JP4427226B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP4427226B2
JP4427226B2 JP2002053839A JP2002053839A JP4427226B2 JP 4427226 B2 JP4427226 B2 JP 4427226B2 JP 2002053839 A JP2002053839 A JP 2002053839A JP 2002053839 A JP2002053839 A JP 2002053839A JP 4427226 B2 JP4427226 B2 JP 4427226B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
temperature
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002053839A
Other languages
Japanese (ja)
Other versions
JP2003003213A (en
Inventor
修一 中村
義行 牛神
健一 村上
浩康 藤井
紀宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002053839A priority Critical patent/JP4427226B2/en
Publication of JP2003003213A publication Critical patent/JP2003003213A/en
Application granted granted Critical
Publication of JP4427226B2 publication Critical patent/JP4427226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、結晶粒がミラー指数で{110}<001>方位に集積した、いわゆる方向性電磁鋼板の製造方法に関するものである。この鋼板は、軟磁性材料として変圧器等の電気機器の鉄芯として用いられる。
【0002】
【従来の技術】
方向性電磁鋼板は、{110}<001>方位(いわゆるゴス方位)に集積した結晶粒により構成されたSiを4.8%以下含有した鋼板である。この鋼板は磁気特性として励磁特性と鉄損得性が要求される。励磁特性を表す指標としては磁場の強さ800A/mにおける磁束密度:B8が通常使用される。また、鉄損特性を表す指標としては周波数50Hzで1.7Tまで磁化した時の鋼板1kgあたりの鉄損:W17/50が用いられる。磁束密度:B8は鉄損特性の最大の支配因子であり、磁束密度:B8値が高いほど鉄損特性も良好になる。磁束密度:B8を高めるためには結晶方位を高度に揃えることが重要である。この結晶方位の制御は二次再結晶とよばれるカタストロフィックな粒成長現象を利用して達成される。
【0003】
この二次再結晶を制御するためには、二次再結晶前の一次再結晶組織の調整と、インヒビタ−とよばれる微細析出物の調整を行うことが必要である。このインヒビタ−は、一次再結晶組織のなかで一般の粒の成長を抑制し、特定の{110}<001>方位粒のみを優先成長させる機能を持つ。
析出物として代表的なものとしては、M.F.Littmann(特公昭30−3651号公報)及びJ.E.May&D.Turnbull(Trans.Met.Soc.AIME212(1958年)p769)等はMnSを、田口ら(特公昭40−15644号公報)はAlNを、今中ら(特公昭51−13469号公報)はMnSeを提示している。
【0004】
これらの析出物は熱間圧延前のスラブ加熱時に完全固溶させた後に、熱間圧延及びその後の焼鈍工程で微細析出させる方法がとられている。これらの析出物を完全固溶させるためには1350℃ないし1400℃以上の高温で加熱する必要があり、これは普通鋼のスラブ加熱温度に比べて約200℃高く次の問題点がある。(1)専用の加熱炉が必要。(2)加熱炉のエネルギ−原単位が高い。(3)溶融スケール量が多く、いわゆるノロ出し等の操業管理が必要である。
【0005】
そこで、低温スラブ加熱による研究開発が進められ、低温スラブ加熱による製造方法として小松ら(特公昭62−45285号公報)は窒化処理により形成した(Al、Si)Nをインヒビターとして用いる方法を開示している。この窒化処理の方法として、小林等は脱炭焼鈍後にストリップ状で窒化する方法を開示(特開平2-77525号公報)し、牛神等によりその窒化物の挙動が報告されている(Materials Science Forum, 204-206 (1996),pp593-598)。
【0006】
低温スラブ加熱による方向性電磁鋼板の製造方法においては、脱炭焼鈍時にインヒビタ−が形成されていないので、脱炭焼鈍における一次再結晶組織の調整が二次再結晶を制御するうえで重要となる。従来の高温スラブ加熱による方向性電磁鋼板の製造方法の研究においては、二次再結晶前の一次再結晶組織調整に関する知見は殆んどなく、本発明者らは、例えば、特公平8−32929号公報、特開平9−256051号公報等にその重要性を開示している。
【0007】
特公平8−32929号公報において、一次再結晶粒組織の粒径分布の変動係数が0.6より大きくなり粒組織が不均一になると二次再結晶が不安定になることを開示している。その後、さらに特開平9−256051号公報において、二次再結晶の制御因子である一次再結晶組織とインヒビターに関する研究を行なった結果、一次再結晶粒組織の粒組織として脱炭焼鈍後の集合組織においてゴス方位粒の成長を促進すると考えられる{111}方位および{411}方位の粒の比率;I{111}/I{411}を3以下に調整することにより製品の磁束密度が向上することを示した。ここで、I{111}及びI{411}はそれぞれ{111}及び{411}面が鋼板板面に平行である粒の割合であり、X線回折測定により板厚1/10層において測定された回折強度値を表している。
【0008】
この脱炭焼鈍後の一次再結晶組織に対しては、脱炭焼鈍工程の加熱速度、均熱温度、均熱時間等の脱炭焼鈍の焼鈍サイクルが影響するのは勿論のこと、熱延板焼鈍の有無、冷間圧延の圧下率(冷延圧下率)等の脱炭焼鈍前の製造工程も影響を与える。
こうした一次再結晶集合組織等を制御した二次再結晶制御以外にも、方向性電磁鋼板の鉄損を、更に低減させる手段として、磁区を細分化する技術が開発されている。積み鉄心の場合、仕上げ焼鈍後の鋼板にレーザービームを照射して局部的な微少歪を与えることにより磁区を細分化して鉄損を低減させる方法が、例えば特開昭58−26405号公報に開示されている。また、巻き鉄心の場合には、鉄心に加工した後、歪取り焼鈍を施しても磁区細分化効果の消失しない方法も、例えば特開昭62−8617号公報に開示されている。これらの技術的手段により磁区を細分化することにより鉄損は大きく低減されるようになってきている。
【0009】
しかしながら、これらの磁区の動きを観察すると動かない磁区も存在していることが分かり、方向性電磁鋼板の鉄損値を更に低減させるためには、磁区細分化と合わせて磁区の動きを阻害する鋼板表面のグラス皮膜による界面の凹凸からのピン止め効果をなくすこと重要であることが分かった。
そのためには、磁区の動きを阻害する鋼板表面のグラス皮膜を形成させない事が有効である。その手段として、焼鈍分離剤として粗大高純アルミナを用いることによりグラス皮膜を形成させない方法が、例えば、米国特許第3785882号公報に開示されている。しかしながら、この方法では表面直下の酸化物を主体とする介在物をなくすことができず、鉄損の向上代はW15/60で高々2%に過ぎない。
【0010】
この表面直下の介在物を低減し、かつ表面の平滑化(平均粗度Ra:0.3μm以下)を達成する方法として、仕上げ焼鈍後にグラス被膜を除去した後に、化学研磨或いは電解研磨を行う方法が、例えば特開昭64−83620号公報に開示されている。しかしながら、化学研磨・電解研磨等の方法は、研究室レベルでの少試料の材料を加工することは可能であるが、工業的規模で行うには薬液の濃度管理、温度管理、公害設備の付与等の点で大きな問題があり、いまだ実用化されるに至っていない。
【0011】
この問題点を解消する方策として、本発明者等は脱炭焼鈍の露点を制御し、脱炭焼鈍時に形成される酸化層においてFe系酸化物(Fe2SiO4、FeO等)を形成させないこと、及び、焼鈍分離剤としてシリカと反応しないアルミナ等の物質を用いることにより仕上げ焼鈍後に表面直下の介在物を低減し、かつ表面の平滑化を達成することが可能であることを開示している(特開平7−118750号公報)。
【0012】
【発明が解決しようとする課題】
本発明は、表面の平滑性の良好な方向性電磁鋼板を低温スラブ加熱により製造する方法において、酸可溶性Al量に応じて脱炭焼鈍条件を制御することにより磁束密度の高い優れた磁気特性をもつ鏡面方向性電磁鋼板を製造する方法を提供するものである。
また、本発明は、表面の平滑性の良好な薄手方向性電磁鋼板を低温スラブ加熱により製造する方法において、従来必須であった中間焼鈍を挟んだ二回以上の冷延工程を、酸可溶性Al量および脱炭焼鈍条件を適切に制御することにより一回のみの冷延によっても磁束密度の高い優れた磁気特性をもつ方向性電磁鋼板を製造する方法を提供するものである。
【0013】
【課題を解決するための手段】
本発明の要旨とするところは以下の通りである。
(1)質量%で、Si:0.8〜4.8%、C:0.085%以下、酸可溶性Al:0.01〜0.065%、N:0.012%以下を含み、あるいは更に必要に応じて、Sn:0.02〜0.15%、Cr:0.03〜0.2%の1種または2種を含有し、残部Fe及び不可避的不純物からなる鋼を1280℃以下の温度で加熱した後、熱間圧延により熱延板となし、次いで一回もしくは中間焼鈍をはさむ二回以上の冷間圧延により最終板厚とし、次いで、Fe系酸化物を形成させない雰囲気ガス中で脱炭焼鈍し、その後増窒素処理を行った後、アルミナを主成分とする焼鈍分離剤を塗布することにより、仕上げ焼鈍後の鋼板表面を鏡面状態にする鏡面方向性電磁鋼板の製造方法において、酸可溶性Alの量:[Al]%に対応して、脱炭焼鈍工程の昇温過程における鋼板温度が600℃以下の領域から750〜900℃の範囲内の所定の温度までの加熱速度:HR℃/秒をHR≧−6250[Al]+200とすることにより、脱炭焼鈍後の集合組織におけるI[111]/I[411]の比率を1.7〜2.5に調整し、その後、鋼板の酸可溶Alの量:[Al]に応じて窒素量:[N]が[N]/[Al]≧0.67を満足する量となるように窒化処理を施すことを特徴とする方向性電磁鋼板の製造方法。
【0014】
(2)前記冷間圧延において圧下率を90%超とすることを特徴とする(1)記載の方向性電磁鋼板の製造方法。
(3)前記熱延板に900〜1200℃の温度域で30秒〜30分間の焼鈍を施すことを特徴とする(1)または(2)に記載の方向性電磁鋼板の製造方法。
(4)前記脱炭焼鈍工程において、770℃〜900℃の温度域で雰囲気ガスの酸化度(PH2 O/PH2 ):0.01以上0.15以下の範囲内で焼鈍することを特徴とする(1)〜(3)のいずれかの項に記載の方向性電磁鋼板の製造方法。
【0016】
【発明の実施の形態】
以下、実験結果をもとに本発明を説明する。
図1は、sol-Al量、脱炭焼鈍加熱速度に対する鋼板の磁束密度B8の分布を示した図である。ここで用いた試料は、質量%で、Si:3.3%、C:0.06%、酸可溶性Al:0.020−0.038%、N:0.008%、Mn:0.1%、S:0.007%含有するスラブを1150℃の温度で加熱した後、2.0mm厚に熱間圧延し、その後、1120℃で焼鈍した後、0.22mm厚まで冷間圧延後、加熱速度15−100℃/秒で加熱し、770〜950℃の温度で脱炭焼鈍した後、一部はそのまま、一部はアンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.02〜0.03%とし、次いで、アルミナを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を行った。これらの試料の脱炭焼鈍板の一次再結晶集合組織を解析した結果、B8で1.94T以上となった全ての試料においてI{111}/I{411}の値が2.5以下となっていることを確認している。更に、全く同様に0.18mm厚まで冷延した実験でも図1と同様の結果が得られた。
【0017】
図1から明らかなように、1.94T以上の高磁束密度が得られる脱炭焼鈍加熱速度の閾値が酸可溶性Alの量:[Al]%が増加するに従って低下していくことがわかる。即ち、脱炭焼鈍時の加熱速度を同じとし、同じように一次再結晶集合組織を調整した場合であっても、インヒビターを強くするように[Al]を高くしさえすれば、一次再結晶集合組織制御による高磁束密度化の効果を得ることができるということである。
【0018】
また、こうした高B8効果が出現するための前提となるインヒビター強度の影響を、窒化処理後の窒素量を0.01〜0.03%と変化させることにより調べた。その結果を図2に示す。図2は上述の実験で使用した試料のうち、[Al]が0.026%の脱炭焼鈍板で、脱炭焼鈍時の加熱速度を60℃/秒(I{111}/I{411}の値が2.3)とした試料および加熱速度を15℃/秒(I{111}/I{411}の値が2.9)とした試料を窒化して得ることができた製品のB8を、鋼板の酸可溶性Alの量[Al](%)に対する窒化後の鋼板の窒素量[N](%)の比:[N]/[Al]に対してプロットしたものである。図2より、脱炭焼鈍加熱速度HR℃/秒が−6250[Al]+200=37.5以上であり、I{111}/I{411}の値が2.5以下を満たしかつ[N]/[Al]≧0.67の三つの条件を満たした場合にB8が1.94T以上となっていることがわかる。
【0019】
これまで方向性電磁鋼板の脱炭焼鈍を急速加熱で行うことは、例えば、特開平1−290716号公報、特開平6−212262号公報等に開示されている。しかしながら、これらの特許は高温スラブ加熱による方向性電磁鋼板の製造方法に適用したものであり、その効果も二次再結晶粒径が小さくなり鉄損特性が向上するというものである。
【0020】
本発明の製品に及ぼす効果はこれらの結果と異なり磁束密度(B8)の向上に大きな影響を及ぼすものである。また、集合組織制御の効果を酸可溶性Al量や窒化量でインヒビターを制御することによって高磁束密度を得るために必要な脱炭焼鈍時の加熱速度の下限値が広がるというものである。
上記の結果に対する理由について、本願発明者らは次のように考えている。本発明における様な(Al、Si)N等の窒化物のように熱的に安定な(強い)インヒビタ−を用いた場合には、粒界移動の粒界性格依存性が高くなるために、ゴス方位粒の数よりもゴス方位とΣ9対応方位関係にあるマトリックス粒(具体的には{111}<112>、{411}<148>)の数および結晶方位分散がより重要となるが、熱的に安定な(強い)インヒビタ−を増やすことによって、同様な結晶方位分散であっても高いB8が得られやすくなったということである。また、[Al]を増やすとインヒビターへの影響の他に、一次再結晶集合組織への効果もあり、このことも磁束密度を高くすることに対して相乗的に寄与したものと考えている。具体的には、実施例1に示してあるように[Al]を増やすとI{111}/I{411}の値が減少しており、このことは二次再結晶粒となる一次再結晶組織中の[110]<001>方位粒の成長を促進する{111}方位粒と{411}方位粒のうち、結晶方位分散が小さい{411}方位粒の発達が促されたことを意味している。その結果として、二次再結晶粒(ゴス粒)の方位分散も小さくなり、高B8が得られる。
【0021】
本発明に使用する鋼の成分としては、質量%で、Si:0.8〜4.8%、C:0.085%以下、酸可溶性Al:0.01〜0.065%、N:0.012%以下が必要である。
Siは添加量を多くすると電気抵抗が高くなり、鉄損特性が改善される。しかしながら、4.8%を超えると圧延時に割れやすくなってしまう。また、0.8%より少ないと仕上げ焼鈍時にγ変態が生じ結晶方位が損なわれてしまう。
【0022】
Cは一次再結晶組織を制御するうえで有効な元素であるが、磁気特性に悪影響を及ぼすので仕上げ焼鈍前に脱炭する必要がある。Cが0.085%より多いと脱炭焼鈍時間が長くなり生産性が損なわれてしまう。
酸可溶性Alは、本願発明においてNと結合して(Al、Si)Nとしてインヒビターとしての機能をはたすために必須の元素である。二次再結晶が安定する0.01〜0.065%を限定範囲とする。
【0023】
Nは0.012%をこえると冷延時にブリスターとよばれる鋼板中の空孔を生じる。
その他、Sは磁気特性に悪影響を及ぼすので0.015%以下とすることが望ましい。Snは脱炭焼鈍後の集合組織を改善し、二次再結晶を安定化するため0.02〜0.15%添加することが望ましい。Crは脱炭焼鈍の酸化層を改善し、脱インヒビター挙動を制御するのに有効な元素であり、0.03〜0.2%添加することが望ましい。その他、微量のCu、Sb、Mo、Bi、Ti等を鋼中に含有することは、本発明の主旨を損なうものではない。
【0024】
上記の組成を有する電磁鋼スラブは転炉、または電気炉等により鋼を溶製し、必要に応じて溶鋼を真空脱ガス処理し、次いで連続鋳造もしくは造塊後分塊圧延することによって得られる。その後、熱間圧延に先だってスラブ加熱がなされる。本発明においては、スラブ加熱温度は1280℃以下として、先述の高温スラブ加熱の諸問題を回避する。
【0025】
上記熱間圧延板は、通常、磁気特性を高めるために900〜1200℃で30秒〜30分間の短時間焼鈍を施す。その後、一回もしくは焼鈍を挟んだ二回以上の冷間圧延により最終板厚とする。冷間圧延としては、特公昭40−15644号公報に示されるように最終冷延圧下率を80%以上とすることが、{111}、{411}等の一次再結晶方位を発達させるうえで必要である。特に、最終冷延圧下率を85%以上とすることが望ましい。またさらに、冷延圧下率が95%より大きくなってしまうと冷延工程での負荷が大きくなり、実操業の観点から95%以下が現実的である。
また、本発明のポイントは高B8を得るために、インヒビターの強さに応じて脱炭焼鈍加熱速度を制御し、一次再結晶集合組織を制御する点にあるが、この制御技術によって、従来、冷延一回法においてはB8の劣化を招いていたような高冷延圧下率の条件においても極めて良好な二次再結晶を実現させることが可能となった。具体的には、例えば、中島らの論文(鉄と鋼77(1991)p.1710)などには、冷延圧下率の増加にともなってB8が向上し、圧下率が88%で最高となり、90%程度になると急激にB8の劣化が起こってしまうことが報告されているが、本発明では90%超の圧下率においても高いB8が実現できる。このことは特に、従来二回冷延法でしか製造できなかった0.20mm以下の薄手高B8材製造において、冷延一回法で製造することを可能とする。第5図にそれを導いた実験結果を示す。実験は[Al]が0.030%である板厚1.6〜2.8mmの熱延板から冷延した板厚0.20mmの冷延板を60℃/秒の加熱速度で室温から800℃まで加熱した後、800〜850℃の所定の温度において雰囲気ガスの酸化度0.10で120秒焼鈍した。その後窒化処理により窒素量を0.020〜0.030%としたのちアルミナを主成分とする焼鈍分離剤を塗布して仕上げ焼鈍を行った。図5から明らかなように90%超の圧下率で特に高いB8を得ることができる。
【0026】
冷間圧延後の鋼板は、鋼中に含まれるCを除去するために湿潤雰囲気中で脱炭焼鈍を施す。その際、脱炭焼鈍加熱速度および脱炭焼鈍均熱温度等を制御し、脱炭焼鈍後の一次再結晶集合組織のI[111]/I[411]の値を2.5以下に調整することが、磁気特性B8を1.93T以上の製品を得るためにまず必要である。さらに、本発明のポイントである脱炭焼鈍工程の焼鈍サイクルにおける加熱速度:HR℃/秒を酸可溶性Alの量:[Al]%に対してHR≧−6250[Al]+200をみたすように調整することによってB8が1.94T以上の製品を得ることができる(即ち、[Al]を多くしていった場合のHRの下限値は、HR≧−6250[Al]+200かつI[111]/I[411]の値を2.5以下とするために必要な加熱速度ということになる)。また、この加熱速度で加熱する必要がある温度域は少なくとも600℃から750〜900℃までの温度域である。
【0027】
図3、図4に上記の結論を導いた実験結果を示す。[Al]が0.026%である冷延板を50℃/秒の加熱速度で室温から600℃〜1000℃の温度域の所定の温度まで加熱した後、窒素ガスで室温まで冷却した。その後20℃/秒の加熱速度で850℃まで加熱し、雰囲気ガスの酸化度0.10で120秒焼鈍した。その後窒化処理により窒素量を0.021%としたのちアルミナを主成分とする焼鈍分離剤を塗布して仕上げ焼鈍を行った。図3に示すように、50℃/秒の加熱速度での到達温度が750℃以上、900℃以下の範囲で磁束密度が向上していることが分かる。750℃未満で効果が発揮されないのは、750℃未満では一次再結晶が十分に進行しておらず、一次再結晶集合組織を変えるためには再結晶を十分に進行させる必要があるためである。また、900℃超の温度まで加熱すると、試料の一部に変態組織が生じ、その後の脱炭焼鈍完了時点での組織が混粒組織になるためであると考えられる。
【0028】
次いで、上記冷延板を加熱速度20℃/秒で300℃から750℃の温度域の所定の温度まで加熱し、その温度から加熱速度50℃/秒で850℃まで加熱した後、窒素ガスで室温まで冷却した。その後50℃/秒の加熱速度で850℃まで加熱し、雰囲気ガスの酸化度0.10で120秒焼鈍した。その後窒化処理により窒素量を0.021%としたのちアルミナを主成分とする焼鈍分離剤を塗布して仕上げ焼鈍を行った。第4図に示すように加熱速度50℃/秒の加熱開始温度が600℃超では磁束密度向上効果が無いことが分かる。
【0029】
これらの結果から、加熱速度50℃/秒以上で加熱する必要がある温度域は少なくとも600℃から750〜900℃までの温度域であることが分かる。従って、脱炭焼鈍工程の昇温過程において鋼板温度が600℃以下の温度域から50℃/秒以上で加熱することが必要となる。また、上記のような脱炭焼鈍工程の昇温過程での加熱は冷延工程から脱炭焼鈍工程の間に加熱焼鈍を行ったとしても本発明の趣旨を損なうものではない。
【0030】
急速加熱の方法は特に限定するものではなく、40〜100℃/秒程度の加熱速度に対しては、従来の通常輻射熱を利用したラジアントチューブや発熱体による脱炭焼鈍設備を改造した設備、また100℃/秒以上の加熱速度に対しては、新たなレーザー、プラズマ等の高エネルギー熱源を利用する方法、誘導加熱、通電加熱装置等を適用することができる。また、従来の通常輻射熱を利用したラジアントチューブや発熱体による脱炭焼鈍設備に新たなレーザー、プラズマ等の高エネルギー熱源を利用する方法、誘導加熱、通電加熱装置等を適用する方法等を組み合わせることも有効である。その後、Fe系の酸化物(Fe2SiO4、FeO等)を形成させない酸化度で焼鈍を行う。例えば、通常脱炭焼鈍が行われる800℃程度の温度では、雰囲気ガスの酸化度:PH2O/PH2を0.15以下に調整することにより、Fe系酸化物の生成を抑制することができる。但し、あまりに酸化度をさげると脱炭速度が遅くなってしまう。この両者を勘案すると、この温度域においては雰囲気ガスの酸化度:PH2O/PH2を0.01〜0.15の範囲とすることが好ましい。均熱温度と時間に関しては、例えば特開平2−182866号公報に示されるような一次再結晶粒組織の調整を勘案して設定する。通常は770〜900℃の範囲で行う。また、均熱の前段で脱炭した後に、粒調整のために均熱の後段の温度を高めることや後段の雰囲気ガスの酸化度を下げて均熱時間をのばすことも有効である。
【0031】
窒化処理としては、アンモニア等の窒化能のあるガスを含有する雰囲気中で焼鈍する方法、MnN等の窒化能のある粉末を焼鈍分離剤中に添加して仕上げ焼鈍中に行う方法等がある。窒化処理後の窒素量としては[N]/[Al]≧0.67となるように窒化処理を施すことが本発明の特徴である一次再結晶集合組織の制御効果を発現させるためのポイントである。
【0032】
脱炭焼鈍板はアルミナを主成分とする焼鈍分離剤を水スラリ−もしくは静電塗布法等によりドライ・コ−トしたのち積層しコイルとする。
この積層した板を仕上げ焼鈍して、二次再結晶と窒化物の純化を行う。二次再結晶を特開平2−258929に開示される様に一定の温度で保持する等の手段により所定の温度域で行うことは磁束密度を上げるうえで有効である。
【0033】
二次再結晶完了後、窒化物の純化と表面の平滑化をおこなうために、水素雰囲気中で1100℃以上の温度で焼鈍する。
仕上げ焼鈍後、表面は既に平滑化されているので、張力コーテイング処理を行い、必要に応じてレーザー照射等の磁区細分化処理を施せば良い。
【0034】
【実施例】
<実施例1>
質量%で、Si:3.3%、C:0.06%、酸可溶性Al:0.020%、0.026%、0.031%、N:0.008%、Mn:0.1%、S:0.007%含有するスラブを1150℃の温度で加熱した後、2.0mm厚に熱間圧延した。その後、1120℃で焼鈍した後、0.22mm厚まで冷間圧延後、脱炭焼鈍の加熱速度を15〜100℃/秒とし、830〜860℃の温度で脱炭焼鈍した後、アンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.02〜0.03%とした。ついでアルミナ(Al23)を主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を行った。
【0035】
得られた製品の特性値を表1に示す。一次再結晶集合組織に関してI[111]/I[411]の値が2.5以下であり、脱炭焼鈍工程の加熱速度:HRが酸可溶性Alの量:[Al]%に対してHR≧−6250[Al]+200を満足している場合、B8が1.94T以上の高い磁束密度を得られていることが分かる。言い換えれば、[Al]を増加させた場合、同じ脱炭焼鈍加熱速度に対するB8が向上し、高いB8を得られる脱炭焼鈍加熱速度の領域が小さな加熱速度の領域まで広がっていることがわかる。
【0036】
【表1】

Figure 0004427226
【0037】
<実施例2>
質量%で、Si:3.3%、C:0.05%、酸可溶性Al:0.026%、0.031%、N:0.007%、Cr:0.1%、Sn:0.05%、Mn:0.1%、S:0.008%含有するスラブを1150℃の温度で加熱した後、熱間圧延によって、2.0 mm厚にし、この熱間圧延板を1120℃で焼鈍し、その後、0.22mm厚に冷間圧延した。この冷延板を10〜600℃/秒の加熱速度で800℃に加熱した後、800〜890℃で120秒間、雰囲気ガス酸化度0.12で脱炭焼鈍し、一次再結晶集合組織を図1で示した高B8が得られる領域に調整した。その後、750℃で30秒間アンモニア含有雰囲気中で焼鈍し、アンモニア含有量を変えることにより鋼板中の窒素量を0.025〜0.035%とした。その後、アルミナを主成分とする焼鈍分離剤を塗布した後、1200℃で20時間仕上げ焼鈍を施した。
【0038】
これらの試料に張力コーテイング処理を施した後、レーザー照射して磁区細分化した。得られた製品の特性を表2に示す。表2より、一次再結晶集合組織に関してI[111]/I[411]の値が2.5以下であり、脱炭焼鈍工程の加熱速度:HRが酸可溶性Alの量:[Al]%に対してHR≧−6250[Al]+200を満足している場合、B8が1.94T以上の高い磁束密度を得られていることが分かる。また特に、HRが75℃/秒〜140℃/秒で特にB8が高く、その高B8の領域が[Al]を高めると低速側に広がることがわかる。
【0039】
【表2】
Figure 0004427226
【0040】
<実施例3>
質量%で、Si:3.2%、Mn:0.1%、C:0.05%、S:0.008%、酸可溶性Al:0.024%、N:0.008%、Sn:0.1%を含む板厚2.3mm珪素鋼熱延板を最終板厚0.25mmに冷延した。この冷延板を酸化度0.10の窒素と水素の混合ガス中において、加熱速度(1)20℃/秒(2)100℃/秒で840℃まで加熱し840℃で150秒焼鈍し一次再結晶させた。その後、750℃で30秒間アンモニア含有雰囲気中で焼鈍し、アンモニア含有量を変えることにより鋼板中の窒素量を0.02〜0.03%とした。
【0041】
これらの鋼板にアルミナを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。仕上げ焼鈍は1200℃まではN2:25%+H2:75%の雰囲気ガス中で15℃/hrの加熱速度で行い、1200℃でH2:100%に切りかえ20時間焼鈍を行った。
これらの試料を張力コーテイング処理を施した。得られた製品の磁気特性を表3に示す。実施例1、2と比較すると、冷延前の焼鈍を行っていないので全体の磁束密度は低いが、本発明の磁束密度向上効果が確認できる。
【0042】
【表3】
Figure 0004427226
【0043】
<実施例4>
質量%で、Si:3.3%、C:0.06%、酸可溶性Al:0.020、0.026、0.031%、N:0.008%、Mn:0.1%、S:0.007%含有するスラブを1150℃の温度で加熱した後、2.0mm厚に熱間圧延した。その熱延板を、前段1120℃、後段900℃で焼鈍した後、0.15mm厚まで冷間圧延後、脱炭焼鈍の加熱速度を15〜100℃/秒とし、810〜860℃の温度で脱炭焼鈍した後、アンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.02〜0.03%とした。ついでアルミナ(Al23)を主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を行った。
製品の特性値を表4に示す。脱炭焼鈍工程の加熱速度:HRが酸可溶性Alの量:[Al]%に対してHR≧-6250[Al]+200となっている場合、B8が1.94T以上の高い磁束密度を得られていることが分かる。
【0044】
【表4】
Figure 0004427226
【0045】
<実施例5>
質量%で、Si:3.3%、C:0.05%、酸可溶性Al:0.025%、0.035%、N:0.007%、Cr:0.1%、Sn:0.05%、Mn:0.1%、S:0.008%含有するスラブを1150℃の温度で加熱した後、熱間圧延によって、2.3mm厚にし、この熱間圧延板を1120℃で焼鈍し、その後、0.18mm厚に冷間圧延した。この冷延板を5〜600℃/秒の加熱速度で800℃に加熱した後、800〜890℃で120秒間、雰囲気酸化度0.12で脱炭焼鈍し、一次再結晶集合組織を図1で示した高B8が得られる領域に調整した。その後、750℃で30秒間アンモニア含有雰囲気中で焼鈍し、アンモニア含有量を変えることにより鋼板中の窒素量を0.025〜0.035%とした。その後、アルミナを主成分とする焼鈍分離剤を塗布した後、1200℃で20時間仕上げ焼鈍を施した。
これらの試料に張力コーティング処理を施した後、レーザー照射して磁区細分化した。得られた製品の特性を表5に示す。表2より、脱炭焼鈍工程の加熱速度:HRが酸可溶性Alの量:[Al]%に対してHR≧-6250[Al]+200となっている場合、B8が1.94T以上の高い磁束密度を得られていることが分かる。特に、[Al]を増加させた場合、冷延一回法による高B8効果がより顕著に見られ、脱炭焼鈍加熱速度が小さくても高B8効果が得られると共に、より高いB8をえることができる。
【0046】
【表5】
Figure 0004427226
【0047】
<実施例6>
質量%で、Si:3.5%、Mn:0.1%、C:0.05%、S:0.008%、酸可溶性Al:0.030%、N:0.008%、Sn:0.1%を含む板厚2.3mm珪素鋼熱延板を最終板厚0.18mmに冷延した。この冷延板を酸化度0.10の窒素と水素の混合ガス中において、加熱速度(1)10℃/秒(2)40℃/秒で840℃まで加熱し840℃で150秒焼鈍し一次再結晶させた。その後、750℃で30秒間アンモニア含有雰囲気中で焼鈍し、アンモニア含有量を変えることにより鋼板中の窒素量を0.02〜0.03%とした。
これらの鋼板にアルミナを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。仕上げ焼鈍は1200℃まではN2 :25%+H2 :75%の雰囲気ガス中で15℃/hrの加熱速度で行い、1200℃でH2 :100%に切りかえ20時間焼鈍を行った。
これらの試料を張力コーティング処理を施した。得られた製品の磁気特性を表6に示す。実施例1、2と比較すると、冷延前の焼鈍を行っていないので磁束密度は低いが、本発明の磁束密度向上効果が確認できる。
【0048】
【表6】
Figure 0004427226
【0049】
【発明の効果】
本発明により、従来の高温スラブ加熱に起因する諸問題の無い低温スラブ加熱による方向性電磁鋼板の製造方法を基に、一次再結晶組織、酸可溶性Alに対する脱炭焼鈍条件及び窒化量を規定することにより、磁束密度の高い優れた磁気特性をもつ鏡面方向性電磁鋼板を工業的に安定して製造することができる。
特に、一回冷延法を前提とした製造方法において、酸可溶性Alに対する脱炭焼鈍条件及び窒化量を規定することにより、磁束密度が高い優れた磁気特性をもつ薄手鏡面方向性電磁鋼板を工業的に安定して製造することができる。このことにより、熱延に負荷が少なく、中間焼鈍を省略し、従来よりも安価かつ鉄損に優れた方向性電磁鋼板を得ることができる。
【図面の簡単な説明】
【図1】製品の磁束密度(B8)に及ぼす酸可溶性Alと脱炭焼鈍加熱速度の影響を示した図である。
【図2】窒化量及び一次再結晶集合組織:I{111}/I{411}が磁束密度に及ぼす影響を示した図である。
【図3】磁束密度に及ぼす脱炭焼鈍の急速加熱完了温度の影響を示した図である。
【図4】磁束密度に及ぼす脱炭焼鈍の急速加熱開始温度の影響を示した図である。
【図5】磁束密度に及ぼす冷延圧下率の影響を示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a so-called grain-oriented electrical steel sheet in which crystal grains are accumulated in a {110} <001> orientation with a Miller index. This steel plate is used as an iron core of electrical equipment such as a transformer as a soft magnetic material.
[0002]
[Prior art]
The grain-oriented electrical steel sheet is a steel sheet containing 4.8% or less of Si composed of crystal grains accumulated in {110} <001> orientation (so-called Goth orientation). This steel plate is required to have excitation characteristics and iron loss as magnetic characteristics. As an index representing the excitation characteristics, a magnetic flux density B8 at a magnetic field strength of 800 A / m is usually used. Further, as an index representing the iron loss characteristic, iron loss per kg of steel sheet: W17 / 50 when magnetized to 1.7 T at a frequency of 50 Hz is used. Magnetic flux density: B8 is the largest governing factor of the iron loss characteristic, and the higher the magnetic flux density: B8 value, the better the iron loss characteristic. In order to increase the magnetic flux density B8, it is important to align the crystal orientation at a high level. This control of crystal orientation is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization.
[0003]
In order to control this secondary recrystallization, it is necessary to adjust the primary recrystallization structure before the secondary recrystallization and to adjust fine precipitates called inhibitors. This inhibitor has a function of suppressing the growth of general grains in the primary recrystallization structure and preferentially growing only specific {110} <001> oriented grains.
Typical examples of precipitates include M.P. F. Littmann (Japanese Patent Publication No. 30-3651) and J.A. E. May & D. Turnbull (Trans.Met.Soc.AIME212 (1958) p769) and others are MnS, Taguchi et al. (Japanese Patent Publication No. 40-15644) are AlN, Imanaka et al. Presenting.
[0004]
These precipitates are completely dissolved during slab heating before hot rolling, and then finely precipitated by hot rolling and subsequent annealing. In order to completely dissolve these precipitates, it is necessary to heat at a high temperature of 1350 ° C. to 1400 ° C. or more, which is about 200 ° C. higher than the slab heating temperature of ordinary steel and has the following problems. (1) A dedicated heating furnace is required. (2) The energy intensity of the heating furnace is high. (3) The amount of melt scale is large and operation management such as so-called no-roll out is necessary.
[0005]
Therefore, research and development by low-temperature slab heating has proceeded, and as a manufacturing method by low-temperature slab heating, Komatsu et al. (Japanese Patent Publication No. 62-45285) discloses a method using (Al, Si) N formed by nitriding as an inhibitor. ing. As a method of nitriding treatment, Kobayashi et al. Disclosed a method of nitriding in strip form after decarburization annealing (JP-A-2-77525), and Ushigami et al. Reported the behavior of the nitride (Materials Science). Forum, 204-206 (1996), pp593-598).
[0006]
In the method for producing grain-oriented electrical steel sheets by low-temperature slab heating, since the inhibitor is not formed during decarburization annealing, adjustment of the primary recrystallization structure in decarburization annealing is important in controlling secondary recrystallization. . In the research on the conventional method for producing grain-oriented electrical steel sheets by high-temperature slab heating, there is almost no knowledge about primary recrystallization structure adjustment before secondary recrystallization, and the present inventors have disclosed, for example, Japanese Patent Publication No. 8-32929. The importance of this is disclosed in Japanese Patent Laid-Open No. 9-256051 and the like.
[0007]
Japanese Patent Publication No. 8-32929 discloses that the secondary recrystallization becomes unstable when the variation coefficient of the particle size distribution of the primary recrystallized grain structure is larger than 0.6 and the grain structure becomes non-uniform. . Thereafter, in JP-A-9-256051, as a result of research on the primary recrystallized structure and inhibitor which are the control factors of secondary recrystallization, the texture after decarburization annealing as the grain structure of the primary recrystallized grain structure The ratio of grains with {111} and {411} orientation, which is considered to promote the growth of goth-oriented grains in the above; the magnetic flux density of the product is improved by adjusting I {111} / I {411} to 3 or less showed that. Here, I {111} and I {411} are the proportions of grains whose {111} and {411} planes are parallel to the steel plate surface, respectively, and are measured at a plate thickness of 1/10 by X-ray diffraction measurement. Represents the diffraction intensity value.
[0008]
The primary recrystallized structure after this decarburization annealing is affected by the annealing cycle of decarburization annealing such as heating rate, soaking temperature, soaking time in the decarburizing annealing process, Production processes before decarburization annealing such as presence / absence of annealing and cold rolling reduction ratio (cold rolling reduction ratio) are also affected.
In addition to secondary recrystallization control that controls the primary recrystallization texture and the like, a technique for subdividing magnetic domains has been developed as a means for further reducing the iron loss of grain-oriented electrical steel sheets. In the case of a stacked iron core, a method for reducing the iron loss by subdividing the magnetic domain by irradiating the steel plate after the finish annealing with a laser beam to locally localize the strain is disclosed in, for example, Japanese Patent Laid-Open No. 58-26405 Has been. In the case of a wound iron core, a method in which the effect of subdividing the magnetic domain is not lost even if it is subjected to strain relief annealing after being processed into an iron core is disclosed in, for example, Japanese Patent Application Laid-Open No. 62-8617. By subdividing the magnetic domain by these technical means, the iron loss has been greatly reduced.
[0009]
However, by observing the movement of these magnetic domains, it can be seen that there are also magnetic domains that do not move, and in order to further reduce the iron loss value of the grain-oriented electrical steel sheet, the magnetic domain movement is inhibited together with the magnetic domain subdivision. It was found that it is important to eliminate the pinning effect from the unevenness of the interface due to the glass film on the steel sheet surface.
For this purpose, it is effective not to form a glass film on the surface of the steel sheet that hinders the movement of the magnetic domains. For example, US Pat. No. 3,785,882 discloses a method for preventing the formation of a glass film by using coarse high purity alumina as an annealing separator. However, this method cannot eliminate inclusions mainly composed of oxide directly under the surface, and the margin for improving the iron loss is only 2% at most at W15 / 60.
[0010]
A method of reducing chemical inclusions or electrolytic polishing after removing the glass film after finish annealing as a method for reducing inclusions directly under the surface and achieving surface smoothing (average roughness Ra: 0.3 μm or less). Is disclosed, for example, in JP-A-64-83620. However, methods such as chemical polishing and electropolishing can process a small amount of material at the laboratory level, but in order to carry out on an industrial scale, chemical concentration control, temperature control, and provision of pollution equipment However, it has not yet been put into practical use.
[0011]
As a measure for solving this problem, the present inventors controlled the dew point of decarburization annealing, and in the oxide layer formed during decarburization annealing, Fe-based oxides (Fe 2 SiO Four , FeO, etc.), and by using a substance such as alumina that does not react with silica as an annealing separator, it is possible to reduce the inclusions directly under the surface after finish annealing and to achieve surface smoothing. (Japanese Patent Laid-Open No. 7-118750).
[0012]
[Problems to be solved by the invention]
The present invention is a method of producing a grain-oriented electrical steel sheet with good surface smoothness by low-temperature slab heating, and by controlling the decarburization annealing conditions according to the amount of acid-soluble Al, it has excellent magnetic properties with high magnetic flux density. A method for manufacturing a mirror-oriented electrical steel sheet having a mirror surface is provided.
Further, the present invention is a method for producing a thin grain-oriented electrical steel sheet with good surface smoothness by low-temperature slab heating. The present invention provides a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties with high magnetic flux density even by only one cold rolling by appropriately controlling the amount and decarburization annealing conditions.
[0013]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) In mass%, Si: 0.8 to 4.8%, C: 0.085% or less, acid-soluble Al: 0.01 to 0.065%, N: 0.012% or less, Or further, if necessary, Sn: 0.02-0.15%, Cr: contain 0.03-0.2% of one or two, After the steel consisting of the remaining Fe and inevitable impurities is heated at a temperature of 1280 ° C or lower, it is formed into a hot-rolled sheet by hot rolling, and then the final sheet thickness is obtained by one or more cold rollings sandwiching intermediate annealing. Then, after decarburization annealing in an atmosphere gas that does not form Fe-based oxides, and after performing nitrogen increase treatment, the steel sheet surface after finish annealing is applied by applying an annealing separator mainly composed of alumina. In the manufacturing method of the mirror-oriented electrical steel sheet to be mirror-finished, the steel sheet temperature in the temperature rising process of the decarburization annealing process is 750 to 900 from the region corresponding to the amount of acid-soluble Al: [Al]%. Heating rate up to a predetermined temperature within the range of ℃: By setting HR ℃ / sec to HR ≧ -6250 [Al] +200, I [111] / I [411] in the texture after decarburization annealing Ratio 1.7- After that, the amount of acid-soluble Al in the steel sheet is adjusted to 2.5, and the amount of nitrogen: [N] in accordance with [Al] is such that [N] / [Al] ≧ 0.67 is satisfied. It is characterized by performing nitriding treatment Oriented electrical steel sheet Manufacturing method.
[0014]
(2) The rolling reduction is more than 90% in the cold rolling, (1) Oriented electrical steel sheet Manufacturing method.
(3) The hot-rolled sheet is subjected to annealing for 30 seconds to 30 minutes in a temperature range of 900 to 1200 ° C, as described in (1) or (2) Oriented electrical steel sheet Manufacturing method.
(4) In the decarburization annealing step, the oxidation degree (PH) of the ambient gas in the temperature range of 770 ° C. to 900 ° C. 2 O / PH 2 ): Annealing within a range of 0.01 or more and 0.15 or less, according to any one of (1) to (3), Oriented electrical steel sheet Manufacturing method.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on experimental results.
FIG. 1 is a diagram showing the distribution of the magnetic flux density B8 of the steel sheet with respect to the sol-Al amount and the decarburization annealing heating rate. The sample used here is mass%, Si: 3.3%, C: 0.06%, acid-soluble Al: 0.020-0.038%, N: 0.008%, Mn: 0.1 %, S: 0.007% containing slab was heated at a temperature of 1150 ° C., then hot-rolled to 2.0 mm thickness, then annealed at 1120 ° C., and then cold-rolled to 0.22 mm thickness, After heating at a heating rate of 15-100 ° C./second and decarburizing annealing at a temperature of 770-950 ° C., a part is left as it is, a part is annealed in an ammonia-containing atmosphere, and nitrogen in the steel sheet is changed to 0.02-0. 0.03%, and then after applying an annealing separator mainly composed of alumina, finish annealing was performed. As a result of analyzing the primary recrystallization texture of the decarburized and annealed plates of these samples, the value of I {111} / I {411} is 2.5 or less in all samples having B8 of 1.94 T or more. Make sure that Furthermore, the same results as in FIG. 1 were obtained in an experiment in which the film was cold-rolled to a thickness of 0.18 mm.
[0017]
As is apparent from FIG. 1, it can be seen that the decarburization annealing heating rate threshold at which a high magnetic flux density of 1.94 T or more is obtained decreases as the amount of acid-soluble Al: [Al]% increases. That is, even when the heating rate during decarburization annealing is the same and the primary recrystallization texture is adjusted in the same way, as long as [Al] is increased to strengthen the inhibitor, the primary recrystallization assembly This means that the effect of increasing the magnetic flux density by controlling the structure can be obtained.
[0018]
Further, the influence of the inhibitor strength, which is a precondition for the appearance of such a high B8 effect, was examined by changing the nitrogen amount after nitriding treatment to 0.01 to 0.03%. The result is shown in FIG. FIG. 2 is a decarburized annealed plate with [Al] of 0.026% among the samples used in the above-described experiment, and the heating rate during decarburized anneal is 60 ° C./second (I {111} / I {411} B8 of a product obtained by nitriding a sample having a value of 2.3) and a sample having a heating rate of 15 ° C./second (I {111} / I {411} is 2.9) Is plotted against the ratio of the amount of nitrogen [N] (%) in the steel sheet after nitriding to the amount [Al] (%) of acid-soluble Al in the steel sheet: [N] / [Al]. From FIG. 2, the decarburization annealing heating rate HR ° C./second is −6250 [Al] + 200 = 37.5 or more, the value of I {111} / I {411} satisfies 2.5 or less, and [N] It can be seen that B8 is 1.94 T or more when the three conditions of /[Al]≧0.67 are satisfied.
[0019]
Performing decarburization annealing of grain-oriented electrical steel sheets by rapid heating is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 1-290716 and 6-212262. However, these patents are applied to a method for producing grain-oriented electrical steel sheets by high-temperature slab heating, and the effect is that the secondary recrystallization grain size is reduced and the iron loss characteristics are improved.
[0020]
Unlike these results, the effect on the product of the present invention greatly affects the improvement of the magnetic flux density (B8). Moreover, the lower limit value of the heating rate at the time of decarburization annealing necessary for obtaining a high magnetic flux density is increased by controlling the inhibitor with the amount of acid-soluble Al or the amount of nitriding as the effect of texture control.
The inventors consider the reason for the above results as follows. When a thermally stable (strong) inhibitor such as a nitride such as (Al, Si) N in the present invention is used, the grain boundary character dependency of grain boundary movement is increased. Although the number of matrix grains (specifically, {111} <112>, {411} <148>) and the crystal orientation dispersion are more important than the number of Goth orientation grains, By increasing the number of thermally stable (strong) inhibitors, high B8 can be easily obtained even with similar crystal orientation dispersion. Moreover, increasing [Al] has an effect on the primary recrystallization texture in addition to the influence on the inhibitor, which is considered to have contributed synergistically to increasing the magnetic flux density. Specifically, as shown in Example 1, when [Al] is increased, the value of I {111} / I {411} decreases, which is the primary recrystallization that becomes the secondary recrystallized grains. This means that among the {111} and {411} oriented grains that promote the growth of [110] <001> oriented grains in the structure, the development of {411} oriented grains with a small crystal orientation dispersion was promoted. ing. As a result, the orientational dispersion of secondary recrystallized grains (goth grains) is also reduced, and a high B8 is obtained.
[0021]
As a component of the steel used for this invention, it is the mass%, Si: 0.8-4.8%, C: 0.085% or less, acid-soluble Al: 0.01-0.065%, N: 0 0.012% or less is necessary.
When Si is added in an increased amount, the electrical resistance increases and the iron loss characteristics are improved. However, if it exceeds 4.8%, it tends to break during rolling. On the other hand, if it is less than 0.8%, the γ transformation occurs during finish annealing and the crystal orientation is impaired.
[0022]
C is an effective element for controlling the primary recrystallization structure, but it has an adverse effect on the magnetic properties, so it needs to be decarburized before finish annealing. When C is more than 0.085%, the decarburization annealing time becomes long and the productivity is impaired.
Acid-soluble Al is an essential element for binding to N and acting as an inhibitor as (Al, Si) N in the present invention. The limiting range is 0.01 to 0.065% at which secondary recrystallization is stabilized.
[0023]
When N exceeds 0.012%, voids in the steel sheet called blisters are produced during cold rolling.
In addition, since S adversely affects the magnetic characteristics, it is desirable to make it 0.015% or less. Sn is preferably added in an amount of 0.02 to 0.15% in order to improve the texture after decarburization annealing and stabilize secondary recrystallization. Cr is an element effective for improving the oxidation layer of decarburization annealing and controlling the deinhibitor behavior, and it is desirable to add 0.03 to 0.2%. In addition, containing a trace amount of Cu, Sb, Mo, Bi, Ti or the like in the steel does not impair the gist of the present invention.
[0024]
The electromagnetic steel slab having the above composition is obtained by melting steel with a converter, an electric furnace, or the like, vacuum-degassing the molten steel as necessary, and then performing continuous casting or block rolling after ingot forming. . Thereafter, slab heating is performed prior to hot rolling. In the present invention, the slab heating temperature is set to 1280 ° C. or less to avoid the above-described problems of high-temperature slab heating.
[0025]
The hot-rolled sheet is usually annealed at 900 to 1200 ° C. for 30 seconds to 30 minutes in order to improve magnetic properties. Thereafter, the final thickness is obtained by cold rolling at least once with sandwiching annealing. As cold rolling, as shown in Japanese Patent Publication No. 40-15644, the final cold rolling reduction ratio is 80% or more in order to develop the primary recrystallization orientation of {111}, {411}, etc. is necessary. In particular, the final cold rolling reduction ratio is desirably 85% or more. Furthermore, if the cold rolling reduction ratio is greater than 95%, the load in the cold rolling process increases, and it is realistic that it is 95% or less from the viewpoint of actual operation.
In addition, the point of the present invention is to control the decarburization annealing heating rate according to the strength of the inhibitor and to control the primary recrystallization texture in order to obtain a high B8. In the single cold rolling method, it was possible to realize very good secondary recrystallization even under conditions of a high cold rolling reduction ratio that had caused the deterioration of B8. Specifically, for example, Nakajima et al. 77 (1991) p.1710) and the like, B8 improves as the cold rolling reduction increases, and the maximum reduction is 88%, and when it reaches about 90%, B8 deteriorates rapidly. As reported, in the present invention, a high B8 can be realized even at a rolling reduction of more than 90%. In particular, this makes it possible to manufacture by a single cold rolling method in manufacturing a thin high B8 material having a thickness of 0.20 mm or less, which could be manufactured only by the conventional cold rolling method. Fig. 5 shows the experimental results that led to this. In the experiment, a cold-rolled sheet having a thickness of 0.20 mm, which was cold-rolled from a hot-rolled sheet having a thickness of 1.6 to 2.8 mm with 0.030% [Al], was heated from room temperature to 800 ° C. at a heating rate of 60 ° C./second. After heating to ° C., annealing was performed for 120 seconds at an oxidation degree of the atmospheric gas of 0.10 at a predetermined temperature of 800 to 850 ° C. Thereafter, the amount of nitrogen was set to 0.020 to 0.030% by nitriding treatment, and then an annealing separator containing alumina as a main component was applied and finish annealing was performed. As is apparent from FIG. 5, a particularly high B8 can be obtained at a rolling reduction of more than 90%.
[0026]
The steel sheet after cold rolling is subjected to decarburization annealing in a humid atmosphere in order to remove C contained in the steel. At that time, the decarburization annealing heating rate and the decarburization annealing soaking temperature are controlled, and the value of I [111] / I [411] of the primary recrystallization texture after decarburization annealing is adjusted to 2.5 or less. First, it is necessary to obtain a product having a magnetic property B8 of 1.93 T or more. Furthermore, the heating rate in the annealing cycle of the decarburization annealing process, which is the point of the present invention: HR ° C./second is set so as to satisfy HR ≧ −6250 [Al] +200 with respect to the amount of acid-soluble Al: [Al]%. By adjusting, a product having B8 of 1.94 T or more can be obtained (that is, when [Al] is increased, the lower limit value of HR is HR ≧ −6250 [Al] +200 and I [111] ] / I [411] is a heating rate necessary to make the value 2.5 or less). Moreover, the temperature range which needs to be heated at this heating rate is a temperature range from at least 600 ° C. to 750 to 900 ° C.
[0027]
3 and 4 show the experimental results that led to the above conclusion. A cold-rolled sheet having [Al] of 0.026% was heated from room temperature to a predetermined temperature in the temperature range of 600 ° C. to 1000 ° C. at a heating rate of 50 ° C./second, and then cooled to room temperature with nitrogen gas. Thereafter, the film was heated to 850 ° C. at a heating rate of 20 ° C./second, and annealed for 120 seconds at an oxidation degree of atmospheric gas of 0.10. Thereafter, the amount of nitrogen was set to 0.021% by nitriding treatment, and then an annealing separator containing alumina as a main component was applied and finish annealing was performed. As shown in FIG. 3, it can be seen that the magnetic flux density is improved when the temperature reached at a heating rate of 50 ° C./second is in the range of 750 ° C. to 900 ° C. The effect is not exhibited below 750 ° C. because primary recrystallization does not proceed sufficiently below 750 ° C., and recrystallization needs to proceed sufficiently to change the primary recrystallization texture. . Further, when heated to a temperature exceeding 900 ° C., it is considered that a transformation structure is generated in a part of the sample, and the structure at the time when the subsequent decarburization annealing is completed becomes a mixed grain structure.
[0028]
Next, the cold-rolled sheet is heated at a heating rate of 20 ° C./second to a predetermined temperature in a temperature range of 300 ° C. to 750 ° C., and heated from that temperature to 850 ° C. at a heating rate of 50 ° C./second, and then with nitrogen gas. Cooled to room temperature. Thereafter, it was heated to 850 ° C. at a heating rate of 50 ° C./second, and annealed for 120 seconds at an oxidation degree of the atmospheric gas of 0.10. Thereafter, the amount of nitrogen was set to 0.021% by nitriding treatment, and then an annealing separator containing alumina as a main component was applied and finish annealing was performed. As shown in FIG. 4, it can be seen that when the heating start temperature at a heating rate of 50 ° C./sec exceeds 600 ° C., there is no effect of improving the magnetic flux density.
[0029]
From these results, it is understood that the temperature range that needs to be heated at a heating rate of 50 ° C./second or more is a temperature range of at least 600 ° C. to 750 to 900 ° C. Therefore, it is necessary to heat the steel plate at a temperature of 50 ° C./second or more from a temperature range of 600 ° C. or less in the temperature rising process of the decarburization annealing process. Further, the heating in the temperature raising process of the decarburization annealing process as described above does not impair the gist of the present invention even if the heat annealing is performed between the cold rolling process and the decarburization annealing process.
[0030]
The method of rapid heating is not particularly limited. For heating speeds of about 40 to 100 ° C./second, a conventional radiant tube using normal radiant heat or a modified decarburization annealing facility using a heating element, For a heating rate of 100 ° C./second or more, a method using a high energy heat source such as a new laser or plasma, induction heating, an electric heating device, or the like can be applied. Also, combining conventional radiant tubes using normal radiant heat and decarburization annealing equipment with heating elements using a new energy source such as laser and plasma, methods using induction heating, electric heating devices, etc. Is also effective. Then, Fe-based oxide (Fe 2 SiO Four , FeO, etc.) are annealed at an oxidation degree that does not form them. For example, at a temperature of about 800 ° C. where normal decarburization annealing is performed, the degree of oxidation of the atmospheric gas: PH 2 O / PH 2 By adjusting the value to 0.15 or less, the formation of Fe-based oxides can be suppressed. However, if the degree of oxidation is too low, the decarburization rate will be slow. Considering both, the oxidation degree of the atmospheric gas in this temperature range: PH 2 O / PH 2 Is preferably in the range of 0.01 to 0.15. The soaking temperature and time are set in consideration of the adjustment of the primary recrystallized grain structure as disclosed in, for example, JP-A-2-182866. Usually, it is performed in the range of 770 to 900 ° C. It is also effective to increase the temperature of the soaking process by increasing the temperature after soaking for the purpose of grain adjustment, or increasing the soaking time by lowering the degree of oxidation of the atmosphere gas at the succeeding stage, after decarburizing before the soaking.
[0031]
As the nitriding treatment, there are a method of annealing in an atmosphere containing a nitriding gas such as ammonia, a method of adding a nitriding powder such as MnN into an annealing separator and performing it during finish annealing. Nitrogen treatment so that the amount of nitrogen after nitriding is [N] / [Al] ≧ 0.67 is a point for expressing the control effect of the primary recrystallization texture, which is a feature of the present invention. is there.
[0032]
The decarburized and annealed plate is made by laminating an annealing separator mainly composed of alumina by a water slurry or electrostatic coating method, and then laminating it.
The laminated plate is subjected to finish annealing to perform secondary recrystallization and nitride purification. Performing secondary recrystallization in a predetermined temperature range by keeping the temperature constant as disclosed in JP-A-2-258929 is effective in increasing the magnetic flux density.
[0033]
After the secondary recrystallization is completed, annealing is performed at a temperature of 1100 ° C. or higher in a hydrogen atmosphere in order to purify the nitride and smooth the surface.
Since the surface has already been smoothed after the finish annealing, a tension coating process may be performed, and a magnetic domain subdivision process such as laser irradiation may be performed as necessary.
[0034]
【Example】
<Example 1>
In mass%, Si: 3.3%, C: 0.06%, acid-soluble Al: 0.020%, 0.026%, 0.031%, N: 0.008%, Mn: 0.1% , S: A slab containing 0.007% was heated at a temperature of 1150 ° C. and then hot-rolled to a thickness of 2.0 mm. Then, after annealing at 1120 ° C., after cold rolling to a thickness of 0.22 mm, after decarburizing and annealing at a temperature of 830 to 860 ° C. at a heating rate of 15 to 100 ° C./sec, an ammonia-containing atmosphere Was annealed at 0.02 to 0.03% of nitrogen in the steel sheet. Next, alumina (Al 2 O Three ) Was applied, followed by finish annealing.
[0035]
Table 1 shows the characteristic values of the obtained product. With respect to the primary recrystallization texture, the value of I [111] / I [411] is 2.5 or less, the heating rate in the decarburization annealing process: HR is the amount of acid-soluble Al: HR ≧ [Al]% When −6250 [Al] +200 is satisfied, it can be seen that B8 has a high magnetic flux density of 1.94 T or more. In other words, when [Al] is increased, B8 for the same decarburization annealing heating rate is improved, and it can be seen that the region of the decarburization annealing heating rate at which high B8 is obtained extends to the region of a small heating rate.
[0036]
[Table 1]
Figure 0004427226
[0037]
<Example 2>
In mass%, Si: 3.3%, C: 0.05%, acid-soluble Al: 0.026%, 0.031%, N: 0.007%, Cr: 0.1%, Sn: 0.00. A slab containing 05%, Mn: 0.1%, S: 0.008% was heated at a temperature of 1150 ° C, and then hot rolled to a thickness of 2.0 mm. Annealed and then cold rolled to a thickness of 0.22 mm. The cold-rolled sheet is heated to 800 ° C. at a heating rate of 10 to 600 ° C./second, and then decarburized and annealed at 800 to 890 ° C. for 120 seconds at an atmospheric gas oxidation degree of 0.12, thereby showing a primary recrystallization texture. It adjusted to the area | region where the high B8 shown by 1 was obtained. Thereafter, annealing was performed at 750 ° C. for 30 seconds in an ammonia-containing atmosphere, and the nitrogen content in the steel sheet was adjusted to 0.025 to 0.035% by changing the ammonia content. Thereafter, after applying an annealing separator mainly composed of alumina, finish annealing was performed at 1200 ° C. for 20 hours.
[0038]
These samples were subjected to a tension coating treatment and then subjected to laser irradiation to subdivide the magnetic domain. The properties of the obtained product are shown in Table 2. From Table 2, the value of I [111] / I [411] for the primary recrystallization texture is 2.5 or less, the heating rate in the decarburization annealing process: HR is the amount of acid-soluble Al: [Al]% On the other hand, when HR ≧ −6250 [Al] +200 is satisfied, it can be seen that a high magnetic flux density of B8 of 1.94 T or more is obtained. In particular, it can be seen that HR is 75 ° C./second to 140 ° C./second, particularly B8 is high, and the region of high B8 increases toward the low speed side when [Al] is increased.
[0039]
[Table 2]
Figure 0004427226
[0040]
<Example 3>
In mass%, Si: 3.2%, Mn: 0.1%, C: 0.05%, S: 0.008%, acid-soluble Al: 0.024%, N: 0.008%, Sn: A 2.3 mm thick silicon steel hot rolled sheet containing 0.1% was cold rolled to a final sheet thickness of 0.25 mm. The cold-rolled sheet was heated to 840 ° C. at a heating rate (1) 20 ° C./second (2) 100 ° C./second in a mixed gas of nitrogen and hydrogen with an oxidation degree of 0.10, and then annealed at 840 ° C. for 150 seconds. Recrystallized. Thereafter, annealing was performed in an ammonia-containing atmosphere at 750 ° C. for 30 seconds, and the nitrogen content in the steel sheet was adjusted to 0.02 to 0.03% by changing the ammonia content.
[0041]
After applying an annealing separator mainly composed of alumina to these steel plates, finish annealing was performed. Final annealing is N up to 1200 ° C 2 : 25% + H 2 : Performed at a heating rate of 15 ° C./hr in 75% atmospheric gas and H at 1200 ° C. 2 : Switched to 100% and annealed for 20 hours.
These samples were subjected to tension coating treatment. Table 3 shows the magnetic properties of the obtained products. Compared with Examples 1 and 2, since the annealing before cold rolling was not performed, the overall magnetic flux density was low, but the magnetic flux density improving effect of the present invention could be confirmed.
[0042]
[Table 3]
Figure 0004427226
[0043]
<Example 4>
In mass%, Si: 3.3%, C: 0.06%, acid-soluble Al: 0.020, 0.026, 0.031%, N: 0.008%, Mn: 0.1%, S : A slab containing 0.007% was heated at a temperature of 1150 ° C. and then hot-rolled to a thickness of 2.0 mm. The hot-rolled sheet was annealed at the front stage 1120 ° C. and the rear stage 900 ° C., and then cold-rolled to a thickness of 0.15 mm, and then the heating rate of decarburization annealing was set to 15 to 100 ° C./second, After decarburization annealing, the steel was annealed in an ammonia-containing atmosphere so that the nitrogen in the steel sheet was 0.02 to 0.03%. Next, alumina (Al 2 O Three ) Was applied, followed by finish annealing.
Table 4 shows the product characteristic values. Heating speed in the decarburization annealing process: When HR is HR ≧ -6250 [Al] +200 with respect to the amount of acid-soluble Al: [Al]%, B8 has a high magnetic flux density of 1.94T or more. You can see that
[0044]
[Table 4]
Figure 0004427226
[0045]
<Example 5>
By mass%, Si: 3.3%, C: 0.05%, acid-soluble Al: 0.025%, 0.035%, N: 0.007%, Cr: 0.1%, Sn: 0.00. A slab containing 05%, Mn: 0.1%, S: 0.008% was heated at a temperature of 1150 ° C, and then hot rolled to a thickness of 2.3 mm. The hot-rolled sheet was annealed at 1120 ° C. And then cold rolled to a thickness of 0.18 mm. The cold-rolled sheet was heated to 800 ° C. at a heating rate of 5 to 600 ° C./second, and then decarburized and annealed at 800 to 890 ° C. for 120 seconds with an atmospheric oxidation degree of 0.12, and the primary recrystallization texture was shown in FIG. It adjusted to the area | region where high B8 shown by (4) was obtained. Thereafter, annealing was performed at 750 ° C. for 30 seconds in an ammonia-containing atmosphere, and the nitrogen content in the steel sheet was adjusted to 0.025 to 0.035% by changing the ammonia content. Thereafter, after applying an annealing separator mainly composed of alumina, finish annealing was performed at 1200 ° C. for 20 hours.
These samples were subjected to a tension coating treatment and then subjected to laser irradiation to subdivide the magnetic domain. The properties of the obtained product are shown in Table 5. From Table 2, when the heating rate in the decarburization annealing process: HR is HR ≧ -6250 [Al] +200 with respect to the amount of acid-soluble Al: [Al]%, B8 is 1.94 T or higher. It can be seen that the magnetic flux density is obtained. In particular, when [Al] is increased, the high B8 effect by the cold rolling method is more prominent, and even if the decarburization annealing heating rate is low, the high B8 effect is obtained and a higher B8 is obtained. Can do.
[0046]
[Table 5]
Figure 0004427226
[0047]
<Example 6>
In mass%, Si: 3.5%, Mn: 0.1%, C: 0.05%, S: 0.008%, acid-soluble Al: 0.030%, N: 0.008%, Sn: A 2.3 mm thick silicon steel hot rolled sheet containing 0.1% was cold rolled to a final sheet thickness of 0.18 mm. The cold-rolled sheet was heated to 840 ° C. at a heating rate (1) 10 ° C./second (2) 40 ° C./second in a mixed gas of nitrogen and hydrogen with an oxidation degree of 0.10, and then annealed at 840 ° C. for 150 seconds. Recrystallized. Thereafter, annealing was performed in an ammonia-containing atmosphere at 750 ° C. for 30 seconds, and the nitrogen content in the steel sheet was adjusted to 0.02 to 0.03% by changing the ammonia content.
After applying an annealing separator mainly composed of alumina to these steel plates, finish annealing was performed. Final annealing is N up to 1200 ° C 2 : 25% + H 2 : Performed at a heating rate of 15 ° C./hr in 75% atmospheric gas, and H at 1200 ° C. 2 : Switched to 100% and annealed for 20 hours.
These samples were tension coated. Table 6 shows the magnetic properties of the obtained products. Compared with Examples 1 and 2, the magnetic flux density is low because annealing before cold rolling is not performed, but the effect of improving the magnetic flux density of the present invention can be confirmed.
[0048]
[Table 6]
Figure 0004427226
[0049]
【The invention's effect】
According to the present invention, based on a method for producing a grain-oriented electrical steel sheet by low-temperature slab heating without problems caused by conventional high-temperature slab heating, the primary recrystallization structure, decarburization annealing conditions for acid-soluble Al, and the nitriding amount are specified. Thus, a mirror-oriented electrical steel sheet having excellent magnetic properties with high magnetic flux density can be produced industrially and stably.
In particular, in the manufacturing method based on the assumption of a single cold rolling method, by specifying decarburization annealing conditions and nitriding amount for acid-soluble Al, industrial production of thin mirror-oriented electrical steel sheets with excellent magnetic properties with high magnetic flux density Can be manufactured stably. As a result, it is possible to obtain a grain-oriented electrical steel sheet that has less load on hot rolling, omits intermediate annealing, and is cheaper and more excellent in iron loss than in the past.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of acid-soluble Al and decarburization annealing heating rate on the magnetic flux density (B8) of a product.
FIG. 2 is a diagram showing the influence of nitriding amount and primary recrystallization texture: I {111} / I {411} on magnetic flux density.
FIG. 3 is a diagram showing the influence of the rapid heating completion temperature of decarburization annealing on the magnetic flux density.
FIG. 4 is a diagram showing the influence of the rapid heating start temperature of decarburization annealing on the magnetic flux density.
FIG. 5 is a diagram showing the influence of the cold rolling reduction ratio on the magnetic flux density.

Claims (4)

質量%で、Si:0.8〜4.8%、C:0.085%以下、酸可溶性Al:0.01〜0.065%、N:0.012%以下を含み、あるいは更に必要に応じて、Sn:0.02〜0.15%、Cr:0.03〜0.2%の1種または2種を含有し、残部Fe及び不可避的不純物からなる鋼を1280℃以下の温度で加熱した後、熱間圧延により熱延板となし、次いで一回もしくは中間焼鈍をはさむ二回以上の冷間圧延により最終板厚とし、次いで、Fe系酸化物を形成させない雰囲気ガス中で脱炭焼鈍し、その後増窒素処理を行った後、アルミナを主成分とする焼鈍分離剤を塗布することにより、仕上げ焼鈍後の鋼板表面を鏡面状態にする鏡面方向性電磁鋼板の製造方法において、酸可溶性Alの量:[Al]%に対応して、脱炭焼鈍工程の昇温過程における鋼板温度が600℃以下の領域から750〜900℃の範囲内の所定の温度までの加熱速度:HR℃/秒をHR≧−6250[Al]+200とすることにより、脱炭焼鈍後の集合組織におけるI[111]/I[411]の比率を1.7〜2.5に調整し、その後、鋼板の酸可溶Alの量:[Al]に応じて窒素量:[N]が[N]/[Al]≧0.67を満足する量となるように窒化処理を施すことを特徴とする方向性電磁鋼板の製造方法。In mass%, Si: 0.8 to 4.8%, C: 0.085% or less, acid-soluble Al: 0.01 to 0.065%, N: 0.012% or less, or further necessary Accordingly, the steel containing one or two of Sn: 0.02 to 0.15%, Cr: 0.03 to 0.2%, and the balance Fe and unavoidable impurities at a temperature of 1280 ° C. or less. After heating, hot-rolled sheet is formed by hot rolling, then the final sheet thickness is obtained by one or more cold rolling sandwiching intermediate annealing, and then decarburized in an atmosphere gas that does not form Fe-based oxides. In the method of manufacturing a mirror-oriented electrical steel sheet, the steel sheet surface after finish annealing is made into a mirror surface state by applying an annealing separator mainly composed of alumina after annealing and subsequent nitrogen increase treatment. Temperature rise in the decarburization annealing process corresponding to the amount of Al: [Al]% The heating rate from the region where the steel sheet temperature is 600 ° C. or less to a predetermined temperature in the range of 750 to 900 ° C .: after decarburization annealing by setting HR ° C./second to HR ≧ −6250 [Al] +200 The ratio of I [111] / I [411] in the texture of the steel was adjusted to 1.7 to 2.5, and then the amount of acid-soluble Al in the steel sheet: the amount of nitrogen: [N] according to [Al] There [N] / [Al] method for producing oriented electrical steel sheet characterized by applying the nitriding treatment so that the amount that satisfies the ≧ 0.67. 前記冷間圧延において圧下率を90%超とすることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the rolling reduction is set to more than 90% in the cold rolling. 前記熱延板に900〜1200℃の温度域で30秒〜30分間の焼鈍を施すことを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the hot-rolled sheet is annealed in a temperature range of 900 to 1200 ° C for 30 seconds to 30 minutes. 前記脱炭焼鈍工程において、770℃〜900℃の温度域で雰囲気ガスの酸化度(PH2 O/PH2 ):0.01以上0.15以下の範囲内で焼鈍することを特徴とする請求項1〜3のいずれかの項に記載の方向性電磁鋼板の製造方法。In the decarburization annealing step, annealing is performed within a temperature range of 770 ° C to 900 ° C within a range of an oxidation degree (PH 2 O / PH 2 ) of 0.01 to 0.15. The manufacturing method of the grain-oriented electrical steel sheet according to any one of Items 1 to 3.
JP2002053839A 2001-04-18 2002-02-28 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4427226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053839A JP4427226B2 (en) 2001-04-18 2002-02-28 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001119794 2001-04-18
JP2001-119794 2001-04-18
JP2002053839A JP4427226B2 (en) 2001-04-18 2002-02-28 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2003003213A JP2003003213A (en) 2003-01-08
JP4427226B2 true JP4427226B2 (en) 2010-03-03

Family

ID=26613777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053839A Expired - Fee Related JP4427226B2 (en) 2001-04-18 2002-02-28 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4427226B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320690B2 (en) * 2006-05-24 2013-10-23 新日鐵住金株式会社 Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP5273944B2 (en) * 2006-05-24 2013-08-28 新日鐵住金株式会社 Manufacturing method of mirror-oriented electrical steel sheet
JP4714637B2 (en) * 2006-05-24 2011-06-29 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP5332134B2 (en) * 2006-05-24 2013-11-06 新日鐵住金株式会社 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
WO2013089297A1 (en) * 2011-12-16 2013-06-20 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets having excellent magnetic properties
EP3822386A4 (en) 2018-07-13 2022-01-19 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet and manufacturing method for same
WO2020149333A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
EP3913078A4 (en) 2019-01-16 2022-10-12 Nippon Steel Corporation Method for producing unidirectional electromagnetic steel sheet

Also Published As

Publication number Publication date
JP2003003213A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP5273944B2 (en) Manufacturing method of mirror-oriented electrical steel sheet
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
JP2013189712A (en) Method for producing grain-oriented flat rolled magnetic steel sheet and strip with high magnetic flux density
JP3481567B2 (en) Method for producing grain-oriented electrical steel sheet having B8 of 1.88T or more
JP4427226B2 (en) Method for producing grain-oriented electrical steel sheet
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP4456317B2 (en) Method for producing grain-oriented electrical steel sheet
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP3943837B2 (en) Method for producing grain-oriented electrical steel sheet
JP5068579B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR102579761B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4119634B2 (en) Method for producing mirror-oriented electrical steel sheet with good iron loss
JP4119614B2 (en) Method for producing grain-oriented electrical steel sheet
JP4422385B2 (en) Method for producing grain-oriented electrical steel sheet
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP3485475B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP3485532B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
US20230212720A1 (en) Method for the production of high permeability grain oriented electrical steel containing chromium
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JP2653637B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
JP2002069532A (en) Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4427226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees