JP4119634B2 - Method for producing mirror-oriented electrical steel sheet with good iron loss - Google Patents

Method for producing mirror-oriented electrical steel sheet with good iron loss Download PDF

Info

Publication number
JP4119634B2
JP4119634B2 JP2001310357A JP2001310357A JP4119634B2 JP 4119634 B2 JP4119634 B2 JP 4119634B2 JP 2001310357 A JP2001310357 A JP 2001310357A JP 2001310357 A JP2001310357 A JP 2001310357A JP 4119634 B2 JP4119634 B2 JP 4119634B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
iron loss
decarburization
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001310357A
Other languages
Japanese (ja)
Other versions
JP2003041320A (en
Inventor
健一 村上
浩康 藤井
宣憲 藤井
義行 牛神
修一 中村
紀宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001310357A priority Critical patent/JP4119634B2/en
Publication of JP2003041320A publication Critical patent/JP2003041320A/en
Application granted granted Critical
Publication of JP4119634B2 publication Critical patent/JP4119634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として変圧器の鉄心として利用される方向性電磁鋼板の表面を効果的に仕上げることにより、鉄損特性の向上を図る鏡面方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】
方向性電磁鋼板はSiを2〜4%程度含有し、製品における結晶粒の方位を{110}<001>方位に高度に集積させた鋼板である。その磁気特性としては、磁束密度(800A/mの磁場を付与したときの磁束密度B8値で代表される)が高く、鉄損(磁束密度1.7T、周波数50Hzのエネルギー損失W17/50で代表される)が低いことが要求される。特に最近は、省エネルギーの見地から電力損失低減の要求が高まっている。この要求に応え、方向性電磁鋼板の鉄損を低減させる手段として、磁区を細分化する技術が開発された。
【0003】
積み鉄心の場合に、仕上げ焼鈍後の鋼板にレーザービームを照射して局部的な微小歪を与えることにより磁区を細分化して鉄損を低減させる方法が、例えば、特開昭58−26405号公報に開示されている。また、巻き鉄心の場合には、鉄心に加工した後、歪取り焼鈍(Stress Release Annealing:応力除去焼鈍)を施しても磁区細分化効果が消失しない方法が、例えば、特開昭62−8617号公報に開示されている。これらの技術的手段を用いて磁区を細分化することにより、鉄損は大きく低減されるようになってきている。
【0004】
しかしながら、これらの磁区の動きを観察すると、動かない磁区も存在することが判明し、方向性電磁鋼板の鉄損値をさらに低減するためには、磁区を細分化すると同時に、鋼板表面のグラス皮膜により生じ、磁区の動きを阻害するピン止め効果をなくすことが重要であるとの認識に至った。
前記のように磁区移動の容易化を図るためには、鋼板表面にグラス皮膜を形成させないことが有効である。その手段として、焼鈍分離剤として粗大高純アルミナを用いることによりグラス皮膜を形成させない方法が、例えば、US Patent第3785882号明細書に開示されている。しかしながら、この方法では表面直下の介在物をなくすことができず、鉄損の向上代は、W15/60 で高々2%に過ぎない。
【0005】
この表面直下の介在物を制御し、かつ表面の鏡面化を達成する方法として、仕上げ焼鈍後に化学研磨或いは電解研磨を行う方法が、例えば、特開昭64−83620号公報に開示されている。しかしながら、化学研磨・電解研磨等の方法は、実験室レベルの試料の材料を加工することは可能であるが、上記方法を工業的規模で行うためには、薬液の濃度、温度の管理や、公害対策設備等の設置の問題を解決しなければならず、さらに、生産性の観点から、上記方法を実用化することは大変困難である。
【0006】
この問題点を解消する方法として、脱炭焼鈍を、Fe系酸化物の形成しない酸化度の雰囲気ガス中で行い、板間の焼鈍分離剤としてアルミナを用いる方法が、特開平7−118749公報に開示されている。
しかしながら、本プロセスを工業的に実施する際には、安定的に脱炭を進行させつつ良好な磁気特性を得ることは困難であることが判明してきた。
【0007】
【発明が解決しようとする課題】
本発明は、脱炭焼鈍における脱炭を良好に実施しつつ、磁気特性の良好な表面平滑度の高い鏡面方向性電磁鋼板を製造する方法を提示することを課題とする。
【0008】
【課題を解決するための手段】
本発明は、質量%で、Si:2.0〜4.0%、酸可溶性Al:0.01〜0.05%、N:0.01%以下、Mn:0.3%以下、S:0.05%以下、残部がFe及び不可避的不純物からなる珪素鋼板を、一回もしくは中間焼鈍を挟む二回以上の冷間圧延により最終板厚の鋼板とし、次いで脱炭焼鈍を行った後、該鋼板を積層する際、板間の焼鈍分離剤中の主体成分としてアルミナを用い、該積層された鋼板を仕上げ焼鈍する方向性電磁鋼板の製造方法において、前記脱炭焼鈍工程を前段と後段に分離し、前段及び後段の酸化度(PH2O/PH2)P1及びP2を、それぞれ、0.05≦P1≦0.2、及び、P2≦P1−0.03に調整して行い、さらに、脱炭焼鈍の温度を770〜950℃の範囲内とすることを要旨とする。
【0009】
また、本発明は、前記脱炭焼鈍を行った後、仕上げ焼鈍を行うまでの間に窒化処理を行うことを要旨とする。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明者らは、まず、脱炭焼鈍温度と脱炭性及び鉄損の関係を調査するため、以下の試験を行った。
実験室の真空溶解炉にて、質量%で、Si:3.3%、Mn:0.11%、C:0.05%、S:0.07%、酸可溶性Al:0.03%、N:0.01%を含む鋼片を作製した後、1150℃の加熱を施し、その後、熱延を行い、2.0mmの板厚とした。この熱延板を1100℃で2分間焼鈍し、その後、酸洗を施し、さらに、最終板厚0.23mmの板に冷延した。
【0011】
この冷延板を、水素75%、窒素25%を含有する雰囲気において、露点を変更することにより酸化度(PH2O/PH2)を変え、温度850℃、90秒にて脱炭焼鈍を行った。その後、アンモニアガス中にて鋼中窒素量を0.02質量%まで高め、インヒビターを強化した。この脱炭焼鈍板に、アルミナを主成分とする焼鈍分離剤を水スラリー状で塗布した後、仕上げ焼鈍を施した。仕上げ焼鈍は、1200℃までは窒素100%雰囲気のガス中で、15℃/hrの昇温速度で行い、1200℃で水素100%に切り替え、20時間行った。
【0012】
以上の工程により作製された鏡面材につき、水洗、試料剪断の後、さらに歪取り焼鈍を行い、さらに、張力コーティングを施した後、レーザー照射を行い、SST法にて磁気測定を行った。脱炭焼鈍後の炭素量及び鉄損W17/50 の値を表1に示す。
【0013】
【表1】

Figure 0004119634
【0014】
製品板において炭素量が25ppmを超えると、磁気時効、すなわち経時変化に伴う磁性劣化が起きるので、脱炭焼鈍板の炭素量は25ppm以下に制御する必要がある。表1より、脱炭焼鈍板の炭素量が25ppm以下を満たす酸化度は、0.05以上であることがわかる。酸化度が、この酸化度の範囲外、すなわち0.05未満の場合には、鋼板表面で炭素と反応する水蒸気の量が少なくなるので、脱炭不良となる。
【0015】
一方、鉄損W17/50 に関しては、酸化度が低い方が良好であり、0.15以下で0.70W/kg以下、さらに、0.05以下で0.65W/kg以下となり非常に良好であった。酸化度が低い方が鉄損良好である理由に関しては、以下のように考えられる。
すなわち、今回の鏡面方向性電磁鋼板製造工程においては、脱炭焼鈍工程で形成されるSiO2酸化層の量をある程度減じておかなければ、アルミナを塗布し仕上げ焼鈍を実施した後に、鋼板表面へのアルミナ焼き付きが激しくなり、鏡面度が損なわれるからである、と推定される。
【0016】
以上より、炭素量と鉄損の観点から、総合的に、脱炭焼鈍時における最適な酸化度を考えると、表1より0.06〜0.15(試料3〜6、参照)が適正であるということができる。しかしながら、これらの試料では、鏡面材の最大の特徴である低鉄損に関しては、十分優れているとはいえず、その意味で、脱炭性の確保と非常に低い鉄損の両立は困難である。
【0017】
そこで、本発明者らは、脱炭焼鈍を前段と後段に分け、前段においては脱炭の促進、後段においては低鉄損化の促進、という機能分離をすることにより、従来実現が困難であった前記課題を解決すべく検討を試みた。以下にその詳細を説明する。
前記試験で用いた成分及び工程の冷延板を用い、以下のような試験を行った。すなわち、まず、脱炭焼鈍炉の前段において、種々の酸化度にて850℃,75秒の焼鈍を行った。続いて脱炭焼鈍炉の後段において、酸化度を0.002として、850℃、15秒間の焼鈍を実施した。
【0018】
その後、アンモニアガス中にて鋼中窒素量を0.02質量%まで高めインヒビターを強化した。この脱炭焼鈍板に、アルミナを主成分とする焼鈍分離剤を水スラリー状で塗布した後、仕上げ焼鈍を施した。仕上げ焼鈍は、1200℃までは窒素100%雰囲気のガス中で、15℃/hrの昇温速度で行い、1200℃で水素100%に切り替え、20時間焼鈍を行った。
【0019】
以上の工程により作製された鏡面材につき、水洗、試料剪断の後、さらに、歪取り焼鈍を行い、SST法にて磁気測定を行った。後段の脱炭焼鈍後の炭素量及び歪取り焼鈍後の鉄損W17/50 の値を表2に示す。
【0020】
【表2】
Figure 0004119634
【0021】
脱炭板炭素量評価に関しては、表1と同一の結果であった。後段の焼鈍において酸化度を低くした結果、試料1〜7において、いずれも鉄損W17/50 は0.65W/kg以下となり良好であった。この理由は、低い酸化度での後段の焼鈍において、前段の焼鈍で形成されたSiO2酸化膜が多少還元されて、その量が低減したこと、及び、SiO2酸化膜の質も変化したことが、仕上げ焼鈍におけるアルミナ焼き付き防止に、より良い方向に作用したものと推定される。これらの結果、総合評価としては、0.05≦P1≦0.2の範囲を満たす試料3〜7が良好であった。
【0022】
以上より、本発明者らは、脱炭焼鈍を前段と後段の二段に分け、焼鈍時の酸化度を前段と後段とで相違せしめ、脱炭焼鈍の機能を分離することにより、従来困難であった脱炭性の確保と非常に低い鉄損の確保を両立できることを新規に知見し、本発明を完成させた。
続いて、本発明における実施の形態について説明する。基本的な製造法としては、田口、坂倉等によるAlNとMnSを主インヒビターとして用いる製造法(例えば、特公昭40−15644号公報、参照)、又は、小松等による、(Al、Si)Nを主インヒビターとして用いる製造法(例えば、特公昭62−45285号公報、参照)を適用すればよい。
【0023】
Siは電気抵抗を高め、鉄損を下げる上で重要な元素である。含有量が4.0質量%を超えると冷間圧延時に材料が割れやすくなり、圧延不可能となる。一方、Si含有量を下げると、仕上げ焼鈍時にα→γ変態が生じ、結晶の方向性が損なわれるので、Si含有量量は、実質的に結晶の方向性に影響を及ぼさない2.0質量%を下限とする。
【0024】
酸可溶性Alは、Nと結合してAlN又は(Al、Si)Nとしてインヒビターとして機能するために必須の元素である。それ故、酸可溶性Alの含有量は、磁束密度が高くなる0.01〜0.05質量%の範囲とする。
Nは、製鋼時に0.01質量%以上存在しているとブリスターと呼ばれる鋼板中の空孔を生じるので、0.01質量%を上限とする。
【0025】
Mn量及びS量に関しては、二次再結晶を良好なものとするための適正なインヒビター量を確保する観点から、Mnは0.3質量%以下、Sは0.05質量%以下とすることが好ましい。他のインヒビター構成元素として、B、Bi、Se、Pb、Mo、Sb、Sn、Ti、V等を適宜の量添加しても構わない。
上記成分組成の溶鋼は、鋳造後、通常の工程により熱延板とされるか、もしくは、連続鋳造により薄帯とされる。前記熱延板又は連続鋳造薄帯は、直ちに、もしくは、短時間焼鈍を経て冷間圧延に供される。短時間焼鈍は、750〜1200℃の温度域で30秒〜30分の間行われ、製品の磁気特性を高めるために有効である。望む製品の特性レベルとコストを勘案して採否を決めるとよい。
【0026】
冷間圧延は、基本的には、特公昭40−15644号公報に開示されているように、最終冷延圧下率80%以上の冷間圧延とすればよい。
本発明の主要点である脱炭焼鈍時の酸化度に関しては、前段(酸化度P1)と後段(酸化度P2)に分け、それぞれ、0.05≦P1≦0.2、P2≦P1−0.03の範囲とすることが必要である。この理由は、P1が0.05未満であると脱炭不良を引き起こし、0.2より大きいと鉄損が劣化する。また、P2が前記範囲外である場合には、実施例1に示すように、非常に低い鉄損が達成されない。これらの範囲内で、さらに好ましい範囲は、0.10≦P1≦0.15、P2≦P1−0.05の範囲である。
【0027】
脱炭焼鈍における前段の焼鈍については、脱炭を進行させるために、30秒以上保定することが好ましい。また、後段の焼鈍に関しては、非常に低い鉄損を得るために、3秒以上保定することが好ましい。脱炭焼鈍における温度に関しては、770〜950℃の範囲内とする必要がある。
【0028】
前記脱炭焼鈍板に(Al、Si)Nを主インヒビターとして用いる製造法(例えば、特公昭62−45285号公報、参照)を適用する場合においては、窒化処理を施す。この窒化処理に係る方法は、特に限定されるものではないが、アンモニア等の窒化能のある雰囲気ガス中にストリップを通過させる方法等を採用することができる。窒化量としては0.005%以上、望ましくは、全窒素量として鋼中のAl当量以上を窒化すればよい。
【0029】
これらの脱炭焼鈍板を積層する際に、焼鈍分離剤としてアルミナを、水スラリー、もしくは静電塗布法等によりドライコートする。この積層した板を仕上げ焼鈍し、二次再結晶と窒化物の純化を行う。
二次再結晶を、特開平2−258929号公報に開示されるように、一定の温度で保持する等の手段により所定の温度域で行うことは、磁束密度を上げるうえで有効である。二次再結晶完了後、窒化物の純化と表面の平滑化を行うために、水素100%雰囲気で1100℃以上の温度で焼鈍する。
【0030】
仕上げ焼鈍後、表面は既に平滑化されているので、張力コーティング処理、又は、必要な前処理の後に張力コーティング処理を行い、必要に応じて、レーザー照射等、あるいは、耐熱型の磁区制御を施せばよい。
【0031】
【実施例】
以下、実施例について説明する。
〔実施例1〕
質量%で、Si:3.3%、Mn:0.1%、C:0.05%、S:0.007%、酸可溶性Al:0.03%、N:0.01%、Sn:0.05%を含む板厚2.0mmの熱延板を1100℃で2分間焼鈍した後、板厚0.23mmに冷延した。この冷延板について、まず前段の脱炭焼鈍として、酸化度0.15の水素窒素混合雰囲気にて、840℃、75秒の焼鈍を行った。続いて後段にて焼鈍炉の酸化度を種々変化させ、840℃、15秒の焼鈍を実施した。その後、アンモニアガス中にて鋼中窒素量を0.03%まで高め、インヒビターを強化した。
【0032】
この脱炭焼鈍板にアルミナを主成分とする焼鈍分離剤を水スラリー状で塗布した後、仕上げ焼鈍を施した。仕上げ焼鈍は、1200℃までは窒素100%雰囲気のガス中で、15℃/hrの昇温速度で行い、1200℃で水素100%に切り替え、20時間焼鈍を行った。
以上の工程により作製された鏡面材につき、水洗、試料剪断の後さらに歪取り焼鈍を行い、SST法にて磁気測定を行った。後段の脱炭焼鈍後の炭素量及び歪取り焼鈍後の鉄損W17/50 の値を表3に示す。脱炭板炭素量評価に関してはいずれも良好であった。鉄損に関しては、P2≦P1−0.03を満足する試料1〜5において、いずれも、0.65W/kg以下となり非常に良好であった。
【0033】
【表3】
Figure 0004119634
【0034】
〔実施例2〕
質量%で、Si:3.3%、Mn:0.1%、C:0.05%、S:0.007%、酸可溶性Al:0.03%、N:0.01%、Sn:0.05%を含む板厚2.0mmの熱延板を1100℃で2分間焼鈍した後、板厚0.23mmに冷延した。この冷延板について、まず前段の脱炭焼鈍として、酸化度0.15の水素窒素混合雰囲気にて840℃ 75秒の焼鈍を行った。続いて後段にて酸化度0.002の雰囲気で、焼鈍温度を種々変化させて15秒間焼鈍を実施した。その後、アンモニアガス中にて鋼中窒素量を0.03%まで高めインヒビターを強化した。
【0035】
この脱炭焼鈍板にアルミナを主成分とする焼鈍分離剤を水スラリー状で塗布した後、仕上げ焼鈍を施した。仕上げ焼鈍は、1200℃までは窒素100%雰囲気のガス中で、15℃/hrの昇温速度で行い、1200℃で水素100%に切り替え、20時間焼鈍を行った。
以上の工程により作製された鏡面材につき、水洗、試料剪断の後、さらに、歪取り焼鈍を行い、SST法にて磁気測定を行った。脱炭焼鈍後の炭素量及び歪取り焼鈍後の鉄損W17/50 の値を表4に示す。脱炭板炭素量評価に関しては、いずれも良好であった。
【0036】
鉄損に関しては、後段の脱炭焼鈍温度770〜950℃を満足する試料2〜8において、いずれも、0.65W/kg以下となり非常に良好であった。試料1で鉄損が0.65W/kgを超えた理由は、焼鈍温度が低過ぎたため、前段の焼鈍にて形成されたSiO2酸化膜を改質することができなかったからであると推定される。
【0037】
また、試料9で鉄損が異常劣化した理由は、焼鈍温度が高過ぎて一次再結晶粒径が粗大化し過ぎたため、二次再結晶不良を引き起こしたからであると推察される。
【0038】
【表4】
Figure 0004119634
【0039】
〔実施例3〕
質量%で、Si:3.3%、Mn:0.07%、C:0.07%、S:0.025%、酸可溶性Al:0.03%、N:0.01%、Sn:0.1%を含む板厚2.0mmの熱延板を1120℃で2分間焼鈍した後、板厚0.23mmに冷延した。この冷延板について、まず前段の脱炭焼鈍として、種々の酸化度にて850℃ 70秒の焼鈍を行った。続いて後段にて酸化度0.002の雰囲気で850℃、20秒の焼鈍を実施した。
【0040】
この脱炭焼鈍板に、アルミナを主成分とする焼鈍分離剤を水スラリー状で塗布した後、仕上げ焼鈍を施した。仕上げ焼鈍は、1200℃までは窒素100%雰囲気のガス中で15℃/hrの昇温速度で行い、1200℃で水素100%に切り替え20時間焼鈍を行った。
以上の工程により作製された鏡面材につき、水洗、試料剪断の後さらに歪取り焼鈍を行い、SST法にて磁気測定を行った。脱炭焼鈍後の炭素量及び歪取り焼鈍後の鉄損W17/50 の値を表5に示す。脱炭板炭素量評価に関しては試料3〜8が良好であった。鉄損に関しては、試料1〜7において、いずれも、0.65W/kg以下となり良好であった。総合評価としては、0.05≦P1≦0.2の範囲を満たす試料3〜7が良好であった。
【0041】
【表5】
Figure 0004119634
【0042】
【発明の効果】
以上のように本発明は、脱炭焼鈍における脱炭性を良好に実施しつつ磁気特性の良好な表面平滑度の高い鏡面方向性電磁鋼板を製造する手段を提示するものであり、その工業的な意義は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a specular grain-oriented electrical steel sheet that aims to improve iron loss characteristics by effectively finishing the surface of a grain-oriented electrical steel sheet mainly used as an iron core of a transformer.
[0002]
[Prior art]
The grain-oriented electrical steel sheet is a steel sheet containing about 2 to 4% of Si and highly accumulating the crystal grain orientation in the product in the {110} <001> orientation. As the magnetic properties, is high (as represented by a magnetic flux density B8 values when applying a magnetic field of 800A / m) magnetic flux density, iron loss (magnetic flux density 1.7 T, the energy loss W 17/50 of frequency 50Hz Represented) is required to be low. Recently, in particular, there has been an increasing demand for reducing power loss from the viewpoint of energy saving. In response to this demand, a technique for subdividing magnetic domains has been developed as a means for reducing the iron loss of grain-oriented electrical steel sheets.
[0003]
In the case of a stacked iron core, a method of subdividing magnetic domains to reduce iron loss by irradiating a laser beam to a steel plate after finish annealing to give a local micro strain is disclosed in, for example, Japanese Patent Application Laid-Open No. 58-26405. Is disclosed. Further, in the case of a wound iron core, a method in which the domain refining effect does not disappear even if it is processed into an iron core and then subjected to stress release annealing (Stress Release Annealing) is disclosed in, for example, Japanese Patent Laid-Open No. 62-8617. It is disclosed in the publication. By subdividing the magnetic domain using these technical means, the iron loss has been greatly reduced.
[0004]
However, by observing the movement of these magnetic domains, it has been found that there are also magnetic domains that do not move. In order to further reduce the iron loss value of the grain-oriented electrical steel sheet, the magnetic domains are subdivided and at the same time the glass film on the steel sheet surface. This has led to the recognition that it is important to eliminate the pinning effect that hinders the movement of magnetic domains.
In order to facilitate the magnetic domain movement as described above, it is effective not to form a glass film on the steel plate surface. As a means for that, a method in which a glass film is not formed by using coarse high purity alumina as an annealing separator is disclosed in, for example, US Pat. No. 3,785,882. However, this method cannot eliminate inclusions directly under the surface, and the margin for improving the iron loss is only 2% at most with W 15/60 .
[0005]
As a method for controlling the inclusions directly under the surface and achieving a mirror finish on the surface, a method of performing chemical polishing or electrolytic polishing after finish annealing is disclosed in, for example, Japanese Patent Application Laid-Open No. 64-83620. However, methods such as chemical polishing and electropolishing can process the material of a laboratory-level sample, but in order to perform the above method on an industrial scale, the chemical concentration and temperature management, Problems with installation of pollution control facilities and the like must be solved, and it is very difficult to put the above method into practical use from the viewpoint of productivity.
[0006]
As a method for solving this problem, a method in which decarburization annealing is performed in an atmosphere gas having an oxidation degree where no Fe-based oxide is formed and alumina is used as an annealing separator between plates is disclosed in Japanese Patent Laid-Open No. 7-118749. It is disclosed.
However, it has been found that it is difficult to obtain good magnetic properties while carrying out decarburization stably when this process is industrially implemented.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to present a method for producing a specular grain-oriented electrical steel sheet having good surface properties and good magnetic properties while performing decarburization in decarburization annealing.
[0008]
[Means for Solving the Problems]
In the present invention, by mass, Si: 2.0 to 4.0%, acid-soluble Al: 0.01 to 0.05%, N: 0.01% or less, Mn: 0.3% or less, S: 0.05% or less, the silicon steel sheet consisting of Fe and unavoidable impurities in the balance, the steel sheet of the final sheet thickness by one or more cold rolling sandwiching the intermediate annealing, and then after decarburization annealing, when stacking a steel plate, using alumina as a main component in the annealing separator between the plates, in the manufacturing method of oriented electrical steel sheet Write annealing finishing the laminated steel sheet, the front of the decarburization annealing step separated downstream, upstream and downstream of the oxidation degree (P H2O / P H2) P1 and P2, respectively, 0.05 ≦ P1 ≦ 0.2, and lines physician to adjust the P2 ≦ P1-0.03 Furthermore, the gist is to set the temperature of decarburization annealing within the range of 770 to 950 ° C.
[0009]
Moreover, this invention makes it a summary to perform a nitriding process before performing final annealing after performing the said decarburization annealing.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The present inventors first performed the following tests in order to investigate the relationship between the decarburization annealing temperature, the decarburization property, and the iron loss.
In a laboratory vacuum melting furnace, by mass, Si: 3.3%, Mn: 0.11%, C: 0.05%, S: 0.07%, acid-soluble Al: 0.03%, After producing a steel piece containing N: 0.01%, heating at 1150 ° C. was performed, and then hot rolling was performed to obtain a plate thickness of 2.0 mm. The hot-rolled sheet was annealed at 1100 ° C. for 2 minutes, then pickled, and further cold-rolled to a final sheet thickness of 0.23 mm.
[0011]
This cold-rolled sheet was decarburized and annealed at a temperature of 850 ° C. for 90 seconds by changing the degree of oxidation (P H2O / P H2 ) by changing the dew point in an atmosphere containing 75% hydrogen and 25% nitrogen. It was. Thereafter, the nitrogen content in the steel was increased to 0.02% by mass in ammonia gas to strengthen the inhibitor. An annealing separator mainly composed of alumina was applied to the decarburized annealing plate as a water slurry, and then finish annealing was performed. The final annealing was performed in a gas in a 100% nitrogen atmosphere up to 1200 ° C. at a rate of temperature increase of 15 ° C./hr and switched to 100% hydrogen at 1200 ° C. for 20 hours.
[0012]
The mirror surface material produced by the above steps was washed with water, subjected to sample shearing, further subjected to strain relief annealing, further subjected to tension coating, then laser irradiation, and magnetic measurement was performed by the SST method. Table 1 shows the amount of carbon after decarburization annealing and the value of iron loss W 17/50 .
[0013]
[Table 1]
Figure 0004119634
[0014]
When the carbon content of the product plate exceeds 25 ppm, magnetic aging, that is, magnetic deterioration accompanying a change with time occurs, so the carbon content of the decarburized and annealed plate needs to be controlled to 25 ppm or less. From Table 1, it can be seen that the degree of oxidation at which the carbon content of the decarburized annealed plate satisfies 25 ppm or less is 0.05 or more. If the degree of oxidation is outside the range of this degree of oxidation, that is, less than 0.05, the amount of water vapor that reacts with carbon on the steel sheet surface decreases, resulting in poor decarburization.
[0015]
On the other hand, the iron loss W 17/50 is better when the degree of oxidation is lower, being 0.15 or less and 0.70 W / kg or less, and 0.05 or less and 0.65 W / kg or less. Met. The reason why the iron loss is better when the degree of oxidation is lower is considered as follows.
That is, in this mirror surface oriented electrical steel sheet production process, to be kept to some extent reduce the amount of SiO 2 oxide layer formed by decarburization annealing step, after performing the finish annealing was coated with alumina, the surface of the steel sheet It is estimated that this is because the alumina seizure becomes severe and the specularity is impaired.
[0016]
From the above, from the viewpoint of carbon amount and iron loss, considering the optimum degree of oxidation during decarburization annealing, 0.06 to 0.15 (see samples 3 to 6) is appropriate from Table 1. It can be said that there is. However, these samples cannot be said to be sufficiently superior in terms of the low iron loss, which is the greatest feature of the mirror material, and in that sense, it is difficult to ensure both decarburization and very low iron loss. is there.
[0017]
Therefore, the present inventors have divided the decarburization annealing into the former stage and the latter stage, and it has been difficult to realize conventionally by separating the functions of promoting the decarburization in the former stage and promoting the reduction of iron loss in the latter stage. Attempts were made to solve the above problems. Details will be described below.
The following tests were conducted using the cold-rolled sheets of the components and processes used in the above test. That is, first, annealing was performed at 850 ° C. for 75 seconds at various degrees of oxidation in the previous stage of the decarburization annealing furnace. Subsequently, in the latter stage of the decarburization annealing furnace, annealing was performed at 850 ° C. for 15 seconds with an oxidation degree of 0.002.
[0018]
Thereafter, the nitrogen content in the steel was increased to 0.02% by mass in ammonia gas to strengthen the inhibitor. An annealing separator mainly composed of alumina was applied to the decarburized annealing plate as a water slurry, and then finish annealing was performed. The final annealing was performed at a rate of temperature increase of 15 ° C./hr in a gas in a 100% nitrogen atmosphere up to 1200 ° C., and the temperature was changed to 100% hydrogen at 1200 ° C. and annealing was performed for 20 hours.
[0019]
About the mirror surface material produced by the above process, after water washing and sample shearing, strain relief annealing was further performed, and magnetic measurement was performed by the SST method. Table 2 shows the amount of carbon after decarburization annealing in the latter stage and the value of iron loss W 17/50 after strain relief annealing.
[0020]
[Table 2]
Figure 0004119634
[0021]
Regarding the carbon amount evaluation of the decarburized plate, the same results as in Table 1 were obtained. As a result of lowering the degree of oxidation in the subsequent annealing, the iron loss W 17/50 in Samples 1 to 7 was all good, being 0.65 W / kg or less. The reason for this is that in the subsequent annealing with a low degree of oxidation, the SiO 2 oxide film formed in the previous annealing was somewhat reduced, the amount was reduced, and the quality of the SiO 2 oxide film was also changed. However, it is estimated that it acted in a better direction in preventing alumina seizure in finish annealing. As a result, as a comprehensive evaluation, Samples 3 to 7 satisfying a range of 0.05 ≦ P1 ≦ 0.2 were good.
[0022]
From the above, the present inventors divided the decarburization annealing into two stages, the first stage and the second stage, and made the oxidation degree at the time of annealing different between the first stage and the second stage. The present inventors completed the present invention by newly discovering that it was possible to ensure both the decarburization and the very low iron loss.
Next, embodiments of the present invention will be described. As a basic production method, a production method using AlN and MnS as main inhibitors by Taguchi, Sakakura, etc. (for example, see Japanese Examined Patent Publication No. 40-15644), or (Al, Si) N by Komatsu, etc. A production method used as a main inhibitor (see, for example, Japanese Examined Patent Publication No. 62-45285) may be applied.
[0023]
Si is an important element for increasing electrical resistance and reducing iron loss. When the content exceeds 4.0% by mass, the material is easily cracked during cold rolling, and rolling becomes impossible. On the other hand, when the Si content is lowered, α → γ transformation occurs at the time of finish annealing, and the crystal orientation is impaired. Therefore, the Si content does not substantially affect the crystal orientation, and is 2.0 mass. % Is the lower limit.
[0024]
Acid-soluble Al is an essential element for binding to N and functioning as an inhibitor as AlN or (Al, Si) N. Therefore, the content of acid-soluble Al is in the range of 0.01 to 0.05 mass% where the magnetic flux density is increased.
If N is present in an amount of 0.01% by mass or more at the time of steelmaking, voids in the steel plate called blisters are produced, so the upper limit is 0.01% by mass.
[0025]
With respect to the amount of Mn and the amount of S, Mn is 0.3% by mass or less and S is 0.05% by mass or less from the viewpoint of securing an appropriate amount of inhibitor for improving secondary recrystallization. Is preferred. As other inhibitor constituent elements, an appropriate amount of B, Bi, Se, Pb, Mo, Sb, Sn, Ti, V, or the like may be added.
The molten steel having the above component composition is formed into a hot-rolled sheet by a normal process after casting, or formed into a thin strip by continuous casting. The hot-rolled sheet or continuous cast ribbon is subjected to cold rolling immediately or after short-time annealing. The short-time annealing is performed in a temperature range of 750 to 1200 ° C. for 30 seconds to 30 minutes, and is effective for enhancing the magnetic properties of the product. You should decide whether to accept or reject the product based on the desired property level and cost.
[0026]
The cold rolling may basically be cold rolling with a final cold rolling reduction of 80% or more as disclosed in Japanese Patent Publication No. 40-15644.
The degree of oxidation during decarburization annealing, which is the main point of the present invention, is divided into a first stage (oxidation degree P1) and a second stage (degree of oxidation P2), and 0.05 ≦ P1 ≦ 0.2 and P2 ≦ P1-0, respectively. 0.03 range is necessary. The reason for this is that if P1 is less than 0.05, decarburization failure will occur, and if it is greater than 0.2, the iron loss will deteriorate. Moreover, when P2 is outside the above range, as shown in Example 1, a very low iron loss is not achieved. Within these ranges, more preferred ranges are 0.10 ≦ P1 ≦ 0.15 and P2 ≦ P1-0.05.
[0027]
About the annealing of the front | former stage in decarburization annealing, in order to advance decarburization, it is preferable to hold | maintain for 30 seconds or more. Further, regarding the subsequent annealing, it is preferable to hold for 3 seconds or more in order to obtain a very low iron loss. Regarding the temperature in decarburization annealing, it is necessary to set it within the range of 770-950 ° C.
[0028]
In the case where a manufacturing method using (Al, Si) N as a main inhibitor is applied to the decarburized annealing plate (for example, see Japanese Examined Patent Publication No. 62-45285), nitriding treatment is performed. A method related to the nitriding treatment is not particularly limited, and a method of allowing the strip to pass through an atmospheric gas having nitriding ability such as ammonia can be employed. The amount of nitriding is 0.005% or more, and preferably, the total nitrogen amount is nitrided by Al equivalent or more in steel.
[0029]
When laminating these decarburized and annealed plates, alumina as an annealing separator is dry-coated by a water slurry or electrostatic coating method. The laminated plate is subjected to finish annealing, and secondary recrystallization and nitride purification are performed.
Performing secondary recrystallization in a predetermined temperature range by means such as holding at a constant temperature as disclosed in JP-A-2-258929 is effective in increasing the magnetic flux density. After the secondary recrystallization is completed, annealing is performed at a temperature of 1100 ° C. or higher in a 100% hydrogen atmosphere in order to purify the nitride and smooth the surface.
[0030]
After finish annealing, the surface has already been smoothed, so perform tension coating or tension coating after necessary pretreatment, and apply laser irradiation or heat-resistant magnetic domain control as necessary. That's fine.
[0031]
【Example】
Examples will be described below.
[Example 1]
In mass%, Si: 3.3%, Mn: 0.1%, C: 0.05%, S: 0.007%, acid-soluble Al: 0.03%, N: 0.01%, Sn: A hot-rolled sheet having a thickness of 2.0 mm containing 0.05% was annealed at 1100 ° C. for 2 minutes, and then cold-rolled to a thickness of 0.23 mm. This cold-rolled sheet was first annealed at 840 ° C. for 75 seconds in a hydrogen-nitrogen mixed atmosphere with an oxidation degree of 0.15 as the first stage decarburization annealing. Subsequently, the oxidation degree of the annealing furnace was changed in various stages, and annealing was performed at 840 ° C. for 15 seconds. Thereafter, the nitrogen content in the steel was increased to 0.03% in ammonia gas to strengthen the inhibitor.
[0032]
An annealing separator mainly composed of alumina was applied to the decarburized and annealed plate as a water slurry, and then finish annealing was performed. The final annealing was performed at a rate of temperature increase of 15 ° C./hr in a gas in a 100% nitrogen atmosphere up to 1200 ° C., and the temperature was changed to 100% hydrogen at 1200 ° C. and annealing was performed for 20 hours.
The mirror material produced by the above steps was washed with water and sample-sheared, and further subjected to strain relief annealing, and subjected to magnetic measurement by the SST method. Table 3 shows the amount of carbon after the subsequent decarburization annealing and the value of the iron loss W 17/50 after the strain relief annealing. All of the decarburized plate carbon content evaluations were good. Regarding the iron loss, in Samples 1 to 5 satisfying P2 ≦ P1−0.03, all were very good at 0.65 W / kg or less.
[0033]
[Table 3]
Figure 0004119634
[0034]
[Example 2]
In mass%, Si: 3.3%, Mn: 0.1%, C: 0.05%, S: 0.007%, acid-soluble Al: 0.03%, N: 0.01%, Sn: A hot-rolled sheet having a thickness of 2.0 mm containing 0.05% was annealed at 1100 ° C. for 2 minutes, and then cold-rolled to a thickness of 0.23 mm. This cold-rolled sheet was first annealed at 840 ° C. for 75 seconds in a hydrogen-nitrogen mixed atmosphere with an oxidation degree of 0.15 as the first stage of decarburization annealing. Subsequently, annealing was performed for 15 seconds in various stages in an atmosphere having an oxidation degree of 0.002 with various annealing temperatures. Thereafter, the nitrogen content in the steel was increased to 0.03% in ammonia gas to strengthen the inhibitor.
[0035]
An annealing separator mainly composed of alumina was applied to the decarburized and annealed plate as a water slurry, and then finish annealing was performed. The final annealing was performed at a rate of temperature increase of 15 ° C./hr in a gas in a 100% nitrogen atmosphere up to 1200 ° C., and the temperature was changed to 100% hydrogen at 1200 ° C. and annealing was performed for 20 hours.
About the mirror surface material produced by the above process, after water washing and sample shearing, strain relief annealing was further performed, and magnetic measurement was performed by the SST method. Table 4 shows the amount of carbon after decarburization annealing and the value of iron loss W 17/50 after strain relief annealing. Regarding the carbon content evaluation of the decarburized plate, all were good.
[0036]
Regarding the iron loss, in the samples 2 to 8 that satisfy the subsequent decarburization annealing temperature of 770 to 950 ° C., all were 0.65 W / kg or less, which was very good. It is estimated that the reason why the iron loss exceeded 0.65 W / kg in Sample 1 was because the annealing temperature was too low, and the SiO 2 oxide film formed by the previous annealing could not be modified. The
[0037]
Moreover, it is speculated that the reason why the iron loss was abnormally deteriorated in the sample 9 was that the annealing temperature was too high and the primary recrystallization grain size was excessively coarsened, causing secondary recrystallization failure.
[0038]
[Table 4]
Figure 0004119634
[0039]
Example 3
In mass%, Si: 3.3%, Mn: 0.07%, C: 0.07%, S: 0.025%, acid-soluble Al: 0.03%, N: 0.01%, Sn: A hot-rolled sheet having a thickness of 2.0 mm containing 0.1% was annealed at 1120 ° C. for 2 minutes, and then cold-rolled to a thickness of 0.23 mm. The cold-rolled sheet was first annealed at 850 ° C. for 70 seconds at various degrees of oxidation as the first stage decarburization annealing. Subsequently, annealing was performed at 850 ° C. for 20 seconds in an atmosphere having an oxidation degree of 0.002 at a later stage.
[0040]
An annealing separator mainly composed of alumina was applied to the decarburized annealing plate as a water slurry, and then finish annealing was performed. The final annealing was performed at a temperature increase rate of 15 ° C./hr in a gas of 100% nitrogen up to 1200 ° C., and the annealing was performed for 20 hours by switching to 100% hydrogen at 1200 ° C.
The mirror material produced by the above steps was washed with water and sample-sheared, and further subjected to strain relief annealing, and subjected to magnetic measurement by the SST method. Table 5 shows the amount of carbon after decarburization annealing and the value of iron loss W 17/50 after strain relief annealing. Samples 3 to 8 were good with respect to carbon content evaluation of the decarburized plate. Regarding the iron loss, in Samples 1 to 7, all were good at 0.65 W / kg or less. As a comprehensive evaluation, Samples 3 to 7 satisfying a range of 0.05 ≦ P1 ≦ 0.2 were good.
[0041]
[Table 5]
Figure 0004119634
[0042]
【The invention's effect】
As described above, the present invention presents a means for producing a mirror-oriented electrical steel sheet having good surface properties and good magnetic properties while performing good decarburization in decarburization annealing. The significance is extremely great.

Claims (2)

質量%で、Si:2.0〜4.0%、酸可溶性Al:0.01〜0.05%、N:0.01%以下、Mn:0.3%以下、S:0.05%以下、残部がFe及び不可避的不純物からなる珪素鋼熱延鋼板を、一回もしくは中間焼鈍を挟む二回以上の冷間圧延により最終板厚の鋼板とし、次いで脱炭焼鈍を行った後、該鋼板を積層する際、板間の焼鈍分離剤中の主体成分としてアルミナを用い、該積層された鋼板を仕上げ焼鈍する方向性電磁鋼板の製造方法において、前記脱炭焼鈍工程を前段と後段に分離し、前段及び後段の酸化度(PH2O/PH2)、P1及びP2を、下記式の範囲に調整して行い、さらに、脱炭焼鈍の温度を770〜950℃の範囲内とすることを特徴とする方向性電磁鋼板の製造方法。
0.05≦P1≦0.2,P2≦P1−0.03
In mass%, Si: 2.0 to 4.0%, acid-soluble Al: 0.01 to 0.05%, N: 0.01% or less, Mn: 0.3% or less, S: 0.05% Hereinafter, after the silicon steel hot-rolled steel sheet consisting of Fe and unavoidable impurities as a balance is made into a steel sheet of the final sheet thickness by cold rolling twice or more sandwiching one or intermediate annealing, then after decarburization annealing, when stacking the steel sheets, using alumina as a main component in the annealing separator between the plates, in the manufacturing method of oriented electrical steel sheet Write annealing finishing the laminated steel sheet, front the decarburization annealing step and subsequent separated into, upstream and downstream of the oxidation degree (P H2O / P H2), P1 and P2, have the line is adjusted to the range of the formula, further, the range of the temperature of decarburization annealing the seven hundred and seventy to nine hundred and fifty ° C. method for producing oriented electrical steel sheets towards you, characterized in that.
0.05 ≦ P1 ≦ 0.2, P2 ≦ P1-0.03
前記脱炭焼鈍を行った後、仕上げ焼鈍を行うまでの間に窒化処理を行うことを特徴とする請求項1記載の方向性電磁鋼板の製造方法。After the decarburization annealing, the production method of the oriented electrical steel sheet towards the claim 1, wherein the performing the nitriding treatment until performing finish annealing.
JP2001310357A 2001-05-22 2001-10-05 Method for producing mirror-oriented electrical steel sheet with good iron loss Expired - Fee Related JP4119634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001310357A JP4119634B2 (en) 2001-05-22 2001-10-05 Method for producing mirror-oriented electrical steel sheet with good iron loss

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001152594 2001-05-22
JP2001-152594 2001-05-22
JP2001310357A JP4119634B2 (en) 2001-05-22 2001-10-05 Method for producing mirror-oriented electrical steel sheet with good iron loss

Publications (2)

Publication Number Publication Date
JP2003041320A JP2003041320A (en) 2003-02-13
JP4119634B2 true JP4119634B2 (en) 2008-07-16

Family

ID=26615515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001310357A Expired - Fee Related JP4119634B2 (en) 2001-05-22 2001-10-05 Method for producing mirror-oriented electrical steel sheet with good iron loss

Country Status (1)

Country Link
JP (1) JP4119634B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5949813B2 (en) * 2013-03-07 2016-07-13 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
BR112020027000B1 (en) 2018-07-13 2023-10-24 Nippon Steel Corporation ELECTRICAL STEEL SHEET WITH GRAIN ORIENTED AND PRODUCTION METHOD OF THE SAME
JP7180694B2 (en) * 2019-01-16 2022-11-30 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
WO2020149332A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electrical steel sheet
CN113272457B (en) * 2019-01-16 2023-04-14 日本制铁株式会社 Method for producing unidirectional electromagnetic steel sheet
WO2020149320A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2003041320A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
WO2014047757A1 (en) Manufacturing method of common grain-oriented silicon steel with high magnetic induction
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
WO1995013401A1 (en) Production method of directional electromagnetic steel sheet of low temperature slab heating system
JP4119634B2 (en) Method for producing mirror-oriented electrical steel sheet with good iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JPH07278670A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JP4427226B2 (en) Method for producing grain-oriented electrical steel sheet
JP4119635B2 (en) Method for producing mirror-oriented electrical steel sheet with good decarburization
CN113272456B (en) Method for producing grain-oriented electromagnetic steel sheet
JP4331886B2 (en) Method for producing grain-oriented silicon steel sheet
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JP2678855B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
CN113272457B (en) Method for producing unidirectional electromagnetic steel sheet
JP4119614B2 (en) Method for producing grain-oriented electrical steel sheet
US20210388459A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP5904151B2 (en) Method for producing grain-oriented electrical steel sheet
RU2784933C1 (en) Method for producing a sheet of electrotechnical steel with oriented grain structure
JP2653637B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JPH04235221A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JP3182666B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP2653636B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R151 Written notification of patent or utility model registration

Ref document number: 4119634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees