross section after carrying out vacuum heating for 1 hour at 2000 degreeC of the pure W sintered compact (b) produced by hydrogen sintering of the C-Mo sintered compact (a) and the comparative material.

【図4】本発明の第6の実施の形態による0.8質量%
ZrC−Mo焼結体および1.6質量%TaC−Mo焼
結体、比較材料の純Mo板の引張強度の温度依存性を示
した図である。
FIG. 4 shows 0.8% by mass according to a sixth embodiment of the present invention.
It is the figure which showed the temperature dependence of the tensile strength of the ZrC-Mo sintered compact, 1.6 mass% TaC-Mo sintered compact, and the pure Mo board of a comparative material.

【図5】本発明の第7の実施の形態における降伏強度、
最大強度および曲げ角の温度依存性を模式的に示した図
である。
FIG. 5 shows a yield strength according to a seventh embodiment of the present invention;
It is the figure which showed the temperature dependence of the maximum strength and bending angle typically.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 27/04 102 C22F 1/18 C C22F 1/18 1/00 628 // C22F 1/00 628 682 682 687 687 691B 691 691C B22F 3/14 101A (72)発明者 五十嵐 廉 富山県富山市岩瀬古志町2番地 東京タン グステン株式会社富山製作所内 (72)発明者 土肥 義治 富山県高岡市二上町150番地 富山県工業 技術センター内 (72)発明者 長柄 毅一 富山県高岡市二上町150番地 富山県工業 技術センター内 (72)発明者 林 千歳 富山県高岡市二上町150番地 富山県工業 技術センター内 Fターム(参考) 4K018 AA21 AB02 BC08 DA23 FA08 KA07 4K020 AA05 AB01 AC07 BA08 BB01 BC02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 27/04 102 C22F 1/18 C C22F 1/18 1/00 628 // C22F 1/00 628 682 682 687 687 691B 691 691C B22F 3/14 101A (72) Inventor Ryo Igarashi 2, Iwase Koshimachi, Toyama City, Toyama Pref. Tokyo Tan Gusten Co., Ltd. Within the Prefectural Industrial Technology Center (72) Inventor Kiichi Nagara 150 Futamicho, Takaoka City, Toyama Prefecture Inside the Toyama Prefectural Industrial Technology Center (72) Inventor Chitose Hayashi 150 Futamicho, Takaoka City, Toyama Prefecture F-term in the Toyama Prefectural Industrial Technology Center (Reference) 4K018 AA21 AB02 BC08 DA23 FA08 KA07 4K020 AA05 AB01 AC07 BA08 BB01 BC02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Mo中に分散された0.2〜3.0質量
%の遷移金属炭化物の微粒子を有し、大きくとも10μ
mの結晶粒径を備えていることを特徴とするモリブデン
焼結体。
Claims 1. A fine particle of transition metal carbide of 0.2 to 3.0% by mass dispersed in Mo and having a particle size of at most 10 μm.
A molybdenum sintered body having a crystal grain size of m.
【請求項2】 請求項1記載のモリブデン焼結体におい
て、2000℃で1時間熱処理した後の結晶粒径が大き
くとも30μmであることを特徴とするモリブデン焼結
体。
2. The molybdenum sintered body according to claim 1, wherein the crystal grain size after heat treatment at 2000 ° C. for 1 hour is at most 30 μm.
【請求項3】 請求項1又は2記載のモリブデン焼結体
において、1200℃における引張強度が少なくとも2
00MPaであることを特徴とするモリブデン焼結体。
3. The molybdenum sintered body according to claim 1, which has a tensile strength at 1200 ° C. of at least 2
Molybdenum sintered body characterized in that the pressure is 00 MPa.
【請求項4】 請求項1乃至3の内のいずれかに記載の
モリブデン焼結体において、1800℃で1時間、熱処
理した後の延性−脆性遷移温度が高くとも−50℃であ
ることを特徴とするモリブデン焼結体。
4. The molybdenum sintered body according to claim 1, wherein the ductile-brittle transition temperature after heat treatment at 1800 ° C. for 1 hour is at most -50 ° C. Molybdenum sintered body.
【請求項5】 請求項1乃至4の内のいずれかに記載の
モリブデン焼結体において、前記遷移金属炭化物は、炭
化チタン(TiC)、炭化ジルコニウム(ZrC)、炭
化ハフニウム(HfC)、及び炭化タンタル(TaC)
を含む群から選択された少なくとも1種からなることを
特徴とするモリブデン焼結体。
5. The molybdenum sintered body according to claim 1, wherein the transition metal carbide is titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), and carbonized carbide. Tantalum (TaC)
A molybdenum sintered body comprising at least one selected from the group consisting of:
【請求項6】 Mo粉末に0.2〜3.0質量%の遷移
金属炭化物を混合してメカニカルアロイング処理し、生
成した粉末を放電プラズマ焼結法で焼結して緻密化する
ことを特徴とするモリブデン焼結体の製造方法。
6. A method in which 0.2 to 3.0 mass% of transition metal carbide is mixed with Mo powder and subjected to mechanical alloying treatment, and the produced powder is sintered by a discharge plasma sintering method to be densified. A method for producing a molybdenum sintered body as a feature.
【請求項7】 請求項6記載のモリブデン焼結体の製造
方法において、更に、前記焼結後、1600〜2000
℃の温度範囲内で真空中で熱処理することを特徴とする
モリブデン焼結体の製造方法。
7. The method for producing a molybdenum sintered body according to claim 6, further comprising: 1600 to 2000 after the sintering.
A method for producing a molybdenum sintered body, which comprises performing a heat treatment in a vacuum within a temperature range of ° C.
【請求項8】 請求項6又は7記載のモリブデン焼結体
の製造方法において、前記遷移金属炭化物は、炭化チタ
ン(TiC)、炭化ジルコニウム(ZrC)、炭化ハフ
ニウム(HfC)、及び炭化タンタル(TaC)を含む
群から選択された少なくとも1種からなることを特徴と
するモリブデン焼結体の製造方法。
8. The method for producing a molybdenum sintered body according to claim 6, wherein the transition metal carbide is titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), and tantalum carbide (TaC). A method for producing a molybdenum sintered body, characterized by comprising at least one selected from the group comprising:
JP10319854A 1998-10-26 1998-10-26 Molybdenum sintered compact and its manufacture Pending JP2000129389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10319854A JP2000129389A (en) 1998-10-26 1998-10-26 Molybdenum sintered compact and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10319854A JP2000129389A (en) 1998-10-26 1998-10-26 Molybdenum sintered compact and its manufacture

Publications (1)

Publication Number Publication Date
JP2000129389A true JP2000129389A (en) 2000-05-09

Family

ID=18114983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10319854A Pending JP2000129389A (en) 1998-10-26 1998-10-26 Molybdenum sintered compact and its manufacture

Country Status (1)

Country Link
JP (1) JP2000129389A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246553A (en) * 2007-03-30 2008-10-16 Tohoku Univ Stirring tool for friction stir welding
JP2010248615A (en) * 2009-03-25 2010-11-04 Sanyo Special Steel Co Ltd Molybdenum alloy and method for manufacturing the same
JP2012107782A (en) * 2010-11-15 2012-06-07 Toshiba Corp Crucible, manufacturing method of sapphire single crystal using the same, and manufacturing method of the crucible
JP2014514438A (en) * 2011-03-08 2014-06-19 コリア インスティチュート オブ インダストリアル テクノロジー Method for producing molybdenum sputtering target for back electrode of CIGS solar cell
CN115921875A (en) * 2022-12-14 2023-04-07 西安交通大学 Method for regulating low-temperature ductility and high-temperature creep resistance of refractory metal-based alloy by MAX phase

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246553A (en) * 2007-03-30 2008-10-16 Tohoku Univ Stirring tool for friction stir welding
JP2010248615A (en) * 2009-03-25 2010-11-04 Sanyo Special Steel Co Ltd Molybdenum alloy and method for manufacturing the same
JP2012107782A (en) * 2010-11-15 2012-06-07 Toshiba Corp Crucible, manufacturing method of sapphire single crystal using the same, and manufacturing method of the crucible
JP2014514438A (en) * 2011-03-08 2014-06-19 コリア インスティチュート オブ インダストリアル テクノロジー Method for producing molybdenum sputtering target for back electrode of CIGS solar cell
CN115921875A (en) * 2022-12-14 2023-04-07 西安交通大学 Method for regulating low-temperature ductility and high-temperature creep resistance of refractory metal-based alloy by MAX phase

Similar Documents

Publication Publication Date Title
US5595616A (en) Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy
JP3712614B2 (en) Titanium-based composite material, manufacturing method thereof, and engine valve
US20170314097A1 (en) High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same
JP5394582B1 (en) Molybdenum heat-resistant alloy
JP3271040B2 (en) Molybdenum alloy and method for producing the same
JP6011946B2 (en) Nickel-based intermetallic compound composite sintered material and method for producing the same
Falodun et al. Characterization of spark plasma sintered TiN nanoparticle strengthened titanium alloy using EBSD and TKD
JP6667264B2 (en) Manufacturing method of high-rigidity iron-based sintered alloy
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
JP5876943B2 (en) Alloy and production method thereof
JP2000129389A (en) Molybdenum sintered compact and its manufacture
US20180105901A1 (en) Method of making a molybdenum alloy having a high titanium content
JP6885900B2 (en) Ti-Fe-based sintered alloy material and its manufacturing method
JP6202787B2 (en) Molybdenum heat-resistant alloy, friction stir welding tool, and manufacturing method
JP2001181776A (en) Cemented carbide sintered alloy and producing method therefor
JP3385552B2 (en) Molybdenum material and manufacturing method thereof
JP4542696B2 (en) Rotating anode X-ray tube target and method for manufacturing the same
JP2002501983A (en) Iron aluminide composite and method for producing the same
JP2000273503A (en) Hard particle-dispersed sintered steel and its production
JP2017160539A (en) Molybdenum heat-resistant alloy, tool for friction stirring joining, and method for producing the same
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JP2019183201A (en) Sintered body and rotation tool
JP2002045957A (en) Member for molten metal excellent in erosion resistance to molten metal and its producing method
JP2008261004A (en) Aluminum alloy
JP6841441B2 (en) Manufacturing method of Mo-Si-B alloy, Mo-Si-B alloy and friction stir welding tool

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080409