JP4729865B2 - How to use the fuel cell - Google Patents

How to use the fuel cell Download PDF

Info

Publication number
JP4729865B2
JP4729865B2 JP2004130631A JP2004130631A JP4729865B2 JP 4729865 B2 JP4729865 B2 JP 4729865B2 JP 2004130631 A JP2004130631 A JP 2004130631A JP 2004130631 A JP2004130631 A JP 2004130631A JP 4729865 B2 JP4729865 B2 JP 4729865B2
Authority
JP
Japan
Prior art keywords
magnetic
electrode
catalyst
hydrogen
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004130631A
Other languages
Japanese (ja)
Other versions
JP2005317220A (en
Inventor
昌俊 長濱
泰三 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2004130631A priority Critical patent/JP4729865B2/en
Publication of JP2005317220A publication Critical patent/JP2005317220A/en
Application granted granted Critical
Publication of JP4729865B2 publication Critical patent/JP4729865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池の使用方法に関する。 The present invention also relates to the use for how the fuel cell.

従来、図13に示すような膜電極接合体(MEA:Membrane Electrode Assembly)90を用いた燃料電池システムが知られている。この膜電極接合体90は、イオン交換膜からなる電解質層91と、この電解質層91の一面に一体に形成された空気極93と、電解質層91の他面に一体に形成された水素極92とを有している。   Conventionally, a fuel cell system using a membrane electrode assembly (MEA) 90 as shown in FIG. 13 is known. The membrane electrode assembly 90 includes an electrolyte layer 91 made of an ion exchange membrane, an air electrode 93 formed integrally on one surface of the electrolyte layer 91, and a hydrogen electrode 92 formed integrally on the other surface of the electrolyte layer 91. And have.

空気極93は、電解質層91の一面に接合された空気極反応層93aと、空気極反応層93aの非電解質層側に接合され、空気極反応層93aに空気を拡散する空気拡散層93bとからなる。   The air electrode 93 is joined to the air electrode reaction layer 93a joined to one surface of the electrolyte layer 91, the air diffusion layer 93b joined to the non-electrolyte layer side of the air electrode reaction layer 93a, and diffuses air into the air electrode reaction layer 93a. Consists of.

また、水素極92は、電解質層91の他面に接合された水素極反応層92aと、水素極反応層92aの非電解質層側に接合され、水素極反応層92aに水素を拡散する水素拡散層92bとからなる。   Further, the hydrogen electrode 92 is bonded to the hydrogen electrode reaction layer 92a bonded to the other surface of the electrolyte layer 91 and the non-electrolyte layer side of the hydrogen electrode reaction layer 92a, and hydrogen diffusion for diffusing hydrogen into the hydrogen electrode reaction layer 92a. Layer 92b.

一般的な膜電極接合体では、空気極反応層93a及び水素極反応層92aに触媒作用を奏する白金(Pt)等の触媒が担持されている。   In a general membrane electrode assembly, a catalyst such as platinum (Pt) having a catalytic action is supported on the air electrode reaction layer 93a and the hydrogen electrode reaction layer 92a.

そして、この膜電極接合体90を図示しないセパレータで挟むことにより最小発電単位である燃料電池のセルが構成され、このセルが多数積層されて燃料電池スタックが構成される。水素極反応層92aには水素供給手段によって水素が供給され、空気極反応層93aには空気供給手段によって空気が供給されるようになっている。こうして燃料電池システムが構成される。   The membrane electrode assembly 90 is sandwiched between separators (not shown) to form a fuel cell as a minimum power generation unit, and a large number of these cells are stacked to form a fuel cell stack. Hydrogen is supplied to the hydrogen electrode reaction layer 92a by a hydrogen supply means, and air is supplied to the air electrode reaction layer 93a by an air supply means. Thus, the fuel cell system is configured.

この膜電極接合体90では、水素極反応層92aにおける電気化学的反応により、燃料の水素から水素イオンと電子とが生成される。そして、水素イオンはプロトン(H3+)の形で電解質層91内を空気極反応層93aに向かって移動する。また、電子は、燃料電池システムに接続された負荷を通り、空気極反応層93aに流れる。一方、空気極反応層93aにおいては、空気中に含まれる酸素と水素イオンと電子とから水が生成される。このような電気化学的反応が連続して起こることにより、燃料電池システムは起電力を連続して発生することができる。 In this membrane electrode assembly 90, hydrogen ions and electrons are generated from hydrogen of the fuel by an electrochemical reaction in the hydrogen electrode reaction layer 92a. The hydrogen ions move in the form of protons (H 3 O + ) in the electrolyte layer 91 toward the air electrode reaction layer 93a. Further, the electrons flow through the load connected to the fuel cell system and flow into the air electrode reaction layer 93a. On the other hand, in the air electrode reaction layer 93a, water is generated from oxygen, hydrogen ions, and electrons contained in the air. The fuel cell system can continuously generate an electromotive force by continuously performing such an electrochemical reaction.

しかし、空気極反応層93aでは、水素イオンとともに移動した水と電気化学的反応で生じた生成水とにより水が過剰となり、空気の拡散が阻害される(以下、「フラッディング」という。)。このため、電極上での反応物質(水素、酸素等)の反応速度に起因する活性化過電圧と、電極上での反応場(通常、電極に存在する触媒上)への反応物質又は反応生成物の移動のし易さに起因する濃度過電圧との損失により、燃料電池システムの出力が低下しやすい。   However, in the air electrode reaction layer 93a, water is excessive due to the water that has moved with the hydrogen ions and the generated water generated by the electrochemical reaction, thereby inhibiting the diffusion of air (hereinafter referred to as “flooding”). Therefore, the activation overvoltage due to the reaction rate of the reactant (hydrogen, oxygen, etc.) on the electrode and the reactant or reaction product to the reaction field (usually on the catalyst present on the electrode) on the electrode The output of the fuel cell system tends to decrease due to the loss with the concentration overvoltage resulting from the ease of movement of the fuel cell.

このため、特許文献1開示の空気極を採用することが考えられる。特許文献1開示の空気極は、ネオジウム−鉄−ホウ素磁石、サマリウム−コバルト磁石、フェライト磁石等の永久磁石を分散、配置してなるものである。この空気極を燃料電池システムに用いれば、永久磁石の磁気作用により、酸素を常磁性体として吸引しつつ水を反磁性体として排斥することができる。   For this reason, it is conceivable to employ the air electrode disclosed in Patent Document 1. The air electrode disclosed in Patent Document 1 is obtained by dispersing and arranging permanent magnets such as neodymium-iron-boron magnets, samarium-cobalt magnets, and ferrite magnets. If this air electrode is used in a fuel cell system, water can be discharged as a diamagnetic material while attracting oxygen as a paramagnetic material by the magnetic action of a permanent magnet.

すなわち、永久磁石近傍の数nmの領域では、距離をRとした場合、1/R2に比例する桁違いに大きな磁場勾配が生じ、その結果、磁気力と比例関係をもつ磁場と磁場勾配との積が非常に大きくなる。このため、酸素は、常磁性体として、永久磁石から重力の約103倍に相当する105N/m3程度の非常に大きな吸引力を受ける。他方、電気化学的反応後に触媒表面に生じる水は、永久磁石が発生する磁気力により、反磁性体として、永久磁石からやはり重力の約103倍に相当する106N/m3程度の非常に大きな排斥力を受ける。このため、電気化学的反応をする触媒の活性点から障害物としての水が排斥され、そこに酸素を速やかに供給することができるため、フラッディングが抑制され、燃料電池システムの出力向上を実現できると考えられる。 That is, in the region of several nm near the permanent magnet, when the distance is R, a large magnetic field gradient is generated in an order of magnitude proportional to 1 / R 2. As a result, a magnetic field and a magnetic field gradient proportional to the magnetic force The product of becomes very large. For this reason, oxygen receives a very large attractive force of about 10 5 N / m 3 corresponding to about 10 3 times gravity from a permanent magnet as a paramagnetic material. On the other hand, the water generated on the catalyst surface after the electrochemical reaction is an emergency of about 10 6 N / m 3, which is equivalent to about 10 3 times the gravity from the permanent magnet as a diamagnetic material due to the magnetic force generated by the permanent magnet. Receives a large exclusion force. For this reason, water as an obstacle is drained from the active point of the catalyst that performs an electrochemical reaction, and oxygen can be quickly supplied thereto, so that flooding is suppressed and the output of the fuel cell system can be improved. it is conceivable that.

特開2002−198057号公報JP 2002-198057 A

しかし、上記特許文献1開示の技術では、触媒作用を奏する触媒を磁気作用を奏する永久磁石とは別に分散、配置した空気極を採用している。このため、この技術を用いた燃料電池システムでは、酸素を吸引し、水を排斥する永久磁石と、電気化学的反応の触媒作用を行う触媒とが必ずしも近くにないものとなるため、出力向上を必ずしも実現し得ないと思われる。   However, the technique disclosed in Patent Document 1 employs an air electrode in which a catalyst having a catalytic action is dispersed and arranged separately from a permanent magnet having a magnetic action. For this reason, in a fuel cell system using this technology, the permanent magnet that draws oxygen and discharges water is not necessarily close to the catalyst that catalyzes the electrochemical reaction. It seems that it cannot always be realized.

また、その技術を用いた燃料電池システムでは、永久磁石が空気極において単に分散、配置されているに過ぎないことから、永久磁石自体の磁気力しか生じず、磁気力が不足するおそれがある。また、この燃料電池システムでは、永久磁石が空気極から脱落するおそれもある。このため、その燃料電池システムでは、磁気力に基づく吸引力及び排斥力が不十分になるおそれがあり、やはり出力向上を必ずしも実現し得ないと思われる。   Further, in the fuel cell system using this technology, since the permanent magnets are merely dispersed and arranged in the air electrode, only the magnetic force of the permanent magnets is generated, and there is a possibility that the magnetic force is insufficient. Further, in this fuel cell system, the permanent magnet may fall off from the air electrode. For this reason, in the fuel cell system, there is a possibility that the attractive force and the evacuation force based on the magnetic force may be insufficient, and it is considered that the output improvement cannot always be realized.

本発明は、上記従来の実情に鑑みてなされたものであって、燃料電池システムの出力をより確実に向上させることを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and an object to be solved is to improve the output of the fuel cell system more reliably.

発明者らは、上記課題解決のために鋭意研究を行い、出願人の先行出願である特開平9−206597号開示の技術を下に、本発明を完成したのである。   The inventors have intensively studied to solve the above problems, and have completed the present invention based on the technology disclosed in Japanese Patent Application Laid-Open No. 9-206597, which is the prior application of the applicant.

図1に示すように、本発明に係る燃料電池の電極用磁性担体31は、自ら磁気作用をもち、触媒作用及び磁気作用を自ら併せもつ磁性触媒33が外周面に担持される磁性体からなる。 As shown in FIG. 1, a magnetic carrier 31 for an electrode of a fuel cell according to the present invention is made of a magnetic material that has its own magnetic action and a magnetic catalyst 33 having both catalytic action and magnetic action on its outer peripheral surface. The

発明者らの試験結果によれば、磁性触媒33としてはfct構造を主相とするPt合金を採用することができる。fct構造のPt合金は、図2に示すように、PtとFe、Co等の他の合金金属とが層構造をなすPt合金である。図3に示すように、Ptと他の合金金属とが層構造をなさない立方晶系面心立方格子(fcc)構造のPt合金を高温下の熱処理に供することにより、fct構造のPt合金が得られる。一般的に、合金化直後のPt合金は、準安定相である不規則なfcc構造をとり、これは軟磁気特性を示す。しかし、これを高温下の熱処理に供することにより、安定相である規則的なfct構造が形成され、Ku〜7×107erg/ccの高い一軸結晶磁気異方性を示す高い保磁力を有するものとなる。 According to the test results of the inventors, a Pt alloy having the fct structure as the main phase can be used as the magnetic catalyst 33. As shown in FIG. 2, the Pt alloy having the fct structure is a Pt alloy in which Pt and another alloy metal such as Fe and Co form a layer structure. As shown in FIG. 3, a Pt alloy having a fct structure is obtained by subjecting a Pt alloy having a cubic face centered cubic lattice (fcc) structure in which Pt and another alloy metal do not form a layer structure to a heat treatment at a high temperature. can get. Generally, a Pt alloy immediately after alloying has an irregular fcc structure which is a metastable phase, which shows soft magnetic properties. However, when this is subjected to heat treatment at high temperature, a regular fct structure which is a stable phase is formed, and it has a high coercive force showing high uniaxial crystal magnetic anisotropy of Ku to 7 × 10 7 erg / cc. It will be a thing.

より具体的には、磁性触媒33としては、Pt−Fe合金を採用することができる。Pt−Fe合金の状態図を図4に示す。図4に示されるように、熱処理温度を900°Cとすると、Pt/Fe=35/65〜54/46(at%)の範囲で磁気作用を奏するfct構造を主相とするPt−Fe合金が得られる。発明者らの試験によれば、熱処理温度を1300°Cとすることにより、Pt/Fe=41/59〜74/26(at%)の範囲で磁気作用を奏するfct構造を主相とするPt−Fe合金が得られた。Pt/Fe=38.5/61.5(at%)のPt−Fe合金を1046°Cで100時間熱処理し、水で急冷したfct構造を主相とするPt−Fe合金の磁化曲線図を図5に示す。図5より、このfct構造を主相とするPt−Fe合金は、−3.8〜3.8kOeの高い保磁力を有することがわかる。発明者らの推察によれば、Pt/Fe=40/60〜75/25(at%)の組成を有するPt−Fe合金を採用することが好ましい。また、保磁力が絶対値で2kOe以上のPt−Fe合金を採用することが好ましい。さらに、粒径が1〜10nmのPt−Fe合金を採用することが好ましい。この種のPt−Fe合金は水溶液反応を基礎とする逆ミセル法、有機金属を用いる合成法等によって得られる。   More specifically, a Pt—Fe alloy can be employed as the magnetic catalyst 33. A phase diagram of the Pt—Fe alloy is shown in FIG. As shown in FIG. 4, when the heat treatment temperature is 900 ° C., a Pt—Fe alloy having a main phase of an fct structure that exhibits a magnetic action in a range of Pt / Fe = 35/65 to 54/46 (at%). Is obtained. According to the tests by the inventors, by setting the heat treatment temperature to 1300 ° C., Pt whose main phase is an fct structure exhibiting a magnetic action in the range of Pt / Fe = 41/59 to 74/26 (at%). A -Fe alloy was obtained. Pt / Fe = 38.5 / 61.5 (at%) Pt—Fe alloy heat-treated at 1046 ° C. for 100 hours and quenched with water. As shown in FIG. FIG. 5 shows that the Pt—Fe alloy having the fct structure as the main phase has a high coercive force of −3.8 to 3.8 kOe. According to the inventors' estimation, it is preferable to employ a Pt—Fe alloy having a composition of Pt / Fe = 40/60 to 75/25 (at%). Moreover, it is preferable to employ a Pt—Fe alloy having a coercive force of 2 kOe or more in absolute value. Furthermore, it is preferable to employ a Pt—Fe alloy having a particle size of 1 to 10 nm. This type of Pt—Fe alloy can be obtained by a reverse micelle method based on an aqueous solution reaction, a synthesis method using an organic metal, or the like.

また、磁性触媒33としては、Pt−Co合金を採用することもできる。Pt−Co合金の状態図を図6に示す。図6に示されるように、Pt/Co=40/60〜73/27(at%)の範囲で磁気作用を奏するfct構造を主相とするPt−Co合金が得られる。発明者らの推察によれば、Pt/Co=40/60〜75/25(at%)の組成を有するPt−Co合金を採用することが好ましい。また、保磁力が絶対値で2kOe以上のPt−Co合金を採用することが好ましい。さらに、粒径が1〜10nmのPt−Co合金を採用することが好ましい。この種のPt−Co合金も水溶液反応を基礎とする逆ミセル法、有機金属を用いる合成法等によって得られる。   Further, as the magnetic catalyst 33, a Pt—Co alloy can also be adopted. A phase diagram of the Pt—Co alloy is shown in FIG. As shown in FIG. 6, a Pt—Co alloy having an fct structure having a magnetic action in the range of Pt / Co = 40/60 to 73/27 (at%) as a main phase is obtained. According to the inventors' estimation, it is preferable to employ a Pt—Co alloy having a composition of Pt / Co = 40/60 to 75/25 (at%). Moreover, it is preferable to employ a Pt—Co alloy having a coercive force of 2 kOe or more in absolute value. Furthermore, it is preferable to employ a Pt—Co alloy having a particle size of 1 to 10 nm. This type of Pt—Co alloy is also obtained by a reverse micelle method based on an aqueous solution reaction, a synthesis method using an organic metal, or the like.

発明者らの試験結果によれば、図7に示すように、磁化された磁性触媒33は、その磁気作用により、酸素を常磁性体として吸引しつつ水を反磁性体として排斥することができる。また、磁性触媒33は、空気極反応層で還元反応を促進し、電気化学的反応の触媒作用を行う。すなわち、酸素は、常磁性体として、直にプロトンと反応する磁性触媒33自体から非常に大きな吸引力を受ける。他方、電気化学的反応後には磁性触媒33自体の表面に水が生じており、その水は、磁性触媒33自体が発生する磁気力により、反磁性体として、磁性触媒33自体からやはり非常に大きな排斥力を受ける。このため、実際に電気化学的反応をする磁性触媒33の活性点から障害物としての水が排斥され、その磁性触媒33に酸素を速やかに供給することができるため、フラッディングがより確実に抑制される。   According to the test results of the inventors, as shown in FIG. 7, the magnetized magnetic catalyst 33 can drain water as a diamagnetic material while attracting oxygen as a paramagnetic material by its magnetic action. . Further, the magnetic catalyst 33 promotes the reduction reaction in the air electrode reaction layer, and catalyses the electrochemical reaction. That is, oxygen receives a very large attractive force as a paramagnetic substance from the magnetic catalyst 33 itself that reacts directly with protons. On the other hand, water is generated on the surface of the magnetic catalyst 33 itself after the electrochemical reaction, and the water is also very large from the magnetic catalyst 33 itself as a diamagnetic material by the magnetic force generated by the magnetic catalyst 33 itself. Receive exclusion. For this reason, since water as an obstacle is drained from the active point of the magnetic catalyst 33 that actually performs the electrochemical reaction, and oxygen can be quickly supplied to the magnetic catalyst 33, flooding is more reliably suppressed. The

仮に、図8に示すように、磁性触媒33が空気極反応層において単に分散、配置されているに過ぎないとすると、各磁性触媒33は、上記特許文献1の永久磁石と同様、自己の体積に応じた磁気力しか生じず、磁気力が不足するおそれがある。また、この場合、各磁性触媒33が空気極反応層から脱落するおそれがある。これでは、磁気力に基づく吸引力及び排斥力が不十分になるおそれがあり、燃料電池システムの出力向上を必ずしも実現し得ないと思われる。   As shown in FIG. 8, if the magnetic catalysts 33 are merely dispersed and arranged in the air electrode reaction layer, each magnetic catalyst 33 has its own volume as in the case of the permanent magnet of Patent Document 1. Only the magnetic force corresponding to the above is generated, and the magnetic force may be insufficient. In this case, each magnetic catalyst 33 may fall off from the air electrode reaction layer. In this case, there is a possibility that the attractive force and the evacuation force based on the magnetic force may be insufficient, and it seems that the output improvement of the fuel cell system cannot always be realized.

これに対し、本発明では、図1に示すように、磁性触媒33を自ら磁気作用をもつ磁性体からなる電極用磁性担体31の外周面に担持するのである。こうであれば、磁性触媒33及び電極用磁性担体31の合計の体積による十分な磁気力を生じる。また、磁性触媒33が電極用磁性担体31に磁着して脱落し難い。なお、この場合、触媒作用を発揮していない磁性触媒33であっても、その磁気作用を有効に利用することができる。 On the other hand, in the present invention, as shown in FIG. 1, the magnetic catalyst 33 is carried on the outer peripheral surface of the electrode magnetic carrier 31 made of a magnetic material having its own magnetic action . In this case, a sufficient magnetic force is generated by the total volume of the magnetic catalyst 33 and the electrode magnetic carrier 31. Further, the magnetic catalyst 33 is magnetically attached to the electrode magnetic carrier 31 and hardly falls off. In this case, even the magnetic catalyst 33 that does not exhibit catalytic action can effectively use the magnetic action.

したがって、本発明の電極用磁性担体31によれば、活性化過電圧及び濃度過電圧の低減により、燃料電池システムの出力をより確実に向上させることができるのである。   Therefore, according to the magnetic carrier 31 for an electrode of the present invention, the output of the fuel cell system can be more reliably improved by reducing the activation overvoltage and the concentration overvoltage.

電極用磁性担体31としては、鉄、コバルト、ニッケル、鉄−コバルト合金、鉄−ニッケル合金、アルニコ等、一元系金属又は二元系以上の多元系合金を採用することができる。電極用磁性担体31は、上記磁性触媒33と同様、電極用磁性担体31が触媒作用及び磁気作用を併せもつものであることもできる。例えば、電極用磁性担体31として、Pt−Fe合金、Pt−Co合金、Pt−Fe−Co合金等の触媒作用及び磁気作用を併せもつ多元系合金を採用することができる。粒径が20〜100nmの電極用磁性担体31を採用することが好ましい。   As the electrode magnetic carrier 31, a single metal or a binary or higher multi-component alloy such as iron, cobalt, nickel, iron-cobalt alloy, iron-nickel alloy, and alnico can be used. Similarly to the magnetic catalyst 33, the electrode magnetic carrier 31 may have both a catalytic action and a magnetic action. For example, as the electrode magnetic carrier 31, a multi-component alloy having both catalytic action and magnetic action such as Pt—Fe alloy, Pt—Co alloy, Pt—Fe—Co alloy can be employed. It is preferable to employ a magnetic carrier 31 for an electrode having a particle size of 20 to 100 nm.

電極用磁性担体31としては、図9に示すように、既に磁気力を有するものを採用する。また、既に磁力を有するものをさらに磁気化することもできる。磁気力を有する電極用磁性担体31を用いる場合、図1に示すように、電極用磁性担体31のN極に各磁性触媒33のS極が配向し、電極用磁性担体31のS極に各磁性触媒33のN極が配向し、電極用磁性担体31及び各磁性触媒33のS極及びN極が整列してより強い磁気力を生じる。また、電極用磁性担体31の磁気化により各磁性触媒33の磁化を継続することができる。このため、本発明の電極用磁性担体を用いた燃料電池システムでは、酸素の吸引効果及び水の排出効果が向上する。 The electrode magnetic carrier 31, as shown in FIG. 9, already employ one having a magnetic force. Moreover, what already has magnetic force can be further magnetized. When the magnetic carrier 31 for electrodes having magnetic force is used, as shown in FIG. 1, the south pole of each magnetic catalyst 33 is oriented to the north pole of the magnetic carrier 31 for electrodes, and The N poles of the magnetic catalyst 33 are oriented, and the magnetic support 31 for electrodes and the S and N poles of each magnetic catalyst 33 are aligned to generate a stronger magnetic force. Further, the magnetization of each magnetic catalyst 33 can be continued by magnetizing the magnetic carrier 31 for electrodes. For this reason, in the fuel cell system using the magnetic carrier for electrodes of the present invention, the oxygen suction effect and the water discharge effect are improved.

また、電極用磁性担体31が触媒作用及び磁気作用を併せもつものである場合には、電極用磁性担体31も触媒作用によって電気化学的反応を促進する。   When the electrode magnetic carrier 31 has both a catalytic action and a magnetic action, the electrode magnetic carrier 31 also promotes an electrochemical reaction by the catalytic action.

電極用磁性担体31の外周面に上記磁性触媒33が担持され、本発明の燃料電池の電極用磁性担持触媒30となる。すなわち、本発明に係る燃料電池の電極用磁性担持触媒30は、自ら磁気作用をもつ磁性体からなる電極用磁性担体31と、該電極用磁性担体31の外周面に担持され、触媒作用及び磁気作用を自ら併せもつ磁性触媒33とを有する。 The magnetic catalyst 33 is supported on the outer peripheral surface of the electrode magnetic carrier 31 to form the electrode magnetic supported catalyst 30 of the fuel cell of the present invention. That is, the electrode-supported magnetic catalyst 30 of the fuel cell according to the present invention is supported on the electrode magnetic carrier 31 made of a magnetic material having its own magnetic action , and on the outer peripheral surface of the electrode magnetic carrier 31, thereby providing catalytic and magnetic properties. that having a magnetic catalyst 33 having both himself the action.

本発明の電極用磁性担持触媒30によれば、本発明の電極用磁性担体31と同様、燃料電池システムの出力をより確実に向上させることができる。   According to the electrode-supported magnetic catalyst 30 of the present invention, as with the electrode magnetic carrier 31 of the present invention, the output of the fuel cell system can be improved more reliably.

磁性触媒33は導電性磁性体32によって電極用磁性担体31の外周面に担持されていることができる。導電性磁性体32としては、カーボン等を採用することができる。厚みが数nmの導電性磁性体32を採用することが好ましい。例えば、アーク放電によってカーボンと電極用磁性担体を構成する磁性体の金属とを同時に高温化して飛散させ、それらが凝固する過程で金属がカーボンに内包されたカーボンナノカプセルを析出する。そして、そのカーボンナノカプセルへ磁性触媒を担持する。こうして、磁性触媒33を導電性磁性体32によって外周面に担持した本発明の電極用磁性触媒30が得られる。   The magnetic catalyst 33 can be supported on the outer peripheral surface of the electrode magnetic carrier 31 by the conductive magnetic body 32. As the conductive magnetic body 32, carbon or the like can be adopted. It is preferable to employ a conductive magnetic body 32 having a thickness of several nm. For example, carbon and a magnetic metal constituting the electrode magnetic carrier are simultaneously heated and scattered by arc discharge, and carbon nanocapsules in which the metal is encapsulated in carbon are deposited in the process of solidifying. Then, a magnetic catalyst is supported on the carbon nanocapsule. Thus, the electrode magnetic catalyst 30 of the present invention in which the magnetic catalyst 33 is supported on the outer peripheral surface by the conductive magnetic body 32 is obtained.

本発明に係る燃料電池の使用方法は、イオン交換膜からなる電解質層と、該電解質層の一面に接合された空気極と、該電解質層の他面に接合された水素極とを有する燃料電池によって起電力を発生させる使用方法であって、
前記空気極には、自ら磁気作用をもつ磁性体からなる電極用磁性担体と、該電極用磁性担体の外周面に担持され、触媒作用及び磁気作用を自ら併せもつ磁性触媒とを有する無数の電極用磁性担持触媒が担持され、
前記電極用磁性担体及び前記磁性触媒のS極及びN極が整列した状態で前記磁性触媒を前記電極用磁性担体に磁着して該磁性触媒の脱落を防止することを特徴とする
A method of using a fuel cell according to the present invention includes an electrolyte layer made of an ion exchange membrane, an air electrode joined to one surface of the electrolyte layer, and a hydrogen electrode joined to the other surface of the electrolyte layer. A method of generating electromotive force by means of
Wherein the air electrode includes an electrode magnetic carrier made of a magnetic material having its own magnetic action, it is carried on the outer peripheral surface of the electrode magnetic carrier, countless electrode having a magnetic catalyst having both themselves catalysis and magnetic action A magnetic supported catalyst is supported,
Characterized in that to prevent the falling of magnetic catalyst was magnetically attached to the magnetic catalytic magnetic carrier for said electrode in a state where the S pole and the N pole of the magnetic carrier and the magnetic catalyst the electrodes are aligned.

本発明の使用方法によれば、本発明の電極用磁性担体31と同様、燃料電池システムの出力をより確実に向上させることができる。   According to the method of use of the present invention, the output of the fuel cell system can be more reliably improved, like the electrode magnetic carrier 31 of the present invention.

空気極反応層に本発明の電極用磁性担持触媒30を担持し、本発明の電極接合体となる。すなわち、本発明に係る燃料電池の膜電極接合体は、イオン交換膜からなる電解質層と、該電解質層の一面に接合された空気極と、該電解質層の他面に接合された水素極とを有し、該空気極は、該電解質層の一面に接合された空気極反応層と、該空気極反応層の非電解質層側に接合され、該空気極反応層に空気を拡散する空気拡散層とからなる膜電極接合体において、
前記空気極反応層には、自ら磁気作用をもつ磁性体からなる電極用磁性担体と、該電極用磁性担体の外周面に担持され、触媒作用及び磁気作用を自ら併せもつ磁性触媒とを有する無数の電極用磁性担持触媒が担持されている。
The electrode electrode assembly of the present invention is obtained by supporting the electrode-supported magnetic supported catalyst 30 of the present invention on the air electrode reaction layer. That is, the membrane electrode assembly of the fuel cell according to the present invention includes an electrolyte layer made of an ion exchange membrane, an air electrode bonded to one surface of the electrolyte layer, and a hydrogen electrode bonded to the other surface of the electrolyte layer. The air electrode has an air electrode reaction layer bonded to one surface of the electrolyte layer and an air diffusion layer bonded to the non-electrolyte layer side of the air electrode reaction layer and diffusing air into the air electrode reaction layer. In a membrane electrode assembly comprising a layer,
Countless wherein the air electrode reaction layer, having electrodes for magnetic carrier made of a magnetic material having its own magnetic action, is carried on the outer peripheral surface of the electrode magnetic carrier, a magnetic catalyst having both themselves catalysis and magnetic action magnetic supported catalyst for the electrodes that are supported.

本発明の膜電極接合体によれば、燃料電池システムの出力をより確実に向上させることができる。   According to the membrane electrode assembly of the present invention, the output of the fuel cell system can be improved more reliably.

本発明の膜電極接合体は、電解質層、空気極及び水素極を有する。電解質としては、ナフィオン(登録商標)等のイオン交換樹脂を採用することができる。空気極は、電解質層の一面に接合された空気極反応層と、空気極反応層の非電解質層側に接合され、空気極反応層に空気を拡散する空気拡散層とからなる。また、水素極は、電解質層の他面に接合された水素極反応層と、水素極反応層の非電解質層側に接合され、水素極反応層に水素を拡散する水素拡散層とからなり得る。   The membrane electrode assembly of the present invention has an electrolyte layer, an air electrode, and a hydrogen electrode. As the electrolyte, an ion exchange resin such as Nafion (registered trademark) can be employed. The air electrode includes an air electrode reaction layer bonded to one surface of the electrolyte layer and an air diffusion layer bonded to the non-electrolyte layer side of the air electrode reaction layer and diffusing air into the air electrode reaction layer. The hydrogen electrode may be composed of a hydrogen electrode reaction layer bonded to the other surface of the electrolyte layer and a hydrogen diffusion layer bonded to the non-electrolyte layer side of the hydrogen electrode reaction layer and diffusing hydrogen into the hydrogen electrode reaction layer. .

空気極反応層は、カーボンクロス、カーボンペーパー、カーボンフェルト等の導電性のある基材と、この基材に固定した少なくとも電極用磁性担持触媒及び電解質とからなり得る。基材は撥水性及びガス透過性を有するものであり得る。撥水性を有するものとするためには、カーボンクロス等の基材に撥水材を塗布しておくことができる。水素極反応層は、基材と、この基材に固定した少なくとも触媒及び電解質とからなり得る。   The air electrode reaction layer can be composed of a conductive base material such as carbon cloth, carbon paper, or carbon felt, and at least a magnetic supported catalyst for an electrode and an electrolyte fixed to the base material. The substrate can have water repellency and gas permeability. In order to have water repellency, a water repellent material can be applied to a substrate such as carbon cloth. The hydrogen electrode reaction layer can be composed of a base material and at least a catalyst and an electrolyte fixed to the base material.

空気拡散層や水素拡散層は、基材と、この基材に固定した少なくとも導電材料とからなり得る。基材にPTFE(ポリテトラフルオロエチレン)粒子等の撥水粒子を混合することもできる。   The air diffusion layer and the hydrogen diffusion layer can be composed of a base material and at least a conductive material fixed to the base material. Water repellent particles such as PTFE (polytetrafluoroethylene) particles may be mixed with the base material.

本発明の膜電極接合体は以下のように製造され得る。まず、電極用磁性担体31、導電性磁性体32、電極用磁性担持触媒30等を用意する。電極用磁性担持触媒30は、電極用磁性担体31の外周面に導電性磁性体32を介して磁性触媒33を担持することによって得られる。   The membrane electrode assembly of the present invention can be produced as follows. First, an electrode magnetic carrier 31, a conductive magnetic body 32, an electrode magnetic supported catalyst 30 and the like are prepared. The electrode-supported magnetic catalyst 30 is obtained by supporting the magnetic catalyst 33 on the outer peripheral surface of the electrode-use magnetic carrier 31 via the conductive magnetic body 32.

そして、基材に少なくとも電極用磁性担持触媒30及び電解質溶液を混合したペーストを塗布した後、乾燥させて空気極反応層を製造する。また、基材に少なくとも触媒及び電解質溶液を混合したペーストを塗布した後、乾燥させて水素極反応層を製造する。一方、基材に少なくとも導電材料を混合したペーストを塗布した後、乾燥させて空気拡散層や水素拡散層を製造する。空気極反応層及び空気拡散層の基材を共通化したり、水素極反応層及び水素拡散層の基材を共通化したりすることもできる。既に磁気力を有する電極用磁性担体30を用いる場合には、こうして得られる空気極反応層は既に十分な磁気力を有する。この後、少なくとも空気極反応層を磁場におくことにより、磁性触媒33や電極用磁性担体31を磁化し、少なくとも空気極反応層を得ることもできる。得られた空気極反応層及び水素極反応層により空気極を構成し、この空気極を水素極反応層及び水素拡散層からなる水素極と電解質層とを接合する。こうして本発明の膜電極接合体を得る。   And after apply | coating the paste which mixed the magnetic supported catalyst 30 for electrodes and electrolyte solution to the base material, it is made to dry and an air electrode reaction layer is manufactured. Moreover, after apply | coating the paste which mixed the catalyst and electrolyte solution at least to the base material, it is made to dry and a hydrogen-electrode reaction layer is manufactured. On the other hand, after applying a paste in which at least a conductive material is mixed to the base material, it is dried to produce an air diffusion layer or a hydrogen diffusion layer. The base material of the air electrode reaction layer and the air diffusion layer can be made common, or the base material of the hydrogen electrode reaction layer and the hydrogen diffusion layer can be made common. When using the magnetic carrier 30 for an electrode that already has a magnetic force, the air electrode reaction layer thus obtained already has a sufficient magnetic force. Thereafter, by placing at least the air electrode reaction layer in a magnetic field, the magnetic catalyst 33 and the electrode magnetic carrier 31 can be magnetized to obtain at least the air electrode reaction layer. An air electrode is constituted by the obtained air electrode reaction layer and hydrogen electrode reaction layer, and this air electrode is joined to a hydrogen electrode composed of a hydrogen electrode reaction layer and a hydrogen diffusion layer and an electrolyte layer. Thus, the membrane electrode assembly of the present invention is obtained.

また、本発明の膜電極接合体は以下のようにも製造され得る。まず、上記のように、空気極反応層及び水素極反応層により空気極を構成する。この空気極を水素極反応層及び水素拡散層からなる水素極と電解質層とを接合し、膜電極接合体を得る。そして、この膜電極接合体を磁場におくことにより、磁性触媒33や電極用磁性担体31を磁化し、本発明の膜電極接合体を得ることができる。   The membrane electrode assembly of the present invention can also be produced as follows. First, as described above, an air electrode is constituted by the air electrode reaction layer and the hydrogen electrode reaction layer. The air electrode is joined to a hydrogen electrode composed of a hydrogen electrode reaction layer and a hydrogen diffusion layer and an electrolyte layer to obtain a membrane electrode assembly. Then, by placing this membrane electrode assembly in a magnetic field, the magnetic catalyst 33 and the electrode magnetic carrier 31 can be magnetized to obtain the membrane electrode assembly of the present invention.

本発明の膜電極接合体を水素供給手段、空気供給手段等とともに組み付けることにより、本発明の燃料電池システムとなる。すなわち、本発明の燃料電池システムは、上記膜電極接合体と、前記水素極に水素を供給する水素供給手段と、前記空気極に空気を供給する空気供給手段とを備えているBy assembling the membrane electrode assembly of the present invention together with hydrogen supply means, air supply means and the like, the fuel cell system of the present invention is obtained. That is, the fuel cell system of the present invention is provided with the membrane electrode assembly, and a hydrogen supply means for supplying hydrogen to the hydrogen electrode and an air supply means for supplying air to the air electrode.

水素供給手段は水素極に水素を供給するものである。水素ボンベ、セパレータの水素室等を水素供給手段とすることができる。空気供給手段は、空気極に空気を供給するものである。ブロア、セパレータの空気室等を空気供給手段とすることができる。本発明の燃料電池システムは出力がより確実に向上する。   The hydrogen supply means supplies hydrogen to the hydrogen electrode. A hydrogen cylinder, a hydrogen chamber of a separator, etc. can be used as a hydrogen supply means. The air supply means supplies air to the air electrode. A blower, an air chamber of a separator, or the like can be used as an air supply means. The fuel cell system of the present invention improves the output more reliably.

以下、本発明を具体化した実施例を図面を参照しつつ説明する。この燃料電池システムでは、図1に示す複数のセル1が用いられている。各セル1は膜電極接合体(MEA)10と一対のセパレータ20とを備えている。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings. In the fuel cell system, a plurality of cells 1 shown in FIG 1 0 is used. Each cell 1 includes a membrane electrode assembly (MEA) 10 and a pair of separators 20.

膜電極接合体10は、イオン交換膜からなる電解質層11と、この電解質層11の一面に一体に接合された水素極12と、電解質層11の他面に一体に接合された空気極13とを有している。   The membrane electrode assembly 10 includes an electrolyte layer 11 made of an ion exchange membrane, a hydrogen electrode 12 integrally bonded to one surface of the electrolyte layer 11, and an air electrode 13 integrally bonded to the other surface of the electrolyte layer 11. have.

水素極12は、電解質層11側に設けられる水素極反応層12aと、水素極反応層12aの非電解質層側に接合され、水素極反応層12aに水素を拡散する水素拡散層12bとからなる。   The hydrogen electrode 12 includes a hydrogen electrode reaction layer 12a provided on the electrolyte layer 11 side, and a hydrogen diffusion layer 12b joined to the non-electrolyte layer side of the hydrogen electrode reaction layer 12a and diffusing hydrogen into the hydrogen electrode reaction layer 12a. .

また、空気極13は、電解質層11側に設けられる空気極反応層13aと、空気極反応層13aの非電解質層側に接合され、空気極反応層13aに空気を拡散する空気拡散層13bとからなる。   The air electrode 13 is joined to the air electrode reaction layer 13a provided on the electrolyte layer 11 side, the air diffusion layer 13b that is joined to the non-electrolyte layer side of the air electrode reaction layer 13a, and diffuses air into the air electrode reaction layer 13a. Consists of.

各セパレータ20は、一面側に水素極12に水素を供給するための水素室21が形成され、他面側に空気極13に空気を供給するための空気室22が形成されたものである。   Each separator 20 is formed with a hydrogen chamber 21 for supplying hydrogen to the hydrogen electrode 12 on one surface side and an air chamber 22 for supplying air to the air electrode 13 on the other surface side.

各セル1は、水素極12側に水素室21が対面し、空気極13側に空気室22が対面するように膜電極接合体10と一対のセパレータ20とが積層されたものである。そして、膜電極接合体10とセパレータ20とを順次積層することによりスタックが構成される。また、水素極12側と空気極13側とで共通する上記セパレータ20を採用している。なお、スタックの両端のセパレータ20には水素室21又は空気室22だけが形成されている。   In each cell 1, the membrane electrode assembly 10 and the pair of separators 20 are laminated so that the hydrogen chamber 21 faces the hydrogen electrode 12 side and the air chamber 22 faces the air electrode 13 side. A stack is configured by sequentially laminating the membrane electrode assembly 10 and the separator 20. Further, the separator 20 common to the hydrogen electrode 12 side and the air electrode 13 side is employed. Note that only the hydrogen chamber 21 or the air chamber 22 is formed in the separators 20 at both ends of the stack.

スタックには、各セル1の水素室21に図示しないバルブを介して連通する水素ボンベ2と、各セル1の空気室22に連通するブロア3とが接続されている。水素ボンベ2及びセパレータ20の水素室21が水素極反応層12aに水素を供給する水素供給手段である。また、ブロア3及びセパレータ20の空気室22が空気極反応層13aに空気を供給する空気供給手段である。   A hydrogen cylinder 2 communicating with the hydrogen chamber 21 of each cell 1 via a valve (not shown) and a blower 3 communicating with the air chamber 22 of each cell 1 are connected to the stack. The hydrogen cylinder 2 and the hydrogen chamber 21 of the separator 20 are hydrogen supply means for supplying hydrogen to the hydrogen electrode reaction layer 12a. The blower 3 and the air chamber 22 of the separator 20 are air supply means for supplying air to the air electrode reaction layer 13a.

実施例の燃料電池システムの特徴的な構成として、空気極反応層13aには、図11及び図12に示すように、無数の電極用磁性担持触媒30が担持されている。各電極用磁性担持触媒30は、電極用磁性担体31と、電極用磁性担体31の外周面にカーボン32を介して担持された磁性触媒33とからなる。電極用磁性担体31は、平均粒径が50nm、Pt/Fe=50/50(at%)のPt−Fe合金を熱処理し、水で急冷したfct構造を主相とするPt−Fe合金である。また、磁性触媒33は、平均粒径が5nm、Pt/Fe=50/50(at%)のPt−Fe合金を熱処理し、水で急冷したfct構造を主相とするPt−Fe合金である。 As a characteristic configuration of a fuel cell system embodiments, the air electrode reaction layer 13a, as shown in FIGS. 11 and 12, the magnetic supported catalyst 30 is carried on for a myriad of electrodes. Each electrode-supported magnetic catalyst 30 includes an electrode magnetic carrier 31 and a magnetic catalyst 33 supported on the outer peripheral surface of the electrode magnetic carrier 31 via carbon 32. The electrode magnetic carrier 31 is a Pt—Fe alloy having a main phase of an fct structure in which a Pt—Fe alloy having an average particle diameter of 50 nm and Pt / Fe = 50/50 (at%) is heat-treated and rapidly cooled with water. . The magnetic catalyst 33 is a Pt—Fe alloy having a main phase of an fct structure in which a Pt—Fe alloy having an average particle diameter of 5 nm and Pt / Fe = 50/50 (at%) is heat-treated and rapidly cooled with water. .

各電極用磁性担持触媒33は各磁性触媒33及び電極用磁性担体31が磁化されている。   In each electrode magnetic supported catalyst 33, each magnetic catalyst 33 and the electrode magnetic carrier 31 are magnetized.

この燃料電池システムにおいて、各電極用磁性担持触媒33近傍における100%酸素へ作用する室温での磁気力をシミュレーションする。この結果を図11の実線で示す。なお、破線は電極用磁性担体31を用いない場合の結果を示す。 In this fuel cell system, the magnetic force at room temperature acting on 100% oxygen in the vicinity of each electrode magnetic supported catalyst 33 is simulated. The results by the solid line in FIG. 11. In addition, a broken line shows the result when not using the magnetic carrier 31 for electrodes.

11より、電極用磁性担体31を用いた各電極用磁性担持触媒33の方が電極用磁性担体31を用いない場合よりも大きな吸引力で酸素を吸引できることがわかる。 From FIG. 11 , it can be seen that each electrode-supported magnetic catalyst 33 using the electrode magnetic carrier 31 can suck oxygen with a larger suction force than when the electrode magnetic carrier 31 is not used.

また、この燃料電池システムにおいて、各電極用磁性担持触媒33近傍における水へ作用する室温での磁気力をシミュレーションする。この結果を図12の実線で示す。なお、破線は電極用磁性担体31を用いない場合の結果を示す。 Further, in this fuel cell system, a magnetic force at room temperature acting on water in the vicinity of each electrode magnetic supported catalyst 33 is simulated. The results by the solid line in FIG. 12. In addition, a broken line shows the result when not using the magnetic carrier 31 for electrodes.

12より、電極用磁性担体31を用いた各電極用磁性担持触媒33の方が電極用磁性担体31を用いない場合よりも大きな排斥力で水を排斥できることがわかる。 From FIG. 12 , it can be seen that each electrode-supported magnetic catalyst 33 using the electrode magnetic carrier 31 can drain water with a larger drainage force than when the electrode magnetic carrier 31 is not used.

このため、実施例の電極用磁性担体31、電極用磁性担持触媒33又は膜電極接合体10を用いた燃料電池システムでは、磁気力に基づく酸素への吸引力及び水への排斥力を確実に生じるのである。   For this reason, in the fuel cell system using the electrode magnetic carrier 31, the electrode magnetic supported catalyst 33 or the membrane electrode assembly 10 of the embodiment, the suction force to oxygen and the drainage force to water based on the magnetic force are ensured. It happens.

したがって、実施例の電極用磁性担体31、電極用磁性担持触媒33又は膜電極接合体10によれば、燃料電池システムの出力をより確実に向上させることができるのである。   Therefore, according to the magnetic carrier 31 for electrodes, the magnetic supported catalyst 33 for electrodes, or the membrane electrode assembly 10 of the embodiment, the output of the fuel cell system can be improved more reliably.

本発明は電気自動車等の移動用電源、あるいは据え置き用電源に利用可能である。   The present invention can be used for a moving power source for an electric vehicle or the like, or a stationary power source.

電極用磁性担持触媒の構成並びに酸素及び水への磁気力を示す概念図である。It is a conceptual diagram which shows the structure of the magnetic support catalyst for electrodes, and the magnetic force to oxygen and water. fct構造のPt合金の模式構造図である。FIG. 3 is a schematic structural diagram of a Pt alloy having an fct structure. fcc構造のPt合金の模式構造図である。It is a schematic structure diagram of a Pt alloy having an fcc structure. Pt−Fe合金の状態図である。It is a phase diagram of a Pt-Fe alloy. fct構造を主相とするPt−Fe合金の磁化曲線図である。FIG. 4 is a magnetization curve diagram of a Pt—Fe alloy having an fct structure as a main phase. Pt−Co合金の状態図である。It is a phase diagram of a Pt-Co alloy. 磁性触媒の構成並びに酸素及び水への磁気力を示す概念図である。It is a conceptual diagram which shows the structure of a magnetic catalyst, and the magnetic force to oxygen and water. 分散された複数の磁性触媒の構成を示す概念図である。It is a conceptual diagram which shows the structure of the some magnetic catalyst disperse | distributed. 電極用磁性担体等の構成を示す概念図である。It is a conceptual diagram which shows structures, such as a magnetic carrier for electrodes. 実施例の燃料電池システムに係り、セルの要部模式断面図である。1 is a schematic cross-sectional view of a main part of a cell according to a fuel cell system of an example. 電極用磁性担持触媒近傍の酸素に作用する吸引力を示すグラフである。It is a graph which shows the attractive force which acts on the oxygen in the vicinity of the magnetic support catalyst for electrodes. 電極用磁性担持触媒近傍の水に作用する排斥力を示すグラフである。It is a graph which shows the exclusion force which acts on the water of the magnetic carrying | support catalyst for electrodes. 従来に係り、膜電極接合体の模式図である。It is related and is a schematic diagram of a membrane electrode assembly.

符号の説明Explanation of symbols

30…電極用磁性担持触媒
31…電極用磁性担体
32…カーボン(導電性磁性体)
33…磁性触媒
11…電解質層
13…空気極
12…水素極
10…膜電極接合体
2、21…水素供給手段(2…水素ボンベ、21…水素室)
3、22…空気供給手段(3…ブロア、21…空気室)
DESCRIPTION OF SYMBOLS 30 ... Magnetic support catalyst for electrodes 31 ... Magnetic support for electrodes 32 ... Carbon (conductive magnetic material)
33 ... Magnetic catalyst 11 ... Electrolyte layer 13 ... Air electrode 12 ... Hydrogen electrode 10 ... Membrane electrode assembly 2, 21 ... Hydrogen supply means (2 ... Hydrogen cylinder, 21 ... Hydrogen chamber)
3, 22 ... Air supply means (3 ... Blower, 21 ... Air chamber)

Claims (4)

イオン交換膜からなる電解質層と、該電解質層の一面に接合された空気極と、該電解質層の他面に接合された水素極とを有する燃料電池によって起電力を発生させる使用方法であって、
前記空気極には、自ら磁気作用をもつ磁性体からなる電極用磁性担体と、該電極用磁性担体の外周面に担持され、触媒作用及び磁気作用を自ら併せもつ磁性触媒とを有する無数の電極用磁性担持触媒が担持され、
前記電極用磁性担体及び前記磁性触媒のS極及びN極が整列した状態で前記磁性触媒を前記電極用磁性担体に磁着して該磁性触媒の脱落を防止することを特徴とする燃料電池の使用方法。
A method of use in which an electromotive force is generated by a fuel cell having an electrolyte layer made of an ion exchange membrane, an air electrode bonded to one surface of the electrolyte layer, and a hydrogen electrode bonded to the other surface of the electrolyte layer. ,
Wherein the air electrode includes an electrode magnetic carrier made of a magnetic material having its own magnetic action, it is carried on the outer peripheral surface of the electrode magnetic carrier, countless electrode having a magnetic catalyst having both themselves catalysis and magnetic action A magnetic supported catalyst is supported,
A fuel cell characterized in that the magnetic catalyst is magnetically attached to the electrode magnetic carrier in a state where the south pole and the north pole of the magnetic carrier for the electrode and the magnetic catalyst are aligned to prevent the magnetic catalyst from falling off. how to use.
前記電極用磁性担体は触媒作用を自ら併せもつものであることを特徴とする請求項1記載の燃料電池の使用方法。 Using a fuel cell according to claim 1, wherein the magnetic carrier for said electrode, characterized in that those having both themselves catalyst operation. 前記磁性触媒は導電性磁性体によって前記電極用磁性担体の外周面に担持されていることを特徴とする請求項1又は2記載の燃料電池の使用方法。   3. The method of using a fuel cell according to claim 1, wherein the magnetic catalyst is supported on an outer peripheral surface of the electrode magnetic carrier by a conductive magnetic material. 前記磁性触媒はfct構造を主相とするPt合金であることを特徴とする請求項1乃至3のいずれか1項記載の燃料電池の使用方法。   The method for using a fuel cell according to any one of claims 1 to 3, wherein the magnetic catalyst is a Pt alloy having a fct structure as a main phase.
JP2004130631A 2004-04-27 2004-04-27 How to use the fuel cell Expired - Fee Related JP4729865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130631A JP4729865B2 (en) 2004-04-27 2004-04-27 How to use the fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130631A JP4729865B2 (en) 2004-04-27 2004-04-27 How to use the fuel cell

Publications (2)

Publication Number Publication Date
JP2005317220A JP2005317220A (en) 2005-11-10
JP4729865B2 true JP4729865B2 (en) 2011-07-20

Family

ID=35444433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130631A Expired - Fee Related JP4729865B2 (en) 2004-04-27 2004-04-27 How to use the fuel cell

Country Status (1)

Country Link
JP (1) JP4729865B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5119738B2 (en) * 2007-05-18 2013-01-16 トヨタ自動車株式会社 Electrode catalyst for alkaline fuel cell, alkaline fuel cell, and method for forming electrode catalyst for alkaline fuel cell
JP2009028708A (en) * 2007-06-25 2009-02-12 Hitachi Maxell Ltd Magnetic particle-deposited catalyst, method for manufacturing the same, electrode using the same for fuel cell, and fuel cell
JP5486827B2 (en) * 2008-10-31 2014-05-07 国立大学法人東北大学 Method for producing platinum-iron alloy fine powder
JP2012174655A (en) * 2011-02-24 2012-09-10 Toyota Motor Corp Air electrode for air battery, method of manufacturing the same, and air electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198057A (en) * 2000-05-23 2002-07-12 National Institute Of Advanced Industrial & Technology Fuel cell and improved version of oxygen electrode used for same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198057A (en) * 2000-05-23 2002-07-12 National Institute Of Advanced Industrial & Technology Fuel cell and improved version of oxygen electrode used for same

Also Published As

Publication number Publication date
JP2005317220A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
Guo et al. Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen
US7754370B2 (en) Fuel cell catalyst material, fuel cell electrode, membrane-electrode assembly, fuel cell, fuel cell catalyst material manufacturing method, and fuel cell electrode manufacturing method
US9120087B2 (en) Catalyst for fuel cell, method for preparing the same, and membrane-electrode assembly and fuel cell system comprising same
JP4901748B2 (en) Gas diffusion media with microporous bilayer
Park et al. Direct electron transfer in E. coli catalyzed MFC with a magnetite/MWCNT modified anode
JP4207120B2 (en) Catalytic electrode and electrochemical device
JP4952008B2 (en) Electrode catalyst layer for solid polymer electrolyte fuel cell, method for producing the same, and solid polymer electrolyte fuel cell
JP4729865B2 (en) How to use the fuel cell
JP2005294109A (en) Substrate for fuel cell, and the fuel cell
JP2002198057A (en) Fuel cell and improved version of oxygen electrode used for same
JP2006252966A (en) Electrode catalyst layer for fuel cell and the fuel cell using the same
JP5022707B2 (en) Solid polymer electrolyte fuel cell
Joo et al. Development of a Self‐supporting Microporous Layer on a Metal Mesh for Carbon Backing‐free Cathodes in Proton Exchange Membrane Fuel Cells
Tsai et al. A catalytic gas diffusion layer for improving the efficiency of a direct methanol fuel cell
JP2005346929A (en) Membrane electrode assembly for direct fuel cell, system, and method of using system
JP5135704B2 (en) Method for producing electrode catalyst layer for polymer electrolyte fuel cell
JP2005332770A (en) Membrane electrode assembly and fuel cell system
US6939628B2 (en) Method and apparatus for increasing fuel cell efficiency, power output, or reduced-temperature operation
JP2009028708A (en) Magnetic particle-deposited catalyst, method for manufacturing the same, electrode using the same for fuel cell, and fuel cell
US7569289B2 (en) Fuel cell comprising a magnetic cathode with static pumping
JP2005293988A (en) Method for using fuel cell system, electrode material for fuel cell, and manufacturing method of air electrode for fuel cell
JP4802484B2 (en) Catalyst-supported mixed conductor
JP3719419B2 (en) Fuel cell
JP2006031942A (en) Membrane electrode assembly and system of direct type fuel cell, and operation method of system
JP4725081B2 (en) Fuel cell electrode and membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4729865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees