JP2002198057A - Fuel cell and improved version of oxygen electrode used for same - Google Patents

Fuel cell and improved version of oxygen electrode used for same

Info

Publication number
JP2002198057A
JP2002198057A JP2001151574A JP2001151574A JP2002198057A JP 2002198057 A JP2002198057 A JP 2002198057A JP 2001151574 A JP2001151574 A JP 2001151574A JP 2001151574 A JP2001151574 A JP 2001151574A JP 2002198057 A JP2002198057 A JP 2002198057A
Authority
JP
Japan
Prior art keywords
permanent magnet
oxygen electrode
oxygen
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001151574A
Other languages
Japanese (ja)
Inventor
Nobuko Wakayama
信子 若山
Tatsuhiro Okada
達弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001151574A priority Critical patent/JP2002198057A/en
Publication of JP2002198057A publication Critical patent/JP2002198057A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen electrode which can effectively process oxygen electrode reaction with a little catalyst without applying pressure on oxygen gas or air and a fuel cell as well as a fuel cell system using it. SOLUTION: A plurality of permanent magnet materials (8) are arranged in dispersion in an electrode to make up the oxygen electrode (12) for the fuel cell, which is used for the fuel cell and the fuel cell system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池の酸素電
極もしくは空気電極の性能をあげた燃料電池システムお
よび燃料電池に関するもので、さらには、それに用いる
電極の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system and a fuel cell having improved performance of an oxygen electrode or an air electrode of a fuel cell, and further relates to a method of manufacturing an electrode used for the same.

【0002】[0002]

【従来の技術】燃料電池発電は、環境に及ぼす影響が極
めて小さくクリーンな発電システムとして期待が高まっ
ており、その技術のさらなる発展とその広範囲な実用化
が望まれている。図1は一般的な水素酸素燃料電池の原
理図である。空気を利用する空気電極でも原理は酸素電
極と同じであるから、この明細書では「酸素電極」とい
う用語は、空気電極をも包含する意味するものとして説
明する。酸素電極1は、多孔性の電子伝導体(多孔性板
材)で構成され、片側から酸素ガス、空気などの酸化剤
2を導入し、反対側を電解質3に接触させる。このと
き、酸素ガスは多孔性板中を電解質側へ拡散し、同じく
しみこんできた電解質と多孔性板中のある場所で接触す
る。一方、燃料電池の水素電極4は多孔性構成材より形
成され、その水素電極4の一方の側に燃料としての水素
ガス5が導入され、水素電極の他方の側は電解質3に接
している。水素ガス5は水素電極4を透過して水素イオ
ンとなり電解質中に拡散する。図2は酸素電極内におけ
る触媒による酸素電極反応の拡大模式図である。この場
合、電子伝導体である多孔性の電極構成材上、例えばカ
ーボン粒子6において、電解質3および酸化剤(酸素ガ
ス)2が共存する場所で、触媒7により、次のような酸
素ガスが関与する反応が進行する。 式(1) 酸性電解質の場合:2H++1/2O2+2e-→H2O (イ) アルカリ性電解質の場合:1/2O2+H2O+2e-→2OH- (ロ)
2. Description of the Related Art Fuel cell power generation is expected to be a clean power generation system with a minimal effect on the environment, and further development of the technology and its widespread practical use are desired. FIG. 1 is a principle diagram of a general hydrogen-oxygen fuel cell. Since the principle of an air electrode using air is the same as that of an oxygen electrode, the term “oxygen electrode” will be described in this specification as including the air electrode. The oxygen electrode 1 is made of a porous electron conductor (porous plate material). An oxidant 2 such as oxygen gas or air is introduced from one side, and the other side is brought into contact with the electrolyte 3. At this time, the oxygen gas diffuses in the porous plate toward the electrolyte, and comes into contact with the electrolyte that has also been soaked at a certain position in the porous plate. On the other hand, the hydrogen electrode 4 of the fuel cell is formed of a porous constituent material, and a hydrogen gas 5 as a fuel is introduced to one side of the hydrogen electrode 4, and the other side of the hydrogen electrode is in contact with the electrolyte 3. The hydrogen gas 5 permeates the hydrogen electrode 4 and becomes hydrogen ions, which diffuse into the electrolyte. FIG. 2 is an enlarged schematic view of an oxygen electrode reaction by a catalyst in the oxygen electrode. In this case, on the porous electrode constituent material which is an electron conductor, for example, in the carbon particles 6, at the place where the electrolyte 3 and the oxidant (oxygen gas) 2 coexist, the following oxygen gas is involved by the catalyst 7. Reaction proceeds. Formula (1) In the case of an acidic electrolyte: 2H + + 1 / 2O 2 + 2e → H 2 O (a) In the case of an alkaline electrolyte: 1 / 2O 2 + H 2 O + 2e → 2OH (b)

【0003】この反応において、燃料電池の実用化、特
に低温型の燃料電池の実用化に際して大きな障害となっ
ているのは以下の2点である。 (イ)酸素電極として活性炭,グラファイトなどの炭素
系の多孔質燒結体などが使用されているが、酸素電極に
おける酸素の還元反応〔式(1)〕[以下、酸素電極反
応という]の反応速度が遅いため、白金などの触媒を用
いてこの電極反応を促進しなければ、酸素電極としてよ
い特性が得られない。しかし白金触媒は高価なため、ど
うしても燃料電池のコストが高くなること。 (ロ)酸素ガスが前記の電極構成材および反応性生物で
ある水などをとおって電解質側へ拡散する速度や電解質
中に溶解・拡散する速度が小さいこと。したがって、酸
素ガスの輸送速度をあげるため、空気や酸素ガスを加圧
する必要があり、装置が複雑且つ大きくなり、操作も単
純ではない。
[0003] In this reaction, the following two points are major obstacles to the practical use of a fuel cell, particularly to the practical use of a low-temperature fuel cell. (A) A carbon-based porous sintered body such as activated carbon or graphite is used as an oxygen electrode. The reaction rate of the oxygen reduction reaction at the oxygen electrode [formula (1)] [hereinafter referred to as oxygen electrode reaction] Therefore, unless this electrode reaction is promoted using a catalyst such as platinum, good characteristics as an oxygen electrode cannot be obtained. However, since the platinum catalyst is expensive, the cost of the fuel cell must increase. (B) The rate at which oxygen gas diffuses to the electrolyte side through the above-described electrode constituent material and water as a reactive product, and the rate of dissolution and diffusion in the electrolyte is low. Therefore, it is necessary to pressurize air or oxygen gas in order to increase the transport speed of oxygen gas, and the apparatus becomes complicated and large, and the operation is not simple.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような事
情に鑑み、燃料電池の酸素電極反応が少量の触媒でも効
率よく進行し、酸素ガスや空気を加圧する必要がなく、
かつ、コンパクトで廉価な燃料電池システム,燃料電池
およびそれに用いる酸素電極を提供することを目的とす
る。
In view of the foregoing, the present invention has been made in view of the above circumstances, and the oxygen electrode reaction of a fuel cell proceeds efficiently even with a small amount of catalyst, and there is no need to pressurize oxygen gas or air.
It is another object of the present invention to provide a compact and inexpensive fuel cell system, a fuel cell, and an oxygen electrode used therefor.

【0005】[0005]

【課題を解決するための手段】本発明者らは白金触媒に
よる酸素電極反応を促進し、かつ酸素ガスの輸送を促進
する手段について鋭意研究を重ねた結果、酸素ガスや空
気気泡は強力な磁石にひきつけられること、触媒近傍の
磁場強度を強くした場合、酸素ガスが関与する触媒反応
が促進されることを見いだし、ネオジウム−鉄−ホウ素
系,サマリウム−コバルト系、フェライト系など強力な
永久磁石粒子の表面に直接触媒を固定したり、永久磁石
粒子を化学的に安定で磁力線を通す物質で覆って更にそ
の表面に触媒を付着させたものを、多孔性の酸素電極中
に複数個、分散、配置すると、酸素電極反応を効率よく
行うことが可能なことに着目し、本発明をなすに到っ
た。すなわち本発明は、(1)酸素電極中に、複数個の
永久磁石材を分散、配置して電池を形成したことを特徴
とする燃料電池システム、(2)酸素電極中に、複数個
の永久磁石材を分散、配置したことを特徴とする燃料電
池、(3)電極中に、複数個の永久磁石材を分散、配置
したことを特徴とする燃料電池用酸素電極、(4)
(1)〜(3)項のいずれか1項において永久磁石材
が、永久磁石の表面を、化学的に安定で磁力線をとおす
物質で覆い、その表面に触媒やカーボン粒子などを担持
したものであることを特徴とする酸素電極、(5)
(1)〜(3)項のいずれか1項において永久磁石材
が、永久磁石の表面を、化学的に安定で磁力線をとおす
物質、触媒およびカーボン粒子を含む混合物で覆ったも
のであることを特徴とする酸素電極、(6)複数個の表
面を化学的に安定で磁力線をとおす物質で覆った永久磁
石粒子、複数個の触媒粒子およびカーボン粒子などを分
散、配置してなることを特徴とする(1)〜(3)項の
いずれか1項に記載の酸素電極、(7)酸素電極中に分
散、配置される永久磁石の磁化の方向を一様にすること
を特徴とする(1)〜(6)項のいずれか1項に記載の
酸素電極、(8)永久磁石粒子を網状の常磁性又は強磁
性物質の線材に固定した後に、酸素電極内に組み込み固
定して複数個の永久磁石材を分散、配置することを特徴
とする(1)〜(7)項のいずれか1項に記載の酸素電
極の製造方法、及び(9)未磁化の永久磁石粒子を酸素
電極内に分散配置するように組み込んで燃料電池のセル
を作製し、セルごと磁化して複数個の永久磁石材を分
散、配置することを特徴とする(1)〜(8)項のいず
れか1項に記載の酸素電極の製造方法を提供するもので
ある。
Means for Solving the Problems The present inventors have conducted intensive studies on means for promoting the oxygen electrode reaction by the platinum catalyst and for promoting the transport of oxygen gas. It is found that when the magnetic field strength near the catalyst is increased, the catalytic reaction involving oxygen gas is accelerated. The catalyst is fixed directly on the surface of the magnet, or the permanent magnet particles are covered with a substance that is chemically stable and allows magnetic flux to pass through, and the catalyst is further attached to the surface. The inventors of the present invention have paid attention to the fact that the oxygen electrode reaction can be efficiently performed when they are arranged. That is, the present invention provides (1) a fuel cell system in which a plurality of permanent magnet materials are dispersed and arranged in an oxygen electrode to form a battery, and (2) a plurality of permanent magnet materials in an oxygen electrode. (3) A fuel cell characterized by dispersing and arranging magnet materials, (3) an oxygen electrode for a fuel cell characterized by dispersing and arranging a plurality of permanent magnet materials in an electrode, (4)
(1) The permanent magnet material according to any one of (1) to (3), wherein the surface of the permanent magnet is covered with a substance that is chemically stable and passes through the lines of magnetic force, and a catalyst or carbon particles are supported on the surface. An oxygen electrode, characterized by (5)
(1) The permanent magnet material according to any one of (1) to (3), wherein the surface of the permanent magnet is covered with a mixture containing a substance that is chemically stable and passes magnetic lines of force, a catalyst, and carbon particles. (6) Dispersion and arrangement of permanent magnet particles, a plurality of catalyst particles, carbon particles, and the like, in which a plurality of surfaces are chemically stable and covered with a substance that passes through magnetic lines of force, and (6) a plurality of surfaces. (1) The oxygen electrode according to any one of (1) to (3), and (7) the magnetization direction of the permanent magnets dispersed and arranged in the oxygen electrode is made uniform. And (8) fixing the permanent magnet particles to a net-like wire made of paramagnetic or ferromagnetic material, and then incorporating the permanent magnet particles into the oxygen electrode and fixing the particles. (1) to (7) wherein permanent magnet materials are dispersed and arranged. Item 9. The method for producing an oxygen electrode according to any one of the above items, and (9) producing a cell of a fuel cell by incorporating non-magnetized permanent magnet particles so as to be dispersed and arranged in the oxygen electrode, and magnetizing the entire cell. A method for producing an oxygen electrode according to any one of (1) to (8), wherein a plurality of permanent magnet materials are dispersed and arranged.

【0006】[0006]

【発明の実施の形態】本発明の酸素電極内に配置する永
久磁石材の好ましい態様は、永久磁石および触媒、並び
に必要に応じて永久磁石を被覆し触媒を保持する被覆相
を有してなる。図3(イ)は本発明に用いられる永久磁
石材8の好ましい一実施態様の説明図である。永久磁石
粒子9の表面を化学的に安定な物質10で覆い、その表
面に白金粒子などの触媒11を担持させた例である。本
発明においては、永久磁石材の近傍に急峻な「勾配磁
場」が発生する。本発明の永久磁石材によって発生する
「勾配磁場」とは、磁場強度(H)の分布が、永久磁石
材から離れるにつれ減少していく関係を有する磁場をい
う。図3(ロ)にはこの永久磁石材近傍の磁場強度分布
を示す。同図でyは永久磁石粒子9表面からの距離であ
る。永久磁石材8の表面に存在する触媒11の界面近傍
に、特に急峻な勾配磁場を発生させることができる。永
久磁石の材料としては、特に制限するものではないが、
具体的にはネオジウム−鉄−ホウ素磁石のほか、サマリ
ウム−コバルト磁石、フェライト磁石などを挙げること
ができる。永久磁石粒子9の磁力、サイズ、形状にもよ
るが、「磁場勾配」(dH/dy)が0.1T/cm以
上の磁場を発生させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of a permanent magnet material arranged in an oxygen electrode according to the present invention comprises a permanent magnet and a catalyst, and if necessary, a coating phase for coating the permanent magnet and holding the catalyst. . FIG. 3A is an explanatory view of a preferred embodiment of the permanent magnet material 8 used in the present invention. In this example, the surface of a permanent magnet particle 9 is covered with a chemically stable substance 10 and a catalyst 11 such as platinum particles is supported on the surface. In the present invention, a steep “gradient magnetic field” is generated near the permanent magnet material. The “gradient magnetic field” generated by the permanent magnet material of the present invention refers to a magnetic field having a relationship in which the distribution of the magnetic field strength (H) decreases as the distance from the permanent magnet material increases. FIG. 3B shows a magnetic field intensity distribution near the permanent magnet material. In the figure, y is the distance from the surface of the permanent magnet particles 9. A particularly steep gradient magnetic field can be generated near the interface of the catalyst 11 existing on the surface of the permanent magnet material 8. The material of the permanent magnet is not particularly limited,
Specific examples include a neodymium-iron-boron magnet, a samarium-cobalt magnet, and a ferrite magnet. Although depending on the magnetic force, size, and shape of the permanent magnet particles 9, a magnetic field having a "magnetic field gradient" (dH / dy) of 0.1 T / cm or more can be generated.

【0007】本発明において、用いる永久磁石が、電極
反応の環境において安定な場合には、永久磁石の表面に
直接、触媒を付着させ、本発明の永久磁石材とすること
ができる。また永久磁石自体が使用環境で化学的に変化
しやすい場合には、磁力線を通し、かつ化学的に安定な
物質で永久磁石表面を覆って保護することが好ましい。
磁石表面を被覆、保護する物質10は、例えばプラスチ
ックやセラミックス、ガラス、ポリマーや無機化合物、
カーボン、グラファイトなどが挙げられる。これらは電
気伝導性であることが望ましい。被覆層の厚さも適宜設
定されるが、できるだけ被覆層が薄いほうが急峻な勾配
磁場が得られ、好ましくは0.001〜0.1mmとす
る。永久磁石粒子9のサイズも適宜設定されるが、好ま
しくは0.001〜1mm、さらに好ましくは0.01
〜0.1mmである。本発明に用いられる永久磁石材8
の第一の態様は、前述の図3にしめす永久磁石粒子表面
に上記被覆層を形成したのち、触媒を被覆層表面に付
着、固定させたものである。本発明に用いられる永久磁
石材8の第二の実施態様は、図示しないが、触媒を混合
した被覆層形成物質で磁石表面をおおい、触媒を永久磁
石材表面に保持(保護)したものである。さらに別の形
態として、永久磁石粒子表面に化学的に安定な被膜層を
形成させたものである。この場合、触媒は永久磁石材8
とは独立に、その近傍に配置される。
In the present invention, when the permanent magnet used is stable in an environment of the electrode reaction, a catalyst can be directly attached to the surface of the permanent magnet to obtain the permanent magnet material of the present invention. Further, when the permanent magnet itself is liable to chemically change in the use environment, it is preferable to protect the permanent magnet by covering the surface of the permanent magnet with a line of magnetic force and a chemically stable substance.
The material 10 that covers and protects the magnet surface is, for example, plastic, ceramics, glass, polymer or inorganic compound,
Examples include carbon and graphite. These are desirably electrically conductive. The thickness of the coating layer is also set as appropriate, but the thinner the coating layer is, the more steep the gradient magnetic field can be obtained, and the thickness is preferably 0.001 to 0.1 mm. The size of the permanent magnet particles 9 is also appropriately set, but is preferably 0.001 to 1 mm, more preferably 0.01 to 1 mm.
0.10.1 mm. Permanent magnet material 8 used in the present invention
In the first embodiment, after the above-mentioned coating layer is formed on the surface of the permanent magnet particles shown in FIG. 3, the catalyst is adhered and fixed on the surface of the coating layer. In the second embodiment of the permanent magnet material 8 used in the present invention, although not shown, the surface of the magnet is covered with a coating layer forming material mixed with a catalyst, and the catalyst is held (protected) on the surface of the permanent magnet material. . As yet another embodiment, a chemically stable coating layer is formed on the surface of the permanent magnet particles. In this case, the catalyst is a permanent magnet material 8
Independently of the above.

【0008】本発明では、燃料電池の酸素電極、例えば
多孔性のカーボン粒子中に、これらの永久磁石材8を分
散配置する。図4(イ)は酸素電極12中に永久磁石材
を分散配置した説明図である。これら各々の永久磁石材
8の磁石粒子の磁化の方向は、磁石間の相互作用などを
考慮し、電極全体として一様であることが望ましい。こ
れら磁化の方向を一様にするためには、未磁化の永久磁
石粒子を用いて磁石材を製造し、電極材中に分散配置し
た後、電磁石中などで磁化すればよい。磁化の方向は、
図1の説明図で正負の電極をむすぶ線に平行であるか、
または傾斜方向、垂直方向など適宜選択するものである
が、どちらかといえば平行の方向が望ましい。
In the present invention, these permanent magnet members 8 are dispersed and arranged in an oxygen electrode of a fuel cell, for example, porous carbon particles. FIG. 4A is an explanatory diagram in which permanent magnet materials are dispersed and arranged in the oxygen electrode 12. The direction of magnetization of the magnet particles of each of the permanent magnet members 8 is desirably uniform over the entire electrode in consideration of the interaction between the magnets and the like. In order to make these magnetization directions uniform, a magnet material may be manufactured using unmagnetized permanent magnet particles, dispersed in an electrode material, and then magnetized in an electromagnet or the like. The direction of magnetization is
In the illustration of FIG. 1, whether it is parallel to the line connecting the positive and negative electrodes,
Alternatively, an inclined direction, a vertical direction, or the like is appropriately selected, but rather a parallel direction is desirable.

【0009】次にこのような勾配磁場発生下での酸素の
挙動について説明する。燃料電池の酸素電極では、図1
に示すように酸素ガスが多孔性の電極構成材中を移動
し、反対側からきた電解質と電極構成材と触媒が共存す
る領域で接触し反応が進行する。酸素ガスの輸送時の形
態は気体塊、水や電解質中の微小気泡、水や電解質中へ
の分子状溶存など考えられるが、電解質中の分子状溶存
酸素量は数mM程度と極めて微量である。電極内で、複
数個の永久磁石材が存在する近辺では、図4(ロ)に示
すように全体として強い磁場が存在し、特に触媒が存在
する永久磁石材の表面近傍で磁場強度が強くなる。この
場合、位置座標により磁場強度が変化する勾配磁場下で
は磁気力が発生する。物質に作用する磁気力(F)は単
位体積あたり、体積磁化率(χ)、磁場強度(H)、磁
場勾配の積で表される(化学大辞典、4巻、167頁、
共立出版(昭和44年))。 F=μ0χH(dH/dX)=(χ/μ0)B(dB/dX) 式(2) ここで、μ0=4π×10-7H/m、磁束密度(B)は
B=μ0Hである。SI単位系では厳密には、磁場強度
(H)の単位はA/mであり、磁束密度(B)の単位は
Tであるが、本発明では通常使用されるように磁束密度
の単位Tを使用する。
Next, the behavior of oxygen under such a gradient magnetic field generation will be described. In the oxygen electrode of the fuel cell,
As shown in (2), oxygen gas moves in the porous electrode component, and comes into contact with the region where the electrolyte, the electrode component, and the catalyst from the opposite side coexist, and the reaction proceeds. The form of oxygen gas during transport can be considered to be a gas mass, microbubbles in water or electrolyte, molecular dissolution in water or electrolyte, etc., but the amount of molecular dissolved oxygen in electrolyte is extremely small, about several mM. . In the vicinity of the presence of a plurality of permanent magnet materials in the electrode, a strong magnetic field exists as a whole as shown in FIG. 4 (b), and the magnetic field strength becomes particularly strong near the surface of the permanent magnet material where the catalyst exists. . In this case, a magnetic force is generated under a gradient magnetic field in which the magnetic field intensity changes according to the position coordinates. The magnetic force (F) acting on a substance is expressed as a product of a volume susceptibility (χ), a magnetic field strength (H), and a magnetic field gradient per unit volume (Chemical Dictionary, Vol. 4, p. 167,
Kyoritsu Shuppan (Showa 44)). F = μ 0 χH (dH / dX) = (χ / μ 0 ) B (dB / dX) Equation (2) where μ 0 = 4π × 10 −7 H / m, and the magnetic flux density (B) is B = μ 0 H. Strictly speaking, in the SI unit system, the unit of the magnetic field strength (H) is A / m, and the unit of the magnetic flux density (B) is T. However, in the present invention, the unit T of the magnetic flux density is usually used. use.

【0010】酸素電極反応に関与する酸素ガスは常磁性
で、その体積磁化率は正で大きく(+1.9×1
-6)、強い力で磁石に引き付けられる性質がある。本
発明では図4で矢印で示すように酸素ガスや空気は式
(2)の磁気引力で磁場強度が増加する方向、即ち電極
内部に移動し、更に電極内で磁場が最強となる触媒近傍
に引き寄せられる。また電解質中に酸素ガスが気泡とし
て存在する場合、気泡には次式であらわされる磁気浮力
が作用する。 F=μ0(χ02−χ1)H(dH/dX)V 式(3) ={(χ02−χ1)/μ0}B(dB/dX)V ここで、Vは気泡の体積である。
The oxygen gas involved in the oxygen electrode reaction is paramagnetic and has a large positive volume susceptibility (+ 1.9 × 1).
0 -6 ), has the property of being attracted to magnets with strong force. In the present invention, as indicated by the arrows in FIG. 4, oxygen gas and air move in the direction in which the magnetic field strength increases due to the magnetic attraction of the formula (2), that is, in the vicinity of the catalyst where the magnetic field is strongest in the electrode. Gravitate. When oxygen gas is present as bubbles in the electrolyte, magnetic buoyancy expressed by the following equation acts on the bubbles. F = μ 0021 ) H (dH / dX) V Equation (3) = {(χ 021 ) / μ 0 } B (dB / dX) V where V is the volume of the bubble. It is.

【0011】酸素ガスの体積磁化率χ02(+1.9×1
-6)、水および電解質の体積磁化率χ1を純水と同等
と見積もれば−9.0×10-6で、気泡が磁場に引きつ
けられるように、図4で矢印方向に磁気浮力は作用す
る。更に、気泡は磁場が最強となる触媒近傍へ引き寄せ
られる。永久磁石の近傍の勾配磁場μ0 2H(dH/d
X)=B(dB/dX)の値が31T2/mの場合、酸
素ガスに作用する磁気浮力は式(3)から269N/m3
と見積もられる。このように酸素電極中に永久磁石材を
配置すると、磁気力で酸素ガスや酸素ガス気泡の触媒界
面への輸送をも促進し、現状では酸素ガスが電解質側へ
拡散する速度や水や電解質に溶解する速度が小さいの
で、酸素ガスの輸送速度をあげるため空気や酸素ガスを
加圧する必要があるという問題点の解決につながる。図
5は第一態様の永久磁石材を分散配置した好ましい例の
部分的な説明図である。図2の従来例と異なる点は、永
久磁石材または永久磁石粒子を配置したことである。電
極構成材は、従来法とおなじくポーラスな電気良導体で
構成されており、式(1)の酸素電極反応に関与する物
質や反応生成物がその中を移動できるものである。本発
明の永久磁石材を分散、配置させるべき多孔性の酸素電
極自体は公知であり、その作成法は、周知の多孔性の電
極に触媒等を分散配置する常法に従って行うことができ
る。この酸素電極における永久磁石材の含有量は特に制
限するものではないが、好ましくは1〜80質量%、よ
り好ましくは10〜75質量%である。この酸素電極に
おいて、分散させた永久磁石材を多孔質構成材中にどの
ように分散、配置させてもよいが、多孔質部の孔部の内
壁に、永久磁石材の一部を露出させるようにするのが好
ましい。
Volume susceptibility of oxygen gas χ 02 (+ 1.9 × 1
0 -6 ), the volume susceptibility 水1 of water and electrolyte is estimated to be -9.0 × 10 -6 as equivalent to pure water, and the magnetic buoyancy in the direction of the arrow in FIG. Works. Further, the bubbles are drawn to the vicinity of the catalyst where the magnetic field is strongest. The gradient magnetic field μ 0 2 H (dH / d) near the permanent magnet
When the value of (X) = B (dB / dX) is 31 T 2 / m, the magnetic buoyancy acting on the oxygen gas is 269 N / m 3 from the equation (3).
It is estimated. By arranging the permanent magnet material in the oxygen electrode in this way, the magnetic force also promotes the transport of oxygen gas and oxygen gas bubbles to the catalyst interface, and at present the oxygen gas diffuses to the electrolyte side and the water and electrolyte Since the dissolution rate is low, it is possible to solve the problem that it is necessary to pressurize air or oxygen gas in order to increase the transport rate of oxygen gas. FIG. 5 is a partial explanatory view of a preferred example in which the permanent magnet materials of the first embodiment are dispersed and arranged. The difference from the conventional example of FIG. 2 is that permanent magnet materials or permanent magnet particles are arranged. The electrode constituting material is made of a porous electric good conductor as in the conventional method, and a substance or a reaction product involved in the oxygen electrode reaction of the formula (1) can move through the material. The porous oxygen electrode itself in which the permanent magnet material of the present invention is to be dispersed and arranged is publicly known, and its preparation can be carried out according to a conventional method of dispersing and arranging a catalyst or the like on a known porous electrode. The content of the permanent magnet material in the oxygen electrode is not particularly limited, but is preferably 1 to 80% by mass, more preferably 10 to 75% by mass. In this oxygen electrode, the dispersed permanent magnet material may be dispersed and arranged in any way in the porous constituent material, but a part of the permanent magnet material is exposed on the inner wall of the porous portion. It is preferred that

【0012】[0012]

【実施例】つぎに本発明の実施例を図面を参照してさら
に詳細に説明する。 実施例1 図4(イ)に示すように永久磁石材8を複数個、酸素電
極12内に分散配置した。永久磁石材としては図3
(イ)に示す態様のもの(より好ましい組合せは、例え
ば永久磁石粒子の平均粒径50μm、永久磁石材の平均
粒径60μm、担持触媒白金粒子10mg/永久磁石材
1gである)を用いる。図4(イ)の酸素電極中、永久
磁石材の含有量は30質量%とする。このような微小永
久磁石粒子近傍の磁場強度分布は直接測定が困難である
ため、次のモデルについて数値計算を行なった。図6
(イ)は円柱状の永久磁石13(φ2×2mm)が2
個、5mm離れて存在する場合の磁場強度分布の計算結
果である。磁化の方向は各々の軸の方向で、図で矢印で
示す。磁石近傍の白い部分が2.5mT以上の領域であ
る。図6(ロ)にy=0、2.5、5mmにおける磁場
強度分布を示す。y=2.5mmの場合、χ<1mmは
永久磁石のため、計算結果はない。これらから、永久磁
石粒子近傍で急峻な勾配磁場が発生していることがわか
る。永久磁石の近傍で磁場強度が急激に増加し、μ0 2
(dH/dX)の値が31T2/mの勾配磁場が発生
し、酸素ガスに作用する磁気引力は式(2)から47N
/m3と見積もられる。このように磁石粒子の磁化の方向
を一定にした場合、相互作用で磁場強度が増加すること
が明らかである。図4に示すような複数個の永久磁石材
が存在する領域では全体として強い磁場が存在し、特に
触媒が存在する永久磁石材の表面近傍で磁場強度が増加
することが分かる。
Next, embodiments of the present invention will be described in more detail with reference to the drawings. Example 1 As shown in FIG. 4A, a plurality of permanent magnet members 8 were dispersed and arranged in the oxygen electrode 12. Fig. 3 as a permanent magnet material
The embodiment shown in (a) (a more preferable combination is, for example, an average particle diameter of the permanent magnet particles of 50 μm, an average particle diameter of the permanent magnet material of 60 μm, supported catalyst platinum particles of 10 mg / g of the permanent magnet material). In the oxygen electrode of FIG. 4A, the content of the permanent magnet material is 30% by mass. Since it is difficult to directly measure the magnetic field strength distribution near such minute permanent magnet particles, a numerical calculation was performed for the following model. FIG.
(A) is a cylindrical permanent magnet 13 (φ2 × 2 mm)
FIG. 10 shows calculation results of a magnetic field intensity distribution when there is an object at a distance of 5 mm. The direction of magnetization is the direction of each axis, and is indicated by an arrow in the figure. The white portion near the magnet is a region of 2.5 mT or more. FIG. 6B shows the magnetic field intensity distribution at y = 0, 2.5, and 5 mm. When y = 2.5 mm, there is no calculation result because χ <1 mm is a permanent magnet. From these, it can be seen that a steep gradient magnetic field is generated near the permanent magnet particles. Field strength increases sharply in the vicinity of the permanent magnet, μ 0 2 H
When a gradient magnetic field having a value of (dH / dX) of 31 T 2 / m is generated, the magnetic attraction acting on the oxygen gas is 47 N from the equation (2).
is estimated to be / m 3. When the direction of magnetization of the magnet particles is kept constant, it is clear that the interaction increases the magnetic field strength. It can be seen that a strong magnetic field is present as a whole in a region where a plurality of permanent magnet materials are present as shown in FIG.

【0013】実施例2 図5に永久磁石材として前記の第一態様のものを用いた
実施例を示す。図5は、酸素電極内の酸素電極反応に、
永久磁石材を利用した際の模式説明図である。酸素電極
反応に関与する酸素ガスは常磁性で、その体積磁化率は
正で大きく(+1.9×10-6)、強い力で磁石に引き
付けられる性質がある。一方、反応生成物である水は反
磁性で、その体積磁化率は負のため磁石に反発する。同
図は、電極の約15質量%に相当する永久磁石材を電極
内に分散配置した場合の、永久磁石材1個の機能に関す
る説明図である。図3,図6の説明図でも明らかなよう
に触媒界面に近づくにつれ磁場強度が増加し、急峻な勾
配磁場が存在した。そのため、磁気力で酸素ガスは触媒
界面に引き付けられ、反対に反応生成物の水は排除さ
れ、磁気力による物質輸送で触媒上での酸素電極反応は
効率よく進行する。常温下でこのように酸素電極反応に
関与する物質移動を磁気力で制御し、促進することがで
きる。
Embodiment 2 FIG. 5 shows an embodiment using the above-described first embodiment as a permanent magnet material. FIG. 5 shows the oxygen electrode reaction in the oxygen electrode,
It is a schematic explanatory view at the time of using a permanent magnet material. The oxygen gas involved in the oxygen electrode reaction is paramagnetic, has a large positive magnetic susceptibility (+ 1.9 × 10 −6 ), and has a property of being attracted to the magnet with a strong force. On the other hand, water, which is a reaction product, is diamagnetic and its volume susceptibility is negative, so it repels the magnet. FIG. 3 is an explanatory diagram relating to the function of one permanent magnet material when permanent magnet materials corresponding to about 15% by mass of the electrode are dispersedly arranged in the electrode. As is clear from the explanatory diagrams of FIGS. 3 and 6, the magnetic field intensity increased as approaching the catalyst interface, and a steep gradient magnetic field was present. Therefore, the oxygen gas is attracted to the catalyst interface by the magnetic force, and water of the reaction product is conversely eliminated, and the oxygen electrode reaction on the catalyst proceeds efficiently by the mass transfer by the magnetic force. At room temperature, mass transfer involved in the oxygen electrode reaction can be controlled and promoted by magnetic force.

【0014】実施例3 図1の燃料電池システムにおける酸素電極を模擬するた
め、0.1N硫酸溶液中に飽和溶存させた酸素ガスの平
滑白金上における酸素電極反応、即ち4H++O2+4e
-→2H2Oの反応に対する磁場の効果を試験した。この
実験では白金フィルムは0.56Tの永久磁石上に設置
され、急峻な勾配磁場下にある。その結果を図7(イ)
に示した。縦軸は反応によって白金に流れる電流密度、
横軸は反応の駆動力である電位(銀・塩化銀参照電極を
基準)を示す。図の曲線において、左下側に酸素の還元
に基づく電流がみられるが、その大きさは0.56T磁
場の印加によって増大(マイナス方向に)しており、酸
素電極反応の促進効果が現れている。温度25℃で、
0.1N硫酸溶液中における酸素の溶存濃度はわずかに
1.5mMであり、しかも分子状に溶解した酸素を白金
電極に引き寄せる力は小さいことを考慮しなければなら
ないが、それでも大きな促進効果が見られる。特に0.
1N硫酸溶液中に酸素ガスの供給を止めた状態での測定
(図7の(イ))では供給しながらの状態での測定結果よ
りも大きな促進効果が見られた。これは、酸素ガスの供
給を止めた状態では溶液の対流による供給がない状態な
ので、磁場の効果がより顕著に現れたものとみられる。
燃料電池においては、酸素がガス状態で供給され、本実
験で用いた白金触媒を覆う電解質層の厚さが1μm以下
の薄い層になるので、磁場によって酸素ガスが白金触媒
粒子に引き寄せられる効果は本実験におけるより更に加
速されることが容易に予測できる。
Example 3 To simulate the oxygen electrode in the fuel cell system shown in FIG. 1, an oxygen electrode reaction of oxygen gas saturated and dissolved in a 0.1N sulfuric acid solution on smooth platinum, ie, 4H + + O 2 + 4e
- → tested the effect of the magnetic field with respect to the reaction of 2H 2 O. In this experiment, the platinum film was placed on a 0.56 T permanent magnet and under a steep gradient magnetic field. The result is shown in FIG.
It was shown to. The vertical axis is the current density flowing through the platinum due to the reaction,
The abscissa indicates the potential (based on the silver / silver chloride reference electrode) which is the driving force for the reaction. In the curve in the figure, a current based on the reduction of oxygen is seen at the lower left side, and the magnitude is increased (in the negative direction) by the application of the 0.56 T magnetic field, and the effect of promoting the oxygen electrode reaction appears. . At a temperature of 25 ° C,
It must be considered that the dissolved concentration of oxygen in a 0.1 N sulfuric acid solution is only 1.5 mM, and that the force for attracting oxygen dissolved in a molecular form to the platinum electrode is small. Can be Especially 0.
In the measurement with the supply of oxygen gas stopped in the 1N sulfuric acid solution (FIG. 7 (a)), a greater accelerating effect was observed than the measurement result with the supply of oxygen gas. This is because the supply of oxygen gas was stopped and there was no supply by convection of the solution, so that the effect of the magnetic field appeared to be more remarkable.
In a fuel cell, oxygen is supplied in a gaseous state, and the thickness of the electrolyte layer covering the platinum catalyst used in this experiment becomes a thin layer of 1 μm or less. It can be easily predicted that the acceleration will be even higher than in this experiment.

【0015】次に電極として、平滑白金の代わりに実際
の燃料電池に用いられる白金担持カーボンを固定した板
状多孔性電極において、0.1N硫酸溶液中での酸素電
極反応に対する磁場の効果を試験した。電極は0.18
Tの永久磁石上に設置された。使用した電極は白金担持
カーボンペーパー(Electoro Chem 社、20質量%Pt/
C VulcanXC-72 白金担持量1mg/cm2,厚さ0.2
5mm)であり、これに1.3mg/cm2のナフィオン電解
質膜を被覆した。結果を図7(ロ)に示す。磁場のない
場合は,溶存酸素の供給不足により電位200mV付近
から還元電流が限界状態になっているのに対し、磁場存
在下では還元電流が増大(マイナス方向に下がって)し
ており、磁場による酸素電極反応の促進効果が見られ
る。
Next, the effect of a magnetic field on the oxygen electrode reaction in a 0.1 N sulfuric acid solution was tested on a plate-like porous electrode in which platinum-supporting carbon used in an actual fuel cell was fixed instead of smooth platinum. did. The electrode is 0.18
It was installed on a T permanent magnet. The electrode used was platinum-supported carbon paper (Electoro Chem, 20% by mass Pt /
C Vulcan XC-72 Platinum loading 1mg / cm 2 , thickness 0.2
5 mm), which was covered with a 1.3 mg / cm 2 Nafion electrolyte membrane. The results are shown in FIG. In the absence of a magnetic field, the reduction current is at a limit from about 200 mV due to insufficient supply of dissolved oxygen, whereas in the presence of a magnetic field, the reduction current is increasing (downward in the negative direction). The effect of promoting the oxygen electrode reaction is observed.

【0016】実施例4 本発明の好ましい実施態様では図4(イ)に示すよう
に、永久磁石材8を複数個、酸素電極12内に分散配置
する。その一例として、図8に示すような網状の常磁性
または強磁性物質の線材14(ステンレス430など)
に未磁化の永久磁石粒子9を接着剤などの手段で固定
し、さらに必要な場合は、まわりを化学的に安定で磁気
をとおす物質で被覆する。被覆物質は炭素蒸着膜など、
電気伝導性が高い物質であることが望ましい。その後、
この永久磁石材システム15(一部拡大図で示した)を
図4の永久磁石材8に代えて酸素電極12内に組み込み
磁化する。または永久磁石材システム15を酸素電極内
に組み込み燃料電池のセルを作製後、セルごと磁化する
こともできる。このように永久磁石材システム15の全
体を磁化した場合、永久磁石粒子9は線材14に磁気吸
引力で固定されるため、振動に対して堅牢になり、凝集
の可能性が減少する。また線材14も磁化されるため、
独立して個々の永久磁石材8が存在する場合に比べ酸素
ガスの吸引効果が増幅されるという相乗効果もある。こ
の実施例では、粒径の小さい永久磁石粒子9を均等に分
散することができ、電解液の通過が妨げられないという
長所もある。この実施例では、触媒粒子は永久磁石材シ
ステム15表面に付着させるか、または独立にその近傍
に配置する。
Embodiment 4 In a preferred embodiment of the present invention, as shown in FIG. 4A, a plurality of permanent magnet members 8 are dispersed and arranged in the oxygen electrode 12. As an example, a net-shaped wire 14 made of a paramagnetic or ferromagnetic material (such as stainless steel 430) as shown in FIG.
The unmagnetized permanent magnet particles 9 are fixed by means of an adhesive or the like, and if necessary, the surroundings are covered with a chemically stable and magnetically permeable substance. The coating material is a carbon deposited film, etc.
It is desirable that the material has high electric conductivity. afterwards,
This permanent magnet material system 15 (shown in a partially enlarged view) is installed in the oxygen electrode 12 in place of the permanent magnet material 8 in FIG. 4 and magnetized. Alternatively, after the permanent magnet material system 15 is incorporated in the oxygen electrode to produce a cell of the fuel cell, the cell may be magnetized. When the entire permanent magnet material system 15 is magnetized in this way, the permanent magnet particles 9 are fixed to the wire 14 by magnetic attraction, so that the permanent magnet particles 9 are robust against vibration and the possibility of aggregation is reduced. Since the wire 14 is also magnetized,
There is also a synergistic effect that the effect of attracting oxygen gas is amplified as compared to the case where the individual permanent magnet members 8 exist independently. In this embodiment, the permanent magnet particles 9 having a small particle size can be evenly dispersed, and there is an advantage that passage of the electrolyte is not hindered. In this embodiment, the catalyst particles are deposited on the surface of the permanent magnet material system 15 or independently located near it.

【0017】実施例5 図1の燃料電池システムにおいて、酸素電極1内に、永
久磁石材8を複数個分散配置した高分子型燃料電池を作
製して、単セルで燃料電池の性能に対する磁場の効果を
試験した。電解質膜と電極の接合体(以下、「MEA」
という。)の構成を図9に示す。MEA21は、高分子
電解質膜16、燃料電極側拡散層17、酸素電極側拡散
層18、燃料電極側触媒層19、および酸素電極側触媒
層20からなる。高分子電解質膜16は全フッ素型スル
フォン酸系ポリマー電解質であるナフィオン117(商
品名)からなり、燃料電極側拡散層17及び酸素電極側
拡散層18は多孔性カーボンクロスからなり、燃料電極
側触媒層19は白金/カーボンからなり、酸素電極側触
媒層20は白金/カーボン+磁石源微粒子からなる。こ
こで、磁石源微粒子とは、磁化することにより永久磁石
となる粒子をいう。この実験では、図3(イ)に示す永
久磁石材8としては、磁石源微粒子としてフェライトを
使用し、その表面をポリイミドで被覆した。酸素電極側
触媒層20は白金/カーボンとフェライト(粒径75μ
m以下)を混合してカーボンクロス上に塗布し、ホット
プレスにより電解質膜16に固定した。MEA21の仕
様を表1に示す。
EXAMPLE 5 In the fuel cell system shown in FIG. 1, a polymer type fuel cell in which a plurality of permanent magnet members 8 are dispersed and arranged in the oxygen electrode 1 is manufactured. The effect was tested. A joined body of an electrolyte membrane and an electrode (hereinafter, “MEA”)
That. 9) is shown in FIG. The MEA 21 includes a polymer electrolyte membrane 16, a fuel electrode side diffusion layer 17, an oxygen electrode side diffusion layer 18, a fuel electrode side catalyst layer 19, and an oxygen electrode side catalyst layer 20. The polymer electrolyte membrane 16 is made of Nafion 117 (trade name) which is a perfluorinated sulfonic acid-based polymer electrolyte, the fuel electrode side diffusion layer 17 and the oxygen electrode side diffusion layer 18 are made of porous carbon cloth, and the fuel electrode side catalyst The layer 19 is made of platinum / carbon, and the oxygen electrode side catalyst layer 20 is made of platinum / carbon + fine particles of a magnet source. Here, the magnet source fine particles refer to particles that become permanent magnets when magnetized. In this experiment, as the permanent magnet material 8 shown in FIG. 3A, ferrite was used as magnet source fine particles, and the surface was coated with polyimide. The oxygen electrode side catalyst layer 20 is made of platinum / carbon and ferrite (particle diameter 75 μm).
m or less) were mixed and applied on a carbon cloth, and fixed to the electrolyte membrane 16 by hot pressing. Table 1 shows the specifications of the MEA 21.

【0018】[0018]

【表1】 [Table 1]

【0019】燃料電池の性能に対する磁場の効果を評価
するに際しては、パルス磁場をかけて磁石源微粒子を磁
化した場合及び、磁化しない場合について比較検討し
た。磁化MEA21または無磁化MEA21を組み込ん
だ単セルユニットの燃料電極に加湿純水素ガスを流し、
酸素電極には同様に加湿した酸素21%、窒素79%の
混合ガスを流し、電子負荷装置によって所定値の電流負
荷を加えながらセル電圧を測定した。発生電流値に対応
する計算上の水素量と酸素量に対してセル内に送り込ん
だガス流量から水素と酸素の利用率を設定した。測定条
件は、セル温度80℃、加湿器水温75℃(水素、空気
とも)、水素利用率70%、酸素利用率40%を基準条
件とし、加湿開始後8時間目における電流密度−電圧の
関係を調べた。図10に、磁石源微粒子を磁化した場合
(実線と○)及び、磁化しない場合(破線と◆)の発電
特性を示す。磁化を行ったMEAは行わないものに比べ
て高いセル電圧が発生することが確認された。また電流
密度300mA/cm2において酸素利用率を10%か
ら90%の間で変化させ、酸素補給が十分な場合と不十
分な場合において磁化の有無がセル電圧に与える影響を
調べた。結果を図11に示す。酸素利用率が高い領域、
すなわち酸素供給量が十分でない領域において、磁化を
行ったMEA(実線と○)は磁化を行わないもの(破線
と◆)に比べて優位になることが顕著である。この結果
から、磁石源微粒子を挿入した場合の効果が検証され
た。
In evaluating the effect of the magnetic field on the performance of the fuel cell, a comparison was made between a case where the magnet source particles were magnetized by applying a pulsed magnetic field and a case where the magnet source particles were not magnetized. Flowing humidified pure hydrogen gas to the fuel electrode of the single cell unit incorporating the magnetized MEA 21 or the non-magnetized MEA 21;
Similarly, a humidified mixed gas of 21% oxygen and 79% nitrogen was passed through the oxygen electrode, and the cell voltage was measured while applying a predetermined current load using an electronic load device. The utilization rates of hydrogen and oxygen were set based on the flow rates of gas fed into the cell with respect to the calculated amounts of hydrogen and oxygen corresponding to the generated current values. The measurement conditions were a cell temperature of 80 ° C., a humidifier water temperature of 75 ° C. (both hydrogen and air), a hydrogen utilization rate of 70%, and an oxygen utilization rate of 40%. Was examined. FIG. 10 shows the power generation characteristics when the magnet source particles are magnetized (solid line and ○) and when they are not magnetized (dashed line and ◆). It was confirmed that a higher cell voltage was generated in the magnetized MEA than in the non-magnetized MEA. At a current density of 300 mA / cm 2 , the oxygen utilization rate was varied between 10% and 90%, and the influence of the presence or absence of magnetization on the cell voltage was examined when oxygen supplementation was sufficient and insufficient. The results are shown in FIG. Areas with high oxygen utilization,
That is, in a region where the oxygen supply amount is not sufficient, it is conspicuous that the magnetized MEA (solid line and circle) becomes superior to the non-magnetized MEA (dashed line and triangle). From these results, the effect when the magnet source fine particles were inserted was verified.

【0020】実施例6 磁石源微粒子としてNd−Fe−B系粒子(平均粒径2
00μm)を利用した。MEAの仕様を表2に示す。M
EAの作成過程は実施例5と同じである。
Example 6 Nd—Fe—B-based particles (average particle size: 2
00 μm). Table 2 shows the specifications of the MEA. M
The process of creating the EA is the same as in the fifth embodiment.

【0021】[0021]

【表2】 [Table 2]

【0022】Nd−Fe−B系粒子含有MEAの測定条
件は、セル温度80℃、加湿器水温80℃(水素、空気
とも)、水素利用率70%、酸素利用率40%を基準条
件とし、加湿開始後8時間目における電流密度−電圧の
関係を調べた。その結果、磁化を行ったMEA21は行
わないものに比べて有意の差で高いセル電圧が発生する
ことを確認した。また電流密度400mA/cm2にお
いて酸素利用率を10%から80%の間で変化させ、酸
素補給が十分な場合と不十分な場合において磁化の有無
がセル電圧に与える影響を調べた。その結果、酸素利用
率が高い領域、すなわち酸素供給量が十分でない領域に
おいて、磁化を行ったMEA21は行わないものに比べ
て高いセル電圧を発生することが確認された。
The measurement conditions for the MEA containing the Nd—Fe—B particles are as follows: cell temperature 80 ° C., humidifier water temperature 80 ° C. (both hydrogen and air), hydrogen utilization 70%, oxygen utilization 40%. Eight hours after the start of humidification, the relationship between current density and voltage was examined. As a result, it was confirmed that a higher cell voltage was generated with a significant difference than that in the case where the magnetized MEA 21 was not used. At a current density of 400 mA / cm 2 , the oxygen utilization was varied between 10% and 80%, and the effect of the presence or absence of magnetization on the cell voltage was examined when oxygen supplementation was sufficient and insufficient. As a result, it was confirmed that in a region where the oxygen utilization rate is high, that is, in a region where the oxygen supply amount is not sufficient, a higher cell voltage is generated as compared with the case where the magnetized MEA 21 is not used.

【0023】[0023]

【発明の効果】以上説明したように、本発明は、電池の
酸素電極中に、強力な永久磁石粒子の表面近傍に触媒を
配置した永久磁石材を、複数個分散、配置するという全
く新しい発想に基づく酸素電極、およびその酸素電極を
持つ燃料電池と燃料電池システムである。そして、酸素
電極中における触媒近傍への酸素ガスの輸送を促進し、
電解質や反応生成物である水を排除するので、さらに触
媒反応を促進する。永久磁石はその表面を被覆されてい
るので、使用環境での永久磁石材の劣化が防がれひいて
は酸素電極の使用寿命が長くなる。本発明では、永久磁
石材を使用することで、特に低温型において触媒反応の
効率を促進し、使用する白金触媒の量を削減することが
可能である。このように酸素電極中に永久磁石材を配置
すると、燃料電池システム全体としての性能を向上さ
せ、燃料電池の実用化、特に低温型燃料電池の実用化に
際して大きな課題となっている(イ)白金触媒などの触
媒によるコスト高の点は、触媒の使用量を削減すること
が可能となり、(ロ)酸素電極中の酸素ガスの輸送の点
は、その速度を大きく上げることにより、空気や酸素ガ
スを加圧する必要がなくなり、燃料電池や燃料電池発電
システムの小型化及び簡素化ができる。
As described above, the present invention provides a completely new idea of dispersing and arranging a plurality of permanent magnet materials in which a catalyst is arranged near the surface of strong permanent magnet particles in the oxygen electrode of the battery. And a fuel cell and a fuel cell system having the oxygen electrode. And promotes the transport of oxygen gas to the vicinity of the catalyst in the oxygen electrode,
Since the electrolyte and water as a reaction product are excluded, the catalytic reaction is further promoted. Since the surface of the permanent magnet is coated, deterioration of the permanent magnet material in the use environment is prevented, and the service life of the oxygen electrode is prolonged. In the present invention, by using the permanent magnet material, it is possible to promote the efficiency of the catalytic reaction, particularly in a low-temperature type, and to reduce the amount of the platinum catalyst used. By arranging the permanent magnet material in the oxygen electrode in this way, the performance of the fuel cell system as a whole is improved, and there is a major problem in putting a fuel cell into practical use, particularly in putting a low-temperature fuel cell into practical use. The point of high cost due to catalysts such as catalysts is that it is possible to reduce the amount of catalyst used. (B) The point of transporting oxygen gas in the oxygen electrode is to greatly increase the speed of air and oxygen gas. It is not necessary to pressurize the fuel cell, and the fuel cell and the fuel cell power generation system can be reduced in size and simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般の燃料電池の原理に関する説明図である。FIG. 1 is a diagram illustrating the principle of a general fuel cell.

【図2】一般の燃料電池酸素電極内の模式説明図であ
る。
FIG. 2 is a schematic explanatory view of a general fuel cell oxygen electrode.

【図3】(イ)は本発明の燃料電池酸素電極において使
用する永久磁石材の一実施態様の模式説明図であり、
(ロ)は磁場強度分布である。
FIG. 3A is a schematic explanatory view of one embodiment of a permanent magnet material used in the fuel cell oxygen electrode of the present invention,
(B) is a magnetic field intensity distribution.

【図4】(イ)は本発明の一実施態様としての、永久磁
石材を、複数個分散配置した酸素電極の説明図、(ロ)
はその磁場強度分布である。
FIG. 4A is an explanatory view of an oxygen electrode in which a plurality of permanent magnet materials are dispersed and arranged as one embodiment of the present invention;
Is the magnetic field intensity distribution.

【図5】態様1の永久磁石材を用いた酸素電極反応の説
明図である。
FIG. 5 is an explanatory diagram of an oxygen electrode reaction using the permanent magnet material of the first embodiment.

【図6】(イ)は円柱型永久磁石2個を用いた永久磁石
材の磁場強度分布を示す説明図 (ロ)はy=0、2.5、5mmにおける磁場強度分布
である。
FIG. 6A is an explanatory view showing a magnetic field intensity distribution of a permanent magnet material using two columnar permanent magnets. FIG. 6B is a magnetic field intensity distribution at y = 0, 2.5, and 5 mm.

【図7】(イ)電解質中に溶存させた酸素ガスの白金上
における酸素還元電流を溶液静止状態で測定したもので
ある。電位走査速度は10mV/S。 (ロ)電解質中に溶存させた酸素ガスの白金担持カーボ
ンペーパーにおける酸素還元電流を溶液静止状態で測定
したものである。電位走査速度は10mV/S。
FIG. 7 shows (a) the oxygen reduction current of oxygen gas dissolved in an electrolyte on platinum measured in a stationary state of the solution. The potential scanning speed is 10mV / S. (B) The oxygen reduction current of oxygen gas dissolved in the electrolyte in a platinum-carrying carbon paper was measured in a solution stationary state. The potential scanning speed is 10mV / S.

【図8】酸素電極内に組み込まれる永久磁石材システム
を示す図である。
FIG. 8 illustrates a permanent magnet material system incorporated into an oxygen electrode.

【図9】電解質膜と電極の接合体(MEA)の構成を示
す図である。
FIG. 9 is a diagram showing a configuration of a joined body (MEA) of an electrolyte membrane and an electrode.

【図10】セル電圧と電流密度との関係を示す図であ
る。
FIG. 10 is a diagram showing a relationship between cell voltage and current density.

【図11】セル電圧と酸素利用率との関係を示す図であ
る。
FIG. 11 is a diagram showing a relationship between a cell voltage and an oxygen utilization rate.

【符号の説明】 1 酸素電極 2 酸化剤 3 電解質 4 水素電極 5 水素ガス 6 カーボン粒子 7 触媒 8 永久磁石材 9 永久磁石粒子 10 物質 11 触媒 12 酸素電極 13 永久磁石 14 線材 15 永久磁石材システム 16 高分子電解質膜 17 燃料電極側拡散層 18 酸素電極側拡散層 19 燃料電極側触媒層 20 酸素電極側触媒層 21 MEADESCRIPTION OF THE SYMBOLS 1 oxygen electrode 2 oxidant 3 electrolyte 4 hydrogen electrode 5 hydrogen gas 6 carbon particles 7 catalyst 8 permanent magnet material 9 permanent magnet particles 10 substance 11 catalyst 12 oxygen electrode 13 permanent magnet 14 wire 15 permanent magnet material system 16 Polymer electrolyte membrane 17 Fuel electrode side diffusion layer 18 Oxygen electrode side diffusion layer 19 Fuel electrode side catalyst layer 20 Oxygen electrode side catalyst layer 21 MEA

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01M 8/10 H01M 8/10 (72)発明者 岡田 達弘 茨城県つくば市東1−1−1 独立行政法 人 産業技術総合研究所 つくばセンター 内 Fターム(参考) 5H018 AA06 AS03 BB03 BB08 BB12 CC06 EE02 EE03 EE05 EE10 EE16 EE18 5H026 AA06 BB04 BB08 CX05 EE05 EE08 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) // H01M 8/10 H01M 8/10 (72) Inventor Tatsuhiro Okada 1-1-1 Higashi, Tsukuba, Ibaraki Independent F-term in the Tsukuba Center, AIST (reference) 5H018 AA06 AS03 BB03 BB08 BB12 CC06 EE02 EE03 EE05 EE10 EE16 EE18 5H026 AA06 BB04 BB08 CX05 EE05 EE08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 酸素電極中に、複数個の永久磁石材を分
散、配置して電池を形成したことを特徴とする燃料電池
システム。
1. A fuel cell system in which a plurality of permanent magnet materials are dispersed and arranged in an oxygen electrode to form a battery.
【請求項2】 酸素電極中に、複数個の永久磁石材を分
散、配置したことを特徴とする燃料電池。
2. A fuel cell, wherein a plurality of permanent magnet materials are dispersed and arranged in an oxygen electrode.
【請求項3】 電極中に、複数個の永久磁石材を分散、
配置したことを特徴とする燃料電池用酸素電極。
3. A plurality of permanent magnet materials dispersed in an electrode,
An oxygen electrode for a fuel cell, wherein the oxygen electrode is arranged.
【請求項4】 請求項1〜3のいずれか1項において永
久磁石材が、永久磁石の表面を、化学的に安定で磁力線
をとおす物質で覆い、その表面に触媒やカーボン粒子な
どを担持したものであることを特徴とする酸素電極。
4. The permanent magnet material according to claim 1, wherein the surface of the permanent magnet is covered with a substance that is chemically stable and passes through the lines of magnetic force, and a catalyst, carbon particles, and the like are supported on the surface. An oxygen electrode, characterized in that:
【請求項5】 請求項1〜3のいずれか1項において永
久磁石材が、永久磁石の表面を、化学的に安定で磁力線
をとおす物質、触媒およびカーボン粒子を含む混合物で
覆ったものであることを特徴とする酸素電極。
5. The permanent magnet material according to claim 1, wherein the surface of the permanent magnet is covered with a mixture containing a substance that is chemically stable and passes magnetic lines of force, a catalyst, and carbon particles. An oxygen electrode, characterized in that:
【請求項6】 複数個の表面を化学的に安定で磁力線を
とおす物質で覆った永久磁石粒子、複数個の触媒粒子お
よびカーボン粒子などを分散、配置してなることを特徴
とする請求項1〜3のいずれか1項に記載の酸素電極。
6. The method according to claim 1, wherein a plurality of permanent magnet particles, a plurality of catalyst particles, carbon particles, and the like, the plurality of surfaces of which are covered with a substance that is chemically stable and passes through the lines of magnetic force, are dispersed and arranged. The oxygen electrode according to any one of claims 1 to 3.
【請求項7】 酸素電極中に分散、配置される永久磁石
の磁化の方向を一様にすることを特徴とする請求項1〜
6のいずれか1項に記載の酸素電極。
7. The method according to claim 1, wherein the directions of magnetization of the permanent magnets dispersed and arranged in the oxygen electrode are made uniform.
7. The oxygen electrode according to any one of 6.
【請求項8】 永久磁石粒子を網状の常磁性又は強磁性
物質の線材に固定した後に、酸素電極内に組み込み固定
して複数個の永久磁石材を分散、配置することを特徴と
する請求項1〜7のいずれか1項に記載の酸素電極の製
造方法。
8. The method according to claim 1, wherein the permanent magnet particles are fixed to a net-like wire made of paramagnetic or ferromagnetic material, and then incorporated and fixed in an oxygen electrode to disperse and arrange a plurality of permanent magnet materials. The method for producing an oxygen electrode according to any one of claims 1 to 7.
【請求項9】 未磁化の永久磁石粒子を酸素電極内に分
散配置するように組み込んで燃料電池のセルを作製し、
セルごと磁化して複数個の永久磁石材を分散、配置する
ことを特徴とする請求項1〜8のいずれか1項に記載の
酸素電極の製造方法。
9. A fuel cell is manufactured by incorporating unmagnetized permanent magnet particles so as to be dispersed in an oxygen electrode.
The method for manufacturing an oxygen electrode according to any one of claims 1 to 8, wherein a plurality of permanent magnet materials are dispersed and arranged by magnetizing each cell.
JP2001151574A 2000-05-23 2001-05-21 Fuel cell and improved version of oxygen electrode used for same Pending JP2002198057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151574A JP2002198057A (en) 2000-05-23 2001-05-21 Fuel cell and improved version of oxygen electrode used for same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-152039 2000-05-23
JP2000152039 2000-05-23
JP2001151574A JP2002198057A (en) 2000-05-23 2001-05-21 Fuel cell and improved version of oxygen electrode used for same

Publications (1)

Publication Number Publication Date
JP2002198057A true JP2002198057A (en) 2002-07-12

Family

ID=26592427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151574A Pending JP2002198057A (en) 2000-05-23 2001-05-21 Fuel cell and improved version of oxygen electrode used for same

Country Status (1)

Country Link
JP (1) JP2002198057A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2848341A1 (en) * 2002-12-04 2004-06-11 Commissariat Energie Atomique Fuel cell generating electric energy from oxygen and hydronium ions using a static pumping magnetic cathode made up of a network of permanent magnets, e.g. for mini-fuel cells
US6939628B2 (en) * 2002-07-23 2005-09-06 Hewlett-Packard Development Company, L.P. Method and apparatus for increasing fuel cell efficiency, power output, or reduced-temperature operation
JP2005317220A (en) * 2004-04-27 2005-11-10 Equos Research Co Ltd Magnetic carrier for electrode, magnetism carrying catalyst for electrode and using method of the same, membrane-electrode junction, and fuel cell system
JP2006147200A (en) * 2004-11-16 2006-06-08 Equos Research Co Ltd Catalyst carrying mixed conductor
JP2007280669A (en) * 2006-04-04 2007-10-25 Toppan Printing Co Ltd Electrode catalyst layer for solid polymer fuel cell, manufacturing method of same, and solid polymer fuel cell using method
JP2008288084A (en) * 2007-05-18 2008-11-27 Toyota Motor Corp Electrode catalyst for alkaline fuel cell, the alkaline fuel cell, and forming method of the electrode catalyst for the alkaline fuel cell
JP2009028708A (en) * 2007-06-25 2009-02-12 Hitachi Maxell Ltd Magnetic particle-deposited catalyst, method for manufacturing the same, electrode using the same for fuel cell, and fuel cell
WO2012114175A1 (en) * 2011-02-24 2012-08-30 Toyota Jidosha Kabushiki Kaisha Air electrode for air battery, method of producing same, and air battery
JP2013069667A (en) * 2011-09-05 2013-04-18 Ngk Insulators Ltd Selective oxygen transmission substrate, positive electrode for air cell and air cell
WO2013148374A1 (en) 2012-03-29 2013-10-03 University Of Iowa Research Foundation Magnetically modified metals and metal alloys for hydride storage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177145A (en) * 1982-03-31 1983-10-17 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Process for improving catalytic capacity
JPH0896814A (en) * 1994-09-26 1996-04-12 Fuji Electric Co Ltd Electrode catalyst of phosphoric acid fuel cell
WO1996041391A1 (en) * 1995-06-07 1996-12-19 The University Of Iowa Research Foundation Gradient interface composites and methods therefor
JPH11214013A (en) * 1997-11-18 1999-08-06 Fuji Electric Co Ltd Phosphoric acid type fuel cell
JP2001110431A (en) * 1999-10-12 2001-04-20 Toyota Central Res & Dev Lab Inc Electrode of fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177145A (en) * 1982-03-31 1983-10-17 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Process for improving catalytic capacity
JPH0896814A (en) * 1994-09-26 1996-04-12 Fuji Electric Co Ltd Electrode catalyst of phosphoric acid fuel cell
WO1996041391A1 (en) * 1995-06-07 1996-12-19 The University Of Iowa Research Foundation Gradient interface composites and methods therefor
JPH11214013A (en) * 1997-11-18 1999-08-06 Fuji Electric Co Ltd Phosphoric acid type fuel cell
JP2001110431A (en) * 1999-10-12 2001-04-20 Toyota Central Res & Dev Lab Inc Electrode of fuel cell

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939628B2 (en) * 2002-07-23 2005-09-06 Hewlett-Packard Development Company, L.P. Method and apparatus for increasing fuel cell efficiency, power output, or reduced-temperature operation
US7569289B2 (en) 2002-12-04 2009-08-04 Commissariat A L'energie Atomique Fuel cell comprising a magnetic cathode with static pumping
WO2004054018A1 (en) * 2002-12-04 2004-06-24 Commissariat A L'energie Atomique Fuel cell comprising a magnetic cathode with static pumping
FR2848341A1 (en) * 2002-12-04 2004-06-11 Commissariat Energie Atomique Fuel cell generating electric energy from oxygen and hydronium ions using a static pumping magnetic cathode made up of a network of permanent magnets, e.g. for mini-fuel cells
JP4786181B2 (en) * 2002-12-04 2011-10-05 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Fuel cell comprising a magnetic cathode with static pumping
JP2005317220A (en) * 2004-04-27 2005-11-10 Equos Research Co Ltd Magnetic carrier for electrode, magnetism carrying catalyst for electrode and using method of the same, membrane-electrode junction, and fuel cell system
JP4729865B2 (en) * 2004-04-27 2011-07-20 株式会社エクォス・リサーチ How to use the fuel cell
JP2006147200A (en) * 2004-11-16 2006-06-08 Equos Research Co Ltd Catalyst carrying mixed conductor
JP2007280669A (en) * 2006-04-04 2007-10-25 Toppan Printing Co Ltd Electrode catalyst layer for solid polymer fuel cell, manufacturing method of same, and solid polymer fuel cell using method
JP2008288084A (en) * 2007-05-18 2008-11-27 Toyota Motor Corp Electrode catalyst for alkaline fuel cell, the alkaline fuel cell, and forming method of the electrode catalyst for the alkaline fuel cell
JP2009028708A (en) * 2007-06-25 2009-02-12 Hitachi Maxell Ltd Magnetic particle-deposited catalyst, method for manufacturing the same, electrode using the same for fuel cell, and fuel cell
WO2012114175A1 (en) * 2011-02-24 2012-08-30 Toyota Jidosha Kabushiki Kaisha Air electrode for air battery, method of producing same, and air battery
JP2012174655A (en) * 2011-02-24 2012-09-10 Toyota Motor Corp Air electrode for air battery, method of manufacturing the same, and air electrode
CN103392259A (en) * 2011-02-24 2013-11-13 丰田自动车株式会社 Air electrode for air battery, method of producing same, and air battery
JP2013069667A (en) * 2011-09-05 2013-04-18 Ngk Insulators Ltd Selective oxygen transmission substrate, positive electrode for air cell and air cell
WO2013148374A1 (en) 2012-03-29 2013-10-03 University Of Iowa Research Foundation Magnetically modified metals and metal alloys for hydride storage

Similar Documents

Publication Publication Date Title
Okada et al. The effect of magnetic field on the oxygen reduction reaction and its application in polymer electrolyte fuel cells
JP2002198057A (en) Fuel cell and improved version of oxygen electrode used for same
JP5119738B2 (en) Electrode catalyst for alkaline fuel cell, alkaline fuel cell, and method for forming electrode catalyst for alkaline fuel cell
Park et al. Direct electron transfer in E. coli catalyzed MFC with a magnetite/MWCNT modified anode
Abdel-Rehim The influence of electromagnetic field on the performance and operation of a PEM fuel cell stack subjected to a relatively low electromagnetic field intensity
Shi et al. Study of magnetic field to promote oxygen transfer and its application in zinc–air fuel cells
JP4952008B2 (en) Electrode catalyst layer for solid polymer electrolyte fuel cell, method for producing the same, and solid polymer electrolyte fuel cell
TWI460907B (en) A gas diffusion electrode containing a catalyst collector layer and a method for manufacturing the same
JP2005294109A (en) Substrate for fuel cell, and the fuel cell
Mo et al. Enhancing the stability of power generation of single‐chamber microbial fuel cells using an anion exchange membrane
JP4729865B2 (en) How to use the fuel cell
US7569289B2 (en) Fuel cell comprising a magnetic cathode with static pumping
JP2009028708A (en) Magnetic particle-deposited catalyst, method for manufacturing the same, electrode using the same for fuel cell, and fuel cell
JP2007250291A (en) Fuel cell and oxygen supply device for fuel cell
JP5003076B2 (en) Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
JP2005346929A (en) Membrane electrode assembly for direct fuel cell, system, and method of using system
JP2005332770A (en) Membrane electrode assembly and fuel cell system
JP2003045438A (en) Low temperature fuel cell
JP2006066390A (en) Surface electrolyte sefc for fuel cell
JP4802484B2 (en) Catalyst-supported mixed conductor
CN113851686B (en) Hydrogen fuel cell stack device based on magnetic field regulation and control
Kim et al. ORR Enhancement Using Core-Shell Copt Magnetic Nanoparticles In Cathode Electrode Of Pemfcs
JP2006509339A5 (en)
JP5003078B2 (en) Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
Knoche Gupta et al. Magnetoelectrocatalysis: Evidence from the Hydrogen Evolution Reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510