JP2002285334A - Method for growing carbon nanotube - Google Patents

Method for growing carbon nanotube

Info

Publication number
JP2002285334A
JP2002285334A JP2001084315A JP2001084315A JP2002285334A JP 2002285334 A JP2002285334 A JP 2002285334A JP 2001084315 A JP2001084315 A JP 2001084315A JP 2001084315 A JP2001084315 A JP 2001084315A JP 2002285334 A JP2002285334 A JP 2002285334A
Authority
JP
Japan
Prior art keywords
silicon substrate
oxide
carbon nanotube
transition metal
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001084315A
Other languages
Japanese (ja)
Inventor
Yoshikazu Honma
芳和 本間
Purabuhakaran Kunir
プラブハカラン クニール
Toshiro Ogino
俊郎 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001084315A priority Critical patent/JP2002285334A/en
Publication of JP2002285334A publication Critical patent/JP2002285334A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for growing a carbon nanotube on a silicon substrate. SOLUTION: In the method for growing a carbon nanotube in which hydrocaron is reacted with the surface of a silicon substrate in the presence of a catalyst, and a carbon nanotube is grown, the above catalyst consists of the oxide of a transition metal. By using the oxide of the transition metal as a catalyst, the carbon nanotube can efficiently be grown on to the silicon substrate. Thus, the method can be applied to a process where the carbon nanotube is formed on the specified position of the silicon substrate, and the carbon nanotube is bonded with the other silicon element, and can bring a great improvement on the application of the carbon nanotube to the element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、シリコン基板上に選択
的にカーボンナノチューブを形成するカーボンナノチュ
ーブ成長方法に関する。主な産業上の利用分野は、カー
ボンナノチューブを利用した微細素子の作製である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing carbon nanotubes selectively on a silicon substrate. The main field of industrial application is the fabrication of microelements using carbon nanotubes.

【0002】[0002]

【従来の技術】カーボンナノチューブは、直径はナノメ
ータスケールでありながら長さは制限を受けない構造を
持ち、機械的および電子物性的に特異な性質を有するこ
とから、様々な分野への応用が検討されている。
2. Description of the Related Art Carbon nanotubes have a structure in which the length is not limited even though the diameter is on the order of nanometers, and have unique properties in terms of mechanical and electronic properties. Have been.

【0003】特に、構造や直径によって金属的にも半導
体的にもなることから、ナノサイズの電子素子の構築に
重要な役割を果たすことが期待されている。電子素子へ
の応用を考えた場合、シリコン基板上に位置やサイズを
制御してカーボンナノチューブを形成することが重要に
なる。
[0003] In particular, since they can be metallic or semiconducting depending on their structure and diameter, they are expected to play an important role in the construction of nano-sized electronic devices. When considering application to an electronic element, it is important to form carbon nanotubes by controlling the position and size on a silicon substrate.

【0004】従来のシリコン基板上へのカーボンナノチ
ューブの成長技術は、遷移金属を触媒として炭化水素を
600〜1000℃程度の温度で反応させるCVD(c
hemical vapor deposition)
法が用いられている。これには炭化水素の熱分解のみの
CVD法とプラズマを併用するプラズマCVD法があ
る。
A conventional technique for growing carbon nanotubes on a silicon substrate is a CVD (c) method in which a hydrocarbon is reacted at a temperature of about 600 to 1000 ° C. using a transition metal as a catalyst.
chemical vapor deposition)
Method is used. This includes a CVD method using only thermal decomposition of hydrocarbons and a plasma CVD method using plasma in combination.

【0005】金属触媒としては鉄、コバルト、ニッケル
やそれらの混合物がよく用いられている。これらの金属
をシリコン基板に蒸着して薄膜を形成し、それを熱処理
することにより微粒子に変えて高温の炭化水素ガスに曝
し、カーボンナノチューブを成長させる。
As the metal catalyst, iron, cobalt, nickel and a mixture thereof are often used. These metals are deposited on a silicon substrate to form a thin film, which is then heat-treated to be converted into fine particles and exposed to a high-temperature hydrocarbon gas to grow carbon nanotubes.

【0006】また、別の方法で作製したこれらの遷移金
属の微粒子を直接シリコン基板に付着させて、同様に高
温の炭化水素ガスに曝し、カーボンナノチューブを成長
させる。これらの金属触媒がシリカやシリコン酸化膜上
にある場合、カーボンナノチューブが効率よく成長す
る。しかし、直接シリコン基板上に触媒金属を蒸着した
り、触媒微粒子を付着させた場合には、カーボンナノチ
ューブが全く成長しないか、成長してもその確率が極め
て低い。
Further, these transition metal fine particles produced by another method are directly adhered to a silicon substrate, and similarly exposed to a high-temperature hydrocarbon gas to grow carbon nanotubes. When these metal catalysts are on a silica or silicon oxide film, carbon nanotubes grow efficiently. However, when the catalyst metal is directly deposited on the silicon substrate or the catalyst fine particles are attached, the carbon nanotube does not grow at all, or the probability of growing the carbon nanotube is extremely low.

【0007】電子素子への応用を想定すると、シリコン
基板の特定位置に形成した微粒子触媒から直接ナノチュ
ーブを成長させることが必要である。しかし、従来技術
では酸化物の上でしかカーボンナノチューブが効率よく
成長しないので、シリコン素子との組み合わせに制約を
受けるという問題がある。例えば、酸化物や配線を介さ
ずにシリコンとカーボンナノチューブを直接結合するこ
とができないという問題がある。
Assuming application to an electronic device, it is necessary to grow nanotubes directly from a fine particle catalyst formed at a specific position on a silicon substrate. However, in the prior art, since the carbon nanotubes grow efficiently only on the oxide, there is a problem that the combination with the silicon element is restricted. For example, there is a problem that silicon and carbon nanotubes cannot be directly bonded without using an oxide or wiring.

【0008】[0008]

【発明が解決しようとする課題】本発明は従来のカーボ
ンナノチューブ成長方法における上記の問題を解決し、
シリコン基板上にカーボンナノチューブを成長する方法
を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the conventional carbon nanotube growth method,
An object of the present invention is to provide a method for growing carbon nanotubes on a silicon substrate.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明によるカーボンナノチューブ成長方法は、シ
リコン基板上に触媒の存在下に炭化水素を反応させ、カ
ーボンナノチューブを成長させるカーボンナノチューブ
成長方法において、前記触媒は遷移金属の酸化物である
ことを特徴とする。
Means for Solving the Problems To solve the above problems, a method for growing carbon nanotubes according to the present invention is directed to a method for growing carbon nanotubes by reacting hydrocarbons on a silicon substrate in the presence of a catalyst. The catalyst is characterized by being an oxide of a transition metal.

【0010】[0010]

【作用】シリコン基板上に置かれた遷移金属の酸化物薄
膜や微粒子は、高温、例えば600℃以上の熱処理によ
り還元される。これは、シリコン酸化物の方が遷移金属
酸化物よりも熱力学的に安定であるため、酸素と金属元
素との結合が切れて酸素とシリコンの結合が形成される
ためである。
The thin oxide film and fine particles of the transition metal placed on the silicon substrate are reduced by a heat treatment at a high temperature, for example, at 600 ° C. or higher. This is because silicon oxide is more thermodynamically stable than transition metal oxide, so that the bond between oxygen and a metal element is broken to form a bond between oxygen and silicon.

【0011】このため、還元された遷移金属とシリコン
基板との界面にはシリコン酸化物が形成される。シリコ
ン基板上で遷移金属によるカーボンナノチューブ成長が
起こりにくい原因は明らかではないが、遷移金属とシリ
コン基板との界面におけるシリサイドの形成が関与して
いるものと予想される。遷移金属酸化物を用いた場合に
は、界面での遷移金属元素とシリコンとの反応が新たに
形成されたシリコン酸化膜により抑制されるので、その
上の遷移金属触媒の作用が失われないものと考えられ
る。
Therefore, silicon oxide is formed at the interface between the reduced transition metal and the silicon substrate. Although it is not clear why the carbon nanotubes are hardly grown by the transition metal on the silicon substrate, it is expected that silicide formation at the interface between the transition metal and the silicon substrate is involved. When a transition metal oxide is used, the reaction between the transition metal element and silicon at the interface is suppressed by the newly formed silicon oxide film, so that the action of the transition metal catalyst on it is not lost. it is conceivable that.

【0012】すなわち、遷移金属の酸化物をシリコン基
板に用いると、シリコン酸化物上に遷移金属触媒を用い
た場合と同様な状況を作り出すことができる。しかも、
シリコン酸化物は遷移金属触媒とシリコン基板との間に
自己整合的に形成されるので、予めシリコン基板の酸化
を行ったり部分的にカーボンナノチューブを成長するた
めの酸化膜のパターニングを行う必要がない。
That is, when a transition metal oxide is used for a silicon substrate, a situation similar to the case where a transition metal catalyst is used on a silicon oxide can be created. Moreover,
Since silicon oxide is formed in a self-aligned manner between the transition metal catalyst and the silicon substrate, there is no need to oxidize the silicon substrate or pattern an oxide film to partially grow carbon nanotubes in advance. .

【0013】[0013]

【実施例1】具体的な例として、シリコン基板上にカー
ボンナノチューブを形成する条件を図1の工程図を用い
て説明する。すなわち、洗浄等の前処理を行ったシリコ
ン基板に(図1(a))、平均直径が20nmの酸化鉄
(Fe23)微粒子を分散させる。このとき、シリコン
基板の表面の自然酸化膜を残したままでもよいし、前処
理として希フッ酸で酸化膜を除去してもよい(図1
(b))。
Embodiment 1 As a specific example, conditions for forming carbon nanotubes on a silicon substrate will be described with reference to the process chart of FIG. That is, fine particles of iron oxide (Fe 2 O 3 ) having an average diameter of 20 nm are dispersed in a silicon substrate that has been subjected to pretreatment such as cleaning (FIG. 1A). At this time, the natural oxide film on the surface of the silicon substrate may be left as it is, or the oxide film may be removed with dilute hydrofluoric acid as a pretreatment (FIG. 1).
(b)).

【0014】また、硫酸と過酸化水素の混合液等で化学
酸化した薄い酸化膜を形成してもよい。これらの薄い酸
化膜は希ガスあるいは水素雰囲気中で例えば800℃以
上に加熱することにより蒸発させることができる。
A thin oxide film chemically oxidized with a mixed solution of sulfuric acid and hydrogen peroxide or the like may be formed. These thin oxide films can be evaporated by heating to, for example, 800 ° C. or more in a rare gas or hydrogen atmosphere.

【0015】酸化鉄微粒子分散法の一例を以下に述べ
る。適量の酸化鉄微粒子をエチルアルコールに入れ、塊
が残らないようによく撹拌する。この中にシリコン基板
を含浸する。このとき、超音波洗浄器を用いて微粒子の
分散化を促進してもよい。
An example of the iron oxide fine particle dispersion method is described below. An appropriate amount of iron oxide fine particles is put in ethyl alcohol and stirred well so that no lump remains. A silicon substrate is impregnated therein. At this time, the dispersion of the fine particles may be promoted by using an ultrasonic cleaner.

【0016】次に、酸化鉄微粒子が付着したシリコン基
板を純水で洗浄し、余分な微粒子の塊を除去する(図1
(c))。この後は従来用いられている方法に従ってカ
ーボンナノチューブを成長する(図1(d))。
Next, the silicon substrate to which the iron oxide fine particles are adhered is washed with pure water to remove excess lump of fine particles (FIG. 1).
(c)). Thereafter, carbon nanotubes are grown according to a conventionally used method (FIG. 1D).

【0017】ここでは、メタンの熱分解CVDを用いた
例を記述する。酸化鉄微粒子を付着させたシリコン基板
をCVD炉にセットし、アルゴンガスを流しながら成長
温度である900℃まで昇温する。温度が安定したらメ
タンガスあるいはメタンを含んだ混合ガスに切り替え、
カーボンナノチューブの成長を行う。
Here, an example using thermal decomposition CVD of methane will be described. The silicon substrate to which the iron oxide fine particles are adhered is set in a CVD furnace, and the temperature is raised to 900 ° C., which is the growth temperature, while flowing argon gas. When the temperature stabilizes, switch to methane gas or a mixed gas containing methane,
Growing carbon nanotubes.

【0018】酸化鉄微粒子は最初の昇温過程中ないしは
カーボンナノチューブの成長過程の初期に還元されて鉄
の微粒子になっており、触媒として作用する。所定の時
間ナノチューブの成長を行った後、原料ガスを再び希ガ
スに切り替え、降温する。なお、酸化鉄微粒子の代りに
ニッケルやコバルトの酸化物微粒子を用いても、同様な
効果があった。すなわち、本発明によれば、前記触媒と
して、鉄酸化物、コバルト酸化物、ニッケル酸化物より
選択された一種以上の微粒子を良好に用いることができ
る。
The iron oxide fine particles are reduced into iron fine particles during the initial heating process or at the beginning of the growth process of the carbon nanotubes, and act as a catalyst. After growing the nanotubes for a predetermined time, the source gas is switched to a rare gas again, and the temperature is lowered. The same effect was obtained by using nickel or cobalt oxide fine particles instead of iron oxide fine particles. That is, according to the present invention, one or more kinds of fine particles selected from iron oxide, cobalt oxide, and nickel oxide can be favorably used as the catalyst.

【0019】以上の実施例では酸化鉄微粒子を用いた場
合を説明したが、遷移金属の酸化物を薄膜として使用し
た場合にも、同様な効果が期待できる。すなわち、薄膜
の場合にも、高温での熱処理により酸化物が還元されて
遷移金属の微粒子に変化し、金属微粒子とシリコン基板
との界面にシリコン酸化物が選択的に残留する。したが
って、酸化物微粒子を用いた場合と同じ効果が生じる。
In the above embodiment, the case where the iron oxide fine particles are used has been described. However, similar effects can be expected when the oxide of the transition metal is used as the thin film. In other words, even in the case of a thin film, the oxide is reduced by heat treatment at a high temperature to change into transition metal fine particles, and silicon oxide selectively remains at the interface between the metal fine particles and the silicon substrate. Therefore, the same effect as when the oxide fine particles are used is produced.

【0020】[0020]

【発明の効果】以上述べてきたように、遷移金属酸化物
を触媒として使用することにより、シリコン基板上に効
率よくカーボンナノチューブを成長させることができ
る。したがって、シリコン基板の特定の位置にカーボン
ナノチューブを形成して他のシリコン素子と結合する工
程に応用することができ、カーボンナノチューブの素子
応用に多大な進歩をもたらすことができる。
As described above, by using a transition metal oxide as a catalyst, carbon nanotubes can be efficiently grown on a silicon substrate. Therefore, the present invention can be applied to a process of forming a carbon nanotube at a specific position on a silicon substrate and bonding it to another silicon device, and can greatly advance the application of the carbon nanotube to a device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態におけるカーボンナノチュ
ーブ成長方法の工程図。
FIG. 1 is a process chart of a carbon nanotube growth method according to an embodiment of the present invention.

【図2】本発明の実施例により形成したシリコン基板上
のカーボンナノチューブの走査電子顕微鏡写真。
FIG. 2 is a scanning electron micrograph of a carbon nanotube on a silicon substrate formed according to an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荻野 俊郎 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 4G046 CA02 CB00 CB09 CC03 CC06 CC08 4K030 AA09 AA22 BA27 CA04 CA12 FA10 JA10  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiro Ogino 2-3-1 Otemachi, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation F-term (reference) 4G046 CA02 CB00 CB09 CC03 CC06 CC08 4K030 AA09 AA22 BA27 CA04 CA12 FA10 JA10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】触媒の存在下に炭化水素を反応させ、シリ
コン基板上にカーボンナノチューブを成長させるカーボ
ンナノチューブ成長方法において、前記触媒は遷移金属
の酸化物であることを特徴とするカーボンナノチューブ
成長方法。
1. A method for growing carbon nanotubes on a silicon substrate by reacting hydrocarbons in the presence of a catalyst, wherein the catalyst is an oxide of a transition metal. .
【請求項2】前記炭化水素は600℃以上の温度で反応
させることを特徴とする請求項1記載のカーボンナノチ
ューブ成長方法。
2. The method according to claim 1, wherein the hydrocarbon is reacted at a temperature of 600 ° C. or higher.
【請求項3】前記触媒として、鉄酸化物、コバルト酸化
物、ニッケル酸化物より選択された一種以上の微粒子を
用いることを特徴とする請求項1または2記載のカーボ
ンナノチューブ成長方法。
3. The method according to claim 1, wherein one or more fine particles selected from iron oxide, cobalt oxide, and nickel oxide are used as the catalyst.
【請求項4】 前記遷移金属の酸化物をシリコン基板上
に薄膜として設けることを特徴とする請求項1から3記
載のいずれかのカーボンナノチューブ成長方法。
4. The method according to claim 1, wherein the oxide of the transition metal is provided as a thin film on a silicon substrate.
JP2001084315A 2001-03-23 2001-03-23 Method for growing carbon nanotube Pending JP2002285334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084315A JP2002285334A (en) 2001-03-23 2001-03-23 Method for growing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084315A JP2002285334A (en) 2001-03-23 2001-03-23 Method for growing carbon nanotube

Publications (1)

Publication Number Publication Date
JP2002285334A true JP2002285334A (en) 2002-10-03

Family

ID=18940004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084315A Pending JP2002285334A (en) 2001-03-23 2001-03-23 Method for growing carbon nanotube

Country Status (1)

Country Link
JP (1) JP2002285334A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056409B2 (en) * 2003-04-17 2006-06-06 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7074294B2 (en) * 2003-04-17 2006-07-11 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
JP2008270680A (en) * 2007-04-25 2008-11-06 Ulvac Japan Ltd Method of forming nanohole for cnt growth, substrate for cnt growth, and method for cnt growth
WO2010038793A1 (en) 2008-09-30 2010-04-08 凸版印刷株式会社 Nano-carbon material composite substrate and method for manufacturing same
JP2010126429A (en) * 2008-12-01 2010-06-10 Fujitsu Ltd Method of manufacturing composite material, and method of manufacturing semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056409B2 (en) * 2003-04-17 2006-06-06 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7074294B2 (en) * 2003-04-17 2006-07-11 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
JP2008270680A (en) * 2007-04-25 2008-11-06 Ulvac Japan Ltd Method of forming nanohole for cnt growth, substrate for cnt growth, and method for cnt growth
WO2010038793A1 (en) 2008-09-30 2010-04-08 凸版印刷株式会社 Nano-carbon material composite substrate and method for manufacturing same
US8741419B2 (en) 2008-09-30 2014-06-03 Toppan Printing Co., Ltd. Nanocarbon material-composite substrate and manufacturing method thereof
JP2010126429A (en) * 2008-12-01 2010-06-10 Fujitsu Ltd Method of manufacturing composite material, and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US8470709B2 (en) Formation of metal-containing nano-particles for use as catalysts for carbon nanotube synthesis
US7825036B2 (en) Method of synthesizing silicon wires
US20100227058A1 (en) Method for fabricating carbon nanotube array
JP2004284938A (en) Method of producing carbon nanotube
US20100047152A1 (en) Growth of carbon nanotubes using metal-free nanoparticles
JP2010509171A5 (en)
US20090317943A1 (en) Alignment of Semiconducting Nanowires on Metal Electrodes
JP3920103B2 (en) Insulating layer embedded type semiconductor silicon carbide substrate manufacturing method and manufacturing apparatus thereof
TW200521079A (en) Method for forming carbon nanotubes
JP4547519B2 (en) Method for producing silicon nanowire
US7820245B2 (en) Method of synthesizing single-wall carbon nanotubes
JP4863361B2 (en) Method for producing carbon nanotube
Liu et al. Synthesis of silicon nanowires using AuPd nanoparticles catalyst on silicon substrate
CN111268656A (en) Preparation method of boron nitride nanotube
JP2002285334A (en) Method for growing carbon nanotube
CN106191805B (en) Preparation method of magnetic graphene composite film
JP5176925B2 (en) CNT synthesis substrate, method for producing the same, and method for producing CNT
JP2007084369A (en) TiC ULTRAFINE PARTICLE-SUPPORTED OR TiO2 ULTRAFINE PARTICLE-SUPPORTED CARBON NANOTUBE, TiC NANOTUBE, AND METHOD FOR PRODUCING THEM
KR100455663B1 (en) Metal/nanomaterial heterostructure and method for the preparation thereof
CN111620340B (en) Method for in-situ growth of TiC nanotube
JP5049473B2 (en) Wiring forming method and wiring
JP2007302524A (en) Method for growing carbon nanocoil
JP2009137805A (en) Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown
JP4471617B2 (en) Pd metal-encapsulating carbon nanotube production method
CN110255533A (en) The method and its product and application of semi-conductive single-walled carbon nanotubes are prepared based on phenylating method of modifying