JP2002203539A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2002203539A
JP2002203539A JP2000398723A JP2000398723A JP2002203539A JP 2002203539 A JP2002203539 A JP 2002203539A JP 2000398723 A JP2000398723 A JP 2000398723A JP 2000398723 A JP2000398723 A JP 2000398723A JP 2002203539 A JP2002203539 A JP 2002203539A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
metal
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000398723A
Other languages
Japanese (ja)
Other versions
JP4140198B2 (en
Inventor
Satoru Suzuki
哲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000398723A priority Critical patent/JP4140198B2/en
Publication of JP2002203539A publication Critical patent/JP2002203539A/en
Application granted granted Critical
Publication of JP4140198B2 publication Critical patent/JP4140198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery wherein a low-temperature performance of a low-temperature output or the like is improved. SOLUTION: The lithium secondary battery is characterized that a metal having a reducing catalyst action is carried on a positive electrode. By this, because a reaction resistance of inner resistance of the battery is reduced, especially cell performance in a low temperature (low temperature output or the like) is improved. The metal having the reducing catalyst action is preferable to be carried on the surface of the positive electrode active substance powder constituting the positive electrode active substance layer. As for the metal, at least one kind of Rh, Ru, and Ir is preferable, and Rh is especially preferable. As for its carried amount, a range of 15 to 700 μg per 1 m2 of specific surface area of the positive electrode active substance is preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
関し、詳しくは、低温出力等の低温性能が改善されたリ
チウム二次電池に関する。
The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery having improved low-temperature performance such as low-temperature output.

【0002】[0002]

【従来の技術】リチウム二次電池は、正極活物質として
リチウム含有酸化物等を用い、負極活物質としては炭素
質材料等を用い、また電解液としてはリチウム電解質を
溶解させた非水電解液等を用いて構成される。このリチ
ウム二次電池は、充電時には正極活物質中のリチウムイ
オンが電解液を介して負極活物質側へと移動して吸蔵さ
れ、放電時には逆に負極から放出されたリチウムイオン
が正極活物質側へと移動して捕捉される。
2. Description of the Related Art A lithium secondary battery uses a lithium-containing oxide or the like as a positive electrode active material, a carbonaceous material or the like as a negative electrode active material, and a non-aqueous electrolyte in which a lithium electrolyte is dissolved as an electrolyte. And so on. In this lithium secondary battery, during charging, lithium ions in the positive electrode active material move to the negative electrode active material side via the electrolytic solution and are occluded, and when discharging, lithium ions released from the negative electrode are reversed. Moves to and gets caught.

【0003】上記のようなリチウム二次電池に用いられ
る正極活物質は、一般にあまり電気伝導性の大きなもの
ではないため、通常は上記正極活物質の粉体にカーボン
ブラック等の導電化材を添加して、正極活物質層中にお
ける電子伝導性を向上させることにより電池の内部抵抗
を低減させている。また、特開平11−283612号
公報には、この正極活物質粉体の少なくとも一部の表面
に金属被膜を形成するかあるいは金属粒子を固着させる
ことにより内部抵抗を低減し、これにより充放電サイク
ル特性の改善および高出力化を図ったリチウム二次電池
が開示されている。金属被膜または金属粒子としては、
アルミニウム、チタン、金、白金のうち少なくとも一種
以上の金属からなるものが好ましいとされている。
Since the positive electrode active material used in the lithium secondary battery as described above is generally not very conductive, a conductive material such as carbon black is usually added to the powder of the positive electrode active material. Thus, the internal resistance of the battery is reduced by improving the electron conductivity in the positive electrode active material layer. Japanese Patent Application Laid-Open No. 11-283612 discloses that the internal resistance is reduced by forming a metal coating or fixing metal particles on at least a part of the surface of the positive electrode active material powder. A lithium secondary battery with improved characteristics and higher output has been disclosed. As the metal coating or metal particles,
It is said that those made of at least one metal among aluminum, titanium, gold and platinum are preferable.

【0004】[0004]

【発明が解決しようとする課題】ところで、電池の内部
抵抗は直流抵抗と反応抵抗とに分けられる。常温におけ
る電池反応では反応抵抗は小さく、内部抵抗の大部分は
直流抵抗により占められる。上記公報に記載の二次電池
における内部抵抗の低減は、電子伝導性の向上にともな
う直流抵抗の減少により達成されたものと考えられる。
これに対して、電池の低温(例えば−30℃)使用時に
おいては、内部抵抗の大部分は反応抵抗により占められ
る。したがって、上記公報のような電子伝導性の向上に
よっては、低温における電池性能、例えば低温出力を改
善する効果を得ることはできない。
The internal resistance of a battery is divided into a DC resistance and a reaction resistance. In a battery reaction at room temperature, the reaction resistance is small, and most of the internal resistance is occupied by DC resistance. It is considered that the reduction of the internal resistance in the secondary battery described in the above publication was achieved by the reduction of the DC resistance due to the improvement of the electron conductivity.
On the other hand, when the battery is used at a low temperature (for example, -30 ° C.), most of the internal resistance is occupied by the reaction resistance. Therefore, the effect of improving the battery performance at low temperatures, for example, the low-temperature output, cannot be obtained by improving the electronic conductivity as described in the above publication.

【0005】本発明の目的は、低温出力等の低温性能が
改善されたリチウム二次電池を提供することにある。
An object of the present invention is to provide a lithium secondary battery with improved low-temperature performance such as low-temperature output.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載のリチウム二次電池は、還元触媒作用
をもつ金属が正極に担持されていることを特徴とする。
このように、還元触媒作用をもつ金属を正極に担持させ
ることにより、内部抵抗のうち特に反応抵抗が低減され
て、低温における電池性能(例えば低温出力)が改善さ
れる。これは、上記金属のもつ還元触媒作用による、正
極またはその近傍におけるリチウムイオンの移動性の向
上および/または正極におけるリチウムイオンの電池反
応(還元反応)の促進によるものと推察される。
According to a first aspect of the present invention, there is provided a lithium secondary battery, wherein a metal having a reduction catalytic action is supported on a positive electrode.
As described above, by supporting a metal having a reduction catalytic action on the positive electrode, particularly the reaction resistance among the internal resistances is reduced, and the battery performance at a low temperature (for example, low-temperature output) is improved. This is presumed to be due to the improvement in the mobility of lithium ions at or near the positive electrode and / or the promotion of the battery reaction (reduction reaction) of lithium ions at the positive electrode due to the reduction catalytic action of the metal.

【0007】この還元触媒作用をもつ金属は、正極活物
質からなる粉体(正極活物質粉体)の表面に担持されて
もよく、この正極活物質粉体を用いて集電体上に形成さ
れた正極活物質層の表面に担持されてもよい。なお、上
記正極活物質層は、上記正極活物質粉体にバインダおよ
び溶媒、さらに必要に応じて導電化材等を混合してなる
ペーストを正極集電体に塗布する等の方法により形成す
ることができる。また、一般に正極活物質粉体は正極活
物質の微粉末(以下、「正極活物質微粉」ともいう。)
が凝集してなる二次粒子であるが、この正極活物質微粉
(一次粒子)の表面に上記金属を担持させてもよい。こ
のうち、正極活物質粉体の表面または正極活物質層の表
面に上記金属を担持させることが好ましく、請求項2記
載のように、正極活物質粉体の表面に担持させることが
さらに好ましい。
The metal having a reducing catalytic action may be carried on the surface of a powder of a positive electrode active material (a positive electrode active material powder), and formed on a current collector using the positive electrode active material powder. It may be supported on the surface of the formed positive electrode active material layer. The positive electrode active material layer is formed by a method in which a paste obtained by mixing the positive electrode active material powder with a binder, a solvent, and, if necessary, a conductive material is applied to the positive electrode current collector. Can be. Generally, the positive electrode active material powder is fine powder of the positive electrode active material (hereinafter, also referred to as “positive electrode active material fine powder”).
Are the secondary particles formed by agglomeration, but the metal may be supported on the surface of the fine powder of the positive electrode active material (primary particles). Of these, the metal is preferably supported on the surface of the positive electrode active material powder or the surface of the positive electrode active material layer, and more preferably, on the surface of the positive electrode active material powder.

【0008】上記還元触媒作用をもつ金属は、金属被膜
の形状で正極に担持されてもよく、金属微粉末(粒子)
の形状で担持されてもよい。また、正極活物質層の表面
に上記金属を担持させる場合、正極活物質層の表面全体
に上記金属を担持させてもよく、一部の領域のみに担持
させてもよい。正極活物質粉体の表面に上記金属が被膜
の状態で担持される場合、この金属被膜は各正極活物質
粉体の表面全体を覆ってもよく、粉体の一部表面のみを
覆ってもよい。上記金属を担持させた正極活物質粉体を
用いて正極活物質層を形成する場合には、この金属を担
持させた正極活物質粉体のみを使用してもよく、金属を
担持させた正極活物質粉体と金属を担持させていない正
極活物質粉体とを任意の割合に混合して用いてもよい。
[0008] The above-mentioned metal having a reducing catalytic action may be supported on the positive electrode in the form of a metal film, and the metal fine powder (particles)
May be supported. When the metal is supported on the surface of the positive electrode active material layer, the metal may be supported on the entire surface of the positive electrode active material layer, or may be supported on only a part of the surface. When the metal is supported on the surface of the positive electrode active material powder in the form of a film, the metal film may cover the entire surface of each positive electrode active material powder, or may cover only a part of the surface of the powder. Good. When forming the positive electrode active material layer using the positive electrode active material powder supporting the metal, only the positive electrode active material powder supporting the metal may be used. The active material powder and the positive electrode active material powder not supporting a metal may be used in a mixture at an arbitrary ratio.

【0009】正極活物質粉体または正極活物質層の表面
に、上記金属からなる被膜を形成する方法としては、蒸
着法、スパッタ法、プラズマコーティング、めっき法、
含浸担持法等を採用することができる。また、上記粉体
または層の表面に上記金属の粒子を固着させる方法とし
ては、熱プラズマコーティング、メカニカルグラインデ
ィング等の方法を用いることができる。
As a method for forming a film made of the above-mentioned metal on the surface of the positive electrode active material powder or the positive electrode active material layer, a vapor deposition method, a sputtering method, a plasma coating, a plating method,
An impregnation carrying method or the like can be adopted. In addition, as a method of fixing the metal particles on the surface of the powder or the layer, a method such as thermal plasma coating or mechanical grinding can be used.

【0010】上記還元触媒作用をもつ金属の担持量は、
請求項3記載のように、正極活物質の比表面積1m2
たり15〜700μg(以下、「μg/m2」と表
す。)とすることが好ましく、より好ましくは30〜6
00μg/m2、さらに好ましくは50〜500μg/
2である。上記金属の担持量が15μg/m2未満で
は、低温性能の向上効果が不十分となる場合がある。一
方、上記金属の担持量が700μg/m2を超えると、
この金属の存在によってリチウムイオンの移動がむしろ
妨げられる等の要因により電池低能が低下する場合があ
る。なお、上述のように金属を担持させた正極活物質粉
体と金属を担持させていない正極活物質粉体とを混合し
て用いる場合の担持量は、この正極活物質層の形成に用
いられた正極活物質全体に対する平均の担持量をいうも
のとする。
The amount of the metal having the above-mentioned catalytic activity for reduction is as follows:
As described in claim 3, it is preferably 15 to 700 μg (hereinafter, referred to as “μg / m 2 ”) per 1 m 2 of specific surface area of the positive electrode active material, and more preferably 30 to 6 μm.
00 μg / m 2 , more preferably 50 to 500 μg / m 2
m 2 . If the amount of the metal carried is less than 15 μg / m 2 , the effect of improving low-temperature performance may be insufficient. On the other hand, when the supported amount of the metal exceeds 700 μg / m 2 ,
The presence of this metal may lower the battery performance due to factors such as hindering the movement of lithium ions. Note that the amount of the positive electrode active material powder that supports the metal and the positive electrode active material powder that does not support the metal as described above when mixed and used is used for forming the positive electrode active material layer. It refers to the average carrying amount of the entire positive electrode active material.

【0011】上記還元触媒作用をもつ金属としては、一
種の金属のみを用いてもよく、二種以上の金属の合金を
用いてもよく、また二種以上の金属または合金を別個に
使用(例えば、金属Aを担持させた正極活物質粉体と、
金属Bを担持させた正極活物質粉体とを混合して用いる
等)してもよい。この還元触媒作用をもつ金属として
は、還元触媒作用をもつ貴金属を用いることが好まし
く、具体的には、請求項4記載のRh、RuおよびIr
が挙げられる。上記還元触媒作用をもつ貴金属のうち、
Rhを使用することが特に好ましい。
As the metal having a reduction catalytic action, only one kind of metal may be used, an alloy of two or more kinds of metals may be used, or two or more kinds of metals or alloys may be used separately (for example, A positive electrode active material powder supporting metal A;
For example, a mixture with a positive electrode active material powder supporting metal B may be used. As the metal having a reduction catalytic action, it is preferable to use a noble metal having a reduction catalytic action. Specifically, Rh, Ru and Ir according to claim 4
Is mentioned. Among the precious metals having a reduction catalytic action,
It is particularly preferred to use Rh.

【0012】本発明のリチウム二次電池における正極活
物質としては、請求項5記載のように、リチウム含有酸
化物を用いることが好ましい。このリチウム含有酸化物
の例としては、LiMn24等のリチウムマンガン酸化
物、LiNiO2等のリチウムニッケル酸化物、LiC
oO2等のリチウムコバルト酸化物、LiFeO2等のリ
チウム鉄酸化物等の、従来のリチウム二次電池の正極活
物質に用いられている化合物等が挙げられる。
As the positive electrode active material in the lithium secondary battery of the present invention, a lithium-containing oxide is preferably used. Examples of the lithium-containing oxide include lithium manganese oxide such as LiMn 2 O 4 , lithium nickel oxide such as LiNiO 2 , LiC
oO 2 and lithium cobalt oxide, lithium iron oxides such as LiFeO 2, compounds are used in the positive electrode active material of conventional lithium secondary battery, and the like.

【0013】本発明のリチウム二次電池に用いられる電
解液としては、従来のリチウム二次電池に用いられる各
種非プロトン性溶媒から選択される一種または二種以
上、例えばエチレンカーボネート(EC)、プロピレン
カーボネート(PC)、γ−ブチロラクトン、1,2−
ジメチルエタン、テトラヒドロフラン、1,3−ジオキ
サン、酢酸メチル、ジエチルカーボネート(DEC)、
エチルメチルカーボネート(EMC)、ジメチルカーボ
ネート(DMC)等を用いることができる。また電解質
としては、従来のリチウムイオン二次電池に用いられる
各種リチウム塩、例えばLiPF6、LiBF4、LiC
3SO3、LiClO4、LiAsF6、LiSbF6
LiC49SO3、LiN(CF3SO22、SiC(C
3SO23等を用いることができ、これらのうちLi
PF6、LiBF4が好ましい。電解液中における電解質
濃度は通常0.05〜10mol/L程度であり、好ま
しくは0.1〜5mol/L程度である。
The electrolyte used in the lithium secondary battery of the present invention may be one or more selected from various aprotic solvents used in conventional lithium secondary batteries, for example, ethylene carbonate (EC), propylene Carbonate (PC), γ-butyrolactone, 1,2-
Dimethylethane, tetrahydrofuran, 1,3-dioxane, methyl acetate, diethyl carbonate (DEC),
Ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like can be used. Examples of the electrolyte include various lithium salts used in conventional lithium ion secondary batteries, for example, LiPF 6 , LiBF 4 , LiC
F 3 SO 3, LiClO 4, LiAsF 6, LiSbF 6,
LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , SiC (C
F 3 SO 2 ) 3 and the like can be used, and among these, Li
PF 6 and LiBF 4 are preferred. The electrolyte concentration in the electrolyte is usually about 0.05 to 10 mol / L, preferably about 0.1 to 5 mol / L.

【0014】本発明のリチウム二次電池を構成する他の
材料についても、従来のリチウム二次電池に用いられる
材料等から適宜選択して使用すればよい。例えば、正極
または負極用の集電体としてはアルミニウム箔、ニッケ
ル箔、銅箔等の金属箔を、正極活物質層または負極活物
質層を形成するためのバインダとしてはポリフッ化ビニ
リデン(PVDF)、ポリテトラフルオロエチレン(P
TFE)等を用いることができる。負極活物質としては
アモルファスカーボン、グラファイト等の炭素材料ある
いはSi、Sn、In等の金属とLiとの合金または酸
化物等を用いることができる。あるいは、負極として金
属リチウムを用いてもよい。
The other materials constituting the lithium secondary battery of the present invention may be appropriately selected from materials used for conventional lithium secondary batteries. For example, a metal foil such as an aluminum foil, a nickel foil, or a copper foil is used as a current collector for a positive electrode or a negative electrode, and polyvinylidene fluoride (PVDF) is used as a binder for forming a positive electrode active material layer or a negative electrode active material layer. Polytetrafluoroethylene (P
TFE) can be used. As the negative electrode active material, a carbon material such as amorphous carbon or graphite, or an alloy or oxide of Li with a metal such as Si, Sn, or In can be used. Alternatively, metallic lithium may be used as the negative electrode.

【0015】また、正極活物質層の形成においては、導
電化材としてカーボンブラック、黒鉛、ピッチコークス
等を使用することができる。ここで、還元触媒作用をも
つ金属が正極活物質粉体の表面に担持される場合、正極
活物質層において十分な電子伝導性が確保できれば、こ
の正極活物質層には特に導電化材を含有させなくてもよ
い。また、正極活物質層の電子伝導性を高める等の目的
で、上記導電化材等と併用して、あるいは上記導電化材
等に代えて、正極活物質層に還元触媒作用をもたない金
属を含有させてもよい。この還元触媒作用をもたない金
属は、正極活物質粉体と単に混合して用いてもよく、正
極活物質粉体の表面に形成された金属被膜として用いて
もよく、また正極活物質粉体に固着された金属粒子とし
て用いてもよい。還元触媒作用をもたない金属の好まし
い例としては、アルミニウム、チタン、金、白金等から
選択される一種または二種以上が挙げられる。
In the formation of the positive electrode active material layer, carbon black, graphite, pitch coke or the like can be used as the conductive material. Here, when a metal having a reduction catalytic action is supported on the surface of the positive electrode active material powder, if a sufficient electron conductivity can be secured in the positive electrode active material layer, the positive electrode active material layer particularly contains a conductive material. You don't have to. In addition, for the purpose of enhancing the electron conductivity of the positive electrode active material layer, a metal having no reduction catalytic action on the positive electrode active material layer in combination with the conductive material or the like or in place of the conductive material or the like. May be contained. The metal having no reduction catalytic action may be used by simply mixing it with the positive electrode active material powder, or may be used as a metal film formed on the surface of the positive electrode active material powder, It may be used as metal particles fixed to the body. Preferred examples of the metal having no reduction catalytic action include one or more selected from aluminum, titanium, gold, platinum and the like.

【0016】本発明のリチウム二次電池のうち、還元触
媒作用をもつ金属を正極活物質粉体の表面に担持させた
ものは、例えば以下の方法により製造することができ
る。すなわち、正極活物質粉体の表面に還元触媒作用を
もつ金属を担持させ、次いでこの金属担持正極活物質粉
体にバインダ、溶媒および必要に応じて導電化材等を混
合して正極活物質ペーストを調製する。この正極活物質
ペーストを正極集電体上に塗布して正極活物質層を形成
させることにより正極を作製する。この正極を用いてリ
チウム二次電池を構成すればよい。本発明のリチウム二
次電池によると、還元触媒作用をもつ金属が正極に担持
されていない点以外は同様の構成を有するリチウム二次
電池と比較した場合において、SOC50%の条件で−
30℃における低温出力(W)を1.5倍以上とするこ
とができ、より好ましい実施態様では1.8倍以上、さ
らに好ましい態様では2倍以上の低温出力を得ることが
可能である。
Among the lithium secondary batteries of the present invention, those in which a metal having a reduction catalytic action is supported on the surface of a positive electrode active material powder can be produced, for example, by the following method. That is, a metal having a reduction catalytic action is supported on the surface of the positive electrode active material powder, and then a binder, a solvent, and a conductive material are mixed with the metal-supported positive electrode active material powder to form a positive electrode active material paste. Is prepared. This positive electrode active material paste is applied on a positive electrode current collector to form a positive electrode active material layer, thereby producing a positive electrode. What is necessary is just to comprise a lithium secondary battery using this positive electrode. According to the lithium secondary battery of the present invention, when compared with a lithium secondary battery having the same configuration except that a metal having a reduction catalytic action is not supported on the positive electrode, the SOC is −50%.
The low-temperature output (W) at 30 ° C. can be 1.5 times or more, more preferably 1.8 times or more, and more preferably 2 times or more the low-temperature output.

【0017】[0017]

【発明の実施の形態】以下、実施例により本発明をさら
に具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described more specifically by way of examples.

【0018】(1)リチウム二次電池の作製 正極活物質粉体として平均粒子径10μmのニッケル酸
リチウムを使用した。また、還元触媒作用をもつ金属と
してロジウム(Rh)を、還元触媒作用をもたない(酸
化触媒機能をもつ)金属として白金(Pt)を使用し
た。含浸担持法により、上記正極活物質粉体の表面に1
〜600μg/m2のRhまたはPtを担持させた。正
極集電体としてのアルミニウム箔に、この金属担持粉体
を用いて調製されたペーストを塗布して正極活物質層を
作製し、リチウム二次電池用の正極を得た。なお、この
正極活物質層には、導電化材としてのカーボンブラック
が含有されている。一方、負極集電体として銅箔、負極
活物質としてグラファイトを用いて負極を作製した。ま
た、セパレータとしては多孔質ポリエチレンフィルム
を、電解液としては1mol/LのLiPF6を含むE
CとDECとの重量比=3:7の混合溶媒を用いた。こ
れらの材料を用いてコイン型のリチウム二次電池を構成
した。
(1) Production of Lithium Secondary Battery As the positive electrode active material powder, lithium nickel oxide having an average particle diameter of 10 μm was used. Rhodium (Rh) was used as a metal having a reduction catalytic action, and platinum (Pt) was used as a metal having no reduction catalytic action (having an oxidation catalytic function). The surface of the above-mentioned positive electrode active material powder was impregnated with 1
600600 μg / m 2 of Rh or Pt was loaded. A paste prepared using this metal-supported powder was applied to an aluminum foil as a positive electrode current collector to form a positive electrode active material layer, and a positive electrode for a lithium secondary battery was obtained. The positive electrode active material layer contains carbon black as a conductive material. On the other hand, a negative electrode was manufactured using a copper foil as a negative electrode current collector and graphite as a negative electrode active material. Further, a porous polyethylene film is used as a separator, and an electrolyte containing 1 mol / L of LiPF 6 is used as an electrolyte.
A mixed solvent having a weight ratio of C to DEC = 3: 7 was used. A coin-type lithium secondary battery was constructed using these materials.

【0019】(2)低温出力の評価 上記により得られたリチウム二次電池をSOC50%に
調整し、10秒間出力のIV法により、−30℃におけ
る出力を測定した。その結果を、金属(RhまたはP
t)の担持量と低温出力との関係として図1に示す。図
1から判るように、還元触媒活性をもつRhを正極に5
0μg/m2、100μg/m2または500μg/m2
担持させたリチウム二次電池では、低温出力が明らかに
向上した。これに対して、酸化触媒活性をもつPtを担
持させた場合には、担持量にかかわらず低温出力の向上
効果はみられなかった。
(2) Evaluation of low-temperature output The lithium secondary battery obtained as described above was adjusted to an SOC of 50%, and the output at −30 ° C. was measured by the IV method for 10 seconds. The result is converted to a metal (Rh or P
FIG. 1 shows the relationship between the carried amount of t) and the low-temperature output. As can be seen from FIG. 1, Rh having reduction catalyst activity is 5
0 μg / m 2 , 100 μg / m 2 or 500 μg / m 2
The low-temperature output was clearly improved in the supported lithium secondary battery. On the other hand, when Pt having an oxidation catalyst activity was carried, no effect of improving the low-temperature output was observed regardless of the carrying amount.

【0020】(3)常温出力の評価 上記により得られたリチウム二次電池をSOC50%に
調整し、10秒間出力のIV法により、25℃における
出力を測定した。その結果を、金属の担持量と常温出力
との関係として図2に示す。図2から判るように、還元
触媒活性をもつRhを正極に50μg/m2、100μ
g/m2または500μg/m2担持させたリチウム二次
電池では、常温出力が同等あるいはやや向上した。すな
わち、これらの電池によると、常温出力を同等以上に維
持しつつ、低温出力を明らかに向上させることができ
た。一方、酸化触媒活性をもつPtを担持した場合には
出力の向上効果はみられなかった。
(3) Evaluation of output at room temperature The lithium secondary battery obtained above was adjusted to an SOC of 50%, and the output at 25 ° C. was measured by an IV method for 10 seconds. The results are shown in FIG. 2 as the relationship between the amount of metal carried and the room temperature output. As can be seen from FIG. 2, Rh having reduction catalytic activity was applied to the positive electrode at 50 μg / m 2 and 100 μg.
In the lithium secondary battery loaded with g / m 2 or 500 μg / m 2 , the output at room temperature was equivalent or slightly improved. That is, according to these batteries, the low-temperature output could be clearly improved while maintaining the normal-temperature output at or above the same level. On the other hand, when Pt having oxidation catalytic activity was supported, no effect of increasing the output was observed.

【0021】なお、上記実施例ではコイン型のリチウム
二次電池を用いて作製したが、本発明はコイン型以外の
形状、例えば巻回型のリチウム二次電池にも適用するこ
とができる。
In the above embodiment, a coin-type lithium secondary battery was used. However, the present invention can be applied to a shape other than the coin type, for example, a wound lithium secondary battery.

【0022】[0022]

【発明の効果】本発明によると、還元触媒作用をもつ金
属が正極に担持されていることにより、常温出力等の常
温性能を同等以上に維持しつつ、低温出力等の低温性能
を向上させることができる。
According to the present invention, since a metal having a reduction catalytic action is supported on the positive electrode, the low-temperature performance such as low-temperature output can be improved while maintaining the normal-temperature performance such as normal-temperature output at the same level or higher. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金属の担持量と低温出力との関係を示す特性図
である。
FIG. 1 is a characteristic diagram showing a relationship between a supported amount of metal and a low-temperature output.

【図2】金属の担持量と常温出力との関係を示す特性図
である。
FIG. 2 is a characteristic diagram showing a relationship between a supported amount of metal and a normal temperature output.

フロントページの続き Fターム(参考) 5H029 AJ06 AK03 AL02 AL06 AL07 AL08 AL12 AM03 AM04 AM07 CJ14 DJ08 DJ16 EJ01 HJ01 HJ07 5H050 AA12 BA16 BA17 CA07 CA08 CA09 CB02 CB07 CB08 CB09 CB12 DA02 DA09 DA16 EA05 FA17 GA15 HA01 HA07 Continued on front page F term (reference) 5H029 AJ06 AK03 AL02 AL06 AL07 AL08 AL12 AM03 AM04 AM07 CJ14 DJ08 DJ16 EJ01 HJ01 HJ07 5H050 AA12 BA16 BA17 CA07 CA08 CA09 CB02 CB07 CB08 CB09 CB12 DA02 DA09 DA16 EA05 FA17 GA

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 還元触媒作用をもつ金属が正極に担持さ
れていることを特徴とするリチウム二次電池。
1. A lithium secondary battery wherein a metal having a reduction catalytic action is supported on a positive electrode.
【請求項2】 上記還元触媒作用をもつ金属は、上記正
極活物質層を構成する正極活物質粉体の表面に担持され
ている請求項1記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the metal having a reduction catalytic action is carried on a surface of a positive electrode active material powder constituting the positive electrode active material layer.
【請求項3】 上記還元触媒作用をもつ金属の担持量
は、正極活物質の比表面積1m2あたり15〜700μ
gである請求項1または2記載のリチウム二次電池。
3. The amount of the metal having a catalytic activity for reduction is 15 to 700 μm per 1 m 2 of the specific surface area of the positive electrode active material.
The lithium secondary battery according to claim 1 or 2, wherein g is g.
【請求項4】 上記還元触媒作用をもつ金属はRh、R
uおよびIrの少なくとも一種である請求項1から3の
いずれか一項に記載のリチウム二次電池。
4. The metal having a reduction catalytic action is Rh, R
The lithium secondary battery according to any one of claims 1 to 3, wherein the lithium secondary battery is at least one of u and Ir.
【請求項5】 上記正極活物質はリチウム含有酸化物で
ある請求項1から4のいずれか一項記載のリチウム二次
電池。
5. The lithium secondary battery according to claim 1, wherein the positive electrode active material is a lithium-containing oxide.
JP2000398723A 2000-12-27 2000-12-27 Lithium secondary battery Expired - Fee Related JP4140198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398723A JP4140198B2 (en) 2000-12-27 2000-12-27 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398723A JP4140198B2 (en) 2000-12-27 2000-12-27 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002203539A true JP2002203539A (en) 2002-07-19
JP4140198B2 JP4140198B2 (en) 2008-08-27

Family

ID=18863627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398723A Expired - Fee Related JP4140198B2 (en) 2000-12-27 2000-12-27 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4140198B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092808A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Battery structure
JP2012059722A (en) * 2011-12-26 2012-03-22 Nissan Motor Co Ltd Manufacturing method of battery electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092808A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Battery structure
JP2012059722A (en) * 2011-12-26 2012-03-22 Nissan Motor Co Ltd Manufacturing method of battery electrode

Also Published As

Publication number Publication date
JP4140198B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP6531652B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP5124975B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP5619412B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP4841133B2 (en) Nonaqueous electrolyte secondary battery
JP2007018985A (en) Lithium ion secondary battery
JP2006120612A (en) Lithium secondary battery
JP2009076383A (en) Non-aqueous secondary battery and its manufacturing method
JP2007329001A (en) Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery using it
EP3038200B1 (en) Electrolyte and lithium ion secondary battery
JP2007026926A (en) Negative electrode for secondary battery and secondary battery using the same
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
JP2000340226A (en) Lithium manganese composite oxide particle and manufacture thereof
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
JP3430058B2 (en) Cathode active material and non-aqueous electrolyte secondary battery
US9893356B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of producing cathode active material for nonaqueous electrolyte secondary battery
CN100466340C (en) Non-aqueous electrolyte rechargeable battery
JP2005294013A (en) Precursor battery and nonaqueous electrolyte secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5682411B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing the negative electrode active material
JP2003242972A (en) Negative active material and non-aqueous electrolyte secondary battery and their manufacturing method
JP6634966B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, positive electrode material used therefor, secondary battery using the same, and method of manufacturing positive electrode for non-aqueous electrolyte secondary battery
JPH10334889A (en) Lithium secondary battery, and portable electrical apparatus and electric vehicle and motorcycle and power storage device using the lithium secondary battery
JP4140198B2 (en) Lithium secondary battery
JP2003162997A (en) Negative electrode for secondary battery and secondary battery using the same
JP6201843B2 (en) Method for producing negative electrode active material for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees