JPH07268471A - Production of grain oriented silicon steel sheet having high magnetic flux density - Google Patents

Production of grain oriented silicon steel sheet having high magnetic flux density

Info

Publication number
JPH07268471A
JPH07268471A JP6231994A JP6231994A JPH07268471A JP H07268471 A JPH07268471 A JP H07268471A JP 6231994 A JP6231994 A JP 6231994A JP 6231994 A JP6231994 A JP 6231994A JP H07268471 A JPH07268471 A JP H07268471A
Authority
JP
Japan
Prior art keywords
rolling
hot
magnetic flux
flux density
finish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6231994A
Other languages
Japanese (ja)
Other versions
JP2888324B2 (en
Inventor
Hisashi Nakano
恒 中野
Katsuo Iwamoto
勝生 岩本
Takashi Obara
隆史 小原
Toshito Takamiya
俊人 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6231994A priority Critical patent/JP2888324B2/en
Publication of JPH07268471A publication Critical patent/JPH07268471A/en
Application granted granted Critical
Publication of JP2888324B2 publication Critical patent/JP2888324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To stably produce a grain oriented silicon steel sheet having high magnetic flux density by specifying a chemical composition, hot finish rolling conditions, and cold rolling conditions. CONSTITUTION:A silicon steel, which has a composition containing, by weight, 0.02-0.10% C, 2.0-4.5% Si, 0.02-0.15% Mn, 0.015-0.040% acid soluble Al, and 0.0040-0.0100% N and further containing 0.008-0.080%, in total, of either or both of S and Se, is used. At the time of hot rolling of this silicon steel, the inlet temp. of a finish rolling mill is regulated to 950-1300 deg.C and rolling velocity at the outlet side is controlled to 600<=1010mpm, and further, in a coiled state after the completion of hot rolling, the average thickness (wd) in a plate thickness direction, of a banded structure formed in the rolling direction of the steel plate and parallel to the surface of the steel plate is regulated to 5-50mum. According to the average thickness (w) within this/range, cold rolling is performed at cumulative draft R1(%) determined from inequality before the first process annealing. By this method, the grain oriented silicon steel sheet, having <=0.23mm final product sheet thickness and also having high magnetic flux density, can stably be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変圧器またはその他の
電気機器用鉄心材として用いられる方向性電磁鋼板、中
でも板厚が0.23mm以下の方向性電磁薄鋼板の製造方法に
係わり、常に安定して高い磁束密度のものを製造する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet used as an iron core material for a transformer or other electric equipment, and particularly a grain-oriented electrical steel sheet having a thickness of 0.23 mm or less, which is always stable. The present invention relates to a method for producing a high magnetic flux density.

【0002】[0002]

【従来の技術】方向性電磁鋼板に要求される特性として
は、磁化特性に優れていることおよび鉄損が低いことが
挙げられる。一方、最近の技術進歩に伴い、板厚が0.23
mmと薄い方向性電磁鋼板の製造が可能となり、その磁化
特性はB8 値(磁化力800A/mで磁化したときの磁束密
度)が1.90T以上の高磁束密度、そして鉄損W17/50
(磁束密度 1.7T,周波数50Hzで磁化したときの鉄損)
が0.90W/kg以下の低鉄損が得られるに至っており、変圧
器の小型化、低騒音化および高変換効率化に大きく寄与
している。
2. Description of the Related Art The properties required of grain-oriented electrical steel sheets include excellent magnetization properties and low iron loss. On the other hand, with recent technological progress, the plate thickness is 0.23
It is possible to manufacture grain-oriented electrical steel sheets as thin as mm, and the magnetization characteristics are high magnetic flux density with B8 value (magnetic flux density when magnetized with a magnetizing force of 800 A / m) of 1.90 T or more, and iron loss W 17/50 value. (Iron loss when magnetized at a magnetic flux density of 1.7 T and a frequency of 50 Hz)
Has achieved a low iron loss of 0.90 W / kg or less, which has greatly contributed to the downsizing of transformers, noise reduction, and high conversion efficiency.

【0003】さて、このように磁気特性の優れた方向性
電磁鋼板を得るためには、最終仕上焼鈍における2次再
結晶粒を十分に発達させ、(110)<001>方位に先鋭化する
ことが肝要である。この為、2次再結晶の過程で(110)<
001>方位粒、いわゆるゴス粒以外の方位をもつ粒の成長
を抑制する作用をもつインヒビターを存在させておくこ
と、ならびにゴス粒の成長に有利な(111)<112>方位を中
心とする集合組織を予め形成しておくことが重要とな
る。
In order to obtain a grain-oriented electrical steel sheet having excellent magnetic properties, the secondary recrystallized grains in the final finish annealing should be sufficiently developed and sharpened in the (110) <001> orientation. Is essential. Therefore, in the process of secondary recrystallization, (110) <
The presence of an inhibitor that suppresses the growth of grains having an orientation other than 001> orientation grains, so-called Goss grains, and aggregation centered on the (111) <112> orientation, which is advantageous for the growth of Goss grains. It is important to pre-form the tissue.

【0004】インヒビターには、一般にMnS 、MnSe、Al
N が用いられており、これらが微細に分散して析出する
ことが抑制力向上のために望ましい。また粒界に偏析
し、粒成長の抑制効果を有するSb、As、Bi、Sn等を必要
に応じて添加し、抑制力向上の補助的作用を持たせるこ
とも行われている。これに対してゴス粒の成長に有利な
(111)<112>方位を中心とする集合組織の形成について
は、従来、熱間圧延および冷間圧延と、その間に行われ
る焼鈍との各条件の好適化を図る努力が行われてきた。
Inhibitors are generally MnS, MnSe, Al
N 2 is used, and it is desirable that these are finely dispersed and precipitated in order to improve the suppression. In addition, Sb, As, Bi, Sn, etc., which segregate at the grain boundaries and have a grain growth suppressing effect, are added as needed to give an auxiliary effect of improving the suppressing force. On the other hand, it is advantageous for the growth of goss grains
Regarding the formation of a texture centered on the (111) <112> orientation, efforts have been conventionally made to optimize the conditions of hot rolling and cold rolling and annealing performed therebetween.

【0005】このうち熱間圧延の仕上工程は、インヒビ
ターを微細分散析出させる上で極めて重要である。した
がってその前・後の工程条件との絡みからこれまで幾つ
かの提案がなされてきた。特開昭58-91120号公報ではMn
S 系インヒビターのMn、S添加量に応じて熱延終了温度
を決定する方法が開示されている。これは熱延時に表面
きずを発生させない点で有効ではあるが安定して高磁気
特性が得られない。
Of these, the finishing step of hot rolling is extremely important for finely disperse and precipitate the inhibitor. Therefore, some proposals have been made so far in relation to the process conditions before and after that. In Japanese Patent Laid-Open No. 58-91120, Mn
A method for determining the hot rolling end temperature according to the amounts of Mn and S added in the S-based inhibitor is disclosed. This is effective in that no surface flaw is generated during hot rolling, but stable high magnetic properties cannot be obtained.

【0006】特開昭58−164725号公報では実操業におい
て生じるコイルの長手方向の仕上熱延温度のばらつきに
着目し、その後の熱延板焼鈍後の冷却速度を変える方法
が提案されている。この方法は確かにコイル長手方向の
磁気特性安定化には有効であるが、実操業上は冷却速度
を変更した場合、同一コイルで場所によって表面硬度が
変わるためその後の冷却工程で表面きずが発生したり、
冷延時の圧延荷重が途中で変わることから板破断を招く
ため現実的ではない。
Japanese Patent Laid-Open No. 58-164725 proposes a method of changing the cooling rate after the subsequent hot-rolled sheet annealing, paying attention to the variation in the finish hot-rolling temperature in the longitudinal direction of the coil which occurs in the actual operation. This method is certainly effective for stabilizing the magnetic properties in the longitudinal direction of the coil, but in actual operation, when the cooling rate is changed, the surface hardness changes depending on the location in the same coil, so surface flaws occur in the subsequent cooling process. Or
This is not practical because the rolling load during cold rolling changes midway, which causes sheet breakage.

【0007】これらに対して特開昭58-42727号公報では
MnS 系インヒビターにCuを添加し仕上圧延機出口温度を
頭部と中央、尾部で変え最終冷延の冷延率を50〜80%と
強圧下にすることで成品のマクロ組織を細粒化する方法
が開示されている。しかしMnS 系インヒビターはAlN 系
インヒビターに比べてインヒビション効果が弱いことか
ら磁化力1000A/m で磁化した時の磁束密度B10は高々1.
87T(板厚:0.30mm)程度と低レベルにとどまってお
り、とうてい現在の需要家からのニーズに応えられな
い。
On the other hand, in JP-A-58-42727,
By adding Cu to the MnS-based inhibitor and changing the exit temperature of the finishing mill at the head, center, and tail, the cold rolling rate of the final cold rolling is reduced to 50-80%, and the macrostructure of the product is refined. A method is disclosed. However, the inhibition effect of MnS-based inhibitors is weaker than that of AlN-based inhibitors, so the magnetic flux density B10 when magnetized with a magnetizing force of 1000 A / m is at most 1.
It remains at a low level of around 87T (plate thickness: 0.30 mm), and at present cannot meet the needs of current consumers.

【0008】これらに対して、特開平2−263923号公
報、特開平4−323 号公報においては、AlN 系インヒビ
ターを用い、仕上熱延圧下率および熱延終了温度または
巻取温度を適正化し、圧下率80%以上の強圧下冷延をす
ることにより、熱延板焼鈍を必要とせず1回のみの冷延
で厚手材を製造する方法が開示されている。これらは工
程省略という大きなメリットをもつ点で効果的である。
しかし0.23mm以下の薄手材の製造においては1回の冷間
圧延で安定して高磁気特性を得ることはきわめて困難で
ある。
On the other hand, in JP-A-2-263923 and JP-A-4-323, AlN-based inhibitors are used to optimize the finish hot rolling reduction rate and hot rolling end temperature or coiling temperature. A method of manufacturing a thick material by cold rolling only once without the need for hot-rolled sheet annealing is disclosed by carrying out strong cold rolling with a rolling reduction of 80% or more. These are effective in that they have the great advantage of omitting the process.
However, in the production of thin materials of 0.23 mm or less, it is extremely difficult to stably obtain high magnetic properties by one cold rolling.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記の現状
に鑑み、AlN 系インヒビターを含む0.23mm以下の薄手方
向性電磁鋼板の製造において、仕上熱延条件に応じて後
工程を適正化し、工場において高い磁束密度を有する方
向性電磁薄鋼板を安定して製造できる方法を提案するこ
とを目的とするものである。
In view of the above situation, the present invention optimizes the post-process in accordance with the finish hot rolling conditions in the production of 0.23 mm or less thin grain-oriented electrical steel sheet containing an AlN-based inhibitor, It is an object of the present invention to propose a method capable of stably producing a grain-oriented electrical steel sheet having a high magnetic flux density in a factory.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、
C:0.02〜0.10wt%、Si:2.0 〜4.5 wt%、Mn:0.02〜
0.15wt%、酸化溶性Al:0.015 〜0.040 wt%およびN:
0.0040〜0.0100wt%を含み、さらにSおよびSeのいずれ
か1種または2種を合計で0.008 〜0.080 wt%含有する
電磁鋼スラブを熱間圧延した後、中間焼鈍をはさむ2回
以上の冷間圧延を施して0.23mm以下の最終製品板厚と
し、しかるのち脱炭焼鈍を施し、次いで鋼板表面にMgO
を主成分とする焼鈍分離剤を塗布してから仕上焼鈍を施
す一連の工程によって方向性電磁薄鋼板を製造する際
に、熱間仕上圧延時の仕上圧延機入側温度と仕上圧延機
出側の圧延速度を制御し、熱間圧延終了後の巻取った状
態において鋼板圧延方向および鋼板表面に平行に形成さ
れたバンド状組織の板厚方向の平均厚wb(μm)を5〜50
μm とし、その範囲内で平均厚wbに応じて、最初の中間
焼鈍前で(1)式から求めた累積冷延圧下率R1(%)
で冷間圧延することを特徴とする磁束密度が高い方向性
電磁薄鋼板の製造方法である。
That is, the present invention is
C: 0.02-0.10 wt%, Si: 2.0-4.5 wt%, Mn: 0.02-
0.15 wt%, Oxidizing Al: 0.015 to 0.040 wt% and N:
After hot rolling an electromagnetic steel slab containing 0.0040 to 0.0100 wt% and further containing one or two of S and Se in a total amount of 0.008 to 0.080 wt%, two or more times of cold annealing with intermediate annealing. Rolled to a final product thickness of 0.23 mm or less, followed by decarburization annealing, then MgO on the steel plate surface.
When a grain-oriented electrical steel sheet is manufactured by a series of processes in which an annealing separator containing as a main component is applied and then finish annealing is performed, the finish rolling mill inlet temperature and the finish rolling mill outlet side during hot finish rolling are manufactured. The rolling speed is controlled, and the average thickness wb (μm) in the plate thickness direction of the band-shaped structure formed in parallel with the steel plate rolling direction and the steel plate surface in the wound state after the hot rolling is 5 to 50
μm, and within that range, according to the average thickness wb, the cumulative cold rolling reduction R1 (%) obtained from the equation (1) before the first intermediate annealing.
It is a method for producing a grain-oriented electrical thin steel sheet having a high magnetic flux density, which is characterized by cold rolling in.

【0011】 0.015×(wb-5)2 +20≦R1≦ 0.015×(wb-5)2 +50 ・・・・・(1) また、本発明は、上記熱間仕上圧延において、仕上圧延
機入側温度を 950℃以上1300℃以下とし、仕上圧延機出
側の圧延速度を600mpm以上1010mpm 以下に制御すること
が望ましい。なお、本発明における、上記の鋼板圧延方
向および鋼板表面に平行に形成されたバンド状組織の板
厚方向の平均厚(以下バンド厚と称す。)wbの測定は、
線分法によった。
0.015 × (wb-5) 2 + 20 ≦ R1 ≦ 0.015 × (wb-5) 2 +50 (1) Further, the present invention provides the above-mentioned hot finish rolling in which the finish rolling machine is provided on the inlet side. It is desirable to control the temperature at 950 ° C or higher and 1300 ° C or lower, and to control the rolling speed on the delivery side of the finish rolling mill to 600 mpm or more and 1010 mpm or less. In the present invention, the average thickness in the plate thickness direction of the band-shaped structure formed in parallel with the steel plate rolling direction and the steel plate surface (hereinafter referred to as band thickness) wb is measured.
According to the line segment method.

【0012】また、本発明における熱間仕上圧延時と
は、粗圧延を経たスラブが熱間タンデム圧延機で圧延さ
れている時を言い、従って仕上圧延機とは、熱間タンデ
ム圧延機を指す。
The hot rolling in the present invention means that the slab that has undergone rough rolling is rolled by a hot tandem rolling mill, and thus the finish rolling mill means a hot tandem rolling mill. .

【0013】[0013]

【作用】次に、この発明に至った実験結果について説明
する。まず本発明者らは、AlN 系インヒビターを含む方
向性電磁鋼板の工場製品板において磁束密度が大きくば
らつく原因を調査していく過程で、従来より知られてい
るように熱間圧延条件とりわけ仕上圧延条件が磁束密度
に大きな影響を及ぼしているという認識を深めた。そこ
で工場材と同成分を含む小型鋼塊を作製し、それらの熱
間圧延終了温度(FDT)を種々に変えた熱延を行い、
その後現工程と同条件にて研究室にて仕上焼鈍まで行っ
た。
Next, the results of the experiments that led to the present invention will be described. First of all, in the process of investigating the cause of the large variation in the magnetic flux density in the factory product sheet of grain-oriented electrical steel sheet containing an AlN-based inhibitor, as is conventionally known, the hot rolling conditions, especially finish rolling, were used. We deepened the recognition that the condition has a great influence on the magnetic flux density. Therefore, small steel ingots containing the same components as the factory material were produced, and hot rolling was performed at various hot rolling finish temperatures (FDT),
After that, finish annealing was performed in the laboratory under the same conditions as the current process.

【0014】図3にこれらの磁気特性を示す。図より、
磁束密度B8 は熱間圧延終了温度(FDT)によらず大
きくばらついている。従来より、熱間仕上圧延工程は、
インヒビターを微細分散析出させることを主目的として
その条件が決められてきた。その際主に熱間圧延終了温
度を規定する方法が多く見受けられた。この方法により
確かにインヒビターは微細分散析出するに至ったものの
図3に示した通りB8 のばらつきは大きかった。これは
インヒビター制御を重視する余り、他の熱延条件が複雑
となり、組織の適切な制御が行われていないためと本発
明者らは考えた。この考えのもと、本発明者らはインヒ
ビターとともに組織にも着目し、熱延板組織決定因子を
明らかにし、これを制御した上で、後工程を組織に応じ
て最適化することにより、高い磁束密度(B8 )を常に
安定して得る方法を発明・構成するに至ったものであ
る。
FIG. 3 shows these magnetic characteristics. From the figure,
The magnetic flux density B8 greatly varies regardless of the hot rolling end temperature (FDT). Conventionally, the hot finish rolling process has been
The conditions have been determined mainly for the purpose of finely dispersing and precipitating the inhibitor. At that time, many methods were mainly found to regulate the hot rolling finish temperature. Although this method surely led to fine dispersion precipitation of the inhibitor, the variation of B8 was large as shown in FIG. The present inventors have considered that this is because the importance of inhibitor control is too great, other hot rolling conditions are complicated, and appropriate control of the structure is not performed. Based on this idea, the present inventors focused on the tissue together with the inhibitor, clarified the hot-rolled sheet microstructural determinant, controlled it, and optimized the post-process depending on the microstructure, thereby improving the The inventors have invented and constructed a method for always obtaining a magnetic flux density (B8) stably.

【0015】そこで、熱間圧延仕上条件、圧延温度、圧
延速度を種々に変えて工場ならびに研究室で実験を行
い、これらの条件が熱延板組織に及ぼす影響を調査し
た。この結果、熱延板組織は熱間圧延終了温度のみなら
ず、とくに熱間仕上圧延機入側温度や熱間仕上圧延機出
側の圧延速度により大きく影響を受けることを新規な知
見として見出した。
Therefore, experiments were carried out in factories and laboratories under various hot rolling finishing conditions, rolling temperatures and rolling speeds, and the effects of these conditions on the hot rolled sheet structure were investigated. As a result, we found as a new finding that the hot-rolled sheet structure is greatly affected not only by the hot rolling finish temperature, but also by the rolling temperature at the hot finishing mill entrance side and the hot finishing mill exit side. .

【0016】図1は熱間仕上圧延機入側温度と熱間仕上
圧延機出側の圧延速度が熱延板平均バンド厚に及ぼす影
響を示したものである。熱延板平均バンド厚は熱間仕上
圧延機入側温度と熱間仕上圧延機出側の圧延速度により
大きく異なることが判明した。次に、様々なバンド厚を
もつ試料を用い、熱間圧延以降の工程条件を種々に変え
て実験を繰り返した結果、中間焼鈍をはさむ2回以上の
冷間圧延を行う際、安定して高い磁束密度(B8 )を実
現するためには、最初の累積冷延圧下率が非常に重要で
あるという知見を得るに至った。
FIG. 1 shows the effect of the temperature on the hot-rolling mill entrance side and the rolling speed on the hot-finishing mill exit side on the average band thickness of the hot-rolled sheet. It was found that the average band thickness of the hot-rolled sheet greatly differs depending on the temperature on the inlet side of the hot finish rolling mill and the rolling speed on the outlet side of the hot finish rolling mill. Next, using samples with various band thicknesses, the experiment was repeated under various process conditions after hot rolling. As a result, when performing cold rolling two or more times with intermediate annealing, the temperature was stable and high. In order to realize the magnetic flux density (B8), we have come to the knowledge that the first cumulative cold rolling reduction is very important.

【0017】図2に仕上厚0.23mmの鋼板について熱延板
平均バンド厚(wb)と最初の累積冷延圧下率R1(%)が
B8 に及ぼす影響を示す。バンド厚の増大にともなって
斜線部の好適な累積冷延圧下率R1が高くなることがわ
かる。なおこの関係はwb=5〜50μm の場合によく満足
されている。図2よりバンド厚wb(μm)に対する好適な
累積冷延圧下率R1(%)は次式で表わされる。
FIG. 2 shows the influence of the average band thickness (wb) of the hot rolled sheet and the first cumulative cold rolling reduction R1 (%) on B8 for the steel sheet having the finished thickness of 0.23 mm. It can be seen that as the band thickness increases, the preferable cumulative cold rolling reduction ratio R1 in the shaded portion increases. This relationship is well satisfied when wb = 5 to 50 μm. From FIG. 2, a suitable cumulative cold rolling reduction rate R1 (%) with respect to the band thickness wb (μm) is expressed by the following equation.

【0018】 0.015×(wb-5)2 +20≦R1≦ 0.015×(wb-5)2 +50 ・・・・(1) このように、熱延板バンド厚に応じて最初の累積冷延圧
下率を適切に選択することによって磁束密度(B8 )の
ばらつきをほとんどなくすことが可能となった。本発明
でバンド厚が広い場合、好適な累積冷延圧下率R1が高
くなる理由は明らかではないが、以下のように考えられ
る。すなわち、本発明のようにAlN 系インヒビターを含
む場合MnS に比べてゴス核は格段に少なくて済み、むし
ろマトリックスが(111)<112>に揃っていることが重要で
ある。そのためには少なくとも高温でおこなわれる中間
焼鈍の前にはバンド厚低減(細粒化)を計り、再結晶時
に粒界近傍から(111)<112>を核生成させることの方が磁
気特性向上に有利になるためと考えられる。
0.015 × (wb-5) 2 + 20 ≦ R1 ≦ 0.015 × (wb-5) 2 +50 (1) As described above, the first cumulative cold rolling reduction rate according to the hot-rolled strip band thickness By properly selecting, it became possible to almost eliminate the variation in the magnetic flux density (B8). In the present invention, when the band thickness is wide, the reason why the preferable cumulative cold rolling reduction R1 becomes high is not clear, but it is considered as follows. That is, when an AlN 3 -based inhibitor is included as in the present invention, the Goss nuclei are remarkably smaller than those of MnS 2, and it is important that the matrix is (111) <112>. For that purpose, it is better to measure the band thickness (fine graining) before at least the intermediate annealing performed at high temperature and to nucleate (111) <112> from near the grain boundary during recrystallization. It is thought to be advantageous.

【0019】なお、wb= 5〜50μm とするには図1よ
り、熱間圧延機入側温度を 950℃以上1300℃以下とし、
熱間仕上圧延機出側の圧延速度が600mpm以上1010mpm 以
下とすることが望ましい。また、本発明の素材である電
磁鋼スラブとしては、次の通りの各成分を含有すること
が必要とされる。以下にこれらの成分の限定理由につい
て説明する。
In order to set wb = 5 to 50 μm, from FIG. 1, the hot rolling mill inlet temperature is set to 950 ° C. or higher and 1300 ° C. or lower,
It is desirable that the rolling speed on the delivery side of the hot finish rolling mill is 600 mpm or more and 1010 mpm or less. Further, the electromagnetic steel slab which is the material of the present invention is required to contain the following components. The reasons for limiting these components will be described below.

【0020】C:0.02〜0.10wt% Cは、熱間圧延および冷間圧延中の組織の均一微細化の
みならず、ゴス方位の発達に有用な成分であり、少なく
とも0.02wt%以上は含有することが好ましい。しかしな
がら、0.10wt%を超えて含有するとかえってゴス方位に
乱れが生じるため、上限は0.10wt%程度が好ましい。
C: 0.02 to 0.10 wt% C is a component useful not only for making the structure uniform and fine during hot rolling and cold rolling but also for developing the Goss orientation, and at least 0.02 wt% is contained. It is preferable. However, if the content exceeds 0.10 wt%, the Goss orientation is rather disturbed, so the upper limit is preferably about 0.10 wt%.

【0021】Si: 2.0〜4.5 wt% Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、4.5 wt%を上回ると冷延性が損なわれ、一方2.0 wt
%に満たないと比抵抗が低下するだけでなく、2次再結
晶および純化のために行われる最終高温焼鈍中に、α−
γ変態によって結晶方位のランダム化を生じ、十分な鉄
損改善効果が得られないので、Si量は2.0 〜4.5 wt%程
度にするのが好ましい。
Si: 2.0-4.5 wt% Si increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss, but if it exceeds 4.5 wt%, the cold ductility is impaired, while 2.0 wt%
%, The specific resistance decreases, and during the final high temperature annealing performed for secondary recrystallization and purification, α-
Since the crystal orientation is randomized by the γ transformation and a sufficient iron loss improving effect cannot be obtained, the Si content is preferably set to about 2.0 to 4.5 wt%.

【0022】さらに、Mn、Al、N、S、Seはいずれもイ
ンヒビター成分として添加され、最終焼鈍において1次
再結晶粒の成長を抑制し、(110)<001>方位の2次再結晶
粒を先鋭に発達させるのに必要な元素であり、所定の成
分範囲を外れれば充分なインヒビターの効果が得られな
くなるため、Mn: 0.02 〜0.15wt%、Al:0.015 〜0.04
0 wt%、N: 0.004〜0.010 wt%とし、S、Seのいずれ
か1種または2種を合計で0.008 〜0.050 wt%の範囲内
とする必要がある。
Further, Mn, Al, N, S, and Se are all added as inhibitor components to suppress the growth of primary recrystallized grains in the final annealing, and the secondary recrystallized grains having the (110) <001> orientation. Is an element necessary for the sharp development of Mn, and if it is out of the predetermined component range, the effect of the sufficient inhibitor cannot be obtained. Therefore, Mn: 0.02 to 0.15 wt%, Al: 0.015 to 0.04
It is necessary that 0 wt% and N: 0.004 to 0.010 wt%, and one or two kinds of S and Se be 0.008 to 0.050 wt% in total.

【0023】上記の成分組成になる電磁鋼スラブは、ま
ず1350℃以上の高温に加熱後、公知の熱間圧延を施して
板厚1.5 〜5.0mm の熱延板とする。この熱延工程では、
最終的にインヒビターMnS 、MnSeおよびAlN の微細析出
物を充分に得るために、一旦はスラブ加熱時にMn、S、
AlおよびNを充分に解離固溶させる必要がある。従っ
て、スラブ加熱温度はMn、S、Se、AlおよびNの成分含
有量に応じてこれらが充分に解離固溶できる適切な温度
に設定すべきであり、次いで熱延方法を適切に選択して
インヒビターの析出分散を充分に促進させることが肝要
である。
The electromagnetic steel slab having the above-described composition is first heated to a high temperature of 1350 ° C. or higher and then subjected to known hot rolling to obtain a hot-rolled sheet having a sheet thickness of 1.5 to 5.0 mm. In this hot rolling process,
In order to finally obtain fine precipitates of the inhibitors MnS, MnSe and AlN, once Mn, S,
It is necessary to sufficiently dissociate Al and N to form a solid solution. Therefore, the slab heating temperature should be set to an appropriate temperature at which Mn, S, Se, Al and N can be sufficiently dissociated and solid-dissolved according to the content of the components, and then the hot rolling method should be appropriately selected. It is essential to sufficiently promote the precipitation dispersion of the inhibitor.

【0024】次いで、熱延板に必要に応じて熱延板焼鈍
を施し、酸洗後、中間焼鈍を挟む2回以上の冷間圧延を
施して0.23mm以下の最終板厚に仕上げる。この冷間圧延
のうち、中間焼鈍前の1回目の累積冷延圧下率を(1)
式の如く熱延板の平均バンド厚(wb)に合わせて適宜変え
るものとする。冷間圧延については、必要に応じて磁気
特性を改善するため、公知の手段、すなわち冷延間に40
0 ℃未満で10分未満の低温焼きなましを行う、冷延パス
間で時効を行う、または350 ℃未満で圧延を行ってもよ
い。
Next, the hot-rolled sheet is annealed as required, pickled, and then cold-rolled twice or more with an intermediate anneal between them to finish to a final sheet thickness of 0.23 mm or less. Of the cold rolling, the first cumulative cold rolling reduction before intermediate annealing was (1)
As shown in the equation, the thickness may be changed according to the average band thickness (wb) of the hot rolled sheet. For cold rolling, in order to improve the magnetic properties as necessary, the known means, namely
Low temperature annealing at less than 0 ° C for less than 10 minutes, aging between cold rolling passes, or rolling at less than 350 ° C may be performed.

【0025】また、冷間圧延間にはさむ中間焼鈍は冷延
組織を再結晶させ結晶組織の均一化を促し、併せて鋼中
C濃度を調節する目的で施す。そのためには中間焼鈍温
度は750 ℃以上が必要であるが、1200℃を越えると、イ
ンヒビターのMnS 、MnSeおよびAlN の微細析出物が粗大
化してインヒビターとしての2次再結晶粒成長抑制効果
が低下するため、750 〜1200℃の温度範囲内が望まし
い。
The intermediate annealing sandwiched between cold rolling is performed for the purpose of recrystallizing the cold rolled structure to promote homogenization of the crystal structure and also for controlling the C concentration in steel. For that purpose, the intermediate annealing temperature needs to be 750 ℃ or higher, but if it exceeds 1200 ℃, the fine precipitates of MnS, MnSe and AlN of the inhibitor become coarse and the inhibitory effect on the secondary recrystallized grain growth as an inhibitor decreases. Therefore, the temperature is preferably within the range of 750 to 1200 ° C.

【0026】[0026]

【実施例】【Example】

(実施例1)C:0.070 wt%,Si:3.30wt%,Mn:0.07
1 wt%,酸可溶性Al:0.020 wt%,N:0.0080wt%,S
e:0.016 wt%を含有する210mm 厚の連鋳スラブを1400
℃で1時間加熱した後、熱間圧延を行った。その際、仕
上圧延機入側温度−仕上圧延機出側の圧延速度の組合せ
をそれぞれ1050℃−1005mpm 、1050℃−710mpm、1200℃
−705mpm、1270℃−645mpmとして板厚2.2mm の熱延板を
製造した。
(Example 1) C: 0.070 wt%, Si: 3.30 wt%, Mn: 0.07
1 wt%, acid-soluble Al: 0.020 wt%, N: 0.0080 wt%, S
e: 1400 continuous cast slabs with a thickness of 210 mm containing 0.016 wt%
After heating at 0 ° C for 1 hour, hot rolling was performed. At that time, the combination of the finish rolling mill inlet side temperature-the finishing rolling mill exit side rolling speed was set to 1050 ° C-1005mpm, 1050 ° C-710mpm, 1200 ° C, respectively.
A hot-rolled sheet having a thickness of 2.2 mm was manufactured at -705 mpm and 1270 ° C-645 mpm.

【0027】次いで熱延コイルを1000℃で1分間熱延板
焼鈍後、最初の冷延をそれぞれ累積冷延圧下率10、30、
40、50、70%にて行った。しかる後1000℃で1分の中間
焼鈍を施し、その後冷間圧延を行って0.22mm厚に仕上げ
た。こうして得られた鋼板を820 ℃の湿水素中で脱炭焼
鈍し、MgO を主成分とする焼鈍分離剤を塗布した後1200
℃で10時間の仕上げ焼鈍を施し、さらにその後絶縁被膜
を塗布して製品とした。
Then, the hot-rolled coil is annealed at 1000 ° C. for 1 minute, and then the first cold-rolling is performed by cumulative cold-rolling reductions of 10, 30 and
It was performed at 40, 50 and 70%. Then, an intermediate annealing was performed at 1000 ° C. for 1 minute, and then cold rolling was performed to finish the thickness to 0.22 mm. The steel sheet thus obtained was decarburized and annealed in wet hydrogen at 820 ° C, and an annealing separator containing MgO as a main component was applied.
Finish annealing was performed at 10 ° C for 10 hours, and then an insulating coating was applied to obtain a product.

【0028】表1にこれらの熱延条件、熱延板バンド厚
およびこの製品の磁束密度B8 を示す。本発明に従って
得られた製品は比較例に比べて磁束密度が安定して高い
ことがわかる。
Table 1 shows these hot rolling conditions, hot rolled sheet band thickness and magnetic flux density B8 of this product. It can be seen that the magnetic flux density of the product obtained according to the present invention is stable and higher than that of the comparative example.

【0029】[0029]

【表1】 [Table 1]

【0030】(実施例2)C:0.072 wt%、Si:3.25wt
%、Mn:0.068 wt%、酸可溶性Al:0.022 wt%、N:0.
0083wt%、Se:0.016 wt%を含有する 220mm厚の連鋳ス
ラブを1400℃で1時間加熱した後、熱間圧延を行った。
その際、仕上圧延機入側温度−仕上圧延機出側の圧延速
度の組合せをそれぞれ1000℃−755mpm、1090℃−625mp
m、1210℃−660mpm、1320℃−500mpmとして板厚1.8mm
の熱延板を製造した。
(Example 2) C: 0.072 wt%, Si: 3.25 wt%
%, Mn: 0.068 wt%, acid-soluble Al: 0.022 wt%, N: 0.
A 220 mm-thick continuous cast slab containing Se and 0.016 wt% was heated at 1400 ° C. for 1 hour and then hot-rolled.
At that time, the combination of the temperature at the entrance of the finish rolling mill-the rolling speed at the exit of the finishing mill is 1000 ° C-755mpm, 1090 ° C-625mp, respectively.
m, 1210 ℃ -660mpm, 1320 ℃ -500mpm, plate thickness 1.8mm
The hot rolled sheet was manufactured.

【0031】次いで熱延コイルを1000℃で1分間ノルマ
ライジング焼鈍後、最初の冷延をそれぞれ累積冷延圧下
率10、30、40、50、70%にて行った。しかる後1000℃で
1分の中間焼鈍を施し、その後 180℃にて冷間圧延を行
って0.22mm厚に仕上げた。こうして得られた鋼板を 820
℃の湿水素中で脱炭焼鈍し、MgO を主成分とする焼鈍分
離剤を塗布した後1200℃で10時間の仕上げ焼鈍を施し、
さらにその後絶縁被膜を塗布して製品とした。
Next, the hot rolled coil was subjected to normalizing annealing at 1000 ° C. for 1 minute, and then the first cold rolling was performed at cumulative cold rolling reduction rates of 10, 30, 40, 50 and 70%, respectively. After that, an intermediate annealing was performed at 1000 ° C for 1 minute, and then cold rolling was performed at 180 ° C to finish to a thickness of 0.22 mm. The steel plate thus obtained is 820
Decarburization anneal in wet hydrogen at ℃, apply an annealing separation agent mainly composed of MgO, then finish anneal at 1200 ℃ for 10 hours,
After that, an insulating film was applied to obtain a product.

【0032】表2にこれらの熱延条件、熱延板バンド厚
およびこの製品の磁束密度B8 を示す。本発明に従って
得られた製品は比較例に比べて磁束密度が安定して高い
ことがわかる。
Table 2 shows the hot rolling conditions, hot rolled sheet band thickness and magnetic flux density B8 of this product. It can be seen that the magnetic flux density of the product obtained according to the present invention is stable and higher than that of the comparative example.

【0033】[0033]

【表2】 [Table 2]

【0034】(実施例3)C:0.065 wt%、Si:3.32wt
%、Mn:0.072 wt%、酸可溶性Al:0.023 wt%、N:0.
0081wt%、Se:0.015 wt%を含有する 220mm厚の連鋳ス
ラブを1400℃で1時間加熱した後、熱間圧延を行った。
その際、仕上圧延機入側温度−仕上圧延機出側の圧延速
度の組合せをそれぞれ1080℃−665mpm、1120℃−910mp
m、1180℃−675mpm、1250℃−690mpmとして板厚1.8mm
の熱延板を製造した。
(Example 3) C: 0.065 wt%, Si: 3.32 wt%
%, Mn: 0.072 wt%, acid-soluble Al: 0.023 wt%, N: 0.
A 220 mm thick continuous cast slab containing Se: 0.015 wt% and Se: 0.015 wt% was heated at 1400 ° C. for 1 hour and then hot-rolled.
At that time, the combination of the temperature on the inlet side of the finish rolling mill-the rolling speed on the outlet side of the finishing mill was 1080 ° C-665mpm and 1120 ° C-910mp, respectively.
m, 1180 ℃ -675mpm, 1250 ℃ -690mpm, plate thickness 1.8mm
The hot rolled sheet was manufactured.

【0035】次いで熱延コイルを1000℃で1分間ノルマ
ライジング焼鈍後、最初の冷延をそれぞれ累積冷延圧下
率10、30、40、50、70%にて行った。しかる後1000℃で
1分の中間焼鈍を施し、その後冷間圧延を4パスで行い
その際、3パス目の前に 250℃で60秒間保持した。こう
して0.18mm厚に仕上げた。こうして得られた鋼板を 820
℃の湿水素中で脱炭焼鈍し、MgO を主成分とする焼鈍分
離剤を塗布した後1200℃で10時間の仕上げ焼鈍を施し、
さらにその後絶縁被膜を塗布して製品とした。
Next, the hot rolled coil was subjected to normalizing annealing at 1000 ° C. for 1 minute, and then the first cold rolling was performed at cumulative cold rolling reduction rates of 10, 30, 40, 50 and 70%, respectively. Then, an intermediate annealing was performed at 1000 ° C. for 1 minute, and then cold rolling was performed in 4 passes, in which case it was held at 250 ° C. for 60 seconds before the third pass. In this way it was finished to a thickness of 0.18 mm. The steel plate thus obtained is 820
Decarburization anneal in wet hydrogen at ℃, apply an annealing separation agent mainly composed of MgO, then finish anneal at 1200 ℃ for 10 hours,
After that, an insulating film was applied to obtain a product.

【0036】表3にこれらの熱延条件、熱延板バンド厚
およびこの製品の磁束密度B8を示す。本発明に従って
得られた製品は比較例に比べて磁束密度が安定して高い
ことがわかる。
Table 3 shows these hot rolling conditions, hot rolled sheet band thickness and magnetic flux density B8 of this product. It can be seen that the magnetic flux density of the product obtained according to the present invention is stable and higher than that of the comparative example.

【0037】[0037]

【表3】 [Table 3]

【0038】(実施例4)C:0.073 wt%、Si:3.32wt
%、Mn:0.072 wt%、酸可溶性Al:0.023 wt%、N:0.
0081wt%、Se:0.015 wt%を含有する 210mm厚の連鋳ス
ラブを1400℃で1時間加熱した後、熱間圧延を行った。
その際、仕上圧延機入側温度−仕上圧延機出側の圧延速
度の組合せをそれぞれ 950℃−670mpm、1080℃−620mp
m、1170℃−750mpm、1220℃−1000mpm として板厚 1.6m
mの熱延板を製造した。
(Example 4) C: 0.073 wt%, Si: 3.32 wt%
%, Mn: 0.072 wt%, acid-soluble Al: 0.023 wt%, N: 0.
A 210 mm thick continuous cast slab containing Se and 0.015 wt% was heated at 1400 ° C. for 1 hour and then hot-rolled.
At that time, the combination of the temperature of the finishing rolling mill inlet side-the rolling speed of the finishing rolling mill exit side was set to 950 ° C-670mpm and 1080 ° C-620mpm, respectively.
m, 1170 ℃ -750mpm, 1220 ℃ -1000mpm, thickness 1.6m
m hot rolled sheet was produced.

【0039】次いで熱延コイルを1000℃で1分間ノルマ
ライジング焼鈍後、最初の冷延をそれぞれ累積冷延圧下
率10、30、40、50、70%にて行った。しかる後1000℃で
1分の中間焼鈍を施しその後 180℃にて冷間圧延を行っ
て0.18mm厚に仕上げた。こうして得られた鋼板を 820℃
の湿水素中で脱炭焼鈍し、MgO を主成分とする焼鈍分離
剤を塗布した後1200℃で10時間の仕上げ焼鈍を施し、さ
らにその後絶縁被膜を塗布して製品とした。
Then, the hot rolled coil was subjected to normalizing annealing at 1000 ° C. for 1 minute, and then the first cold rolling was performed at cumulative cold rolling reduction rates of 10, 30, 40, 50 and 70%, respectively. Then, an intermediate annealing was performed at 1000 ° C for 1 minute, and then cold rolling was performed at 180 ° C to finish to a thickness of 0.18 mm. The steel plate thus obtained is 820 ℃
After decarburizing and annealing in wet hydrogen and applying an annealing separator containing MgO 2 as a main component, finish annealing was performed at 1200 ° C. for 10 hours, and then an insulating coating was applied to obtain a product.

【0040】この製品の磁束密度B8 を測定した結果を
表4に示す。本発明に従って得られた製品は比較例に比
べて磁束密度が高いことがわかる。
The results of measuring the magnetic flux density B8 of this product are shown in Table 4. It can be seen that the product obtained according to the present invention has a higher magnetic flux density than the comparative example.

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【発明の効果】本発明に従い、熱間圧延時の仕上圧延機
入側温度、仕上圧延機出側の圧延速度を適切に選び熱延
バンド厚を5〜50μm とし、熱延板バンド厚に応じて最
初の累積冷延圧下率を変えることによって、従来法に比
べて磁束密度のばらつきが激減し、高位の磁束密度B8
が安定して得られるようになったため、その工業的効果
は非常に大きい。
EFFECTS OF THE INVENTION According to the present invention, the temperature of the finish rolling mill inlet side and the rolling speed of the finish rolling mill outlet side during hot rolling are appropriately selected to set the hot rolled band thickness to 5 to 50 μm, and the hot rolled sheet band thickness can be adjusted accordingly. By changing the first cumulative cold rolling reduction ratio, the variation in magnetic flux density is drastically reduced compared to the conventional method, and the higher magnetic flux density B8
Has become very stable, and its industrial effect is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】仕上圧延機入側温度と仕上圧延機出側の圧延速
度が熱延板バンド厚に及ぼす影響を示す特性図である。
FIG. 1 is a characteristic diagram showing the influence of the temperature on the inlet side of the finish rolling mill and the rolling speed on the outlet side of the finish rolling mill on the thickness of the hot-rolled strip band.

【図2】熱延バンド厚に対する最初の累積冷延圧下率の
好適範囲を示す特性図である。
FIG. 2 is a characteristic diagram showing a preferable range of a first cumulative cold rolling reduction rate with respect to a hot rolled band thickness.

【図3】熱間圧延終了温度の異なる鋼板に同一冷延圧下
率で冷延したときの製品板のB8 を示す特性図である。
FIG. 3 is a characteristic diagram showing B8 of a product sheet when cold-rolled at the same cold rolling reduction rate to steel sheets having different hot rolling finish temperatures.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 隆史 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 高宮 俊人 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takashi Obara 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Technical Research Headquarters (72) Toshito Takamiya 1 Kawasaki-cho, Chuo-ku, Chiba Address: Kawasaki Steel Corporation Technical Research Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.02〜0.10wt%、Si:2.0 〜4.5 wt
%、Mn:0.02〜0.15wt%、酸化溶性Al:0.015 〜0.040
wt%およびN:0.0040〜0.0100wt%を含み、さらにSお
よびSeのいずれか1種または2種を合計で0.008 〜0.08
0 wt%含有する電磁鋼スラブを熱間圧延した後、中間焼
鈍をはさむ2回以上の冷間圧延を施して0.23mm以下の最
終製品板厚とし、しかるのち脱炭焼鈍を施し、次いで鋼
板表面にMgO を主成分とする焼鈍分離剤を塗布してから
仕上焼鈍を施す一連の工程によって方向性電磁薄鋼板を
製造する際に、 熱間仕上圧延時の仕上圧延機入側温度と仕上圧延機出側
の圧延速度を制御し、熱間圧延終了後の巻取った状態に
おいて鋼板圧延方向および鋼板表面に平行に形成された
バンド状組織の板厚方向の平均厚wb(μm)を5〜50μm
とし、その範囲内で平均厚wbに応じて、最初の中間焼鈍
前で(1)式から求めた累積冷延圧下率R1(%)で冷
間圧延することを特徴とする磁束密度が高い方向性電磁
薄鋼板の製造方法。 0.015×(wb-5)2 +20≦R1≦ 0.015×(wb-5)2 +50 ・・・・・(1)
1. C: 0.02-0.10 wt%, Si: 2.0-4.5 wt
%, Mn: 0.02 to 0.15 wt%, Oxidizing Al: 0.015 to 0.040
wt% and N: 0.0040 to 0.0100 wt%, and one or two of S and Se in total of 0.008 to 0.08
After hot rolling an electromagnetic steel slab containing 0 wt%, cold rolling is performed twice or more with intermediate annealing to give a final product sheet thickness of 0.23 mm or less, followed by decarburization annealing, and then the steel sheet surface. When a grain-oriented electrical steel sheet is manufactured by a series of processes in which an annealing separator containing MgO as the main component is applied and then finish annealing is performed, the temperature at the inlet side of the finish rolling machine and the finish rolling machine during hot finish rolling are used. By controlling the rolling speed on the delivery side, the average thickness wb (μm) in the plate thickness direction of the band-like structure formed parallel to the steel plate rolling direction and the steel plate surface in the rolled state after the end of hot rolling is 5 to 50 μm.
In that range, according to the average thickness wb, cold rolling is performed at the cumulative cold rolling reduction R1 (%) obtained from the formula (1) before the first intermediate annealing, and the direction of high magnetic flux density is characterized by For manufacturing high-performance electromagnetic thin steel sheet. 0.015 x (wb-5) 2 +20 ≤ R1 ≤ 0.015 x (wb-5) 2 +50 (1)
【請求項2】 熱間仕上圧延において、仕上圧延機入側
温度を 950℃以上1300℃以下とし、仕上圧延機出側の圧
延速度を600mpm以上1010mpm 以下に制御することを特徴
とする請求項1記載の磁束密度が高い方向性電磁薄鋼板
の製造方法。
2. In the hot finish rolling, the temperature on the inlet side of the finishing rolling mill is controlled to 950 ° C. or higher and 1300 ° C. or lower, and the rolling speed on the outlet side of the finishing rolling mill is controlled to 600 mpm or more and 1010 mpm or less. A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density as described.
JP6231994A 1994-03-31 1994-03-31 Manufacturing method of grain-oriented electromagnetic steel sheet with high magnetic flux density Expired - Fee Related JP2888324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6231994A JP2888324B2 (en) 1994-03-31 1994-03-31 Manufacturing method of grain-oriented electromagnetic steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6231994A JP2888324B2 (en) 1994-03-31 1994-03-31 Manufacturing method of grain-oriented electromagnetic steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH07268471A true JPH07268471A (en) 1995-10-17
JP2888324B2 JP2888324B2 (en) 1999-05-10

Family

ID=13196709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6231994A Expired - Fee Related JP2888324B2 (en) 1994-03-31 1994-03-31 Manufacturing method of grain-oriented electromagnetic steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JP2888324B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279689A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Method for producing grain oriented silicon steel sheet
JP2011219793A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Hot-rolled plate for oriented electromagnetic steel sheet excellent in magnetic characteristic, and method of producing the same
JP2017538859A (en) * 2014-10-15 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip produced by the method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279689A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Method for producing grain oriented silicon steel sheet
JP4665417B2 (en) * 2004-03-29 2011-04-06 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP2011219793A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Hot-rolled plate for oriented electromagnetic steel sheet excellent in magnetic characteristic, and method of producing the same
JP2017538859A (en) * 2014-10-15 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip produced by the method
US11239012B2 (en) 2014-10-15 2022-02-01 Sms Group Gmbh Process for producing grain-oriented electrical steel strip

Also Published As

Publication number Publication date
JP2888324B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
US5643370A (en) Grain oriented electrical steel having high volume resistivity and method for producing same
KR20020013442A (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
JPS5948934B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH07268471A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JP7193041B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP2688146B2 (en) Method for producing unidirectional electrical steel sheet having high magnetic flux density
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH093541A (en) Production of grain oriented silicon steel sheet with extremely high magnetic flux density
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH06212262A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JP2003268452A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with adequate magnetic property and mirror plane
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
CN117355621A (en) Method for producing oriented electrical steel sheet
JPH07118749A (en) Production of grain-oriented silicon steel sheet low in core loss
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100219

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees