JP2002212637A - Method for producing specular grain oriented silicon steel sheet having high magnetic flux density - Google Patents

Method for producing specular grain oriented silicon steel sheet having high magnetic flux density

Info

Publication number
JP2002212637A
JP2002212637A JP2001005609A JP2001005609A JP2002212637A JP 2002212637 A JP2002212637 A JP 2002212637A JP 2001005609 A JP2001005609 A JP 2001005609A JP 2001005609 A JP2001005609 A JP 2001005609A JP 2002212637 A JP2002212637 A JP 2002212637A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
flux density
magnetic flux
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001005609A
Other languages
Japanese (ja)
Other versions
JP4119614B2 (en
Inventor
Shuichi Nakamura
修一 中村
Yoshiyuki Ushigami
義行 牛神
Norihiro Yamamoto
紀宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001005609A priority Critical patent/JP4119614B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to US09/924,353 priority patent/US6613160B2/en
Priority to EP01118756A priority patent/EP1179603B1/en
Priority to DE60144270T priority patent/DE60144270D1/en
Priority to EP09159921.7A priority patent/EP2107130B1/en
Priority to KR10-2001-0047756A priority patent/KR100442101B1/en
Priority to CN01137980A priority patent/CN1128239C/en
Publication of JP2002212637A publication Critical patent/JP2002212637A/en
Application granted granted Critical
Publication of JP4119614B2 publication Critical patent/JP4119614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a specular grain oriented silicon steel sheet which has high magnetic flux density. SOLUTION: A steel having a composition containing, by mass, 0.8 to 4.8% Si, <=0.085% C, 0.01 to 0.065% acid soluble Al and <=0.012% N, and the balance Fe with inevitable impurities is heated at <=1,280 deg.C, and is thereafter hot-rolled into a hot rolled sheet. Next, the sheet is subjected to cold rolling for one time or two or more times including process annealing into a final sheet thickness. The sheet is then subjected to decarburizing annealing in an atmospheric gas where Fe based oxide is not formed, and is subsequently subjected to nitrogen increasing treatment. After that, the sheet is coated with a separation agent for annealing essentially consisting of alumina to make the surface of the steel sheet after finish annealing into a specular state. In this production method, provided that the draft in the cold rolling is defined as R%, the value of I[111]/I[411] is controlled to (201n[(100-R)/100]+81)/14 or lower. After that, the nitriding treatment is performed so that the content of nitrogen [N] reaches the one satisfying [N]/[Al]>=2/3 in accordance with the content of acid soluble Al [Al] in the steel sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶粒がミラー指
数で{110}<001>方位に集積した、いわゆる、
方向性電磁鋼板の製造方法に関するものである。そし
て、この方向性電磁鋼板は、軟磁性材料として、変圧器
等の電気機器の鉄芯として用いられる。
BACKGROUND OF THE INVENTION The present invention relates to a so-called "110"<001> orientation in which crystal grains
The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet. The grain-oriented electrical steel sheet is used as a soft magnetic material as an iron core of electrical equipment such as a transformer.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、{110}<001
>方位(いわゆるゴス方位)に集積した結晶粒により構
成されたSiを4.8%以下含有した鋼板である。そし
て、この鋼板には、磁気特性として、優れた励磁特性と
鉄損特性が要求される。励磁特性を表す指標として、磁
場の強さ800A/mにおける磁束密度:B8が通常使
用される。また、鉄損特性を表す指標として、周波数5
0Hzで1.7Tまで磁化した時の鋼板1kgあたりの鉄
損:W17/50 が用いられる。
2. Description of the Related Art Grain-oriented electrical steel sheets are {110} <001.
> A steel sheet containing 4.8% or less of Si constituted by crystal grains accumulated in an orientation (so-called Goss orientation). This steel sheet is required to have excellent excitation characteristics and iron loss characteristics as magnetic characteristics. As an index indicating the excitation characteristic, a magnetic flux density: B 8 at a magnetic field strength of 800 A / m is usually used. In addition, as an index representing iron loss characteristics, frequency 5
Iron loss per kg of steel sheet when magnetized to 1.7 T at 0 Hz: W 17/50 is used.

【0003】磁束密度:B8 は鉄損特性の最大の支配因
子であり、磁束密度:B8 の値が高いほど鉄損特性も良
好になる。磁束密度:B8 を高めるためには、結晶方位
を高度に揃えることが重要である。この結晶方位の制御
は、二次再結晶とよばれるカタストロフィックな粒成長
現象を利用して達成される。この二次再結晶を制御する
ためには、二次再結晶前の一次再結晶組織の調整と、イ
ンヒビターとよばれる微細析出物の調整を行うことが必
要である。このインヒビターは、一次再結晶組織のなか
で一般の粒の成長を抑制し、特定の{110}<001
>方位粒のみを優先成長させる機能を持つ。
[0003] The magnetic flux density: B 8 is the largest of the dominant factors of iron loss characteristics, the magnetic flux density: iron loss characteristics become good as the value of B 8 is high. Flux density: in order to increase the B 8, it is important to highly align the crystal orientation. The control of the crystal orientation is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization. In order to control the secondary recrystallization, it is necessary to adjust the primary recrystallization structure before the secondary recrystallization and to adjust a fine precipitate called an inhibitor. This inhibitor suppresses the growth of general grains in the primary recrystallized structure, and the specific {110} <001
> Has a function to preferentially grow only orientation grains.

【0004】析出物の代表的なものとして、M.F.L
ittmann(特公昭30−3651号公報)及び
J.E.May&D.Turnbull(Trans.
Met.Soc.AIME212(1958年)p76
9)等は、MnSを提示し、また、田口ら(特公昭40
−15644号公報)は、AlNを提示し、今中ら(特
公昭51−13469号公報)は、MnSeを提示して
いる。
As a typical example of the precipitate, M.P. F. L
Ittmann (JP-B No. 30-3651) and J.I. E. FIG. May & D. Turnbull (Trans.
Met. Soc. AIM212 (1958) p76
9) etc. present MnS, and Taguchi et al.
No. -15644 discloses AlN, and Imanaka et al. (Japanese Patent Publication No. 51-13469) discloses MnSe.

【0005】これらの析出物は、熱間圧延前のスラブ加
熱時に、析出物を完全固溶させ、その後に、熱間圧延及
びその後の焼鈍工程で微細析出させる方法がとられてい
る。これらの析出物を完全固溶させるためには、135
0℃ないし1400℃以上の高温で加熱する必要があ
り、これは普通鋼のスラブ加熱温度に比べて約200℃
高く、次の問題点がある。
[0005] A method is employed in which these precipitates are completely dissolved in a slab before hot rolling at the time of slab heating, and then finely precipitated in a hot rolling and a subsequent annealing step. In order to completely dissolve these precipitates, 135
It is necessary to heat at a high temperature of 0 ° C to 1400 ° C or more, which is about 200 ° C compared to the slab heating temperature of ordinary steel.
High, with the following problems:

【0006】(1)専用の加熱炉が必要である。 (2)加熱炉のエネルギー原単位が高い。 (3)溶融スケール量が多く、いわゆるノロ出し等の操
業管理が必要である。そこで、低温スラブ加熱による研
究開発が進められ、低温スラブ加熱による製造方法とし
て、小松等は、特公昭62−45285号公報で、窒化
処理により形成した(Al、Si)Nをインヒビターと
して用いる方法を開示した。この窒化処理の方法とし
て、小林等は、脱炭焼鈍後にストリップ状で窒化する方
法を開示し(特開平2−77525号公報)、また、牛
神等は、その窒化物の挙動を報告した(Materia
ls Science Forum,204−206
(1996),pp593−598)。
(1) A dedicated heating furnace is required. (2) The unit energy consumption of the heating furnace is high. (3) The amount of the molten scale is large, and operation management such as so-called sticking out is required. Therefore, research and development by low-temperature slab heating have been promoted. As a manufacturing method by low-temperature slab heating, Komatsu et al. In Japanese Patent Publication No. 62-45285 discloses a method using (Al, Si) N formed by nitriding as an inhibitor. Disclosed. Kobayashi et al. Disclosed a method of nitriding in strip form after decarburizing annealing (Japanese Unexamined Patent Publication No. 2-77525), and Ushigami et al. Reported the behavior of the nitride (Japanese Patent Application Laid-Open No. 2-77525). Materia
ls Science Forum, 204-206
(1996), pp 593-598).

【0007】低温スラブ加熱による方向性電磁鋼板の製
造方法においては、脱炭焼鈍時にインヒビターが形成さ
れていないので、脱炭焼鈍における一次再結晶組織の調
整が二次再結晶を制御するうえで重要となる。従来の高
温スラブ加熱による方向性電磁鋼板の製造方法に係る研
究においては、二次再結晶前の一次再結晶組織調整に関
する知見はほとんどないが、本発明者らは、例えば、特
公平8−32929号公報、特開平9−256051号
公報等において、その重要性を開示している。
In the method for producing a grain-oriented electrical steel sheet by low-temperature slab heating, since no inhibitor is formed during decarburization annealing, adjustment of the primary recrystallization structure during decarburization annealing is important for controlling secondary recrystallization. Becomes In the research on the conventional method for producing a grain-oriented electrical steel sheet by high-temperature slab heating, there is almost no knowledge about the adjustment of the primary recrystallization structure before the secondary recrystallization. However, the present inventors have found, for example, Japanese Patent Publication No. 8-32929. Japanese Patent Application Laid-Open Publication No. Hei 9-260551 and the like disclose the importance thereof.

【0008】特公平8−32929号公報においては、
一次再結晶粒組織の粒径分布の変動係数が0.6より大
きくなり粒組織が不均一になると、二次再結晶が不安定
になることを開示した。その後、さらに、特開平9−2
56051号公報において、二次再結晶の制御因子であ
る一次再結晶組織とインヒビターに関する研究の結果と
して、一次再結晶組織の粒組織において、脱炭焼鈍後の
集合組織においてゴス方位粒の成長を促進すると考えら
れる{111}方位及び{411}方位の粒の比率;I
{111}/I{411}を3以下に調整すると、製品
の磁束密度が向上することを開示した。
[0008] In Japanese Patent Publication No. 8-32929,
It has been disclosed that when the variation coefficient of the particle size distribution of the primary recrystallized grain structure becomes larger than 0.6 and the grain structure becomes non-uniform, the secondary recrystallization becomes unstable. Thereafter, Japanese Patent Application Laid-Open No. 9-2
In Japanese Patent No. 56051, as a result of a study on a primary recrystallization structure and an inhibitor which are control factors of secondary recrystallization, the growth of Goss-oriented grains in the texture after decarburizing annealing was promoted in the grain structure of the primary recrystallization structure. Probable ratio of grains in {111} orientation and {411} orientation; I
It has been disclosed that adjusting {111} / I {411} to 3 or less improves the magnetic flux density of the product.

【0009】ここで、I{111}及びI{411}は、
それぞれ{111}及び{411}面が鋼板板面に平行
である粒の割合であり、X線回折測定により板厚1/1
0層において測定された回折強度値を表している。この
脱炭焼鈍後の一次再結晶組織に対しては、脱炭焼鈍工程
の加熱速度、均熱温度、均熱時間等の脱炭焼鈍の焼鈍サ
イクルが影響するのはもちろんのこと、熱延板焼鈍の有
無、冷間圧延の圧下率(冷延圧下率)等の脱炭焼鈍前の
製造工程も影響する。
Here, I {111} and I {411} are
{111} and {411} are the proportions of grains whose planes are parallel to the steel plate surface, respectively.
5 shows diffraction intensity values measured in the 0th layer. The primary recrystallized structure after this decarburizing annealing is affected not only by the annealing cycle of decarburizing annealing such as heating rate, soaking temperature and soaking time in the decarburizing annealing step, Manufacturing processes before decarburization annealing, such as the presence or absence of annealing and the reduction ratio of cold rolling (cold rolling reduction ratio), also have an effect.

【0010】こうした一次再結晶集合組織等を制御した
二次再結晶制御以外にも、方向性珪素鋼板の鉄損をさら
に低減する手段として、磁区を細分化する技術が開発さ
れている。積み鉄心の場合、仕上げ焼鈍後の鋼板にレー
ザービームを照射して局部的な微少歪を与えることによ
り磁区を細分化して鉄損を低減する方法が、例えば、特
開昭58−26405号公報に開示されている。また、
巻き鉄心の場合には、鉄心に加工した後、歪取り焼鈍を
施しても磁区細分化効果が消失しない方法も、例えば、
特開昭62−8617号公報に開示されている。これら
の磁区を細分化する技術的手段により、鉄損は大きく低
減されるようになってきた。
In addition to the secondary recrystallization control in which the primary recrystallization texture and the like are controlled, a technique of subdividing magnetic domains has been developed as a means for further reducing iron loss of a grain-oriented silicon steel sheet. In the case of a piled core, a method of irradiating a steel beam after finish annealing with a laser beam to apply local microstrain to subdivide magnetic domains and reduce iron loss is disclosed in, for example, JP-A-58-26405. It has been disclosed. Also,
In the case of a wound iron core, after processing into an iron core, a method in which the domain refining effect does not disappear even when subjected to strain relief annealing, for example,
It is disclosed in JP-A-62-2617. Iron loss has been greatly reduced by technical means of subdividing these magnetic domains.

【0011】しかしながら、これらの磁区の動きを観察
すると、動かない磁区も存在していることが分かり、方
向性電磁鋼板の鉄損値をさらに低減するためには、磁区
細分化と併せて、磁区の動きを阻害する鋼板表面のグラ
ス皮膜による界面の凹凸から生じるピン止め効果をなく
すことが重要であることが分かった。そのためには、磁
区の動きを阻害する鋼板表面のグラス皮膜を形成させな
いことが有効である。その手段のひとつとして、焼鈍分
離剤として粗大高純アルミナを用いることによりグラス
皮膜を形成させない方法が、例えば、U.S.Pate
nt3785882に開示されている。しかしながら、
この方法では、表面直下の酸化物を主体とする介在物を
なくすことができず、鉄損の向上代はW15/60で、高々
2%に過ぎない。
However, when observing the movement of these magnetic domains, it is found that some magnetic domains do not move. In order to further reduce the iron loss value of the grain-oriented electrical steel sheet, it is necessary to combine the magnetic domain refinement with the magnetic domain refinement. It has been found that it is important to eliminate the pinning effect caused by the unevenness of the interface due to the glass film on the steel sheet surface that inhibits the movement of the steel sheet. For that purpose, it is effective not to form a glass film on the surface of the steel sheet that hinders the movement of the magnetic domain. As one of the means, a method in which a glass film is not formed by using coarse high-purity alumina as an annealing separating agent is disclosed in, for example, U.S. Pat. S. Pate
nt 3785882. However,
In this method, inclusions mainly composed of oxides just below the surface cannot be eliminated, and the improvement in iron loss is W 15/60, which is only 2% at most.

【0012】この表面直下の介在物を低減し、かつ、表
面の平滑化(平均粗度Ra:0.3μm以下)を達成す
る方法として、仕上げ焼鈍後にグラス被膜を除去した後
に、化学研磨または電解研磨を行う方法が、例えば、特
開昭64−83620号公報に開示されている。しかし
ながら、化学研磨・電解研磨等の方法は、研究室レベル
での少試料の材料を加工することは可能であるが、工業
的規模で行うには、薬液の濃度管理、温度管理、公害設
備の付与等の点で大きな問題があり、いまだ実用化され
るに至っていない。
As a method of reducing inclusions immediately below the surface and achieving a smooth surface (average roughness Ra: 0.3 μm or less), chemical polishing or electrolytic polishing is performed after removing a glass film after finish annealing. A method for performing polishing is disclosed, for example, in Japanese Patent Application Laid-Open No. 64-83620. However, methods such as chemical polishing and electrolytic polishing can process small sample materials at the laboratory level.However, for industrial scale, chemical concentration control, temperature control, pollution control equipment, etc. There is a major problem in terms of application and the like, and it has not yet been put to practical use.

【0013】この問題点を解消する方策として、本発明
者等は、脱炭焼鈍の露点を制御し、脱炭焼鈍時に形成さ
れる酸化層において、Fe系酸化物(Fe2SiO4、F
eO等)を形成させないこと、および、焼鈍分離剤とし
てシリカと反応しないアルミナ等の物質を用いることに
より、仕上げ焼鈍後に表面直下の介在物を低減し、か
つ、表面の平滑化を達成することが可能であることを開
示した(特開平7−118750号公報)。
As a measure for solving this problem, the present inventors have controlled the dew point of decarburization annealing, and in the oxide layer formed during decarburization annealing, Fe-based oxides (Fe 2 SiO 4 , F
eO), and by using a material such as alumina which does not react with silica as an annealing separator, it is possible to reduce inclusions immediately below the surface after finish annealing and to achieve a smooth surface. It is disclosed that it is possible (Japanese Patent Application Laid-Open No. Hei 7-118750).

【0014】[0014]

【発明が解決しようとする課題】本発明は、表面の平滑
性の良好な方向性電磁鋼板を低温スラブ加熱により製造
する方法において、一次再結晶を制御することにより、
磁束密度の高い優れた磁気特性をもつ方向性電磁鋼板を
製造する方法を開示するものである。
SUMMARY OF THE INVENTION The present invention provides a method for producing a grain-oriented electrical steel sheet having a good surface smoothness by low-temperature slab heating, by controlling primary recrystallization.
It discloses a method for producing a grain-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties.

【0015】[0015]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下のとおりである。 (1)質量%で、Si:0.8〜4.8%、C:0.0
85%以下、酸可溶性Al:0.01〜0.065%、
N:0.012%以下を含み、残部Fe及び不可避的不
純物からなる鋼を1280℃以下の温度に加熱した後、
熱間圧延により熱延板とし、次いで、一回または中間焼
鈍をはさむ二回以上の冷間圧延により最終板厚とし、次
いで、Fe系酸化物を形成させない雰囲気ガス中で脱炭
焼鈍し、その後、増窒素処理を行った後、アルミナを主
成分とする焼鈍分離剤を塗布することにより、仕上げ焼
鈍後の鋼板表面を鏡面状態にする鏡面方向性電磁鋼板の
製造方法において、冷延圧下率をR%としたときに、脱
炭焼鈍後の集合組織におけるI{111}/I{41
1}の値を、(20ln{(100−R)/100}+
81)/14以下に調整し、その後、鋼板の酸可溶性A
lの量:[Al]に応じて窒素量:[N]が[N]/
[Al]≧0.67を満足する量となるように窒化処理
を施すことことを特徴とする磁束密度の高い鏡面方向性
電磁鋼板の製造方法。
The gist of the present invention is as follows. (1) In mass%, Si: 0.8 to 4.8%, C: 0.0
85% or less, acid-soluble Al: 0.01 to 0.065%,
N: After heating the steel containing 0.012% or less and the balance consisting of Fe and unavoidable impurities to a temperature of 1280 ° C or less,
Hot rolled sheet by hot rolling, and then to the final sheet thickness by one or two or more cold rolling sandwiching intermediate annealing, then decarburizing annealing in an atmosphere gas that does not form Fe-based oxides, After performing the nitrogen increasing treatment, by applying an annealing separating agent containing alumina as a main component, in the method of manufacturing a mirror-oriented electrical steel sheet to make the steel sheet surface after finish annealing into a mirror-like state, the cold rolling reduction rate is reduced. When R%, I {111} / I {41 in the texture after decarburization annealing
The value of 1} is calculated as (20 ln {(100−R) / 100} +
81) / 14 or less, and then acid-soluble A
1 amount: [N] is [N] / [N] depending on [Al]
A method for producing a mirror-oriented electrical steel sheet having a high magnetic flux density, wherein a nitriding treatment is performed so as to satisfy [Al] ≧ 0.67.

【0016】(2)前記脱炭焼鈍工程の昇温過程におい
て、鋼板温度が600℃以下の領域から750〜900
℃の範囲内の所定の温度までの加熱速度H℃/秒を、1
[( R-68)/14] <Hとする加熱を行うことを特徴とする
前記(1)記載の磁束密度の高い鏡面方向性電磁鋼板の
製造方法。 (3)前記脱炭焼鈍工程の昇温過程における加熱速度H
℃/秒を、10[(R-32 )/32] <H<140とすることを
特徴とする前記(1)または(2)記載の磁束密度の高
い鏡面方向性電磁鋼板の製造方法。
(2) In the temperature raising process of the decarburizing annealing step, the temperature of the steel sheet is reduced from 750 to 900
The heating rate up to a predetermined temperature in the range of
0 [( R-68) / 14] <H. The method for producing a specular grain oriented magnetic steel sheet having a high magnetic flux density according to the above (1), wherein the heating is performed. (3) Heating rate H in the heating process of the decarburizing annealing process
The method for producing a mirror-oriented electrical steel sheet having a high magnetic flux density according to the above (1) or (2), wherein C / sec is set to 10 [(R-32 ) / 32] <H <140.

【0017】(4)前記熱延板に、900〜1200℃
の温度域で30秒〜30分間の焼鈍を施すことを特徴と
する前記(1)ないし(3)のいずれかに記載の磁束密
度の高い鏡面方向性電磁鋼板の製造方法。 (5)前記脱炭焼鈍工程において、770℃〜900℃
の温度域で、雰囲気ガスの酸化度(PH2O/PH2):
0.01以上0.15以下の範囲内で焼鈍することを特
徴とする前記(1)ないし(4)のいずれかに記載の磁
束密度の高い鏡面方向性電磁鋼板の製造方法。
(4) 900-1200 ° C.
The method according to any one of (1) to (3), wherein annealing is performed in the temperature range of 30 seconds to 30 minutes. (5) In the decarburizing annealing step, 770 ° C to 900 ° C
Oxidation degree of atmosphere gas in the temperature range (P H2O / P H2 ):
The method according to any one of the above (1) to (4), wherein the annealing is performed in a range of 0.01 to 0.15.

【0018】(6)前記鋼に、質量%で、さらに、Sn
を0.02〜0.15%添加することを特徴とする前記
(1)ないし(5)のいずれかに記載の磁束密度の高い
鏡面方向性電磁鋼板の製造方法。 (7)前記鋼に、質量%で、さらに、Crを0.03〜
0.2%添加することを特徴とする前記(1)ないし
(6)記載のいずれかに記載の磁束密度の高い鏡面方向
性電磁鋼板の製造方法。
(6) In the above steel, Sn
Is added in an amount of 0.02 to 0.15%, the method for producing a mirror-oriented electrical steel sheet having a high magnetic flux density according to any one of the above (1) to (5). (7) In the steel, Cr is added in an amount of 0.03 to
The method for producing a mirror-oriented electrical steel sheet having a high magnetic flux density according to any one of the above (1) to (6), wherein 0.2% is added.

【0019】以下、実験結果を基に、本発明が基とする
知見について説明する。図1は、冷延圧下率R(%)か
ら得られる真歪み:ln{100/(100−R)}に
対して脱炭焼鈍後の一次再結晶組織の集合組織:I{1
11}/I{411}(表面層;板厚の1/10層)を
プロットし、それと対応した二次再結晶焼鈍後の製品の
磁束密度:B8 の関係を示した図である。
Hereinafter, the findings based on the present invention will be described based on experimental results. FIG. 1 shows the true strain obtained from the cold rolling reduction R (%): ln {100 / (100-R)}, and the texture of the primary recrystallized structure after decarburizing annealing: I {1.
FIG. 11 is a diagram plotting 11 ° / I {411} (surface layer; 1/10 layer thickness) and showing the corresponding relationship between the magnetic flux density of the product after secondary recrystallization annealing: B 8 .

【0020】ここで用いた試料は、質量%で、Si:
3.2%、C:0.05%、酸可溶性Al:0.026
%、N:0.008%、Mn:0.1%、S:0.00
7%を含有するスラブを1150℃の温度で加熱した
後、1.5mm、2.3mm、2.8mmの各厚に熱間圧延
し、その後、1120℃で焼鈍し、次いで、0.22mm
厚まで冷間圧延後、加熱速度50℃/秒で770〜95
0℃の温度で脱炭焼鈍し、その後、一部はそのまま、一
部はアンモニア含有雰囲気で焼鈍して、鋼板中の窒素を
0.020〜0.03%とし、次いで、アルミナを主成
分とする焼鈍分離剤を塗布して、仕上げ焼鈍を行ったも
のである。
The sample used here was expressed in mass%, Si:
3.2%, C: 0.05%, acid-soluble Al: 0.026
%, N: 0.008%, Mn: 0.1%, S: 0.00
A slab containing 7% was heated at a temperature of 1150 ° C., then hot rolled to a thickness of 1.5 mm, 2.3 mm, 2.8 mm, then annealed at 1120 ° C., and then 0.22 mm
After cold rolling to a thickness, 770 to 95 at a heating rate of 50 ° C./sec.
Decarburization annealing at a temperature of 0 ° C., and thereafter, partly as it is and partly in an ammonia-containing atmosphere to reduce the nitrogen in the steel sheet to 0.020 to 0.03%, In this case, a final annealing is performed by applying an annealing separator to be applied.

【0021】また、図中にプロットした各点は二次再結
晶が安定して行われたものであり、特開平2−1828
66号公報にあるように、一次再結晶の粒組織の変動係
数が0.6よりも大きくなったことに起因してB8 が低
下したものは除いてある。図1から明らかなように、脱
炭焼鈍後のI{111}/I{411}の値と磁束密度
8 には密接な関係があり、冷延圧下率に対して1.9
3T以上の高磁束密度が得られるしきい値が変化してい
ることがわかる。さらに、B8 で1.93T以上が得ら
れるI{111}/I{411}の領域の境界が、真歪
み−ln{(100−R)/100}に対してほぼ線形
の関係にあり、その領域は、(20ln{(100−
R)/100}+81)/14以下であることがわか
る。
The points plotted in the figure indicate that the secondary recrystallization was performed stably.
As in 66 JP, B 8 due to the variation coefficient of the grain structure of primary recrystallization is greater than 0.6 are excluded those drops. As apparent from FIG. 1, the value and the magnetic flux density B 8 of decarburization annealing after the I {111} / I {411 } is closely related, 1.9 against cold rolling reduction rate
It can be seen that the threshold for obtaining a high magnetic flux density of 3T or more has changed. Furthermore, the boundary region of the I {111} / I {411 } more than 1.93T is obtained in B 8 is in the substantially linear relationship with the true strain -ln {(100-R) / 100}, The area is (20 ln {(100−
R) / 100} +81) / 14 or less.

【0022】上記の結果に対する理由は必ずしも明らか
ではないが、本発明者らは次のように考えている。一次
再結晶集合組織においては、{110}<001>二次
再結晶粒の成長を促進する{111}方位粒と{41
1}方位粒は、80%以上の高い冷延圧下率でその増加
に伴い発達するが、それと同時に、[110]<001>
方位粒を含む{110}方位粒は単調に減少していく。
Although the reason for the above result is not always clear, the present inventors think as follows. In the primary recrystallized texture, the {111} oriented grains and the {41} which promote the growth of {110} <001> secondary recrystallized grains.
1} -oriented grains develop with the increase at a high cold rolling reduction of 80% or more, and at the same time, [110] <001>.
The {110} orientation grains including the orientation grains monotonously decrease.

【0023】本発明におけるように、(Al、Si)N
等の窒化物のように熱的に安定な(強い)インヒビター
を用いた場合には、粒界移動の粒界性格依存性が高くな
るために、ゴス方位粒の数よりも、ゴス方位とΣ9対応
方位関係にあるマトリックス粒(具体的には、{11
1}<112>、{411}<148>)の数および結
晶方位分散がより重要になることから、二次再結晶粒と
なる一次再結晶組織中の[110]<001>方位粒の成
長を促進する{111}方位粒と{411}方位粒の十
分な発達が必要なのであり、特に、結晶方位分散が少な
い{411}方位粒の発達が重要になる。
As in the present invention, (Al, Si) N
In the case of using a thermally stable (strong) inhibitor such as a nitride such as a nitride, the dependence of the movement of the grain boundary on the grain boundary character becomes high. Matrix grains having a corresponding orientation relationship (specifically, # 11
1 {<112>, {411} <148>) and the crystal orientation dispersion become more important, so that the growth of [110] <001> orientation grains in the primary recrystallized structure to be secondary recrystallized grains. Sufficient development of {111} -oriented grains and {411} -oriented grains that promote crystallization is necessary. In particular, the development of {411} -oriented grains with small crystal orientation dispersion is important.

【0024】また、こうした高B8 効果が発現するため
の前提となるインヒビター強度の影響を、窒化処理後の
窒素量を0.01〜0.03%の範囲で変化させること
により調べた。その結果を図2に示す。図2は、上述の
実験で使用した試料のうち、冷延圧下率90.4%(熱
延板2.3mm厚)の脱炭焼鈍板で、I{111}/I{4
11}の値が2.2及び2.6の試料を窒化して得た製
品のB8 を、鋼板の酸可溶性Alの量[Al](%)に
対する窒化後の鋼板の窒素量[N](%)の比:[N]
/[Al]に対してプロットしたものである。図2よ
り、[N]/[Al]≧0.67かつ冷延圧下率90.
4%に対するI{111}/I{411}のしきい値
2.43以下の二つの条件を満たした場合に、B8
1.93T以上となっていることがわかる。
Further, the influence of the inhibitor strength, which is a prerequisite for achieving such a high B 8 effect, was examined by changing the amount of nitrogen after nitriding in the range of 0.01 to 0.03%. The result is shown in FIG. FIG. 2 shows a decarburized annealed sheet having a cold rolling reduction ratio of 90.4% (hot-rolled sheet 2.3 mm thick) among the samples used in the above-mentioned experiment.
The B 8 of the product obtained by nitriding the samples having the values of 11 ° of 2.2 and 2.6 was calculated as follows: the amount of nitrogen [N] of the steel sheet after nitriding with respect to the amount of acid-soluble Al [Al] (%) of the steel sheet. (%) Ratio: [N]
/ [Al]. From FIG. 2, [N] / [Al] ≧ 0.67 and the cold rolling reduction 90.
If it meets two conditions Threshold 2.43 following I {111} / I {411 } for 4%, B 8 it can be seen that a more than 1.93 T.

【0025】以上の結果をもとに、I{111}/I
{411}の値を脱炭焼鈍加熱速度と冷延圧下率とによ
って調整し、さらなる高B8 条件の探索を行った。図3
は、製品の磁束密度:B8 (T)を、冷延圧下率および
脱炭焼鈍加熱速度を軸にとったグラフ上にプロットした
図である。ここで用いた試料は、質量%で、Si:3.
3%、C:0.05%、酸可溶性Al:0.027%、
N:0.007%、Cr:0.1%、Sn:0.05
%、Mn:0.1%、S:0.008%を含有するスラ
ブを1150℃の温度で加熱した後、熱間圧延によっ
て、2.0mm、2.3mm、3.2mmの各厚にし、この熱
間圧延板を1120℃で焼鈍し、その後、0.22mm厚
に冷間圧延した冷延板を40〜600℃/秒の加熱速度
で800℃に加熱し、その後、800〜890℃で12
0秒間、雰囲気酸化度0.12で脱炭焼鈍し、一次再結
晶集合組織を図1で示す高B8 が得られる領域に調整し
て、その後、750℃で30秒間アンモニア含有雰囲気
中で焼鈍し、アンモニア含有量を変えることにより鋼板
中の窒素量を0.02〜0.03%とし、さらに、その
後、アルミナを主成分とする焼鈍分離剤を塗布して、1
200℃で20時間仕上げ焼鈍を施したものである。
Based on the above results, I {111} / I
The value of {411} was adjusted by the decarburization annealing heating rate and cold rolling reduction rate, we searched for additional high B 8 conditions. FIG.
FIG. 3 is a diagram plotting magnetic flux density: B 8 (T) of a product on a graph in which a cold rolling reduction ratio and a decarburizing annealing heating rate are set as axes. The sample used here was in mass%, Si: 3.
3%, C: 0.05%, acid-soluble Al: 0.027%,
N: 0.007%, Cr: 0.1%, Sn: 0.05
%, Mn: 0.1%, S: 0.008%, after heating at a temperature of 1150 ° C., by hot rolling to a thickness of 2.0 mm, 2.3 mm, 3.2 mm, The hot-rolled sheet was annealed at 1120 ° C., and then the cold-rolled sheet cold-rolled to a thickness of 0.22 mm was heated to 800 ° C. at a heating rate of 40 to 600 ° C./sec. 12
Decarburizing annealing was performed for 0 second at an atmosphere oxidation degree of 0.12, the primary recrystallization texture was adjusted to a region where high B 8 shown in FIG. 1 was obtained, and then annealing was performed at 750 ° C. for 30 seconds in an ammonia-containing atmosphere. Then, by changing the ammonia content, the amount of nitrogen in the steel sheet is set to 0.02 to 0.03%, and thereafter, an annealing separating agent containing alumina as a main component is applied, and
Finish annealing was performed at 200 ° C. for 20 hours.

【0026】図3より、高B8 領域と低B8 領域を分け
る境界が、脱炭焼鈍加熱速度Hの対数と冷延圧下率との
間の線形な関係で表されることがわかる。このことか
ら、高B8 となる脱炭焼鈍加熱速度の下限が冷延圧下率
の増加に伴って増加することが分かる。図3において、
1.94T以上の領域が含まれるように加熱速度の下限
を設定すると、冷延圧下率R%に対して脱炭焼鈍加熱速
度H℃/秒を10[(R-68)/14]<Hとすればよいことが
分かる。即ち、各冷延圧下率に対して高B8 を得るため
に必要な脱炭焼鈍加熱速度を決定できる。従って、冷延
圧下率R%に対して脱炭焼鈍加熱速度H℃/秒を10
[(R-68)/14] <Hとすることにより、高B8 を得ること
ができ、特に、脱炭焼鈍加熱速度H℃/秒の範囲を冷延
圧下率R%を用いて、10[(R-32)/32] <H<140と
制限した範囲においては、最もB8 を高くすることがで
きる。
FIG. 3 shows that the boundary separating the high B 8 region and the low B 8 region is represented by a linear relationship between the logarithm of the decarburizing annealing heating rate H and the cold rolling reduction. Therefore, it can be seen that the lower limit of the decarburization annealing heating rate becomes high B 8 increases with increasing cold reduction rate. In FIG.
When the lower limit of the heating rate is set so as to include the region of 1.94 T or more, the decarburizing annealing heating rate H ° C / sec is set to 10 [(R-68) / 14] <H for the cold rolling reduction R%. It should be understood that That is, it is possible to determine the decarburizing annealing heating rate required to obtain a high B 8 for each cold rolling reduction. Therefore, the decarburizing annealing heating rate H ° C / sec is set to 10 for the cold rolling reduction R%.
By setting [(R-68) / 14] <H, a high B 8 can be obtained. In particular, the range of the decarburizing annealing heating rate H ° C./sec is set to 10% by using the cold rolling reduction R%. [(R−32) / 32] Within the range limited to <H <140, B 8 can be set to the highest value.

【0027】これまで、方向性電磁鋼板の脱炭焼鈍を急
速加熱で行うことは、例えば、特開平1−290716
号公報、特開平6−212262号公報等に開示されて
いる。しかしながら、これら公報で開示の技術は、高温
スラブ加熱による方向性電磁鋼板の製造方法に適用した
ものであり、その効果も、二次再結晶粒径が小さくなり
鉄損特性が向上するというものである。
Heretofore, rapid decarburizing annealing of grain-oriented electrical steel sheets has been disclosed in, for example, Japanese Patent Application Laid-Open No. 1-290716.
And JP-A-6-212262. However, the techniques disclosed in these publications are applied to a method for manufacturing a grain-oriented electrical steel sheet by high-temperature slab heating, and the effect is that the secondary recrystallized grain size is reduced and iron loss characteristics are improved. is there.

【0028】本発明の製品に及ぼす効果は、これらの結
果と異なり、磁束密度(B8 )の向上に大きな影響を及
ぼすものである。この磁束密度向上の機構に関しては、
本発明者らは次のように考えている。二次再結晶粒の粒
成長は駆動力となるマトリックス粒の粒界エネルギー密
度と粒成長を抑制するインヒビターのバランスによって
決まる。一般に、脱炭焼鈍の加熱速度を速めると、一次
再結晶組織のなかでゴス方位近傍の粒(二次再結晶粒の
核)が増加することがこれまで知られており、それが、
二次再結晶組織が微細化する原因と考えられている。と
ころが、本発明において窒化処理により形成された(A
l、Si)N等の窒化物のように熱的に安定な(強い)
インヒビターを用いた場合には、粒界移動の粒界性格依
存性が高くなるために、ゴス方位粒の数よりも、ゴス方
位とΣ9対応方位関係にあるマトリックス粒の数および
分布がより重要になる。
The effect of the present invention on the product is different from these results, and has a great influence on the improvement of the magnetic flux density (B 8 ). Regarding the mechanism for improving the magnetic flux density,
The present inventors think as follows. The grain growth of the secondary recrystallized grains is determined by the balance between the grain boundary energy density of the matrix grains serving as a driving force and the inhibitor for suppressing grain growth. In general, it has been known that, when the heating rate of the decarburizing annealing is increased, grains near the Goss orientation (nuclei of secondary recrystallized grains) increase in the primary recrystallized structure.
It is considered that the secondary recrystallization structure becomes finer. However, in the present invention, (A
l, Si) Thermally stable (strong) like nitrides such as N
When an inhibitor is used, the number and distribution of matrix grains having a Σ9 correspondence orientation relationship with the Goss orientation are more important than the number of Goss orientation grains, because the dependence of grain boundary movement on the grain boundary character is high. Become.

【0029】一次再結晶集合組織をこの観点で調べた結
果、図3の結果に対応して、磁束密度(B8 )が最大に
なる加熱速度100℃/秒でマトリックスのゴス方位に
対するΣ9対応方位密度が最大になり、その方位分散が
小さく(方位分布は尖鋭に)なることが確認された。従
って、脱炭焼鈍の加熱速度による一次再結晶集合組織、
特に、ゴス方位とΣ9対応方位関係にある方位粒の調整
と、強い(Al、Si)Nインヒビターの相乗効果によ
り、はじめて尖鋭なゴス方位のみを発達させることが可
能になり、高い磁束密度を持つ製品を安定して製造でき
たものと推定される。
The result of examining the primary recrystallization texture in this respect, in response to the results of FIG. 3, Shiguma9 corresponding orientation for the Goss orientation in the matrix at a heating rate of 100 ° C. / sec flux density (B 8) is maximum It was confirmed that the density was maximum and the azimuthal dispersion was small (the azimuthal distribution was sharp). Therefore, primary recrystallization texture by heating rate of decarburization annealing,
In particular, only the sharp Goss orientation can be developed for the first time due to the adjustment of the orientation grains having a に 9 correspondence orientation with the Goss orientation and the synergistic effect of the strong (Al, Si) N inhibitor, and a high magnetic flux density is obtained. It is estimated that the product was manufactured stably.

【0030】[0030]

【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。本発明鋼の成分としては、質量%で、S
i:0.8〜4.8%、C:0.085%以下、酸可溶
性Al:0.01〜0.065%、N:0.012%以
下が必要である。
Next, an embodiment of the present invention will be described. As a component of the steel of the present invention, S
i: 0.8 to 4.8%, C: 0.085% or less, acid-soluble Al: 0.01 to 0.065%, N: 0.012% or less.

【0031】Siは添加量を多くすると、電気抵抗が高
くなり、鉄損特性が改善される。しかし、4.8%を超
えると、圧延時に割れやすくなってしまう。また、0.
8%より少ないと、仕上げ焼鈍時にγ変態が生じ、結晶
方位が損なわれてしまう。Cは一次再結晶組織を制御す
るうえで有効な元素であるが、磁気特性に悪影響を及ぼ
すので、仕上げ焼鈍前に脱炭する必要がある。Cが0.
085%より多いと、脱炭焼鈍時間が長くなり、生産性
が損なわれてしまう。
When Si is added in a large amount, the electric resistance increases and the iron loss characteristics are improved. However, if it exceeds 4.8%, cracks are likely to occur during rolling. Also, 0.
If it is less than 8%, γ transformation occurs at the time of finish annealing, and the crystal orientation is impaired. C is an element effective in controlling the primary recrystallization structure, but has an adverse effect on the magnetic properties, and therefore needs to be decarbonized before the finish annealing. C is 0.
If it is more than 085%, the decarburization annealing time will be long, and productivity will be impaired.

【0032】酸可溶性Alは、本発明において、Nと結
合して(Al、Si)Nとしてインヒビターとしての機
能を果すために必須の元素である。二次再結晶が安定す
る0.01〜0.065%を限定範囲とする。Nは0.
012%を超えると、冷延時にブリスターとよばれる鋼
板中の空孔を生じる。
In the present invention, acid-soluble Al is an essential element in order to combine with N and function as (Al, Si) N as an inhibitor. The limited range is 0.01 to 0.065% at which the secondary recrystallization is stable. N is 0.
If it exceeds 012%, pores in the steel sheet called blisters are generated during cold rolling.

【0033】その他、Sは磁気特性に悪影響を及ぼすの
で、0.015%以下とすることが望ましい。Snは脱
炭焼鈍後の集合組織を改善し、二次再結晶を安定化する
ため、0.02〜0.15%添加することが望ましい。
Crは脱炭焼鈍の酸化層を改善し、脱インヒビター挙動
を制御するのに有効な元素であり、0.03〜0.2%
添加することが望ましい。その他、微量のCu、Sb、
Mo、Bi、Ti等を鋼中に含有することは、本発明の
主旨を損なうものではない。
In addition, since S has an adverse effect on the magnetic properties, it is desirable that the content be 0.015% or less. Sn is preferably added in an amount of 0.02 to 0.15% in order to improve the texture after decarburization annealing and stabilize the secondary recrystallization.
Cr is an element effective for improving the oxidized layer in decarburization annealing and controlling the deinhibitor behavior, and is 0.03 to 0.2%
It is desirable to add. In addition, trace amounts of Cu, Sb,
The inclusion of Mo, Bi, Ti, etc. in the steel does not impair the gist of the present invention.

【0034】上記の組成を有する珪素鋼スラブは、転炉
または電気炉等により鋼を溶製し、必要に応じて、溶鋼
を真空脱ガス処理し、次いで、連続鋳造もしくは造塊後
分塊圧延することによって得られる。その後、熱間圧延
に先だってスラブ加熱がなされる。本発明においては、
スラブ加熱温度は1280℃以下として、先述の高温ス
ラブ加熱の諸問題を回避する。
The silicon steel slab having the above composition is produced by melting a steel in a converter or an electric furnace, etc., subjecting the molten steel to a vacuum degassing treatment as required, and then performing continuous casting or ingot-forming and ingot-rolling. It is obtained by doing. Thereafter, slab heating is performed prior to hot rolling. In the present invention,
The slab heating temperature is set to 1280 ° C. or less to avoid the above-described various problems of high-temperature slab heating.

【0035】上記熱間圧延板には、通常、磁気特性を高
めるために900〜1200℃で30秒〜30分間の短
時間焼鈍を施す。その後、一回もしくは焼鈍を挟んだ二
回以上の冷間圧延により最終板厚とする。冷間圧延とし
ては、特公昭40−15644号公報に開示されている
ように、最終冷延圧下率を80%以上とすることが、
{111}、{411}等の一次再結晶方位を発達させ
るうえで必要である。
The above-mentioned hot-rolled sheet is usually subjected to short-time annealing at 900 to 1200 ° C. for 30 seconds to 30 minutes in order to enhance magnetic properties. Then, the final thickness is obtained by cold rolling once or twice or more with annealing. As disclosed in Japanese Patent Publication No. 40-15644, the final cold rolling reduction may be 80% or more.
Necessary for developing primary recrystallization orientations such as {111} and {411}.

【0036】また、本発明においては、高B8 となる冷
延圧下率の領域は加熱速度の増加に伴い増加することか
ら、最終冷延圧下率を85%以上とすることが特に望ま
しい。また、さらに、冷延圧下率が95%より大きくな
ってしまうと、冷延工程での負荷が大きくなり、実操業
の観点から95%以下が現実的である。冷間圧延後の鋼
板には、鋼中に含まれるCを除去するために湿潤雰囲気
中で脱炭焼鈍を施す。その際、冷延圧下率R%に対し
て、脱炭焼鈍後の一次再結晶集合組織のI{111}/
I{411}の値を(20ln{(100−R)/10
0}+81)/14以下に調整することが重要であり、
この調整により、磁気特性B8 が1.93T以上の製品
を製造することができる。この脱炭焼鈍後における一次
再結晶組織の制御は、脱炭焼鈍工程の焼鈍サイクル(加
熱速度、均熱温度、均熱時間等)を調整することにより
行うことができる。
[0036] In the present invention, the area of the cold rolling reduction ratio to be high B 8 from increasing with increasing heating rate, it is particularly desirable to the final cold rolling reduction rate of 85% or more. Further, if the rolling reduction of the cold rolling is greater than 95%, the load in the cold rolling process is increased, and from the viewpoint of actual operation, 95% or less is realistic. The steel sheet after the cold rolling is subjected to decarburizing annealing in a humid atmosphere in order to remove C contained in the steel. At that time, I {111} / of the primary recrystallization texture after decarburization annealing was determined with respect to the cold rolling reduction R%.
The value of I {411} is calculated as (20ln {(100−R) / 10
It is important to adjust to 0} +81) / 14 or less,
By this adjustment, a product having a magnetic property B 8 of 1.93 T or more can be manufactured. The control of the primary recrystallization structure after the decarburizing annealing can be performed by adjusting the annealing cycle (heating rate, soaking temperature, soaking time, etc.) in the decarburizing annealing step.

【0037】特に、I{111}/I{411}の値を
(20ln{(100−R)/100}+81)/14
以下に調整するために、脱炭焼鈍工程で、脱炭焼鈍加熱
速度H℃/秒を10[(R-68)/14] <Hとした加熱速度で
加熱することによって、さらに高いB8 を得ることが可
能となる。また、この加熱速度で加熱する必要がある温
度域は、少なくとも600℃から750〜900℃まで
の温度域である。
In particular, the value of I {111} / I {411} is calculated as (20ln {(100-R) / 100} +81) / 14
In order to adjust below, in the decarburizing annealing step, the decarburizing annealing heating rate H ° C / sec is heated at a heating rate of 10 [(R-68) / 14] <H, thereby further increasing B 8 . It is possible to obtain. Further, the temperature range in which heating is required at this heating rate is a temperature range of at least 600 ° C to 750 to 900 ° C.

【0038】図4および図5に、上記結論を導いた実験
結果を示す。冷延板を50℃/秒の加熱速度で室温から
600℃〜1000℃の温度域の所定の温度まで加熱し
た後、窒素ガスで室温まで冷却した。その後、20℃/
秒の加熱速度で850℃まで加熱し、雰囲気ガスの酸化
度0.10で120秒焼鈍した。その後、窒化処理によ
り窒素量を0.021%とした後、アルミナを主成分と
する焼鈍分離剤を塗布して仕上げ焼鈍を行った。
FIG. 4 and FIG. 5 show the experimental results that led to the above conclusions. The cold rolled sheet was heated from room temperature to a predetermined temperature in a temperature range of 600 ° C. to 1000 ° C. at a heating rate of 50 ° C./sec, and then cooled to room temperature with nitrogen gas. Then, at 20 ° C /
The sample was heated to 850 ° C. at a heating rate of 2 seconds and annealed for 120 seconds at a degree of oxidation of the atmosphere gas of 0.10. After that, the amount of nitrogen was reduced to 0.021% by nitriding treatment, and then an annealing separator containing alumina as a main component was applied to perform finish annealing.

【0039】図4に示すように、50℃/秒の加熱速度
での到達温度が750℃以上、900℃以下の範囲で、
磁束密度が向上していることが分かる。750℃未満で
効果が発揮されないのは、750℃未満では一次再結晶
が十分に進行していないからである。一次再結晶集合組
織を変えるためには再結晶を十分に進行させる必要があ
る。また、900℃超の温度まで加熱すると磁束密度が
低下するが、これは、試料の一部に変態組織が生じ、そ
の後の脱炭焼鈍完了時点での組織が混粒組織になるため
であると考えられる。
As shown in FIG. 4, when the temperature reached at a heating rate of 50 ° C./sec is 750 ° C. or more and 900 ° C. or less,
It can be seen that the magnetic flux density has been improved. The reason why the effect is not exhibited below 750 ° C. is that the primary recrystallization does not sufficiently proceed below 750 ° C. In order to change the primary recrystallization texture, recrystallization needs to proceed sufficiently. Further, when heated to a temperature higher than 900 ° C., the magnetic flux density decreases, but this is because a transformed structure occurs in a part of the sample, and the structure at the time of completion of the subsequent decarburizing annealing becomes a mixed grain structure. Conceivable.

【0040】次いで、上記冷延板を加熱速度20℃/秒
で300℃から750℃の温度域の所定の温度まで加熱
し、その温度から加熱速度50℃/秒で850℃まで加
熱した後、窒素ガスで室温まで冷却した。その後、50
℃/秒の加熱速度で850℃まで加熱し、雰囲気ガスの
酸化度0.10で120秒焼鈍した。その後、窒化処理
により窒素量を0.021%とした後、アルミナを主成
分とする焼鈍分離剤を塗布して仕上げ焼鈍を行った。
Next, the cold-rolled sheet is heated at a heating rate of 20 ° C./sec to a predetermined temperature in a temperature range of 300 ° C. to 750 ° C., and from that temperature to 850 ° C. at a heating rate of 50 ° C./sec. Cooled to room temperature with nitrogen gas. Then 50
The sample was heated to 850 ° C. at a heating rate of ° C./sec, and annealed for 120 seconds at an oxidation degree of the atmosphere gas of 0.10. After that, the amount of nitrogen was reduced to 0.021% by nitriding treatment, and then an annealing separator containing alumina as a main component was applied to perform finish annealing.

【0041】図5に示すように、加熱速度50℃/秒の
加熱開始温度が600℃超では、磁束密度向上効果が無
いことがわかる。これらの結果から、加熱速度50℃/
秒以上で加熱する必要がある温度域は、少なくとも、6
00℃から750〜900℃までの温度域であることが
わかる。従って、脱炭焼鈍工程の昇温過程において、鋼
板温度が600℃以下の温度域から50℃/秒以上で加
熱することが必要となる。また、上記のような脱炭焼鈍
工程の昇温過程での加熱は、冷延工程から脱炭焼鈍工程
の間に加熱焼鈍を行ったとしても本発明の趣旨を損なう
ものではない。
As shown in FIG. 5, when the heating start temperature at a heating rate of 50 ° C./sec exceeds 600 ° C., there is no effect of improving the magnetic flux density. From these results, the heating rate was 50 ° C /
The temperature range that needs to be heated in seconds or more is at least 6
It can be seen that the temperature range is from 00 ° C. to 750 ° C. to 900 ° C. Therefore, in the temperature raising process of the decarburization annealing process, it is necessary to heat the steel sheet from a temperature range of 600 ° C. or less at 50 ° C./sec or more. Further, the heating in the temperature raising process of the decarburizing annealing step as described above does not impair the purpose of the present invention even if the heating annealing is performed between the cold rolling step and the decarburizing annealing step.

【0042】急速加熱の方法は特に限定するものではな
く、40〜100℃/秒程度の加熱速度に対しては、従
来の通常輻射熱を利用したラジアントチューブや発熱体
による脱炭焼鈍設備を改造した設備、また、100℃/
秒以上の加熱速度に対しては、新たなレーザー、プラズ
マ等の高エネルギー熱源を利用する方法、誘導加熱、通
電加熱装置等を適用することができる。
The method of rapid heating is not particularly limited. For a heating rate of about 40 to 100 ° C./sec, a conventional decarburizing annealing equipment using a radiant tube using normal radiant heat or a heating element was modified. Equipment, 100 ℃ /
For a heating speed of seconds or more, a method using a new high-energy heat source such as a laser or plasma, induction heating, an electric heating device, or the like can be applied.

【0043】また、従来の通常輻射熱を利用したラジア
ントチューブや発熱体による脱炭焼鈍設備に、新たに、
レーザー、プラズマ等の高エネルギー熱源を利用する方
法、誘導加熱、通電加熱装置等を適用する方法等を組み
合わせることも有効である。その後、Fe系の酸化物
(Fe2SiO4、FeO等)を形成させない酸化度で焼
鈍を行う。例えば、通常、脱炭焼鈍が行われる800℃
程度の温度では、雰囲気ガスの酸化度:PH2O/PH2
0.15以下に調整することにより、Fe系酸化物の生
成を抑制することができる。但し、あまりに酸化度を下
げると、脱炭速度が遅くなってしまう。この両者を勘案
すると、この温度域においては、雰囲気ガスの酸化度:
H2O/PH2)を0.01〜0.15の範囲とすること
が好ましい。
In addition, a conventional decarburization annealing facility using a radiant tube or a heating element utilizing normal radiant heat is newly provided.
It is also effective to combine a method using a high-energy heat source such as a laser or a plasma, a method using an induction heating, an electric heating device, or the like. Thereafter, annealing is performed at an oxidation degree that does not form Fe-based oxides (Fe 2 SiO 4 , FeO, etc.). For example, 800 ° C. where decarburization annealing is usually performed
At a temperature of about the same level, the generation of Fe-based oxides can be suppressed by adjusting the degree of oxidation of the atmosphere gas: P H2O / P H2 to 0.15 or less. However, if the degree of oxidation is too low, the decarburization rate will be low. Taking these two factors into account, in this temperature range, the degree of oxidation of the atmospheric gas:
(P H2O / P H2 ) is preferably in the range of 0.01 to 0.15.

【0044】均熱温度と時間に関しては、例えば、特開
平2−182866号公報に開示されるような一次再結
晶粒組織の調整を勘案して設定する。通常は、770〜
900℃の範囲で行う。また、均熱の前段で脱炭した後
に、粒調整のために均熱の後段の温度を高めることや、
後段の雰囲気ガスの酸化度を下げて均熱時間を延ばすこ
とも有効である。
The soaking temperature and time are set in consideration of the adjustment of the primary recrystallized grain structure as disclosed in, for example, JP-A-2-182866. Usually, 770
Perform in the range of 900 ° C. Also, after decarburizing in the first stage of soaking, raising the temperature in the second stage of soaking for grain adjustment,
It is also effective to reduce the degree of oxidation of the subsequent atmospheric gas to extend the soaking time.

【0045】窒化処理としては、アンモニア等の窒化能
のあるガスを含有する雰囲気中で焼鈍する方法、MnN
等の窒化能のある粉末を焼鈍分離剤中に添加して仕上げ
焼鈍中に行う方法等がある。窒化処理後の窒素量が、
[N]/[Al]≧0.67となるように窒化処理を施
すことが、本発明の特徴である“一次再結晶集合組織の
制御効果”を発現させるためのポイントである。
As the nitriding treatment, a method of annealing in an atmosphere containing a gas having a nitriding ability such as ammonia, MnN
Or the like, which is added during the final annealing by adding a powder having a nitriding ability to the annealing separator. The amount of nitrogen after nitriding is
Performing the nitriding treatment so as to satisfy [N] / [Al] ≧ 0.67 is a point for expressing the “control effect of primary recrystallization texture” which is a feature of the present invention.

【0046】脱炭焼鈍板は、アルミナを主成分とする焼
鈍分離剤を、水スラリーもしくは静電塗布法等によりド
ライ・コートした後、積層しコイルとする。この積層し
た板を仕上げ焼鈍して、二次再結晶と窒化物の純化を行
う。二次再結晶を、特開平2−258929に開示され
るように、一定の温度で保持する等の手段により所定の
温度域で行うことは、磁束密度を上げるうえで有効であ
る。
The decarburized annealed sheet is dried and coated with an annealing separator containing alumina as a main component by a water slurry or an electrostatic coating method, and then laminated to form a coil. This laminated plate is finish-annealed to perform secondary recrystallization and purification of nitride. Performing the secondary recrystallization in a predetermined temperature range by means such as holding at a constant temperature as disclosed in JP-A-2-258929 is effective in increasing the magnetic flux density.

【0047】二次再結晶完了後、窒化物の純化と表面の
平滑化を行なうために、水素雰囲気中で1100℃以上
の温度で焼鈍する。仕上げ焼鈍後、表面は既に平滑化さ
れているので、張力コーテイング処理を行い、必要に応
じて、レーザー照射等の磁区細分化処理を施せばよい。
After the completion of the secondary recrystallization, annealing is performed at a temperature of 1100 ° C. or more in a hydrogen atmosphere in order to purify the nitride and smooth the surface. After the finish annealing, since the surface is already smoothed, a tension coating treatment may be performed, and if necessary, a magnetic domain refining treatment such as laser irradiation may be performed.

【0048】[0048]

【実施例】実施例1 質量%で、Si:3.2%、C:0.05%、酸可溶性
Al:0.026%、N:0.008%、Mn:0.1
%、S:0.007%を含有するスラブを1150℃の
温度で加熱した後、2.6mm厚に熱間圧延した。その
後、1120℃で焼鈍した後、0.27mm厚まで冷間圧
延し、その後、脱炭焼鈍の加熱速度を5〜40℃/秒と
し、820℃の温度で脱炭焼鈍し、次いで、アンモニア
含有雰囲気で焼鈍して鋼板中の窒素を0.020〜0.
03%とした。次いで、アルミナ(Al23)を主成分
とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。
EXAMPLES Example 1 In terms of mass%, Si: 3.2%, C: 0.05%, acid-soluble Al: 0.026%, N: 0.008%, Mn: 0.1
%, S: 0.007%, was heated at a temperature of 1150 ° C., and then hot-rolled to a thickness of 2.6 mm. Thereafter, after annealing at 1120 ° C., cold rolling is performed to a thickness of 0.27 mm, and then the decarburizing annealing is performed at a heating rate of 5 to 40 ° C./sec, decarburizing annealing at a temperature of 820 ° C., and then containing ammonia. Anneal in an atmosphere to reduce the nitrogen in the steel sheet from 0.020 to 0.
03%. Next, an annealing separator containing alumina (Al 2 O 3 ) as a main component was applied, and finish annealing was performed.

【0049】製品の特性値を表1に示す。一次再結晶集
合組織に関して、I{111}/I{411}の値が冷
延圧下率R%に対して、(20ln{(100−R)/
100}+81)/14以下となっている場合、B8
1.93T以上の高い磁束密度が得られていることがわ
かる。
Table 1 shows the characteristic values of the products. Regarding the primary recrystallization texture, the value of I {111} / I {411} is (20 ln} (100−R) /
When it is 100 ° + 81) / 14 or less, it can be seen that a high magnetic flux density of B 8 of 1.93 T or more is obtained.

【0050】[0050]

【表1】 [Table 1]

【0051】実施例2 質量%で、Si:3.3%、C:0.05%、酸可溶性
Al:0.027%、N:0.007%、Cr:0.1
%、Sn:0.05%、Mn:0.1%、S:0.00
8%を含有するスラブを1150℃の温度で加熱した
後、熱間圧延によって、2.0mm、2.3mm、3.2mm
の各厚にし、この熱間圧延板を1120℃で焼鈍し、そ
の後、0.22mm厚に冷間圧延した。この冷延板を10
〜600℃/秒の加熱速度で800℃に加熱した後、8
00〜890℃で120秒間、雰囲気酸化度0.12で
脱炭焼鈍し、一次再結晶集合組織を、図1で示す高B8
が得られる領域に調整した。その後、750℃で30秒
間アンモニア含有雰囲気中で焼鈍してアンモニア含有量
を変えることにより、鋼板中の窒素量を0.025〜
0.035%とした。その後、アルミナを主成分とする
焼鈍分離剤を塗布し、1200℃で20時間仕上げ焼鈍
を施した。
Example 2 In terms of mass%, Si: 3.3%, C: 0.05%, acid-soluble Al: 0.027%, N: 0.007%, Cr: 0.1
%, Sn: 0.05%, Mn: 0.1%, S: 0.00
After heating the slab containing 8% at a temperature of 1150 ° C., it was hot rolled to 2.0 mm, 2.3 mm, 3.2 mm.
The hot-rolled sheet was annealed at 1120 ° C., and then cold-rolled to a thickness of 0.22 mm. This cold rolled sheet is
After heating to 800 ° C at a heating rate of ~ 600 ° C / sec, 8
Decarburization annealing was performed at 00 to 890 ° C. for 120 seconds at an atmospheric oxidation degree of 0.12, and the primary recrystallization texture was changed to that of high B 8 shown in FIG.
Was adjusted to the area where. Then, by annealing in an ammonia-containing atmosphere at 750 ° C. for 30 seconds to change the ammonia content, the nitrogen content in the steel sheet was reduced from 0.025 to
0.035%. Thereafter, an annealing separator containing alumina as a main component was applied, and finish annealing was performed at 1200 ° C. for 20 hours.

【0052】これらの試料に張力コーテイング処理を施
した後、レーザー照射して磁区細分化した。得られた製
品の特性を表2に示す。表2より、一次再結晶集合組
織:I{111}/I{411}の値が、冷延圧下率R
%に対して(20ln{(100−R)/100}+8
1)/14以下となっている場合(△印)、B8 が1.
93T以上となっており、また、加熱速度H℃/秒が冷
延圧下率R%に対して10[(R-68)/14] <H以上の場合
(○印)、更に好ましくは、10[(R-32)/32] <H<1
40の場合(◎印)、磁束密度(B8 )が高くなること
がわかる。
After subjecting these samples to a tension coating treatment, the samples were irradiated with a laser to be finely divided into magnetic domains. Table 2 shows the properties of the obtained product. From Table 2, the value of the primary recrystallized texture: I {111} / I {411} is determined by the cold rolling reduction ratio R.
% (20 ln {(100-R) / 100} +8
1) In the case of / 14 or less (以下 mark), B 8 is 1.
When the heating rate H ° C./sec is 10 [(R-68) / 14] <H or more with respect to the cold rolling reduction R% (marked with ○), more preferably 10 [(R-32) / 32] <H <1
In the case of 40 (marked with ◎), it can be seen that the magnetic flux density (B 8 ) increases.

【0053】[0053]

【表2】 [Table 2]

【0054】実施例3 質量%で、Si:3.1%、Mn:0.1%、C:0.
05%、S:0.008%、酸可溶性Al:0.029
%、N:0.008%、Sn:0.1%を含む板厚2.
3mmの珪素鋼熱延板を最終板厚0.25mmに冷延した。
この冷延板を酸化度0.10の窒素と水素の混合ガス中
において、加熱速度(1)20℃/秒、(2)100℃
/秒で840℃まで加熱し、840℃で150秒焼鈍し
一次再結晶させた。その後、750℃で30秒間アンモ
ニア含有雰囲気中で焼鈍して、アンモニア含有量を変え
ることにより、鋼板中の窒素量を0.02〜0.03%
とした。
Example 3 Si: 3.1%, Mn: 0.1%, C: 0.1% by mass.
05%, S: 0.008%, acid-soluble Al: 0.029
%, N: 0.008%, Sn: 0.1%
A 3 mm hot rolled silicon steel sheet was cold rolled to a final thickness of 0.25 mm.
This cold rolled sheet was heated in a mixed gas of nitrogen and hydrogen having a degree of oxidation of 0.10 at a heating rate of (1) 20 ° C./sec and (2) 100 ° C.
/ Sec to 840 ° C and annealed at 840 ° C for 150 seconds for primary recrystallization. Thereafter, the steel is annealed at 750 ° C. for 30 seconds in an ammonia-containing atmosphere to change the ammonia content, thereby reducing the nitrogen content in the steel sheet to 0.02 to 0.03%.
And

【0055】これらの鋼板にアルミナを主成分とする焼
鈍分離剤を塗布し、仕上げ焼鈍を施した。仕上げ焼鈍
は、1200℃まではN2:25%+H2:75%の雰囲
気ガス中で15℃/hrの加熱速度で行い、1200℃で
2 :100%に切りかえ20時間焼鈍を行った。これ
らの試料に張力コーテイング処理を施した。得られた製
品の磁気特性を表3に示す。実施例1、2と比較する
と、冷延前の焼鈍を行っていないので全体の磁束密度は
低いが、本発明の磁束密度向上効果が得られていること
を確認できる。
An annealing separator containing alumina as a main component was applied to each of these steel sheets and subjected to finish annealing. Finish annealing was performed at a heating rate of 15 ° C./hr in an atmosphere gas of N 2 : 25% + H 2 : 75% up to 1200 ° C., and switched to H 2 : 100% at 1200 ° C. for 20 hours. These samples were subjected to a tension coating treatment. Table 3 shows the magnetic properties of the obtained products. Compared with Examples 1 and 2, although annealing before cold rolling was not performed, the overall magnetic flux density was low, but it could be confirmed that the effect of improving the magnetic flux density of the present invention was obtained.

【0056】[0056]

【表3】 [Table 3]

【0057】[0057]

【発明の効果】本発明によれば、従来の高温スラブ加熱
に起因する諸問題の無い低温スラブ加熱による方向性電
磁鋼板の製造方法を基に、一次再結晶組織、冷延条件に
対する脱炭焼鈍条件及び窒化量を規定したので、磁束密
度の高い優れた磁気特性をもつ鏡面方向性電磁鋼板を工
業的に安定して製造することができる。
According to the present invention, based on a method for producing a grain-oriented electrical steel sheet by low-temperature slab heating which does not cause any problems caused by conventional high-temperature slab heating, decarburization annealing for primary recrystallization structure and cold rolling conditions is performed. Since the conditions and the amount of nitriding are specified, it is possible to industrially stably produce a specular grain-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】製品の磁束密度(B8 )に及ぼす冷延圧下率と
一次再結晶集合組織:I{111}/I{411}の影
響を示す図である。
FIG. 1 is a diagram showing the influence of the cold rolling reduction and the primary recrystallization texture: I {111} / I {411} on the magnetic flux density (B 8 ) of a product.

【図2】窒化量及び一次再結晶集合組織:I{111}
/I{411}が磁束密度に及ぼす影響を示す図であ
る。
FIG. 2 Nitriding amount and primary recrystallization texture: I {111}
FIG. 14 is a diagram showing the effect of / I {411} on magnetic flux density.

【図3】磁束密度に及ぼす冷延圧下率と脱炭焼鈍の加熱
速度との影響を示す図である。
FIG. 3 is a diagram showing the influence of the cold rolling reduction and the heating rate of decarburization annealing on the magnetic flux density.

【図4】磁束密度に及ぼす脱炭焼鈍の急速加熱完了温度
の影響を示す図である。
FIG. 4 is a diagram showing the effect of the rapid heating completion temperature of decarburization annealing on magnetic flux density.

【図5】磁束密度に及ぼす脱炭焼鈍の急速加熱開始温度
の影響を示す図である。
FIG. 5 is a diagram showing the effect of the rapid heating start temperature of decarburizing annealing on the magnetic flux density.

フロントページの続き (72)発明者 山本 紀宏 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 Fターム(参考) 4K033 AA02 BA01 CA02 CA07 DA02 FA01 FA13 FA14 HA02 HA04 HA06 JA04 JA05 LA01 MA00 5E041 AA02 AA19 CA02 HB11 NN18Continuation of the front page (72) Norihiro Yamamoto Inventor F-term (reference) in Nippon Steel Corporation, Yawata Works 1-1 1-1 Tobata-cho, Tobata-ku, Kitakyushu, Fukuoka Prefecture 4K033 AA02 BA01 CA02 CA07 DA02 FA01 FA13 FA14 HA02 HA04 HA06 JA04 JA05 LA01 MA00 5E041 AA02 AA19 CA02 HB11 NN18

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、Si:0.8〜4.8%、
C:0.085%以下、酸可溶性Al:0.01〜0.
065%、N:0.012%以下を含み、残部Fe及び
不可避的不純物からなる鋼を1280℃以下の温度に加
熱した後、熱間圧延により熱延板とし、次いで、一回ま
たは中間焼鈍をはさむ二回以上の冷間圧延により最終板
厚とし、次いで、Fe系酸化物を形成させない雰囲気ガ
ス中で脱炭焼鈍し、その後、増窒素処理を行った後、ア
ルミナを主成分とする焼鈍分離剤を塗布することによ
り、仕上げ焼鈍後の鋼板表面を鏡面状態にする鏡面方向
性電磁鋼板の製造方法において、冷延圧下率をR%とし
たときに、脱炭焼鈍後の集合組織におけるI{111}
/I{411}の値を、(20ln{(100−R)/
100}+81)/14以下に調整し、その後、鋼板の
酸可溶性Alの量:[Al]に応じて窒素量:[N]が
[N]/[Al]≧0.67を満足する量となるように
窒化処理を施すことを特徴とする磁束密度の高い鏡面方
向性電磁鋼板の製造方法。
1. A mass% of Si: 0.8 to 4.8%,
C: 0.085% or less, acid-soluble Al: 0.01-0.
065%, N: 0.012% or less, the balance consisting of Fe and unavoidable impurities is heated to a temperature of 1280 ° C. or less, then hot-rolled into a hot-rolled sheet, and then subjected to single or intermediate annealing. The final plate thickness is obtained by cold rolling two or more times, followed by decarburizing annealing in an atmosphere gas that does not form an Fe-based oxide, and then nitrogen-enhancing treatment is performed, followed by annealing separation mainly composed of alumina. In a method for producing a mirror-oriented electrical steel sheet in which the surface of the steel sheet after finish annealing is mirror-finished by applying a coating agent, when the cold-rolling reduction ratio is R%, I 集合 in the texture after decarburizing annealing is obtained. 111}
/ I {411} is calculated as (20ln {(100−R) /
100} +81) / 14 or less, and then the amount of nitrogen: [N] according to the amount of acid-soluble Al in the steel sheet: [Al] satisfies [N] / [Al] ≧ 0.67. A method for producing a mirror-oriented electrical steel sheet having a high magnetic flux density, characterized by performing a nitriding treatment as described above.
【請求項2】 前記脱炭焼鈍工程の昇温過程において、
鋼板温度が600℃以下の領域から750〜900℃の
範囲内の所定の温度までの加熱速度H℃/秒を、10
[(R-68)/14] <Hとする加熱を行うことを特徴とする請
求項1記載の磁束密度の高い鏡面方向性電磁鋼板の製造
方法。
2. In the decarburizing annealing step, the temperature is raised during the decarburizing annealing step.
The heating rate H ° C./sec from the region where the steel plate temperature is 600 ° C. or lower to a predetermined temperature within the range of 750 to 900 ° C. is 10
2. The method for producing a mirror-oriented electrical steel sheet having a high magnetic flux density according to claim 1, wherein the heating is performed so that [(R-68) / 14] <H.
【請求項3】 前記脱炭焼鈍工程の昇温過程における加
熱速度H℃/秒を、10[(R-32)/32] <H<140とす
ることを特徴とする請求項1または2記載の磁束密度の
高い鏡面方向性電磁鋼板の製造方法。
3. The heating rate H ° C./sec in the temperature raising step of the decarburizing annealing step is set to 10 [(R−32) / 32] <H <140. Method for producing mirror-oriented electrical steel sheets with high magnetic flux density.
【請求項4】 前記熱延板に、900〜1200℃の温
度域で30秒〜30分間の焼鈍を施すことを特徴とする
請求項1ないし3のいずれか1項に記載の磁束密度の高
い鏡面方向性電磁鋼板の製造方法。
4. The high magnetic flux density according to claim 1, wherein the hot-rolled sheet is annealed in a temperature range of 900 to 1200 ° C. for 30 seconds to 30 minutes. A method for manufacturing mirror-oriented electrical steel sheets.
【請求項5】 前記脱炭焼鈍工程において、770℃〜
900℃の温度域で、雰囲気ガスの酸化度(PH2O/P
H2):0.01以上0.15以下の範囲内で焼鈍するこ
とを特徴とする請求項1ないし4のいずれか1項に記載
の磁束密度の高い鏡面方向性電磁鋼板の製造方法。
5. In the decarburizing annealing step, 770 ° C.
In the temperature range of 900 ° C, the degree of oxidation of the atmosphere gas (P H2O / P
H2 ): The method according to any one of claims 1 to 4, wherein the annealing is performed in a range of 0.01 to 0.15.
【請求項6】 前記鋼に、質量%で、さらに、Snを
0.02〜0.15%添加することを特徴とする請求項
1ないし5のいずれか1項に記載の磁束密度の高い鏡面
方向性電磁鋼板の製造方法。
6. The mirror surface having a high magnetic flux density according to claim 1, wherein Sn is added in an amount of 0.02 to 0.15% by mass to the steel. Manufacturing method of grain-oriented electrical steel sheet.
【請求項7】 前記鋼に、質量%で、さらに、Crを
0.03〜0.2%添加することを特徴とする請求項1
ないし6記載のいずれか1項に記載の磁束密度の高い鏡
面方向性電磁鋼板の製造方法。
7. The steel according to claim 1, further comprising Cr in an amount of 0.03 to 0.2% by mass%.
7. The method for producing a mirror-oriented electrical steel sheet having a high magnetic flux density according to any one of items 7 to 6.
JP2001005609A 2000-08-08 2001-01-12 Method for producing grain-oriented electrical steel sheet Expired - Lifetime JP4119614B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001005609A JP4119614B2 (en) 2001-01-12 2001-01-12 Method for producing grain-oriented electrical steel sheet
EP01118756A EP1179603B1 (en) 2000-08-08 2001-08-07 Method to produce grain-oriented electrical steel sheet having high magnetic flux density
DE60144270T DE60144270D1 (en) 2000-08-08 2001-08-07 Method for producing a grain-oriented magnetic sheet with high magnetic flux density
EP09159921.7A EP2107130B1 (en) 2000-08-08 2001-08-07 Method to produce grain-oriented electrical steel sheet having high magnetic flux density
US09/924,353 US6613160B2 (en) 2000-08-08 2001-08-07 Method to produce grain-oriented electrical steel sheet having high magnetic flux density
KR10-2001-0047756A KR100442101B1 (en) 2000-08-08 2001-08-08 The method for producing an electromagnetic steel sheet having high magnetic flux density
CN01137980A CN1128239C (en) 2000-08-08 2001-08-08 Manufacture of electric steel plates with high magnetic flux density orientation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001005609A JP4119614B2 (en) 2001-01-12 2001-01-12 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2002212637A true JP2002212637A (en) 2002-07-31
JP4119614B2 JP4119614B2 (en) 2008-07-16

Family

ID=18873640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001005609A Expired - Lifetime JP4119614B2 (en) 2000-08-08 2001-01-12 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4119614B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149333A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149320A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
RU2778108C1 (en) * 2019-01-16 2022-08-15 Ниппон Стил Корпорейшн Method for manufacturing a sheet of electrical steel with an oriented grain structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149333A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149320A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
CN113286909A (en) * 2019-01-16 2021-08-20 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
JPWO2020149333A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JPWO2020149320A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
RU2768930C1 (en) * 2019-01-16 2022-03-25 Ниппон Стил Корпорейшн Method of making a sheet of electrical steel with an oriented grain structure
RU2778108C1 (en) * 2019-01-16 2022-08-15 Ниппон Стил Корпорейшн Method for manufacturing a sheet of electrical steel with an oriented grain structure
JP7188459B2 (en) 2019-01-16 2022-12-13 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7486436B2 (en) 2019-01-16 2024-05-17 日本製鉄株式会社 Manufacturing method for grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP4119614B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
JP5273944B2 (en) Manufacturing method of mirror-oriented electrical steel sheet
JP2013189712A (en) Method for producing grain-oriented flat rolled magnetic steel sheet and strip with high magnetic flux density
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3481567B2 (en) Method for producing grain-oriented electrical steel sheet having B8 of 1.88T or more
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP4427226B2 (en) Method for producing grain-oriented electrical steel sheet
JP5068579B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP3943837B2 (en) Method for producing grain-oriented electrical steel sheet
JP4456317B2 (en) Method for producing grain-oriented electrical steel sheet
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JPH07122096B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JP2011111645A (en) Method for producing grain-oriented magnetic steel sheet
JP4119634B2 (en) Method for producing mirror-oriented electrical steel sheet with good iron loss
JP4119614B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003055717A (en) Method for producing mirror-finished grain oriented silicon steel sheet having satisfactory decarburization property
JPH08134660A (en) Grain oriented silicon steel sheet with extremely low iron loss
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JP3485475B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH07268471A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JP3182666B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP3485532B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R151 Written notification of patent or utility model registration

Ref document number: 4119614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term