JP4547519B2 - Method for producing silicon nanowire - Google Patents

Method for producing silicon nanowire Download PDF

Info

Publication number
JP4547519B2
JP4547519B2 JP2004307618A JP2004307618A JP4547519B2 JP 4547519 B2 JP4547519 B2 JP 4547519B2 JP 2004307618 A JP2004307618 A JP 2004307618A JP 2004307618 A JP2004307618 A JP 2004307618A JP 4547519 B2 JP4547519 B2 JP 4547519B2
Authority
JP
Japan
Prior art keywords
silicon
silicon nanowires
temperature
gas
producing silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004307618A
Other languages
Japanese (ja)
Other versions
JP2006117475A (en
Inventor
裕 鈴木
弘 荒木
哲二 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004307618A priority Critical patent/JP4547519B2/en
Publication of JP2006117475A publication Critical patent/JP2006117475A/en
Application granted granted Critical
Publication of JP4547519B2 publication Critical patent/JP4547519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本願発明は、シリコンナノワイヤーの製造方法に関するものである。   The present invention relates to a method for producing silicon nanowires.

シリコンナノワイヤーの応用として、マイクロマシン用の素材、ナノサイズの半導体が考えられる。特に、半導体への応用では、リソグラフィー技術のように、回路に直接シリコンナノワイヤーが組み込まれるのが望ましい。そのためには、回路に損傷を与えないように、できるだけ低温でシリコンナノワイヤーが合成される必要がある。   Silicon nanowires can be applied to materials for micromachines and nano-sized semiconductors. In particular, in semiconductor applications, it is desirable to incorporate silicon nanowires directly into the circuit as in lithography technology. For this purpose, it is necessary to synthesize silicon nanowires at the lowest possible temperature so as not to damage the circuit.

従来、シリコンナノワイヤーの製造は、シリコンの溶融蒸発を利用した方法で行われているが、この方法では、基板温度は1000℃近い高温が必要とされる。これに対し、シランガスの熱分解を利用する気相化学反応を用い、さらに、Au、Fe、Ni粒子等の触媒を利用すると、基板温度が比較的低い温度でシリコンナノワイヤーが作製される。   Conventionally, the production of silicon nanowires has been performed by a method using melt evaporation of silicon, but this method requires a substrate temperature as high as about 1000 ° C. In contrast, when a gas phase chemical reaction utilizing thermal decomposition of silane gas is used and a catalyst such as Au, Fe, or Ni particles is used, silicon nanowires are produced at a relatively low substrate temperature.

最近、モノシラン(SiH4)を用いて500℃でシリコンナノワイヤーの合成が行われている(たとえば、非特許文献1参照)。
N.Sakulchaicharoen et al., Chemical Physics letters, 377,(2003)377
Recently, silicon nanowires have been synthesized using monosilane (SiH 4 ) at 500 ° C. (see, for example, Non-Patent Document 1).
N. Sakulchaicharoen et al., Chemical Physics letters, 377, (2003) 377

しかしながら、半導体基板回路に熱損傷を与えないためには、さらに低温でのシリコンナノワイヤーの合成が望まれる。   However, in order not to cause thermal damage to the semiconductor substrate circuit, synthesis of silicon nanowires at a lower temperature is desired.

本願発明は、このような事情に鑑みてなされたものであり、300℃以下の温度で結晶性
のシリコンナノワイヤーが生成するシリコンナノワイヤーの製造方法を提供することを解決すべき課題としている。
This invention is made | formed in view of such a situation, and makes it the subject which should be solved to provide the manufacturing method of the silicon nanowire which a crystalline silicon nanowire produces | generates at the temperature of 300 degrees C or less.

本願発明は、上記の課題を解決するために、第1には、シリコンと低融点の共晶合金を作る金属を触媒としてポリシランガスの熱分解によりシリコンナノワイヤーを生成させることを特徴としている。   In order to solve the above problems, the present invention is characterized in that, first, silicon nanowires are generated by thermal decomposition of polysilane gas using a metal that forms a eutectic alloy having a low melting point with silicon as a catalyst.

本願発明は、第2には、触媒は、金、銀、鉄またはニッケルから選択されるいずれか1種であることを特徴としている。   Secondly, the present invention is characterized in that the catalyst is any one selected from gold, silver, iron and nickel.

本願発明は、第3には、ポリシランガスがジシランガスであることを特徴としている。   Third, the present invention is characterized in that the polysilane gas is a disilane gas.

本願発明によれば、300℃以下の温度で結晶性のシリコンナノワイヤーを合成すること
ができる。このため、半導体回路基板に熱損傷を与えずに、半導体回路に直接シリコンナノワイヤーを組み込むことが可能となる。
According to the present invention, crystalline silicon nanowires can be synthesized at a temperature of 300 ° C. or lower. For this reason, it becomes possible to incorporate silicon nanowires directly into the semiconductor circuit without causing thermal damage to the semiconductor circuit substrate.

以下、実施例を示しつつ、本願発明のシリコンナノワイヤーの製造方法についてさらに詳しく説明する。   Hereinafter, the manufacturing method of the silicon nanowire of the present invention will be described in more detail with reference to examples.

これまでに報告されているシランの生成熱、エントロピーおよび比熱データに基づいて、シリコンが生成する分解生成自由エネルギーを計算し、温度の関数として図1に示した。   Based on the heat of formation, entropy, and specific heat data of silane reported so far, the decomposition free energy generated by silicon was calculated and shown in FIG. 1 as a function of temperature.

いずれのシランガスも、分解生成自由エネルギーは室温以上では負の値をとる。一方、モノシラン(SiH4)に比べてジシラン(Si26)、トリシラン(Si38)のポリ
シランの分解生成自由エネルギーは負側に倍以上大きく、室温付近でも十分に負の値をとる。このことから、ポリシランは、低温でも分解しやすいと理解され、モノシランに比べてより低温でシリコンが生成すると予測される。
In any silane gas, the decomposition free energy takes a negative value at room temperature or higher. On the other hand, polysilane decomposition free energy of disilane (Si 2 H 6 ) and trisilane (Si 3 H 8 ) is more than double on the negative side compared to monosilane (SiH 4 ), and takes a sufficiently negative value near room temperature. . From this, it is understood that polysilane is easily decomposed even at a low temperature, and it is predicted that silicon is generated at a lower temperature than monosilane.

ナノワイヤーとして成長させるためには、シリコンと低融点の共晶合金を作る金属が触媒として必要であり、そのような金属として、金、銀、鉄、ニッケル等が例示される。触媒の形態としては、表面積が大きくなるように、粒子状であることが好ましい。   In order to grow as a nanowire, a metal that forms a eutectic alloy having a low melting point with silicon is required as a catalyst. Examples of such a metal include gold, silver, iron, nickel, and the like. The form of the catalyst is preferably particulate so as to increase the surface area.

シリコン基板上に金をスパッタにより蒸着し、この基板を反応容器内に配置し、反応容器内を1×10-6Torrの真空にした。次いで、基板を296℃まで加熱し、温度が一定とな
ったところで、反応容器内にH2ガスで10%に希釈したジシラン(Si26)ガスを5Torrまで導入し、この状態に5分間保持した。
Gold was deposited on the silicon substrate by sputtering, this substrate was placed in a reaction vessel, and the inside of the reaction vessel was evacuated to 1 × 10 −6 Torr. Next, the substrate was heated to 296 ° C., and when the temperature became constant, disilane (Si 2 H 6 ) gas diluted to 10% with H 2 gas was introduced into the reaction vessel up to 5 Torr, and this state was maintained for 5 minutes. Retained.

基板表面を走査型電子顕微鏡で観察すると、図2に示したように、ナノワイヤーが形成されているのが確認された。ナノワイヤーは、直径が約50nm、長さが最長で4μmであった。X線分析の結果、表1に示したように、ナノワイヤー本体はほぼシリコンから形成されていた。300℃以下の低温でシリコンナノワイヤーが基板上に形成されたことが確認
された。
When the surface of the substrate was observed with a scanning electron microscope, it was confirmed that nanowires were formed as shown in FIG. The nanowire had a diameter of about 50 nm and a maximum length of 4 μm. As a result of X-ray analysis, as shown in Table 1, the nanowire main body was substantially formed of silicon. It was confirmed that silicon nanowires were formed on the substrate at a low temperature of 300 ° C. or lower.

また、透過型電子顕微鏡で観察した結果、図3に示したように、シリコンナノワイヤーは、シリコンの単結晶であることが確認された。   Moreover, as a result of observing with a transmission electron microscope, as shown in FIG. 3, it was confirmed that the silicon nanowire is a single crystal of silicon.

もちろん、本願発明は、以上の実施例によって限定されるものではない。ポリシランガスの種類、反応条件等の細部については様々な態様が可能である。   Of course, the present invention is not limited to the above embodiments. Various details are possible for details such as the type of polysilane gas and reaction conditions.

以上詳しく説明したとおり、本願発明によって、300℃以下の温度で結晶性のシリコン
ナノワイヤーを合成することが可能となる。
As described above in detail, the present invention makes it possible to synthesize crystalline silicon nanowires at a temperature of 300 ° C. or lower.

シランガスのシリコン生成熱分解自由エネルギーの温度との関係を示したグラフである。It is the graph which showed the relationship with the temperature of the silicon production pyrolysis free energy of silane gas. 実施例で形成したナノワイヤーの走査型電子顕微鏡像である。It is a scanning electron microscope image of the nanowire formed in the Example. 実施例で形成したナノワイヤーの透過型電子顕微鏡像である。It is a transmission electron microscope image of the nanowire formed in the Example.

Claims (3)

シリコンと低融点の共晶合金を作る金属を触媒としてポリシランガスの熱分解によりシリコンナノワイヤーを生成させることを特徴とするシリコンナノワイヤーの製造方法。   A method for producing silicon nanowires, wherein silicon nanowires are produced by thermal decomposition of polysilane gas using a metal that forms a low-melting eutectic alloy with silicon as a catalyst. 触媒は、金、銀、鉄またはニッケルから選択されるいずれか1種である請求項1記載のシリコンナノワイヤーの製造方法。   The method for producing silicon nanowires according to claim 1, wherein the catalyst is any one selected from gold, silver, iron, and nickel. ポリシランガスがジシランガスである請求項1または2記載のシリコンナノワイヤーの製造方法。

The method for producing silicon nanowires according to claim 1 or 2, wherein the polysilane gas is disilane gas.

JP2004307618A 2004-10-22 2004-10-22 Method for producing silicon nanowire Expired - Fee Related JP4547519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004307618A JP4547519B2 (en) 2004-10-22 2004-10-22 Method for producing silicon nanowire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307618A JP4547519B2 (en) 2004-10-22 2004-10-22 Method for producing silicon nanowire

Publications (2)

Publication Number Publication Date
JP2006117475A JP2006117475A (en) 2006-05-11
JP4547519B2 true JP4547519B2 (en) 2010-09-22

Family

ID=36535727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307618A Expired - Fee Related JP4547519B2 (en) 2004-10-22 2004-10-22 Method for producing silicon nanowire

Country Status (1)

Country Link
JP (1) JP4547519B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100799570B1 (en) * 2006-06-15 2008-01-31 한국전자통신연구원 Fabrication method of silicon nanotube using doughnut type catalytic metal layer
JP2009164104A (en) 2007-09-06 2009-07-23 Canon Inc Electrode material for negative electrode, its manufacturing method, electrode structure using the same material, and electricity storage device
CN101550531B (en) * 2008-04-03 2013-04-24 清华大学 Method for preparing silicon nano structures
TWI492896B (en) * 2008-04-18 2015-07-21 Hon Hai Prec Ind Co Ltd Method of manufacturing silicon nano-structure
JP4518284B2 (en) * 2008-04-21 2010-08-04 ソニー株式会社 Method for producing polysilane-modified silicon fine wire and method for forming silicon film
DE102010019874A1 (en) 2010-05-07 2011-11-10 Spawnt Private S.À.R.L. Nanowire useful in photovoltaics and electronics, comprises semiconductor materials and precursors of compounds or mixtures of compounds with a direct silicon-silicon-, germanium-silicon- and/or germanium-germanium-bond
DE102010019565A1 (en) 2010-05-05 2011-11-10 Spawnt Private S.À.R.L. Nanowires of novel precursors and process for their preparation
JP2013527831A (en) * 2010-05-05 2013-07-04 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Nanowires produced from novel precursors and methods for producing the same
JP5499406B2 (en) * 2010-08-20 2014-05-21 国立大学法人京都大学 Method for producing silicon nanowire
WO2013120011A1 (en) 2012-02-09 2013-08-15 Energ2 Technologies, Inc. Preparation of polymeric resins and carbon materials
CN105190948B (en) 2013-03-14 2019-04-26 14族科技公司 The complex carbon material of electrochemical modification agent comprising lithium alloyage
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
CN107074994B (en) 2014-03-14 2021-12-14 14集团技术公司 Novel method for solvent-free sol-gel polymerization and production of adjustable carbon structures therefrom
US20190097222A1 (en) 2015-08-14 2019-03-28 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
JP7115976B2 (en) 2015-08-28 2022-08-09 グループ14・テクノロジーズ・インコーポレイテッド Novel materials with very durable intercalation of lithium and methods for their production
JP7376360B2 (en) * 2017-03-09 2023-11-08 グループ14・テクノロジーズ・インコーポレイテッド Degradation of silicon-containing precursors on porous scaffold materials
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321536A (en) * 1997-05-23 1998-12-04 Sharp Corp Forming method for silicon film
JP2000012465A (en) * 1998-06-22 2000-01-14 Sharp Corp Formation of silicon film and manufacture of solar battery
JP2003246700A (en) * 2002-02-22 2003-09-02 Japan Science & Technology Corp Method of producing silicon nanoneedle
JP2004296750A (en) * 2003-03-26 2004-10-21 National Institute For Materials Science Manufacturing method of silicon nano wire
JP2006005205A (en) * 2004-06-18 2006-01-05 Nippon Telegr & Teleph Corp <Ntt> Porous structure and its manufacturing method
JP2006504519A (en) * 2002-10-28 2006-02-09 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Method for forming catalytic nanoparticles for nanowire growth and other applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321536A (en) * 1997-05-23 1998-12-04 Sharp Corp Forming method for silicon film
JP2000012465A (en) * 1998-06-22 2000-01-14 Sharp Corp Formation of silicon film and manufacture of solar battery
JP2003246700A (en) * 2002-02-22 2003-09-02 Japan Science & Technology Corp Method of producing silicon nanoneedle
JP2006504519A (en) * 2002-10-28 2006-02-09 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Method for forming catalytic nanoparticles for nanowire growth and other applications
JP2004296750A (en) * 2003-03-26 2004-10-21 National Institute For Materials Science Manufacturing method of silicon nano wire
JP2006005205A (en) * 2004-06-18 2006-01-05 Nippon Telegr & Teleph Corp <Ntt> Porous structure and its manufacturing method

Also Published As

Publication number Publication date
JP2006117475A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4547519B2 (en) Method for producing silicon nanowire
Wang et al. Low‐temperature synthesis of single‐crystal germanium nanowires by chemical vapor deposition
JP3850380B2 (en) Carbon nanotube matrix growth method
Nguyen et al. Growth of individual vertical germanium nanowires
US20040144970A1 (en) Nanowires
JP5038349B2 (en) Method for producing carbon nanotube
JP4811851B2 (en) Method for cross-linking growth of silicon nanowires
JP5562708B2 (en) Method for assembling silicon and / or germanium nanowires
Wong et al. Gold nanowires from silicon nanowire templates
JP5170609B2 (en) Method for producing silicon carbide nanowire
JP4556015B2 (en) Zinc sulfide / silicon core / shell nanowire and method for producing the same
JP3985044B2 (en) Single crystal silicon nanotube and method for producing the same
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
JP2007084369A (en) TiC ULTRAFINE PARTICLE-SUPPORTED OR TiO2 ULTRAFINE PARTICLE-SUPPORTED CARBON NANOTUBE, TiC NANOTUBE, AND METHOD FOR PRODUCING THEM
JP2008100863A (en) Silicon carbide nanostructure and its producing method
KR102283872B1 (en) Method for manufacturing carbon nanotube catalyst and carbon nanotube using the same
JP4000371B2 (en) Silicon nitride (Si3N4) nanorods and manufacturing method thereof
Wang et al. Synthesis and carbothermal nitridation mechanism of ultra-long single crystal α-Si3N4 nanobelts
JP3978490B2 (en) Silicon germanium nanowire assembly
JP4706078B2 (en) Nanowire, mixed nanowire, and mixed nanowire manufacturing method
JP2004190183A (en) Boron nitride nanofiber having long period structure and method for producing the same
JP4441617B2 (en) Aluminum nitride nanotube and method for producing the same
JP4840777B2 (en) Method for producing silicon germanium nanowire assembly
CN101603200A (en) The preparation method of the tungsten crystal whisker array of a kind of diameter and length controlled
KR101702404B1 (en) Nano structures, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees